molecules-logo

Journal Browser

Journal Browser

Topical Collection "Bioactive Compounds"

Editors

Dr. Roberto Fabiani
E-Mail Website
Collection Editor
Associate Professor, Department of Chemistry, Biology and Biotechnology - University of Perugia, Via del Giochetto, 06126 Perugia, Italy
Interests: cancer chemoprevention; nutrition; olive oil; polyphenols; natural bioactive compounds; antioxidants; oxidative stress; genotoxicity; mutagenicity; apoptosis; cell cycle regulation;
Special Issues, Collections and Topics in MDPI journals
Dr. Eliana Pereira
E-Mail Website
Collection Editor
Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
Interests: chemistry of natural products; emerging conservation technologies; gamma and electron beam irradiation; development of functional food; recovery of biological waste; biobased ingredients
Special Issues, Collections and Topics in MDPI journals
Prof. Dr. Isabel C.F.R. Ferreira
E-Mail Website
Former Collection Editor
Centro de Investigação de Montanha CIMO, Instituto Politécnico de Bragança, Campus de Santa Apolónia, P-5300253 Bragança, Portugal
Interests: food chemistry; natural products; functional foods
Special Issues, Collections and Topics in MDPI journals
Dr. Nancy D. Turner
E-Mail Website
Former Collection Editor
Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
Interests: colon cancer; inflammatory bowel disease; diet; microbiota
Special Issues, Collections and Topics in MDPI journals

Topical Collection Information

Dear Colleagues,

Consumers increasingly believe that foods contribute directly to their health and well-being. In this context, extranutritional constituents that typically occur in small quantities in foods, "Bioactive compounds", play a very significant role. Bioactive compounds are being intensively studied to evaluate their effects on health, including antioxidant, antiallergic, antimicrobial, antithrombotic, antiatherogenic, hypoglycaemic, anti-inflammatory, antitumor, cytostatic, immunosuppressive properties, and hepatoprotective activities. Contributions for this issue, both in form of original research and review articles, may cover all aspects of bioactive compounds with proven activities in various biological screenings and pharmacological models, e.g. quantification, variability and efficacy of bioactive compounds; development of new protocols and methods based on chemical or biological systems for the evaluation of in vivo and in vitro bioactivity; clinical and nutritional trials focused on the bioactive properties of bioactive compounds synthesized or isolated; elucidation of bioactive compounds mechanisms; innovative techniques of bioactive compounds delivery and protocols for the extraction, isolation, structural characterization of new bioactive compounds will be welcomed, on condition that an adequate evaluation of their efficacy is provided. Papers regarding the development of pharmaceuticals from bioactive compounds will be also taken into consideration.

Prof. Dr. Roberto Fabiani
Dr. Eliana Pereira
Dr. Isabel C.F.R. Ferreira
Dr. Nancy D. Turner
Collection Editors

Manuscript Submission Information

Manuscripts for the topical collection can be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on this website. The topical collection considers regular research articles, short communications and review articles. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page.

Please visit the Instructions for Authors page before submitting a manuscript. The article processing charge (APC) for publication in this open access journal is 2300 CHF (Swiss Francs).

Keywords

  • bioactivity
  • natural products
  • synthesised compounds
  • isolation techniques
  • structure elucidation
  • mechanism of action

Related Special Issue

Published Papers (426 papers)

2022

Jump to: 2021, 2020, 2019, 2018, 2017, 2016, 2015, 2014, 2013, 2012, 2011, 2010

Article
Saprophytic Bacillus Accelerates the Release of Effective Components in Agarwood by Degrading Cellulose
Molecules 2022, 27(4), 1428; https://doi.org/10.3390/molecules27041428 - 20 Feb 2022
Cited by 1 | Viewed by 566
Abstract
The value of Agarwood increases with time due to the gradual release of its major components, but the mechanism behind this remains unclear. Herein we reveal that the potential driving force of this process is the degradation of cellulose in Agarwood by its [...] Read more.
The value of Agarwood increases with time due to the gradual release of its major components, but the mechanism behind this remains unclear. Herein we reveal that the potential driving force of this process is the degradation of cellulose in Agarwood by its saprophytic Bacillus subtilis. We selected 10-year-old Agarwood from different places and then isolated the saprophytic bacteria. We confirmed these bacteria from different sources are all Bacillus and confirmed they can degrade cellulose, and the highest cellulase activity reached 0.22 U/mL. By co-cultivation of the bacterium and Agarwood powder, we found that three of the strains could release the effective components of Agarwood, while they had little effect in increasing the same components in living Aquilaria sinensis. Finally, we demonstrated that these saprophytic Bacillus subtilis have similar effects on Zanthoxylum bungeanum Maxim and Dalbergiaod orifera T. Chen, but not on Illicium verum Hook. f, Cinnamomum cassia Presl and Phellodendron chinense Schneid. In conclusion, our experiment revealed that the saprophytic Bacillus release the effective components of Agarwood by degrading cellulose, and we provide a promising way to accelerate this process by using this bacterial agent. Full article
Show Figures

Figure 1

Article
In Vivo Anti-Inflammatory Effect, Antioxidant Activity, and Polyphenolic Content of Extracts from Capsicum chinense By-Products
Molecules 2022, 27(4), 1323; https://doi.org/10.3390/molecules27041323 - 16 Feb 2022
Viewed by 632
Abstract
By-products of Capsicum chinense Jacq., var Jaguar could be a source of bioactive compounds. Therefore, we evaluated the anti-inflammatory effect, antioxidant activity, and their relationship with the polyphenol content of extracts of habanero pepper by-products obtained from plants grown on black or red [...] Read more.
By-products of Capsicum chinense Jacq., var Jaguar could be a source of bioactive compounds. Therefore, we evaluated the anti-inflammatory effect, antioxidant activity, and their relationship with the polyphenol content of extracts of habanero pepper by-products obtained from plants grown on black or red soils of Yucatán, Mexico. Moreover, the impact of the type of extraction on their activities was evaluated. The dry by-product extracts were obtained by maceration (ME), Soxhlet (SOX), and supercritical fluid extraction (SFE). Afterward, the in vivo anti-inflammatory effect (TPA-induced ear inflammation) and the in vitro antioxidant activity (ABTS) were evaluated. Finally, the polyphenolic content was quantified by Ultra-Performance Liquid Chromatography (UPLC), and its correlation with both bioactivities was analyzed. The results showed that the SFE extract of stems of plants grown on red soil yielded the highest anti-inflammatory effect (66.1 ± 3.1%), while the extracts obtained by ME and SOX had the highest antioxidant activity (2.80 ± 0.0052 mM Trolox equivalent) and polyphenol content (3280 ± 15.59 mg·100 g−1 dry basis), respectively. A negative correlation between the anti-inflammatory effect, the antioxidant activity, and the polyphenolic content was found. Overall, the present study proposed C. chinense by-products as a valuable source of compounds with anti-inflammatory effect and antioxidant activity. Full article
Show Figures

Figure 1

Article
Effects of Physical Properties and Processing Methods on Astragaloside IV and Flavonoids Content in Astragali radix
Molecules 2022, 27(2), 575; https://doi.org/10.3390/molecules27020575 - 17 Jan 2022
Cited by 2 | Viewed by 353
Abstract
The aim of this study was to investigate the effects of the physical properties (diameter size, powder particle size, composition of bark- and wood-tissue, and turnover rate) and processing methods on the content of active ingredients in Astragali radix (AR), a popular Chinese [...] Read more.
The aim of this study was to investigate the effects of the physical properties (diameter size, powder particle size, composition of bark- and wood-tissue, and turnover rate) and processing methods on the content of active ingredients in Astragali radix (AR), a popular Chinese herbal medicine. The astragaloside IV and flavonoid contents increased with decreasing diameter size. Bark-tissue had significantly higher astragaloside IV and formononetin content than that in the wood-tissue. As a higher proportion of bark-tissue is associated with decreasing diameter, a strong correlation was also shown between bark- to wood-tissue ratio and active ingredients’ content. Furthermore, an increase in astragaloside IV content was observed in thin powder as compared to coarse powder ground from the whole root. However, this association between active ingredients’ content and powder particle size was abolished when isolating bark- and wood-tissue individually. Moreover, AR stir-frying with refined honey, a typical processing method of AR, increased formononetin content. The turnover rate of active constituents upon decoction ranged from 61.9–81.4%. Assessing the active constituent contents using its physical properties and processing methods allows for a more comprehensive understanding of optimizing and strengthening the therapeutic potentials of AR used in food and herbal supplements. Full article
Show Figures

Figure 1

2021

Jump to: 2022, 2020, 2019, 2018, 2017, 2016, 2015, 2014, 2013, 2012, 2011, 2010

Article
Antibacterial Activities of Prenylated Isoflavones from Maclura tricuspidata against Fish Pathogenic Streptococcus: Their Structure-Activity Relationships and Extraction Optimization
Molecules 2021, 26(24), 7451; https://doi.org/10.3390/molecules26247451 - 09 Dec 2021
Viewed by 476
Abstract
Streptococcus zoonotic bacteria cause serious problems in aquaculture with clinical effects on humans. A structure-antibacterial activity relationships analysis of 22 isoflavones isolated from M. tricuspidata (leaves, ripe fruits, and unripe fruits) against S. iniae revealed that prenylation of the isoflavone skeleton was an [...] Read more.
Streptococcus zoonotic bacteria cause serious problems in aquaculture with clinical effects on humans. A structure-antibacterial activity relationships analysis of 22 isoflavones isolated from M. tricuspidata (leaves, ripe fruits, and unripe fruits) against S. iniae revealed that prenylation of the isoflavone skeleton was an important key for their antibacterial activities (minimum inhibitory concentrations: 1.95–500 μg/mL). Through principal component analysis, characteristic prenylated isoflavones such as 6,8-diprenlygenistein (4) were identified as pivotal compounds that largely determine each part’s antibacterial activities. M. tiricuspidata ripe fruits (MTF), which showed the highest antibacterial activity among the parts tested, were optimized for high antibacterial activity and low cytotoxicity on fathead minnow cells using Box–Behnken design. Optimized extraction conditions were deduced to be 50%/80 °C/7.5 h for ethanol concentration/extraction temperature/time, and OE-MTF showed contents of 6,8-diprenlygenistein (4), 2.09% with a MIC of 40 µg/mL. These results suggest that OE-MTF and its active isoflavones have promising potential as eco-friendly antibacterial agents against streptococcosis in aquaculture. Full article
Show Figures

Figure 1

Article
Effect of Edible Onion (Allium cepa L.) Film on Quality, Sensory Properties and Shelf Life of Beef Burger Patties
Molecules 2021, 26(23), 7202; https://doi.org/10.3390/molecules26237202 - 27 Nov 2021
Viewed by 653
Abstract
The production of edible film from onion (Allium cepa L.) to be applied as packaging is attractive, due to its chemical properties and biodegradable characteristics. Thus, we tested the hypothesis that edible onion film can positively influence the sensory properties, quality and [...] Read more.
The production of edible film from onion (Allium cepa L.) to be applied as packaging is attractive, due to its chemical properties and biodegradable characteristics. Thus, we tested the hypothesis that edible onion film can positively influence the sensory properties, quality and increasing shelf life of beef burgers patties. The experiment was designed in a 4 × 2 factorial scheme, with two treatments (beef burgers patties with or without edible onion film) at an interval of four storage times (0, 3, 6 and 9 days) at 4 °C. The uncoated burger patties (control) suffered the most intense color modifications during the storage (p < 0.05). The luminosity index was higher (p < 0.05) in the control at all storage times, except at day 6, and redness, yellowness and chrome were higher (p < 0.05) in the edible onion film patties at all storage times. The pH of the beef burger patties was lower (p < 0.05) at all storage times when the edible onion film was applied. For the texture profile, only the chewiness was affected, as the inclusion of the edible onion film improved the chewing of the beef burgers patties over the storage time (p < 0.05). Additionally, there was an inhibition of the microbial growth of mesophiles and psychrophiles with the application of the edible onion film in beef burgers patties. The use of edible onion film improved the perception of panelists for the variables texture, color, flavor, odor and overall appearance, and increased the preference of panelists. The edible onion film is recommended for preserving beef burgers patties, as it delays the proliferation of unwanted microorganisms, stabilizes and improves the color parameters and sensory attributes, and increases the overall acceptance of the consumer. Full article
Show Figures

Graphical abstract

Article
Chemical Composition and Biological Activities of Essential Oils from the Leaves, Stems, and Roots of Kadsura coccinea
Molecules 2021, 26(20), 6259; https://doi.org/10.3390/molecules26206259 - 16 Oct 2021
Viewed by 649
Abstract
The chemical composition and biological activities of the essential oils from the leaves, stems, and roots of Kadsura coccinea (K. coccinea) were investigated. The essential oils were extracted by hydro distillation and analyzed by gas chromatography mass spectrometry (GC-MS) and gas [...] Read more.
The chemical composition and biological activities of the essential oils from the leaves, stems, and roots of Kadsura coccinea (K. coccinea) were investigated. The essential oils were extracted by hydro distillation and analyzed by gas chromatography mass spectrometry (GC-MS) and gas chromatography with flame ionization detector (GC-FID). Antioxidant activities of the essential oils were examined with DPPH radical scavenging assay, ABTS cation radical scavenging assay, and ferric reducing antioxidant power assay. Antimicrobial activities were evaluated by determining minimum inhibitory concentrations (MIC) and minimum microbiocidal concentrations (MMC). Acetylcholinesterase and butyrylcholinesterase inhibitory activity of the essential oils were also tested. A total of 46, 44, and 47 components were identified in the leaf, stem, and root oils, representing 95.66%, 97.35%, and 92.72% of total composition, respectively. The major compounds of three essential oils were α-pinene (16.60–42.02%), β-pinene (10.03–18.82%), camphene (1.56–10.95%), borneol (0.50–7.71%), δ-cadinene (1.52–7.06%), and β-elemene (1.86–4.45%). The essential oils were found to have weak antioxidant activities and cholinesterase inhibition activities. The essential oils showed more inhibitory effects against Staphylococcus aureus (S. aureus) than those of other strains. The highest antimicrobial activity was observed in the root oil against S. aureus, with MIC of 0.78 mg/mL. Therefore, K. coccinea essential oils might be considered as a natural antibacterial agent against S. aureus with potential application in food and pharmaceutical industries. Full article
Show Figures

Graphical abstract

Article
Apigenin Ameliorates Scopolamine-Induced Cognitive Dysfunction and Neuronal Damage in Mice
Molecules 2021, 26(17), 5192; https://doi.org/10.3390/molecules26175192 - 27 Aug 2021
Cited by 2 | Viewed by 921
Abstract
We investigated the protective effect and mechanisms of apigenin against cognitive impairments in a scopolamine-injected mouse model. Our results showed that intraperitoneal (i.p.) injection of scopolamine leads to learning and memory dysfunction, whereas the administration of apigenin (synthetic compound, 100 and 200 mg/kg/day) [...] Read more.
We investigated the protective effect and mechanisms of apigenin against cognitive impairments in a scopolamine-injected mouse model. Our results showed that intraperitoneal (i.p.) injection of scopolamine leads to learning and memory dysfunction, whereas the administration of apigenin (synthetic compound, 100 and 200 mg/kg/day) improved cognitive ability, which was confirmed by behavioral tests such as the T-maze test, novel objective recognition test, and Morris water maze test in mice. In addition, scopolamine-induced lipid peroxidation in the brain was attenuated by administration of apigenin. To further evaluate the protective mechanisms of apigenin on cognitive and memory function, Western blot analysis was carried out. Administration of apigenin decreased the B-cell lymphoma 2-associated X/B-cell lymphoma 2 (Bax/Bcl-2) ratio and suppressed caspase-3 and poly ADP ribose polymerase cleavage. Furthermore, apigenin down-regulated the β-site amyloid precursor protein-cleaving enzyme, along with presenilin 1 (PS1) and PS2 protein levels. Apigenin-administered mice showed lower protein levels of a receptor for advanced glycation end-products, whereas insulin-degrading enzyme, brain-derived neurotrophic factor (BDNF), and tropomyosin receptor kinase B (TrkB) expression were promoted by treatment with apigenin. Therefore, this study demonstrated that apigenin is an active substance that can improve cognitive and memory functions by regulating apoptosis, amyloidogenesis, and BDNF/TrkB signaling pathways. Full article
Show Figures

Graphical abstract

Article
Cardioprotective Potential of Garlic Oil and Its Active Constituent, Diallyl Disulphide, in Presence of Carvedilol during Chronic Isoprenaline Injection-Mediated Myocardial Necrosis in Rats
Molecules 2021, 26(17), 5137; https://doi.org/10.3390/molecules26175137 - 25 Aug 2021
Cited by 1 | Viewed by 733
Abstract
In isoprenaline (ISO)-induced myocardial infarcted rats, garlic oil (GO) and its main ingredient, diallyl disulfide (DADS), were examined for cardioprotective effects when used with carvedilol (CAR). GO, DADS and CAR were given to rats in their respective groups, either alone or together, with [...] Read more.
In isoprenaline (ISO)-induced myocardial infarcted rats, garlic oil (GO) and its main ingredient, diallyl disulfide (DADS), were examined for cardioprotective effects when used with carvedilol (CAR). GO, DADS and CAR were given to rats in their respective groups, either alone or together, with the addition of isoprenaline (3 mg/kg/day, subcutaneously) during the last 10 days of treatment. At the end of 14 days of treatment, blood samples were collected, the hearts were excised under anesthesia and weighed. Heart tissue homogenate was used to measure superoxide dismutase (SOD), catalase (CAT), and thiobarbituric acid reactive substances (TBARS). Furthermore, the serum activities of cardiac markers, including lactate dehydrogenase, creatine kinase, and cardiac troponin, were checked. Moreover, inflammatory markers including tumor necrosis factor alpha, interleukin one beta, interleukin six, and kappa bp65 subunit were assessed. Rats that received GO, DADS, and CAR exhibited a significant increase in the cardiac antioxidant enzyme activities with a simultaneous decrease in serum cardiac markers enzymes and inflammatory markers. The TBARS were significantly reduced in rats that received treatment. The addition of carvedilol to GO or DADS significantly elevated antioxidant activities and decreased the release of cardiac enzymes into blood circulation. Both DADS and GOl were almost similar in efficacy, indicating the potential role of DADS in garlic oil-mediated cardioprotection. Combining GO or DADS with CAR increased CAR’s cardioprotective impact and protected rats from developing ISO-induced myocardial infarction. Full article
Article
Chemical Constitution and Antimicrobial Activity of Kombucha Fermented Beverage
Molecules 2021, 26(16), 5026; https://doi.org/10.3390/molecules26165026 - 19 Aug 2021
Cited by 6 | Viewed by 1469
Abstract
Kombucha is a traditional beverage of sweetened black tea fermented with a symbiotic association of acetic acid bacteria and yeasts. In this study, kombucha fermented beverage (KFB) appeared to include nine chemical groups (alcohols, acids, lactones, condensed heterocyclic compounds, antibiotics, esters, aldehydes, fatty [...] Read more.
Kombucha is a traditional beverage of sweetened black tea fermented with a symbiotic association of acetic acid bacteria and yeasts. In this study, kombucha fermented beverage (KFB) appeared to include nine chemical groups (alcohols, acids, lactones, condensed heterocyclic compounds, antibiotics, esters, aldehydes, fatty acids, and alkaloids) of many bioactive metabolites, as elucidated by gas chromatography–mass spectrometry (GC-MS) and IR spectra. The fermented metabolic components of KFB seem collectively to act in a synergistic action giving rise to the antimicrobial activity. Four types of kombucha preparations (fermented, neutralized, heat-treated and unfermented) were demonstrated with respect to their antimicrobial activity against some pathogenic bacterial and fungal strains using agar well diffusion assay. KFB exerted the strongest antimicrobial activities when compared with neutralized and heat-treated kombucha beverages (NKB and HKB). Staphylococcus aureus ATCC6538 (S. aureus) and Escherichia coli ATCC11229 (E. coli) were the organisms most susceptible to the antimicrobial activity of kombucha beverage preparations. Finally, the KFB preparation showed remarkable inhibitory activity against S. aureus and E. coli bacteria in a brain heart infusion broth and in some Egyptian fruit juices (apple, guava, strawberry, and tomato). These data reveal that kombucha is not only a prophylactic agent, but also appears to be promising as a safe alternative biopreservative, offering protection against pathogenic bacteria and fungi. Full article
Show Figures

Figure 1

Article
Amber Extract Reduces Lipid Content in Mature 3T3-L1 Adipocytes by Activating the Lipolysis Pathway
Molecules 2021, 26(15), 4630; https://doi.org/10.3390/molecules26154630 - 30 Jul 2021
Cited by 1 | Viewed by 753
Abstract
Amber—the fossilized resin of trees—is rich in terpenoids and rosin acids. The physiological effects, such as antipyretic, sedative, and anti-inflammatory, were used in traditional medicine. This study aims to clarify the physiological effects of amber extract on lipid metabolism in mouse 3T3-L1 cells. [...] Read more.
Amber—the fossilized resin of trees—is rich in terpenoids and rosin acids. The physiological effects, such as antipyretic, sedative, and anti-inflammatory, were used in traditional medicine. This study aims to clarify the physiological effects of amber extract on lipid metabolism in mouse 3T3-L1 cells. Mature adipocytes are used to evaluate the effect of amber extract on lipolysis by measuring the triglyceride content, glucose uptake, glycerol release, and lipolysis-related gene expression. Our results show that the amount of triacylglycerol, which is stored in lipid droplets in mature adipocytes, decreases following 96 h of treatment with different concentrations of amber extract. Amber extract treatment also decreases glucose uptake and increases the release of glycerol from the cells. Moreover, amber extract increases the expression of lipolysis-related genes encoding perilipin and hormone-sensitive lipase (HSL) and promotes the activity of HSL (by increasing HSL phosphorylation). Amber extract treatment also regulates the expression of other adipocytokines in mature adipocytes, such as adiponectin and leptin. Overall, our results indicate that amber extract increases the expression of lipolysis-related genes to induce lipolysis in 3T3-L1 cells, highlighting its potential for treating various obesity-related diseases. Full article
Show Figures

Graphical abstract

Article
Determination of Triterpenoids and Phenolic Acids from Sanguisorba officinalis L. by HPLC-ELSD and Its Application
Molecules 2021, 26(15), 4505; https://doi.org/10.3390/molecules26154505 - 27 Jul 2021
Viewed by 753
Abstract
A novel analytical method involving high-performance liquid chromatography with evaporative light scattering detection (HPLC-ELSD) was developed for simultaneous determination of 11 phenolic acids and 12 triterpenes in Sanguisorba officinalis L. Chromatographic separation was conducted with gradient elution mode by using a DiamonsilTM [...] Read more.
A novel analytical method involving high-performance liquid chromatography with evaporative light scattering detection (HPLC-ELSD) was developed for simultaneous determination of 11 phenolic acids and 12 triterpenes in Sanguisorba officinalis L. Chromatographic separation was conducted with gradient elution mode by using a DiamonsilTM C18 column (250 mm × 4.6 mm, 5 μm) with the mobile phase of 0.1% acetic acid water (A) and methanol (B). The drift tube temperature of ELSD was set at 70 °C and the nitrogen cumulative flow rate was 1.6 L/min. The method was fully validated to be linear over a wide concentration range (R2 ≥ 0.9991). The precisions (RSD) were less than 3.0% and the recoveries were between 97.7% and 101.4% for all compounds. The results indicated that this method is accurate and effective for the determination of 23 functional components in Sanguisorba officinalis L. and could also be successfully applied to study the influence of processing method on those functional components in Sanguisorba officinalis L. Full article
Show Figures

Figure 1

Article
Antifungal Activities of cis-trans Citral Isomers against Trichophyton rubrum with ERG6 as a Potential Target
Molecules 2021, 26(14), 4263; https://doi.org/10.3390/molecules26144263 - 14 Jul 2021
Cited by 1 | Viewed by 744
Abstract
Trichophyton rubrum causes ringworm worldwide. Citral (CIT), extracted from Pectis plants, is a monoterpene and naturally composed of geometric isomers neral (cis-citral) and geranial (trans-citral). CIT has promising antifungal activities and ergosterol biosynthesis inhibition effects against several pathogenic fungi. [...] Read more.
Trichophyton rubrum causes ringworm worldwide. Citral (CIT), extracted from Pectis plants, is a monoterpene and naturally composed of geometric isomers neral (cis-citral) and geranial (trans-citral). CIT has promising antifungal activities and ergosterol biosynthesis inhibition effects against several pathogenic fungi. However, no study has focused on neral and geranial against T. rubrum, which hinders the clinical application of CIT. This study aimed to compare antifungal activities of neral and geranial and preliminarily elucidate their ergosterol biosynthesis inhibition mechanism against T. rubrum. Herein, the disc diffusion assays, cellular leakage measurement, flow cytometry, SEM/TEM observation, sterol quantification, and sterol pattern change analyses were employed. The results showed geranial exhibited larger inhibition zones (p < 0.01 or 0.05), higher cellular leakage rates (p < 0.01), increased conidia with damaged membranes (p < 0.01) within 24 h, more distinct shriveled mycelium in SEM, prominent cellular material leakage, membrane damage, and morphological changes in TEM. Furthermore, geranial possessed more promising ergosterol biosynthesis inhibition effects than neral, and both induced the synthesis of 7-Dehydrodesmosterol and Cholesta-5,7,22,24-tetraen-3β-ol, which represented marker sterols when ERG6 was affected. These results suggest geranial is more potent than neral against T. rubrum, and both inhibit ergosterol biosynthesis by affecting ERG6. Full article
Show Figures

Graphical abstract

Communication
Pyrrolizidine-Derived Alkaloids: Highly Toxic Components in the Seeds of Crotalaria cleomifolia Used in Popular Beverages in Madagascar
Molecules 2021, 26(11), 3464; https://doi.org/10.3390/molecules26113464 - 07 Jun 2021
Viewed by 682
Abstract
Seeds of Crotalaria cleomifolia (Fabaceae) are consumed in Madagascar in preparation of popular beverages. The investigation of extracts from the seeds of this species revealed the presence of high amounts of alkaloids from which two pyrrolizidine-derived alkaloids were isolated. One of them was [...] Read more.
Seeds of Crotalaria cleomifolia (Fabaceae) are consumed in Madagascar in preparation of popular beverages. The investigation of extracts from the seeds of this species revealed the presence of high amounts of alkaloids from which two pyrrolizidine-derived alkaloids were isolated. One of them was fully characterized by spectroscopic and spectrometric methods, which was found to be usaramine. Owing to the high toxicity of these alkaloids, issuing a strong warning among populations consuming the seeds of Crotalaria cleomifolia must be considered. Full article
Show Figures

Figure 1

Review
Plant Occurring Flavonoids as Modulators of the Aryl Hydrocarbon Receptor
Molecules 2021, 26(8), 2315; https://doi.org/10.3390/molecules26082315 - 16 Apr 2021
Cited by 7 | Viewed by 1217
Abstract
The aryl hydrocarbon receptor (AhR) is a transcription factor deeply implicated in health and diseases. Historically identified as a sensor of xenobiotics and mainly toxic substances, AhR has recently become an emerging pharmacological target in cancer, immunology, inflammatory conditions, and aging. Multiple AhR [...] Read more.
The aryl hydrocarbon receptor (AhR) is a transcription factor deeply implicated in health and diseases. Historically identified as a sensor of xenobiotics and mainly toxic substances, AhR has recently become an emerging pharmacological target in cancer, immunology, inflammatory conditions, and aging. Multiple AhR ligands are recognized, with plant occurring flavonoids being the largest group of natural ligands of AhR in the human diet. The biological implications of the modulatory effects of flavonoids on AhR could be highlighted from a toxicological and environmental concern and for the possible pharmacological applicability. Overall, the possible AhR-mediated harmful and/or beneficial effects of flavonoids need to be further investigated, since in many cases they are contradictory. Similar to other AhR modulators, flavonoids commonly exhibit tissue, organ, and species-specific activities on AhR. Such cellular-context dependency could be probably beneficial in their pharmacotherapeutic use. Flavones, flavonols, flavanones, and isoflavones are the main subclasses of flavonoids reported as AhR modulators. Some of the structural features of these groups of flavonoids that could be influencing their AhR effects are herein summarized. However, limited generalizations, as well as few outright structure-activity relationships can be suggested on the AhR agonism and/or antagonism caused by flavonoids. Full article
Show Figures

Graphical abstract

Article
Mammalian Arginase Inhibitory Activity of Methanolic Extracts and Isolated Compounds from Cyperus Species
Molecules 2021, 26(6), 1694; https://doi.org/10.3390/molecules26061694 - 18 Mar 2021
Cited by 1 | Viewed by 738
Abstract
Polyphenolic enriched extracts from two species of Cyperus, Cyperus glomeratus and Cyperus thunbergii, possess mammalian arginase inhibitory capacities, with the percentage inhibition ranging from 80% to 95% at 100 µg/mL and 40% to 64% at 10 µg/mL. Phytochemical investigation of these [...] Read more.
Polyphenolic enriched extracts from two species of Cyperus, Cyperus glomeratus and Cyperus thunbergii, possess mammalian arginase inhibitory capacities, with the percentage inhibition ranging from 80% to 95% at 100 µg/mL and 40% to 64% at 10 µg/mL. Phytochemical investigation of these species led to the isolation and identification of two new natural stilbene oligomers named thunbergin A-B (12), together with three other stilbenes, trans-resveratrol (3), trans-scirpusin A (4), trans-cyperusphenol A (6), and two flavonoids, aureusidin (5) and luteolin (7), which were isolated for the first time from C.thunbergii and C. glomeratus. Structures were established on the basis of the spectroscopic data from MS and NMR experiments. The arginase inhibitory activity of compounds 17 was evaluated through an in vitro arginase inhibitory assay using purified liver bovine arginase. As a result, five compounds (1, 47) showed significant inhibition of arginase, with IC50 values between 17.6 and 60.6 µM, in the range of those of the natural arginase inhibitor piceatannol (12.6 µM). In addition, methanolic extract from Cyperus thunbergii exhibited an endothelium and NO-dependent vasorelaxant effect on thoracic aortic rings from rats and improved endothelial dysfunction in an adjuvant-induced arthritis rat model. Full article
Show Figures

Graphical abstract

Article
Chemical Constituent Profiling of Phyllostachys heterocycla var. Pubescens with Selective Cytotoxic Polar Fraction through EGFR Inhibition in HepG2 Cells
Molecules 2021, 26(4), 940; https://doi.org/10.3390/molecules26040940 - 10 Feb 2021
Cited by 3 | Viewed by 959
Abstract
Different extracts of the Bamboo shoot skin Phyllostachys heterocycla var. pubescens were screened against panel of cancer cell lines and normal one. The cell viability results exhibited that the ethyl acetate extract showed the least vitality percentage of 2.14% of HepG2 cells. Accordingly, [...] Read more.
Different extracts of the Bamboo shoot skin Phyllostachys heterocycla var. pubescens were screened against panel of cancer cell lines and normal one. The cell viability results exhibited that the ethyl acetate extract showed the least vitality percentage of 2.14% of HepG2 cells. Accordingly, it was subjected to chromatographic separation, which resulted in the isolation of a new natural product; 7-hydroxy, 5-methoxy, methyl cinnamate (1), together with four known compounds. The structures of the pure isolated compounds were deduced based on different spectroscopic data. The new compound (1) was screened against the HepG2 and MCF-7 cells and showed IC50 values of 7.43 and 10.65 µM, respectively. It induced apoptotic cell death in HepG2 with total apoptotic cell death of 58.6% (12.44-fold) compared to 4.71% in control by arresting cell cycle progression at the G1 phase. Finally, compound 1 was validated as EGFR tyrosine kinase inhibitor in both enzymatic levels (IC50 = 98.65 nM compared to Erlotinib (IC50 = 78.65 nM). Finally, in silico studies of compound 1 through the molecular docking indicated its high binding affinity towards EGFR protein and the ADME pharmacokinetics indicated it as a drug-like. Full article
Show Figures

Figure 1

Review
Colour Me Blue: The History and the Biotechnological Potential of Pyocyanin
Molecules 2021, 26(4), 927; https://doi.org/10.3390/molecules26040927 - 10 Feb 2021
Cited by 7 | Viewed by 1282
Abstract
Pyocyanin was the first natural phenazine described. The molecule is synthesized by about 95% of the strains of Pseudomonas aeruginosa. From discovery up to now, pyocyanin has been characterised by a very rich and avant-garde history, which includes its use in antimicrobial therapy, [...] Read more.
Pyocyanin was the first natural phenazine described. The molecule is synthesized by about 95% of the strains of Pseudomonas aeruginosa. From discovery up to now, pyocyanin has been characterised by a very rich and avant-garde history, which includes its use in antimicrobial therapy, even before the discovery of penicillin opened the era of antibiotic therapy, as well as its use in electric current generation. Exhibiting an exuberant blue colour and being easy to obtain, this pigment is the subject of the present review, aiming to narrate its history as well as to unveil its mechanisms and suggest new horizons for applications in different areas of engineering, biology and biotechnology. Full article
Show Figures

Figure 1

Review
Epigenetic Modifications Induced by Olive Oil and Its Phenolic Compounds: A Systematic Review
Molecules 2021, 26(2), 273; https://doi.org/10.3390/molecules26020273 - 07 Jan 2021
Cited by 4 | Viewed by 1712
Abstract
Many studies demonstrated that olive oil (especially extra virgin olive oil: EVOO) phenolic compounds are bioactive molecules with anti-cancer, anti-inflammatory, anti-aging and neuroprotective activities. These effects have been recently attributed to the ability of these compounds to induce epigenetics modifications such as miRNAs [...] Read more.
Many studies demonstrated that olive oil (especially extra virgin olive oil: EVOO) phenolic compounds are bioactive molecules with anti-cancer, anti-inflammatory, anti-aging and neuroprotective activities. These effects have been recently attributed to the ability of these compounds to induce epigenetics modifications such as miRNAs expression, DNA methylation and histone modifications. In this study, we systematically review and discuss, following the PRISMA statements, the epigenetic modifications induced by EVOO and its phenols in different experimental systems. At the end of literature search through “PubMed”, “Web of Science” and “Scopus”, 43 studies were selected.Among them, 22 studies reported data on miRNAs, 15 on DNA methylation and 13 on histone modification. Most of the “epigenomic” changes observed in response to olive oil phenols’ exposure were mechanistically associated with the cancer preventive and anti-inflammatory effects. In many cases, the epigenetics effects regarding the DNA methylation were demonstrated for olive oil but without any indication regarding the presence or not of phenols. Overall, the findings of the present systematic review may have important implications for understanding the epigenetic mechanisms behind the health effects of olive oil. However, generally no direct evidence was provided for the causal relationships between epigenetics modification and EVOO health related effects. Further studies are necessary to demonstrate the real physiological consequences of the epigenetics modification induced by EVOO and its phenolic compounds. Full article
Show Figures

Figure 1

2020

Jump to: 2022, 2021, 2019, 2018, 2017, 2016, 2015, 2014, 2013, 2012, 2011, 2010

Article
Flavonol Glycosides: In Vitro Inhibition of DPPIV, Aldose Reductase and Combating Oxidative Stress are Potential Mechanisms for Mediating the Antidiabetic Activity of Cleome droserifolia
Molecules 2020, 25(24), 5864; https://doi.org/10.3390/molecules25245864 - 11 Dec 2020
Cited by 4 | Viewed by 886
Abstract
Diabetes is a major health problem that is associated with high risk of various complications. Medicinal plants hold great promise against diabetes. The traditional use of Cleome droserifolia as an antidiabetic agent was correlated to its flavonol glycosides content. In the current study, [...] Read more.
Diabetes is a major health problem that is associated with high risk of various complications. Medicinal plants hold great promise against diabetes. The traditional use of Cleome droserifolia as an antidiabetic agent was correlated to its flavonol glycosides content. In the current study, five major flavonol glycosides appeared on the RP-HPLC chromatogram of the aqueous extract namely; quercetin-3-O-β-d-glucosyl-7-O-α-rhamnoside (1), isorhamnetin-7-O-β-neohesperidoside (2), isorhamnetin-3-O-β-d-glucoside (3) kaempferol-4′-methoxy-3,7-O-α-dirhamnoside (4), and isorhamnetin-3-O-α-(4″-acetylrhamnoside)-7-O-α-rhamnoside (5). The inhibitory activities of these compounds were tested in vitro against several enzymes involved in diabetes management. Only the relatively less polar methoxylated flavonol glycosides (4, 5) showed mild to moderate α-amylase and α-glucosidase inhibitory activities. Compounds 14 displayed remarkable inhibition of dipeptidyl peptidase IV (DPPIV) enzyme (IC50 0.194 ± 0.06, 0.573 ± 0.03, 0.345 ± 0.02 and 0.281 ± 0.05 µg/mL, respectively) comparable to vildagliptin (IC50 0.154 ± 0.02 µg/mL). Moreover, these compounds showed high potential in preventing diabetes complications through inhibiting aldose reductase enzyme and combating oxidative stress. Both isorhamnetin glycoside derivatives (2, 3) exhibited the highest activities in aldose reductase inhibition and compound 2 (IC50 5.45 ± 0.26 µg/mL) was even more potent than standard quercetin (IC50 7.77 ± 0.43 µg/mL). Additionally, these flavonols exerted excellent antioxidant capacities through 2, 2-diphenyl-1-picrylhydrazil (DPPH) and ferric reducing antioxidant (FRAP) assays. Full article
Show Figures

Figure 1

Review
A Review of the Role of Flavonoids in Peptic Ulcer (2010–2020)
Molecules 2020, 25(22), 5431; https://doi.org/10.3390/molecules25225431 - 20 Nov 2020
Cited by 12 | Viewed by 1885
Abstract
Peptic ulcers are characterized by erosions on the mucosa of the gastrointestinal tract that may reach the muscle layer. Their etiology is multifactorial and occurs when the balance between offensive and protective factors of the mucosa is disturbed. Peptic ulcers represent a global [...] Read more.
Peptic ulcers are characterized by erosions on the mucosa of the gastrointestinal tract that may reach the muscle layer. Their etiology is multifactorial and occurs when the balance between offensive and protective factors of the mucosa is disturbed. Peptic ulcers represent a global health problem, affecting millions of people worldwide and showing high rates of recurrence. Helicobacter pylori infection and the use of non-steroidal anti-inflammatory drugs (NSAIDs) are one of the most important predisposing factors for the development of peptic ulcers. Therefore, new approaches to complementary treatments are needed to prevent the development of ulcers and their recurrence. Natural products such as medicinal plants and their isolated compounds have been widely used in experimental models of peptic ulcers. Flavonoids are among the molecules of greatest interest in biological assays due to their anti-inflammatory and antioxidant properties. The present study is a literature review of flavonoids that have been reported to show peptic ulcer activity in experimental models. Studies published from January 2010 to January 2020 were selected from reference databases. This review refers to a collection of flavonoids with antiulcer activity in vivo and in vitro models. Full article
Show Figures

Figure 1

Article
Novel Therapeutic Effects of Pterosin B on Ang II-Induced Cardiomyocyte Hypertrophy
Molecules 2020, 25(22), 5279; https://doi.org/10.3390/molecules25225279 - 12 Nov 2020
Cited by 5 | Viewed by 901
Abstract
Pathological cardiac hypertrophy is characterized by an abnormal increase in cardiac muscle mass in the left ventricle, resulting in cardiac dysfunction. Although various therapeutic approaches are being continuously developed for heart failure, several studies have suggested natural compounds as novel potential strategies. Considering [...] Read more.
Pathological cardiac hypertrophy is characterized by an abnormal increase in cardiac muscle mass in the left ventricle, resulting in cardiac dysfunction. Although various therapeutic approaches are being continuously developed for heart failure, several studies have suggested natural compounds as novel potential strategies. Considering relevant compounds, we investigated a new role for Pterosin B for which the potential life-affecting biological and therapeutic effects on cardiomyocyte hypertrophy are not fully known. Thus, we investigated whether Pterosin B can regulate cardiomyocyte hypertrophy induced by angiotensin II (Ang II) using H9c2 cells. The antihypertrophic effect of Pterosin B was evaluated, and the results showed that it reduced hypertrophy-related gene expression, cell size, and protein synthesis. In addition, upon Ang II stimulation, Pterosin B attenuated the activation and expression of major receptors, Ang II type 1 receptor and a receptor for advanced glycation end products, by inhibiting the phosphorylation of PKC-ERK-NF-κB pathway signaling molecules. In addition, Pterosin B showed the ability to reduce excessive intracellular reactive oxygen species, critical mediators for cardiac hypertrophy upon Ang II exposure, by regulating the expression levels of NAD(P)H oxidase 2/4. Our results demonstrate the protective role of Pterosin B in cardiomyocyte hypertrophy, suggesting it is a potential therapeutic candidate. Full article
Show Figures

Figure 1

Article
Chemical Constituent of β-Glucuronidase Inhibitors from the Root of Neolitsea acuminatissima
Molecules 2020, 25(21), 5170; https://doi.org/10.3390/molecules25215170 - 06 Nov 2020
Cited by 2 | Viewed by 807
Abstract
Neolitsea acuminatissima (Lauraceae) is an endemic plant in Taiwan. One new carboline alkaloid, demethoxydaibucarboline A (1), two new eudesmanolide-type sesquiterpenes, methyl-neolitacumone A (2), neolitacumone E (3), and twelve known compounds (415) were isolated [...] Read more.
Neolitsea acuminatissima (Lauraceae) is an endemic plant in Taiwan. One new carboline alkaloid, demethoxydaibucarboline A (1), two new eudesmanolide-type sesquiterpenes, methyl-neolitacumone A (2), neolitacumone E (3), and twelve known compounds (415) were isolated from the root of Neolitsea acuminatissima. Their structures were elucidated by spectroscopic analysis. Glucuronidation represents a major metabolism process of detoxification for carcinogens in the liver. However, intestinal bacterial β-Glucuronidase (βG) has been considered pivotal to colorectal carcinogenesis. To develop specific bacterial-βG inhibitors with no effect on human βG, methanolic extract of roots of N. acuminatissima was selected to evaluate their anti-βG activity. Among the isolates, demethoxydaibucarboline A (1) and quercetin (8) showed a strong bacterial βG inhibitory effect with an inhibition ratio of about 80%. Methylneolitacumone A (2) and epicatechin (10) exhibited a moderate or weak inhibitory effect and the enzyme activity was less than 45% and 74%, respectively. These four compounds specifically inhibit bacterial βG but not human βG. Thus, they are expected to be used for the purpose of reducing chemotherapy-induced diarrhea (CID). The results suggest that the constituents of N. acuminatissima have the potential to be used as CID relief candidates. However, further investigation is required to determine their mechanisms of action. Full article
Show Figures

Figure 1

Article
Biological Potential of Fruit and Leaves of Strawberry Tree (Arbutus unedo L.) from Croatia
Molecules 2020, 25(21), 5102; https://doi.org/10.3390/molecules25215102 - 03 Nov 2020
Cited by 6 | Viewed by 1128
Abstract
The strawberry tree fruit and leaf are a rich source of minerals, easily digestible sugars, dietary fibers, vitamins (especially vitamin C) and many bioactive compounds of significant functional value. Due to their favorable chemical composition, fruits have recently become increasingly popular in consumption. [...] Read more.
The strawberry tree fruit and leaf are a rich source of minerals, easily digestible sugars, dietary fibers, vitamins (especially vitamin C) and many bioactive compounds of significant functional value. Due to their favorable chemical composition, fruits have recently become increasingly popular in consumption. The aim of this study was to determine the physical-chemical composition, content of bioactive compounds, and also the antioxidant capacity of the fruit and leaves of wild strawberry tree populations among the Adriatic coast in Croatia, as well as to investigate the influence of location on the content of specific bioactive compounds. According to the obtained results, both fruit and leaves are pronouncedly high in vitamin C content, the average value for fruits amounted to 224.21 mg/100 g FW, while that for leaves amounted to 138.08 mg/100 g FW. Additionally, significantly high values of total polyphenolic compounds were recorded both in fruits (average value of 637.94 mg GAE/100 g FW) and especially in leaves (average value of 2157.01 mg GAE/100 g FW). Several pigments from different categories were determined in the fruit depending on fruit maturity, including: total anthocyanins, β-carotene and lycopene; while in leaves chlorophylls and carotenoids. Given the high content of different bioactive compounds high values of antioxidant capacity were determined (the average value for fruits was 2269.96 µmol TE/kg and for leaves, 2237.16 µmol TE/kg). Location strongly influenced the physical-chemical composition and also the content of specialized metabolites; populations collected from southern areas (central and south Dalmatia) of the Adriatic coast tended to have higher amounts of vitamin C, total phenols, total anthocyanins and β-carotene. Full article
Show Figures

Figure 1

Article
Evaluation of Anti-Mycobacterial Compounds in a Silkworm Infection Model with Mycobacteroides abscessus
Molecules 2020, 25(21), 4971; https://doi.org/10.3390/molecules25214971 - 27 Oct 2020
Cited by 4 | Viewed by 979
Abstract
Among four mycobacteria, Mycobacterium avium, M. intracellulare, M. bovis BCG and Mycobacteroides (My.) abscessus, we established a silkworm infection assay with My. abscessus. When silkworms (fifth-instar larvae, n = 5) were infected through the hemolymph with My. [...] Read more.
Among four mycobacteria, Mycobacterium avium, M. intracellulare, M. bovis BCG and Mycobacteroides (My.) abscessus, we established a silkworm infection assay with My. abscessus. When silkworms (fifth-instar larvae, n = 5) were infected through the hemolymph with My. abscessus (7.5 × 107 CFU/larva) and bred at 37 °C, they all died around 40 h after injection. Under the conditions, clarithromycin and amikacin, clinically used antimicrobial agents, exhibited therapeutic effects in a dose-dependent manner. Furthermore, five kinds of microbial compounds, lariatin A, nosiheptide, ohmyungsamycins A and B, quinomycin and steffimycin, screened in an in vitro assay to observe anti-My. abscessus activity from 400 microbial products were evaluated in this silkworm infection assay. Lariatin A and nosiheptide exhibited therapeutic efficacy. The silkworm infection model with My. abscessus is useful to screen for therapeutically effective anti-My. abscessus antibiotics. Full article
Show Figures

Figure 1

Communication
A New Thiopeptide Antibiotic, Micrococcin P3, from a Marine-Derived Strain of the Bacterium Bacillus stratosphericus
Molecules 2020, 25(19), 4383; https://doi.org/10.3390/molecules25194383 - 24 Sep 2020
Cited by 3 | Viewed by 1042
Abstract
A new thiopeptide (micrococcin P3, 1) and a known one (micrococcin P1, 2) were isolated from the culture broth of a marine-derived strain of Bacillus stratosphericus. The structures of both compounds were elucidated using spectroscopic methods, including extensive 1D and [...] Read more.
A new thiopeptide (micrococcin P3, 1) and a known one (micrococcin P1, 2) were isolated from the culture broth of a marine-derived strain of Bacillus stratosphericus. The structures of both compounds were elucidated using spectroscopic methods, including extensive 1D and 2D NMR analysis, high resolution mass spectrometry (HRMS), and tandem mass spectrometry. Both compounds exhibited potent antibacterial activities against Gram-positive strains with minimum inhibitory concentration (MIC) values of 0.05−0.8 μg/mL and did not show cytotoxicity in the MTT assay up to a concentration of 10 μM. This study adds a new promising member, micrococcin P3, to the family of thiopeptide antibiotics, which shows potential for the development of new antibiotics targeting Gram-positive bacteria. Full article
Show Figures

Graphical abstract

Review
Thymol and Thyme Essential Oil—New Insights into Selected Therapeutic Applications
Molecules 2020, 25(18), 4125; https://doi.org/10.3390/molecules25184125 - 09 Sep 2020
Cited by 40 | Viewed by 4495
Abstract
Thymol (2-isopropyl-5-methylphenol) belongs to the phenolic monoterpenes and mostly occurs in thyme species. It is one of the main compounds of thyme essential oil. Both thymol and thyme essential oil have long been used in traditional medicine as expectorant, anti-inflammatory, antiviral, antibacterial, and [...] Read more.
Thymol (2-isopropyl-5-methylphenol) belongs to the phenolic monoterpenes and mostly occurs in thyme species. It is one of the main compounds of thyme essential oil. Both thymol and thyme essential oil have long been used in traditional medicine as expectorant, anti-inflammatory, antiviral, antibacterial, and antiseptic agents, mainly in the treatment of the upper respiratory system. The current search for new directions of biological or therapeutic activities of natural plant substances with known structures includes thyme essential oil and thymol. Novel studies have demonstrated their antibiofilm, antifungal, antileishmanial, antiviral, and anticancer properties. Also, their new therapeutic formulations, such as nanocapsules containing these constituents, can be beneficial in medicinal practice and create opportunities for their extensive use. Extensive application of thymol and thyme essential oil in the healthcare sector is very promising but requires further research and analysis. Full article
Show Figures

Graphical abstract

Review
Encapsulation of Lipid-Soluble Bioactives by Nanoemulsions
Molecules 2020, 25(17), 3966; https://doi.org/10.3390/molecules25173966 - 31 Aug 2020
Cited by 12 | Viewed by 1762
Abstract
Lipid-soluble bioactives are important nutrients in foods. However, their addition in food formulations, is often limited by limited solubility and high tendency for oxidation. Lipid-soluble bioactives, such as vitamins A, E, D and K, carotenoids, polyunsaturated fatty acids (PUFA) and essential oils are [...] Read more.
Lipid-soluble bioactives are important nutrients in foods. However, their addition in food formulations, is often limited by limited solubility and high tendency for oxidation. Lipid-soluble bioactives, such as vitamins A, E, D and K, carotenoids, polyunsaturated fatty acids (PUFA) and essential oils are generally dispersed in water-based solutions by homogenization. Among the different homogenization technologies available, nanoemulsions are one of the most promising. Accordingly, this review aims to summarize the most recent advances in nanoemulsion technology for the encapsulation of lipid-soluble bioactives. Modern approaches for producing nanoemulsion systems will be discussed. In addition, the challenges on the encapsulation of common food ingredients, including the physical and chemical stability of the nanoemulsion systems, will be also critically examined. Full article
Show Figures

Figure 1

Article
In Vitro Scolicidal Activity of the Sesquiterpenes Isofuranodiene, α-Bisabolol and Farnesol on Echinococcus granulosus Protoscoleces
Molecules 2020, 25(16), 3593; https://doi.org/10.3390/molecules25163593 - 07 Aug 2020
Cited by 3 | Viewed by 1139
Abstract
Cystic echinococcosis (CE) remains an important challenge both in humans and animals. There is no safe and suitable remedy for CE, so the discovery of new compounds with promising scolicidal effects, particularly from herbal sources, is of great importance for therapeutic uses in [...] Read more.
Cystic echinococcosis (CE) remains an important challenge both in humans and animals. There is no safe and suitable remedy for CE, so the discovery of new compounds with promising scolicidal effects, particularly from herbal sources, is of great importance for therapeutic uses in the treatment and prevention of CE reappearance. Sesquiterpenes are C15 organic compounds made up of three isoprene units and mostly occurring as fragrant components of essential oils. They are of economic importance for the cosmetic and pharmaceutical industry, and recently attracted the attention of the scientific community for their remarkable parasiticidal properties. In the present study, we have focused on three known sesquiterpenes, isofuranodiene (IFD), α-bisabolol (BSB), and farnesol (FOH), as important phytoconstituents of the essential oils of wild celery (Smyrnium olusatrum), chamomile (Matricaria chamomilla), and acacia farnese (Vachellia farnesiana), respectively. Protoscoleces were recovered from fertile hydatid cysts and were exposed to different concentrations of the three tested compounds for different exposure times. The viability of protoscoleces was confirmed by 0.1% eosin staining. Results of scolicidal activity evaluations showed that IFD possessed the best effect against Echinococcus granulosus protoscoleces (LC50 and LC90 values of 8.87 and 25.48 µg/mL, respectively), followed by BSB (LC50 of 103.2 µg/mL) and FOH (LC50 of 113.68 µg/mL). The overall toxicity of IFD differed significantly from those of FOH and BSB, while there was no significant difference in toxicity between the latter compounds (p > 0.05). The present study showed that IFD seems to be a promising scolicidal agent and can be further tested to become a candidate for CE treatment. Full article
Show Figures

Figure 1

Article
Mineral Composition of Three Popular Wild Mushrooms from Poland
Molecules 2020, 25(16), 3588; https://doi.org/10.3390/molecules25163588 - 06 Aug 2020
Viewed by 1227
Abstract
The region of Warmia and Mazury is characterized by the special diversity and richness of its natural environment, including large forest complexes, where wild mushrooms are commonly collected and consumed. This study aimed to examine the differences in mineral content (calcium, magnesium, sodium, [...] Read more.
The region of Warmia and Mazury is characterized by the special diversity and richness of its natural environment, including large forest complexes, where wild mushrooms are commonly collected and consumed. This study aimed to examine the differences in mineral content (calcium, magnesium, sodium, potassium, iron, zinc, copper, manganese) of three species of mushrooms collected in north-eastern Poland. The research material consisted of dried samples of king bolete (Boletus edulis), bay bolete (Boletus badius), and chanterelle (Cantharellus cibarius) collected in the region of Warmia and Mazury. The content of the above-mentioned elements in mushroom fruit bodies was determined using the flame atomic absorption spectrometry (acetylene-air flame) and the emission technique (acetylene-air flame) for sodium and potassium. For the majority of micro- and macroelements, the studies confirmed the presence of significant differences in their content, depending on the species of fungi. The studied mushrooms cover a significant percentage of daily demand for many of the minerals. This concerns mainly copper, zinc, and potassium, although none of the species was a good source of calcium and sodium. Among the analyzed mushrooms, chanterelle is the best source of most minerals. Full article
Show Figures

Figure 1

Article
Recovery of Anthocyanins from Passion Fruit Epicarp for Food Colorants: Extraction Process Optimization and Evaluation of Bioactive Properties
Molecules 2020, 25(14), 3203; https://doi.org/10.3390/molecules25143203 - 14 Jul 2020
Cited by 10 | Viewed by 1630
Abstract
The potential of passion fruit (Passiflora edulis Sims) epicarp to produce anthocyanin-based colorants with bioactive properties was evaluated. First, a five-level three-factor factorial design coupled with response surface methodology was implemented to optimize the extraction of anthocyanins from dark purple epicarps. The [...] Read more.
The potential of passion fruit (Passiflora edulis Sims) epicarp to produce anthocyanin-based colorants with bioactive properties was evaluated. First, a five-level three-factor factorial design coupled with response surface methodology was implemented to optimize the extraction of anthocyanins from dark purple epicarps. The extraction yield and cyanidin-3-O-glucoside content were used as response criteria. The constructed models were fitted to the experimental data and used to calculate the optimal processing conditions (t = 38 min, T = 20 °C, S = 0% ethanol/water (v/v) acidified with citric acid to pH 3, and RS/L = 50 g/L) that lead to maximum responses (3.4 mg/g dried epicarp and 9 mg/g extract). Then, the antioxidant, antimicrobial, and cytotoxic activities of anthocyanin extracts obtained using the optimized method and a conventional extraction method were evaluated in vitro. The extract obtained by the optimized method revealed a higher bioactivity, in agreement with the higher cyanidin-3-O-glucoside content. This study highlighted the coloring and bioactive potential of a bio-based ingredient recycled from a bio-waste, which promotes a sustainable bioeconomy in the agri-food sector. Full article
Show Figures

Graphical abstract

Article
Characterization, Classification and Authentication of Turmeric and Curry Samples by Targeted LC-HRMS Polyphenolic and Curcuminoid Profiling and Chemometrics
Molecules 2020, 25(12), 2942; https://doi.org/10.3390/molecules25122942 - 26 Jun 2020
Cited by 2 | Viewed by 1563
Abstract
The importance of monitoring bioactive substances as food features to address sample classification and authentication is increasing. In this work, targeted liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) polyphenolic and curcuminoid profiles were evaluated as chemical descriptors to deal with the characterization [...] Read more.
The importance of monitoring bioactive substances as food features to address sample classification and authentication is increasing. In this work, targeted liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) polyphenolic and curcuminoid profiles were evaluated as chemical descriptors to deal with the characterization and classification of turmeric and curry samples. The profiles corresponding to bioactive substances were obtained by TraceFinderTM software using accurate mass databases with 53 and 24 polyphenolic and curcuminoid related compounds, respectively. For that purpose, 21 turmeric and 9 curry samples commercially available were analyzed in triplicate by a simple liquid–solid extraction procedure using dimethyl sulfoxide as extracting solvent. The obtained results demonstrate that the proposed profiles were excellent chemical descriptors for sample characterization and classification by principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA), achieving 100% classification rates. Curcuminoids and some specific phenolic acids such as trans-cinnamic, ferulic and sinapic acids, helped on the discrimination of turmeric samples; polyphenols, in general, were responsible for the curry sample distinction. Besides, the combination of both polyphenolic and curcuminoid profiles was necessary for the simultaneous characterization and classification of turmeric and curry samples. Discrimination among turmeric species such as Curcuma longa vs. Curcuma zedoaria, as well as among different Curcuma longa varieties (Alleppey, Madras and Erode) was also accomplished. Full article
Show Figures

Figure 1

Article
Influence of Drying Method on Some Bioactive Compounds and the Composition of Volatile Components in Dried Pink Rock Rose (Cistus creticus L.)
Molecules 2020, 25(11), 2596; https://doi.org/10.3390/molecules25112596 - 03 Jun 2020
Cited by 6 | Viewed by 1334
Abstract
This study investigates the effects of various drying methods applied to leaves of Cistus creticus L. on the contents of polyphenols and the composition of the volatile fraction. The following four drying methods were used: convection drying at a temperature of 40 °C [...] Read more.
This study investigates the effects of various drying methods applied to leaves of Cistus creticus L. on the contents of polyphenols and the composition of the volatile fraction. The following four drying methods were used: convection drying at a temperature of 40 °C (CD 40 °C), 50 °C (CD 50 °C), and 60 °C (CD 60 °C); vacuum-microwave (VMD 240 W); combined drying, involving convection pre-drying (50 °C) and vacuum-microwave (240 W) finish drying (CPD-VMFD) as well as freeze-drying (FD). Polyphenols in the dried leaves were determined using chromatography-photodiode detector-quadrupole/time of flight-mass spectrometry (UPLC-PDA-Q/TOF-MS). The contents of odoriferous substances in the dry material were determined by means of head space-solid phase microextraction (HS-SPME) with the use of a gas chromatograph (GC). Thirty-seven polyphenol components including 21 flavonols, eight flavan-3-ols, and eight hydrolyzed tannins in dry Pink Rock Rose material were found for the first time. The highest contents of polyphenols, totaling 2.8 g 100 g−1 dry matter (d.m.), were found in the samples subjected to the CPD/VMFD drying method. Pink Rock Rose subjected to this drying method was characterized by large quantities of odoriferous compounds, mainly eugenol, thymol, and carvacrol, which contribute to its antiseptic properties. By using CPD/VMFD methods, it is possible to obtain fine quality dry material from the leaves of C. creticus. Full article
Show Figures

Figure 1

Article
Bioactivity-Guided Identification of Anti-Adipogenic Isothiocyanates in the Moringa (Moringa oleifera) Seed and Investigation of the Structure-Activity Relationship
Molecules 2020, 25(11), 2504; https://doi.org/10.3390/molecules25112504 - 28 May 2020
Cited by 6 | Viewed by 1149
Abstract
Due to the side effects of obesity medications, many studies have focused on the natural products used in the daily diet to control weight. Moringa seed pods and leaves are widely used as vegetables or diet supplements due to the high nutrition value. [...] Read more.
Due to the side effects of obesity medications, many studies have focused on the natural products used in the daily diet to control weight. Moringa seed pods and leaves are widely used as vegetables or diet supplements due to the high nutrition value. However, no bioactivity-guided anti-adipogenic study was previously conducted. Therefore, a preadipocyte cell line was adopted as the bioactivity assay to identify the anti-adipogenic compounds in the peeled Moringa seed. Two known sulphur-containing compounds (1 and 2) were isolated and identified. Compound 2, 4-(α-l-rhamnosyloxy) benzyl isothiocyanate, showed a great anti-adipogneic effect with an IC50 value of 9.2 μg/mL. The isothiocyanate (ITC) group in compound 2 could be responsible for the inhibitory activity. In addition, a series of compounds with the ITC group were used to further investigate the structure-activity relationship, indicating foods containing ITC derivatives have the potential of being used to control weight. Full article
Show Figures

Graphical abstract

Article
Anti-Acne Action of Peptides Isolated from Burdock Root—Preliminary Studies and Pilot Testing
Molecules 2020, 25(9), 2027; https://doi.org/10.3390/molecules25092027 - 27 Apr 2020
Cited by 9 | Viewed by 1975
Abstract
This work aimed to study the anti-bacterial, anti-biofilm and anti-oxidant potential effects of low molecular weight (LMW) peptides (Br-p) isolated from burdock (Arctium lappa L.) roots. We conducted a preliminary study to exclude or confirm the antibiotic activity of the LMW [...] Read more.
This work aimed to study the anti-bacterial, anti-biofilm and anti-oxidant potential effects of low molecular weight (LMW) peptides (Br-p) isolated from burdock (Arctium lappa L.) roots. We conducted a preliminary study to exclude or confirm the antibiotic activity of the LMW peptides fraction of this plant. Br-p were isolated using gel filtration and a 10 kDa cut-off membrane. The obtained peptides were identified by MALDI TOF/TOF. Antibacterial activity was tested against acne strains using diffusion tests, MIC and MBC. The fibroblast cytotoxicity of Br-p was tested, and the selectivity index (SI) value was determined. The fraction of 46 Br-p peptides isolated from burdock root with a molecular weight below 5000 Da and theoretic pI (isoelectric point) of 3.67–11.83 showed a narrow spectrum of activity against Gram-positive acne bacterial strains. One of the Br-p peptides assessed on MALDI RapidDeNovo was LRCDYGRFFASKSLYDPLKKRR cationic peptide. It was analogous to that contained in A. lappa protein, and theoretically it was matched as a peptide with antibiotic nature. Br-p did not show toxicity to fibroblasts in the tested concentration up to 10 mg/mL, obtaining CC50 10 mg/mL. The SI value for the tested Propionibacterium strains ranged from 160 to 320. Finally, an active dressing based on chitosan/alginate/genipin was prepared using freeze-drying. The formed dressing was evaluated for its anti-acne activity. To sum up: preliminary biological studies confirmed the anti-acne properties of the isolated peptide fraction from burdock root and pointed to the possibility of using it to create an active dressing on the skin. Full article
Show Figures

Graphical abstract

Article
Profiling of Individual Desulfo-Glucosinolate Content in Cabbage Head (Brassica oleracea var. capitata) Germplasm
Molecules 2020, 25(8), 1860; https://doi.org/10.3390/molecules25081860 - 17 Apr 2020
Cited by 14 | Viewed by 1227
Abstract
Individual glucosinolates (GSLs) were assessed to select cabbage genotypes for a potential breeding program. One hundred forty-six cabbage genotypes from different origins were grown in an open field from March to June 2019; the cabbage heads were used for GSL analyses. Seven aliphatics [...] Read more.
Individual glucosinolates (GSLs) were assessed to select cabbage genotypes for a potential breeding program. One hundred forty-six cabbage genotypes from different origins were grown in an open field from March to June 2019; the cabbage heads were used for GSL analyses. Seven aliphatics [glucoiberin (GIB), progoitrin (PRO), epi-progoitrin (EPI), sinigrin (SIN), glucoraphanin (GRA), glucoerucin (GER) and gluconapin (GNA)], one aromatic [gluconasturtiin (GNS)] and four indolyl GSLs [glucobrassicin (GBS), 4-hydroxyglucobrassicin (4HGBS), 4-methoxyglucobrassicin (4MGBS), neoglucobrassicin (NGBS)] were found this study. Significant variation was observed in the individual GSL content and in each class of GSLs among the cabbage genotypes. Aliphatic GSLs were predominant (58.5%) among the total GSLs, followed by indolyl GSL (40.7%) and aromatic GSLs (0.8%), showing 46.4, 51.2 and 137.8% coefficients of variation, respectively. GIB, GBS and NGBS were the most common GSLs found in all genotypes. GBS was the most dominant GSL, with an average value of 3.91 µmol g−1 (0.79 to 13.14 µmol g−1). SIN, GIB, PRO and GRA were the other major GSLs, showing average values of 3.45, 1.50, 0.77 and 0.62 µmol g−1, respectively. The genotypes with relatively high contents of GBS, SIN, GIB and GRA warrant detailed studies for future breeding programs since the hydrolysis products of these GSLs have several anti-cancer properties. Full article
Show Figures

Figure 1

Article
The Metabolic Changes of Artesunate and Ursolic Acid on Syrian Golden Hamsters Fed with the High-Fat Diet
Molecules 2020, 25(6), 1392; https://doi.org/10.3390/molecules25061392 - 18 Mar 2020
Cited by 1 | Viewed by 1113
Abstract
Artesunate was well known as an antimalarial drug. Our previous research found that it has hypolipidemia effects in rabbits fed with a high-fat diet, especially combined with ursolic acid. In this study, we reconfirmed the lipid-lowering effect of artesunate and ursolic acid in [...] Read more.
Artesunate was well known as an antimalarial drug. Our previous research found that it has hypolipidemia effects in rabbits fed with a high-fat diet, especially combined with ursolic acid. In this study, we reconfirmed the lipid-lowering effect of artesunate and ursolic acid in hamsters and analyzed the metabolic changes using gas chromatography time-of-flight mass spectrometry (GC/TOF MS). Compared with the model group, a variety of different metabolites of artesunate and ursolic acid, alone or in combination, were found and confirmed. These differential metabolites, including fatty acids, lipids, and amino acids, were involved in lipid metabolism, energy metabolism, and amino acid metabolism. It indicated that two agents of artesunate and ursolic acid could attenuate or normalize the metabolic transformation on these metabolic pathways. Full article
Show Figures

Figure 1

Article
Anti-Adipogenic and Anti-Inflammatory Activities of (−)-epi-Osmundalactone and Angiopteroside from Angiopteris helferiana C.Presl
Molecules 2020, 25(6), 1337; https://doi.org/10.3390/molecules25061337 - 15 Mar 2020
Cited by 2 | Viewed by 1793
Abstract
Angiopteris helferiana C.Presl is a gigantic fleshy-type fern, belonging to Marattiaceae family. In previous study, we reported the potent anti-adipogenic and anti-inflammatory activities of ethylacetate (EtOAc) and n-butanol (BuOH) fractions of methanol extract of rhizomes of A. helferiana. In continuation, in [...] Read more.
Angiopteris helferiana C.Presl is a gigantic fleshy-type fern, belonging to Marattiaceae family. In previous study, we reported the potent anti-adipogenic and anti-inflammatory activities of ethylacetate (EtOAc) and n-butanol (BuOH) fractions of methanol extract of rhizomes of A. helferiana. In continuation, in this study, we report the isolation, characterization, and bioactivity analysis of principle bioactive compounds in these fractions. (−)-epi-Osmundalactone (1) and angiopteroside (2) were isolated from EtOAc and BuOH fractions, respectively. The structures of these compounds were established on the basis of NMR spectroscopic data. The quantification study using UPLC revealed the contents of compounds 1 and 2 in the dried rhizome to be 1.54% and 3.2%, respectively. These compounds were evaluated for their anti-adipogenic and anti-inflammatory activities using 3T3-L1 and RAW 264.7 cells, respectively. Compound 1 (2.5 µg/mL) and 2 (20 µg/mL) inhibited the lipid production by 35% and 25%, respectively. Regarding the anti-inflammatory activity, compound 1 (5 µg/mL) inhibited the nitrite production by nearly 82%. In conclusion, the presence of potent anti-adipogenic and anti-inflammatory compounds in A. helferiana indicate its potential role in the use of herb-based treatment for obesity and other related diseases. Full article
Show Figures

Figure 1

Article
The Protective Effect of the Polysaccharide Precursor, D-Isofloridoside, from Laurencia undulata on Alcohol-Induced Hepatotoxicity in HepG2 Cells
Molecules 2020, 25(5), 1024; https://doi.org/10.3390/molecules25051024 - 25 Feb 2020
Cited by 5 | Viewed by 1320
Abstract
Alcoholic liver disease (ALD) threatens human health, so it is imperative that we find ways to prevent or treat it. In recent years, the study of polysaccharides has shown that they have different kinds of bioactivities. Among them are many biological effects that [...] Read more.
Alcoholic liver disease (ALD) threatens human health, so it is imperative that we find ways to prevent or treat it. In recent years, the study of polysaccharides has shown that they have different kinds of bioactivities. Among them are many biological effects that have been attributed to polysaccharide precursors. D-Isofloridoside (DIF) is one of the polysaccharide precursors from the marine red alga Laurencia undulata. This study evaluated the effect of DIF on alcohol-induced oxidative stress in human hepatoma cells (HepG2). As a result, DIF attenuated alcohol-induced cytotoxicity, reduced the amount of intracellular reactive oxygen species (ROS), and effectively reduced alcohol-induced DNA damage in HepG2 cells. In addition, a western blot showed that, after DIF treatment, the expression levels of glutathione (GSH), superoxide dismutase (SOD), and B-cell lymphoma-2 (bcl-2) increased, while the expression levels of γ-glutamyl transferase (GGT), BCL2-associated X (bax), cleaved caspase-3, and mitogen-activated protein kinase (p38 and c-Jun N-terminal kinase) signal transduction proteins reduced. This showed that DIF may protect cells by reducing the amount of intracellular ROS and inhibiting intracellular oxidative stress and apoptotic processes. Finally, molecular docking demonstrated that DIF can bind to SOD, GGT, B-cell lymphoma-2, and bax proteins. These results indicated that DIF can protect HepG2 cells from alcohol-induced oxidative stress damage, making it an effective potential ingredient in functional foods. Full article
Show Figures

Graphical abstract

Article
Isolation of Unstable Isomers of Lucilactaene and Evaluation of Anti-Inflammatory Activity of Secondary Metabolites Produced by the Endophytic Fungus Fusarium sp. QF001 from the Roots of Scutellaria baicalensis
Molecules 2020, 25(4), 923; https://doi.org/10.3390/molecules25040923 - 19 Feb 2020
Cited by 7 | Viewed by 1952
Abstract
The filamentous fungal pathogen Fusarium sp. causes several crop diseases. Some Fusarium sp. are endophytes that produce diverse valuable bioactive secondary metabolites. Here, extensive chemical investigation of the endophytic fungus, Fusarium sp. QF001, isolated from the inner rotten part of old roots of [...] Read more.
The filamentous fungal pathogen Fusarium sp. causes several crop diseases. Some Fusarium sp. are endophytes that produce diverse valuable bioactive secondary metabolites. Here, extensive chemical investigation of the endophytic fungus, Fusarium sp. QF001, isolated from the inner rotten part of old roots of Scutellariae baicalensis resulted in the isolation of two new photosensitive geometrical isomers of lucilactaene (compounds 2 and 3) along with lucilactaene (6) and six other known compounds (fusarubin (1), (+)-solaniol (4), javanicin (5), 9-desmethylherbarine (7), NG391 (8) and NG393 (9)). Newly isolated isomers and lucilactaene were unstable under light at room temperature and tended to be a mixture in equilibrium state when exposed to a polar protic solvent during reversed phase chromatography. Normal phase chromatography under dim light conditions with an aprotic mobile phase led to the successful isolation of the relatively unstable isomers 2 and 3. Their structures were elucidated as 8(Z)-lucilactaene (2) and 4(Z)-lucilactaene (3) based on spectroscopic data. The absolute configuration of 4 was speculated to be R by computer-assisted specific rotation analysis. The isolated compounds could inhibit NO production and suppress pro-inflammatory cytokines expression in LPS-stimulated macrophage cells. These properties of the isolated compounds indicate their potential use as anti-inflammatory drugs. Full article
Show Figures

Figure 1

Review
A Review of Biologically Active Natural Products from Mediterranean Wild Edible Plants: Benefits in the Treatment of Obesity and Its Related Disorders
Molecules 2020, 25(3), 649; https://doi.org/10.3390/molecules25030649 - 03 Feb 2020
Cited by 15 | Viewed by 2221
Abstract
Wild foods constitute an essential component of people’s diets around the world. According to the Food and Agriculture Organization (FAO), over 100 million people in the EU consume wild foods, while 65 million collect some form of wild food themselves. The Mediterranean basin [...] Read more.
Wild foods constitute an essential component of people’s diets around the world. According to the Food and Agriculture Organization (FAO), over 100 million people in the EU consume wild foods, while 65 million collect some form of wild food themselves. The Mediterranean basin is a biodiversity hotspot of wild edible species. Nowadays, due to the renewed interest in alimurgic plants and the recent findings on the beneficial role of their phytochemical constituents, these species have been defined as “new functional foods”. Research on natural products has recently regained importance with the growing understanding of their biological significance. Botanical food supplements marketed for weight and fat loss in obese subjects will be one of the most important items in marketed nutraceuticals. The aim of this report was to review the phytochemical compounds of Mediterranean wild edible species and their therapeutic potential against obesity and its related disorders. Results on the in vitro and in vivo activity of the most interesting plant extracts and their bioactive components are presented and discussed. The most interesting discoveries on their mechanisms of action are reported as well. Overall, this contribution highlights the importance and beneficial health roles of wild edible species. Full article
Show Figures

Figure 1

Article
Naphthoquinone Derivatives with Anti-Inflammatory Activity from Mangrove-Derived Endophytic Fungus Talaromyces sp. SK-S009
Molecules 2020, 25(3), 576; https://doi.org/10.3390/molecules25030576 - 29 Jan 2020
Cited by 11 | Viewed by 1339
Abstract
Twelve 1, 4-naphthoquinone derivatives, including two new (1 and 2) and 10 known (312), were obtained from endophytic fungus Talaromyces sp. SK-S009 isolated from the fruit of Kandelia obovata. All structures were identified through extensive analysis [...] Read more.
Twelve 1, 4-naphthoquinone derivatives, including two new (1 and 2) and 10 known (312), were obtained from endophytic fungus Talaromyces sp. SK-S009 isolated from the fruit of Kandelia obovata. All structures were identified through extensive analysis of the nuclear magnetic resonance (NMR), mass spectrometry (MS) and circular dichroism (CD), as well as by comparison with literature data. These compounds significantly inhibited the lipopolysaccharide (LPS)-induced nitric oxide (NO) production in the murine macrophage cell line (RAW 264.7 cells). The half maximal inhibitory concentration (IC50) values, except for compound 2, were lower than that of indomethacin (26.3 μM). Compound 9 inhibited the LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) mRNA expressions in RAW 264.7 macrophages. Additionally, compound 9 reduced the mRNA levels of pro-inflammatory factors interleukin (IL)1β, IL-6, and tumor necrosis factor (TNF)-α. The results of this study demonstrated that these 1, 4-naphthoquinone derivatives can inhibit LPS-induced inflammation. Full article
Show Figures

Figure 1

Article
Pestalotiones A–D: Four New Secondary Metabolites from the Plant Endophytic Fungus Pestalotiopsis Theae
Molecules 2020, 25(3), 470; https://doi.org/10.3390/molecules25030470 - 22 Jan 2020
Cited by 6 | Viewed by 1317
Abstract
Two new xanthone derivatives, pestalotiones A (1) and B (2), one new diphenyl ketone riboside, pestalotione C (7), and one new diphenyl ether, pestalotione D (8), along with five known compounds isosulochrin dehydrate (3 [...] Read more.
Two new xanthone derivatives, pestalotiones A (1) and B (2), one new diphenyl ketone riboside, pestalotione C (7), and one new diphenyl ether, pestalotione D (8), along with five known compounds isosulochrin dehydrate (3), 3,8-dihydroxy-6-methyl-9-oxo-9H-xanthene-1-carboxylate (4), isosulochrin (5), chloroisosulochrin (6), and pestalotether D (9), were isolated from the crude extract of the plant endophytic fungus Pestalotiopsis theae (N635). The structures of the new compounds were unambiguously deduced by HRESIMS and 1D/2D-NMR spectroscopic data. Compound 6 showed modest cytotoxicity against the HeLa cell line with an IC50 value of 35.2 μM. Compound 9 also showed cytotoxic to the HeLa and MCF-7 cell lines, with IC50 values of 60.8 and 22.6 μM, respectively. Additionally, compounds 1 and 2 exhibited antioxidant activity in scavenging DPPH radical with IC50 values of 54.2 and 59.2 μg/mL, respectively. Full article
Show Figures

Figure 1

Article
Effects of Orange Extracts on Longevity, Healthspan, and Stress Resistance in Caenorhabditis elegans
Molecules 2020, 25(2), 351; https://doi.org/10.3390/molecules25020351 - 15 Jan 2020
Cited by 19 | Viewed by 2538
Abstract
Orange, with various bioactive phytochemicals, exerts various beneficial health effects, including anti-cancer, antioxidant, and anti-inflammatory properties. However, its anti-aging effects remain unclear. In this study, the Caenorhabditis elegans (C. elegans) model was used to evaluate the effects of orange extracts on [...] Read more.
Orange, with various bioactive phytochemicals, exerts various beneficial health effects, including anti-cancer, antioxidant, and anti-inflammatory properties. However, its anti-aging effects remain unclear. In this study, the Caenorhabditis elegans (C. elegans) model was used to evaluate the effects of orange extracts on lifespan and stress resistance. The results indicated that orange extracts dose-dependently increased the mean lifespan of C. elegans by 10.5%, 18.0%, and 26.2% at the concentrations of 100, 200, and 400 mg/mL, respectively. Meanwhile, orange extracts promoted the healthspan by improving motility, and decreasing the accumulation of age pigment and intracellular reactive oxygen species (ROS) levels without damaging fertility. The survival rates of orange extract-fed worms were obviously higher than those of untreated worms against thermal and ultraviolet-B (UV-B) stress. Moreover, the activities of superoxide dismutase (SOD) and catalase (CAT) were significantly enhanced while malondialdehyde (MDA) contents were diminished. Further investigation revealed that worms supplemented with orange extracts resulted in upregulated levels of genes, including daf-16, sod-3, gst-4, sek-1, and skn-1, and the downregulation of age-1 expression. These findings revealed that orange extracts have potential anti-aging effects through extending the lifespan, enhancing stress resistance, and promoting the healthspan. Full article
Show Figures

Graphical abstract

2019

Jump to: 2022, 2021, 2020, 2018, 2017, 2016, 2015, 2014, 2013, 2012, 2011, 2010

Communication
An Autophagy Inducing Triterpene Saponin Derived from Aster koraiensis
Molecules 2019, 24(24), 4489; https://doi.org/10.3390/molecules24244489 - 07 Dec 2019
Cited by 6 | Viewed by 1335
Abstract
Autophagy is an important self-degradative mechanism that plays a key role in treating neurodegeneration diseases. This research aimed at discovering bioactive compounds from Aster koraiensis. A new triterpene saponin, astersaponin I (1), was isolated from the EtOH extract of A. [...] Read more.
Autophagy is an important self-degradative mechanism that plays a key role in treating neurodegeneration diseases. This research aimed at discovering bioactive compounds from Aster koraiensis. A new triterpene saponin, astersaponin I (1), was isolated from the EtOH extract of A. koraiensis. The structure of 1 was characterized by spectroscopic methods, ECD calculation, and acid hydrolysis. The biochemical analysis showed that compound 1 significantly increased the expression of microtubule-associated protein 1A/1B light chain 3B (LC3-II) expression in SH-SY5Y cells, which indicates the induction of autophagy. Thus, further study may be needed to clarify whether compound 1 exerts beneficial effects on neurodegeneration diseases like Parkinson’s disease through autophagy induction. Full article
Show Figures

Graphical abstract

Review
The Genus Nerine Herb. (Amaryllidaceae): Ethnobotany, Phytochemistry, and Biological Activity
Molecules 2019, 24(23), 4238; https://doi.org/10.3390/molecules24234238 - 21 Nov 2019
Cited by 14 | Viewed by 1701
Abstract
Nerine Herbert, family Amaryllidaceae, is a genus of about 30 species that are native to South Africa, Botswana, Lesotho, Namibia, and Swatini (formerly known as Swaziland). Species of Nerine are autumn-flowering, perennial, bulbous plants, which inhabit areas with summer rainfall and cool, dry [...] Read more.
Nerine Herbert, family Amaryllidaceae, is a genus of about 30 species that are native to South Africa, Botswana, Lesotho, Namibia, and Swatini (formerly known as Swaziland). Species of Nerine are autumn-flowering, perennial, bulbous plants, which inhabit areas with summer rainfall and cool, dry winters. Most Nerine species have been cultivated for their elegant flowers, presenting a source of innumerable horticultural hybrids. For many years, species of Nerine have been subjected to extensive phytochemical and pharmacological investigations, which resulted in either the isolation or identification of more than fifty Amaryllidaceae alkaloids belonging to different structural types. Amaryllidaceae alkaloids are frequently studied for their interesting biological properties, including antiviral, antibacterial, antitumor, antifungal, antimalarial, analgesic, cytotoxic, and cholinesterase inhibition activities. The present review aims to summarize comprehensively the research that has been reported on the phytochemistry and pharmacology of the genus Nerine. Full article
Show Figures

Graphical abstract

Review
Mushrooms of the Genus Ganoderma Used to Treat Diabetes and Insulin Resistance
Molecules 2019, 24(22), 4075; https://doi.org/10.3390/molecules24224075 - 11 Nov 2019
Cited by 19 | Viewed by 2580
Abstract
Pharmacotherapy using natural substances can be currently regarded as a very promising future alternative to conventional therapy of diabetes mellitus, especially in the case of chronic disease when the body is no longer able to produce adequate insulin or when it cannot use [...] Read more.
Pharmacotherapy using natural substances can be currently regarded as a very promising future alternative to conventional therapy of diabetes mellitus, especially in the case of chronic disease when the body is no longer able to produce adequate insulin or when it cannot use the produced insulin effectively. This minireview summarizes the perspectives, recent advances, and major challenges of medicinal mushrooms from Ganoderma genus with reference to their antidiabetic activity. The most active ingredients of those mushrooms are polysaccharides and triterpenoids. We hope this review can offer some theoretical basis and inspiration for the mechanism study of the bioactivity of those compounds. Full article
Show Figures

Figure 1

Article
Investigation on the Antifungal Ingredients of Saccharothrix Yanglingensis Hhs.015, an Antagonistic Endophytic Actinomycete Isolated from Cucumber Plant
Molecules 2019, 24(20), 3686; https://doi.org/10.3390/molecules24203686 - 13 Oct 2019
Cited by 2 | Viewed by 1353
Abstract
Apple tree canker infected by Valsa mali var. mali is a serious and widely distributed disease in China. Saccharothrix yanglingensis Hhs.015 is an endophytic actinomycete isolated from cucumber roots, and it has been proven that this strain is a promising biocontrol agent on [...] Read more.
Apple tree canker infected by Valsa mali var. mali is a serious and widely distributed disease in China. Saccharothrix yanglingensis Hhs.015 is an endophytic actinomycete isolated from cucumber roots, and it has been proven that this strain is a promising biocontrol agent on apple tree canker in previous studies. The aim of this study was to elucidate the active ingredients in its metabolites. Two pentaene macrolides, WH01 and WH02, were isolated from strain Hhs.015, and their structures were elucidated based on the extensive spectroscopic analysis. WH01 and WH02 were identified as fungichromin and 1′-deoxyfungichromin, among which WH02 is a novel compound. These two compounds showed strong in vitro and in vivo antifungal activity against V. mali. By comparison of the structures of hyphae cells treated by pure compound and fermentation broth, it has been proven that pentaene macrolides are the main active ingredients in the metabolites of strain Hhs.015. This is the first report on the antifungal activity of fungichromin and its analogs on V. mali, and the 28-member pentaene macrolides were also firstly isolated from the genus of Saccharothrix. Full article
Show Figures

Figure 1

Article
Characterization, Antioxidant, Anti-Aging and Organ Protective Effects of Sulfated Polysaccharides from Flammulina velutipes
Molecules 2019, 24(19), 3517; https://doi.org/10.3390/molecules24193517 - 28 Sep 2019
Cited by 20 | Viewed by 2078
Abstract
As an irreversible and complex degenerative physiological process, the treatment for aging seems strategically necessary, and polysaccharides play important roles against aging owing to their abundant bioactivities. In this paper, the antioxidant and anti-aging activities of Flammulina velutipes polysaccharides (FPS) and its sulfated [...] Read more.
As an irreversible and complex degenerative physiological process, the treatment for aging seems strategically necessary, and polysaccharides play important roles against aging owing to their abundant bioactivities. In this paper, the antioxidant and anti-aging activities of Flammulina velutipes polysaccharides (FPS) and its sulfated FPS (SFPS) on d-galactose-induced aging mice were investigated. The in vitro antioxidant activities demonstrated that SFPS had strong reducing power and superior scavenging effects on 2, 2-diphenylpicrylhydrazyl (DPPH), hydroxyl radicals and the chelating activities of Fe2+. The in vivo animal experiments manifested that the SFPS showed superior antioxidant and protective abilities against the d-galactose-induced aging by increasing the antioxidant enzyme activities, decreasing lipid peroxidation, improving the inflammatory response and ameliorating the anile condition of mice. Furthermore, the structural analysis of SFPS was investigated through FT-IR, NMR, and HPLC analysis, and the results indicated that SFPS was a homogeneous heteropolysaccharide with a weight-average molecular weight of 2.81 × 103 Da. Furthermore, SFPS has also changed in characteristic functional groups and monosaccharide composition compared to FPS. These results suggested that sulfated modification could enhance the anti-oxidation, anti-aging and protective activities of F. velutipes polysaccharides, which may provide references for the development of functional foods and natural medicines. Full article
Show Figures

Figure 1

Article
Accramycin A, A New Aromatic Polyketide, from the Soil Bacterium, Streptomyces sp. MA37
Molecules 2019, 24(18), 3384; https://doi.org/10.3390/molecules24183384 - 17 Sep 2019
Cited by 18 | Viewed by 2694
Abstract
Drug-like molecules are known to contain many different building blocks with great potential as pharmacophores for drug discovery. The continued search for unique scaffolds in our laboratory led to the isolation of a novel Ghanaian soil bacterium, Streptomyces sp. MA37. This strain [...] Read more.
Drug-like molecules are known to contain many different building blocks with great potential as pharmacophores for drug discovery. The continued search for unique scaffolds in our laboratory led to the isolation of a novel Ghanaian soil bacterium, Streptomyces sp. MA37. This strain produces many bioactive molecules, most of which belong to carbazoles, pyrrolizidines, and fluorinated metabolites. Further probing of the metabolites of MA37 has led to the discovery of a new naphthacene-type aromatic natural product, which we have named accramycin A 1. This molecule was isolated using an HPLC-photodiode array (PDA) guided isolation process and MS/MS molecular networking. The structure of 1 was characterized by detailed analysis of LC-MS, UV, 1D, and 2D NMR data. Preliminary studies on the antibacterial properties of 1 using Group B Streptococcus (GBS) produced a minimum inhibitory concentration (MIC) of 27 µg/mL. This represents the first report of such bioactivity amongst the naphthacene-type aromatic polyketides, and also suggests the possibility for the further development of potent molecules against GBS based on the accramycin scaffold. A putative acc biosynthetic pathway for accramycin, featuring a tridecaketide-specific type II polyketide synthase, was proposed. Full article
Show Figures

Graphical abstract

Article
Antioxidant Effect of Extracts from Native Chilean Plants on the Lipoperoxidation and Protein Oxidation of Bovine Muscle
Molecules 2019, 24(18), 3264; https://doi.org/10.3390/molecules24183264 - 07 Sep 2019
Cited by 7 | Viewed by 1448
Abstract
The present study investigated the antioxidant potential and the ability to inhibit lipid and protein oxidation in bovine meat of four native Chilean species: canelo (Drimys winteri), nalca (Gunnera tinctoria), tiaca (Caldcluvia paniculata), and ulmo (Eucryphia [...] Read more.
The present study investigated the antioxidant potential and the ability to inhibit lipid and protein oxidation in bovine meat of four native Chilean species: canelo (Drimys winteri), nalca (Gunnera tinctoria), tiaca (Caldcluvia paniculata), and ulmo (Eucryphia cordifolia). Phenolic acids (gallic, chlorogenic, caffeic, and coumaric) and flavonoids (catechin, epicatechin, and rutin) were identified and quantified by HPLC-MS/MS. Drimys winteri extract exhibited the highest antioxidant capacity evaluated by oxygen radical absorption capacity-red pyrogallol method (ORAC-PGR) and ferric ion reducing antioxidant power (FRAP) assays. All extracts decreased lipid oxidation induced by 2,2’-azo-bis(2-amidinopropane) dihydrochloride (AAPH) derived peroxyl radicals by anywhere between 30% and 50% the. In addition, canelo and nalca extracts decreased spontaneous oxidation by around 57% and 37% in relation to the control group, being even more efficient than butylated hydroxyanisole (BHT) a synthetic antioxidant. Protein oxidation in the myofibrillar proteins was evaluated by the formation of protein carbonyls and loss of protein thiols. The canelo, ulmo, and nalca extracts decreased the formation of carbonyls by around 30%. Plant extracts and BHT did not show an antioxidant effect on protein thiol loss. However, tiaca and ulmo extracts exerted a pro-oxidant effect, favoring the oxidation of sulfhydryl groups. The oxidizing system induced structural changes in myofibrillar protein (SDS−PAGE). A protective effect on protein structure from the canelo extract can be observed during the incubation when compared to samples incubated with AAPH. Full article
Show Figures

Figure 1

Communication
New Sesquiterpenoids from the Fermented Broth of Termitomyces albuminosus and Their Anti-Acetylcholinesterase Activity
Molecules 2019, 24(16), 2980; https://doi.org/10.3390/molecules24162980 - 16 Aug 2019
Cited by 4 | Viewed by 1522
Abstract
Termitomyces albuminosus is the symbiotic edible mushroom of termites and cannot be artificially cultivated at present. In the project of exploring its pharmaceutical metabolites by microbial fermentation, four new selinane type sesquiterpenoids—teucdiol C (1), D (2), E (3 [...] Read more.
Termitomyces albuminosus is the symbiotic edible mushroom of termites and cannot be artificially cultivated at present. In the project of exploring its pharmaceutical metabolites by microbial fermentation, four new selinane type sesquiterpenoids—teucdiol C (1), D (2), E (3), and F (4), together with two known sesquiterpenoids teucdiol B (5) and epi-guaidiol A (6)—were obtained from its fermented broth of T. albuminosus. Their structures were elucidated by the analysis of NMR data, HR Q-TOF MS spectral data, CD, IR, UV, and single crystal X-ray diffraction. Epi-guaidiol A showed obvious anti-acetylcholinesterase activity in a dose-dependent manner. The experimental results displayed that T. albuminosus possess the pharmaceutical potential for Alzheimer’s disease, and it was an effective way to dig new pharmaceutical agent of T. albuminosus with the microbial fermentation technique. Full article
Show Figures

Graphical abstract

Article
Differences in the Moisture Capacity and Thermal Stability of Tremella fuciformis Polysaccharides Obtained by Various Drying Processes
Molecules 2019, 24(15), 2856; https://doi.org/10.3390/molecules24152856 - 06 Aug 2019
Cited by 13 | Viewed by 2063
Abstract
We compared the proportions and differences in the polysaccharides of Tremella fuciformis (Berkeley) after drying them by various processes, such as 18 °C cold air, 50 °C hot air, and freeze-drying. We also focused on the moisture capacity kinetic parameters of Tremella fuciformis [...] Read more.
We compared the proportions and differences in the polysaccharides of Tremella fuciformis (Berkeley) after drying them by various processes, such as 18 °C cold air, 50 °C hot air, and freeze-drying. We also focused on the moisture capacity kinetic parameters of Tremella fuciformis polysaccharides using various thermal analyses, including differential scanning calorimetry and thermogravimetric techniques. Erofeev’s kinetic and proto-kinetic equations, utilized for kinetic model simulation, can predict the moisture capacity due to the thermal effect. Among the various drying processes, cold air-drying had the highest molecular weight of 2.41 × 107 Da and a moisture content of 13.05% for Tremella fuciformis polysaccharides. Overall, the freeze-dried products had the best thermal decomposition properties under the conditions of a closed system, with an air or nitrogen atmosphere, and had an excellent moisture capacity of around 35 kJ/kg under a closed system for all samples. Full article
Show Figures

Graphical abstract

Article
Phytotoxic Activity and Structure–Activity Relationships of Radicinin Derivatives against the Invasive Weed Buffelgrass (Cenchrus ciliaris)
Molecules 2019, 24(15), 2793; https://doi.org/10.3390/molecules24152793 - 31 Jul 2019
Cited by 8 | Viewed by 1407
Abstract
Radicinin (1), is a fungal dihydropyranopyran-4,5-dione isolated together with some analogues, namely 3-epi-radicinin, radicinol, 3-epi-radicinol, and cochliotoxin (25), from the culture filtrates of the fungus Cochliobolus australiensis, a foliar pathogen of buffelgrass [...] Read more.
Radicinin (1), is a fungal dihydropyranopyran-4,5-dione isolated together with some analogues, namely 3-epi-radicinin, radicinol, 3-epi-radicinol, and cochliotoxin (25), from the culture filtrates of the fungus Cochliobolus australiensis, a foliar pathogen of buffelgrass (Cenchrus ciliaris), an invasive weed in North America. Among the different metabolites 1 showed target-specific activity against the host plant and no toxicity on zebrafish embryos, promoting its potential use to develop a natural bioherbicide formulation to manage buffelgrass. These data and the peculiar structural feature of 1 suggested to carry out a structure-activity relationship study, preparing some key hemisynthetic derivatives and to test their phytotoxicity. In particular, p-bromobenzoyl, 5-azidopentanoyl, stearoyl, mesyl and acetyl esters of radicinin were semisynthesized as well as the monoacetyl ester of 3-epi-radicinin, the diacetyl esters of radicinol and its 3 epimer, and two hexa-hydro derivatives of radicinin. The spectroscopic characterization and the activity by leaf puncture bioassay against buffelgrass of all the derivatives is reported. Most of the compounds showed phytotoxicity but none of them had comparable or higher activity than radicinin. Thus, the presence of an α,β unsaturated carbonyl group at C-4, as well as, the presence of a free secondary hydroxyl group at C-3 and the stereochemistry of the same carbon proved to be the essential feature for activity. Full article
Show Figures

Graphical abstract

Article
The Antioxidant and Anti-Aging Effects of Acetylated Mycelia Polysaccharides from Pleurotus djamor
Molecules 2019, 24(15), 2698; https://doi.org/10.3390/molecules24152698 - 24 Jul 2019
Cited by 10 | Viewed by 2407
Abstract
The present work mainly describes the preparation of acetylated mycelia polysaccharides (AMPS) from Pleurotus djamor and investigates the antioxidant and anti-aging effects in d-galactose-induced aging mice. The optimized procedure indicates the acetyl substitution degree of AMPS is 0.54 ± 0.04 under the [...] Read more.
The present work mainly describes the preparation of acetylated mycelia polysaccharides (AMPS) from Pleurotus djamor and investigates the antioxidant and anti-aging effects in d-galactose-induced aging mice. The optimized procedure indicates the acetyl substitution degree of AMPS is 0.54 ± 0.04 under the conditions of a reaction time of 56 h, a reaction temperature of 37 °C, and 4 mL of added acetic anhydride. The in vitro analysis and in vivo animal experiments indicate that the AMPS could alleviate the aging properties by scavenging the radicals, elevating the enzyme activities, and reducing the lipid contents. As for serum levels, the AMPS can improve the serum biochemical indices and enhance immunological activity. The histopathological observations indicate that the injuries to the liver, kidney, and brain can be remitted by AMPS intervention. The characterization showed that AMPS was one kind of β-pyranose with the weight-average molecular weights of 3.61 × 105 Da and the major monosaccharides of mannose and glucose. The results suggest that AMPS can be used as a dietary supplement and functional food for the prevention of aging and age-related diseases. Full article
Show Figures

Figure 1

Article
The Antiglycoxidative Ability of Selected Phenolic Compounds—An In Vitro Study
Molecules 2019, 24(15), 2689; https://doi.org/10.3390/molecules24152689 - 24 Jul 2019
Cited by 14 | Viewed by 1237
Abstract
Hyperglycemia and oxidative stress may be observed in different diseases as important factors connected with their development. They often occur simultaneously and are considered together as one process: Glycoxidation. This can influence the function or structure of many macromolecules, for example albumin, by [...] Read more.
Hyperglycemia and oxidative stress may be observed in different diseases as important factors connected with their development. They often occur simultaneously and are considered together as one process: Glycoxidation. This can influence the function or structure of many macromolecules, for example albumin, by changing their physiological properties. This disturbs the homeostasis of the organism, so the search for natural compounds able to inhibit the glycoxidation process is a current and important issue. The aim of this study was the examination of the antiglycoxidative capacity of 16 selected phenolic compounds, belonging to three phenolic groups, as potential therapeutic agents. Their antiglycoxidative ability, in two concentrations (2 and 20 µM), were examined by in vitro study. The inhibition of the formation of both glycoxidative products (advanced glycation end products (AGEs) and advanced oxidation protein products (AOPPs)) were assayed. Stronger antiglycoxidative action toward the formation of both AOPPs and AGEs was observed for homoprotocatechuic and ferulic acids in lower concentrations, as well as catechin, quercetin, and 8-O-methylurolithin A in higher concentrations. Homoprotocatechuic acid demonstrated the highest antiglycoxidative capacity in both examined concentrations and amongst all of them. A strong, significant correlation between the percentage of AOPPs and AGEs inhibition by compounds from all phenolic groups, in both examined concentrations, was observed. The obtained results give an insight into the antiglycoxidative potential of phenolic compounds and indicate homoprotocatechuic acid to be the most promising antiglycoxidative agent, but further biological and pharmacological studies are needed. Full article
Show Figures

Graphical abstract

Article
Solidago graminifolia L. Salisb. (Asteraceae) as a Valuable Source of Bioactive Polyphenols: HPLC Profile, In Vitro Antioxidant and Antimicrobial Potential
Molecules 2019, 24(14), 2666; https://doi.org/10.3390/molecules24142666 - 23 Jul 2019
Cited by 15 | Viewed by 1728
Abstract
Solidago species are often used in traditional medicine as anti-inflammatory, diuretic, wound-healing and antimicrobial agents. Still, the bioactive compounds and biological activities of some species have not been studied. The present work aimed to investigate the polyphenolic profile and the biological properties of [...] Read more.
Solidago species are often used in traditional medicine as anti-inflammatory, diuretic, wound-healing and antimicrobial agents. Still, the bioactive compounds and biological activities of some species have not been studied. The present work aimed to investigate the polyphenolic profile and the biological properties of Solidago graminifolia L. Salisb., a poorly explored medicinal plant. The hydroalcoholic extracts from aerial parts were evaluated for total phenolic content (TPC), total flavonoid content (TFC) and the polyphenolic compounds were investigated by HPLC-MS. The antioxidant potential in vitro was determined using DPPH and FRAP assays. Antibacterial and antifungal effects were evaluated by dilution assays and MIC, MBC and MFC were calculated. The results showed that Solidago graminifolia aerial parts contain an important amount of total phenolics (192.69 mg GAE/g) and flavonoids (151.41 mg RE/g), with chlorogenic acid and quercitrin as major constituents. The hydroalcoholic extracts showed promising antioxidant and antimicrobial potential, with potent antibacterial activity against Staphylococcus aureus and important antifungal effect against Candida albicans and C. parapsilosis. The obtained results indicated that the aerial parts of Solidago graminifolia could be used as novel resource of phytochemicals in herbal preparations with antioxidant and antimicrobial activities. Full article
Show Figures

Figure 1

Article
Inhibitory Activity of Plant Essential Oils against E. coli 1-Deoxy-d-xylulose-5-phosphate reductoisomerase
Molecules 2019, 24(14), 2518; https://doi.org/10.3390/molecules24142518 - 10 Jul 2019
Cited by 4 | Viewed by 1388
Abstract
The rate-limiting enzyme of the 2-methyl-d-erythritol-4-phosphate (MEP) terpenoid biosynthetic pathway, 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR), provides the perfect target for screening new antibacterial substances. In this study, we tested the DXR inhibitory effect of 35 plant essential oils (EOs), which have [...] Read more.
The rate-limiting enzyme of the 2-methyl-d-erythritol-4-phosphate (MEP) terpenoid biosynthetic pathway, 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR), provides the perfect target for screening new antibacterial substances. In this study, we tested the DXR inhibitory effect of 35 plant essential oils (EOs), which have long been recognized for their antimicrobial properties. The results show that the EOs of Zanbthoxylum bungeanum (ZB), Schizonepetae tenuifoliae (ST), Thymus quinquecostatus (TQ), Origanum vulgare (OV), and Eugenia caryophyllata (EC) displayed weak to medium inhibitory activity against DXR, with IC50 values of 78 μg/mL, 65 μg/mL, 59 μg/mL, 48 μg/mL, and 37 μg/mL, respectively. GC-MS analyses of the above oils and further DXR inhibitory activity tests of their major components revealed that eugenol (EC) and carvacrol (TQ and OV) possess medium inhibition against the protein (68.3% and 55.6%, respectively, at a concentration of 20 μg/mL), whereas thymol (ST, TQ, and OV), carveol (ZB), and linalool (ZB, ST, and OV) only exhibited weak inhibition against DXR, at 20 μg/mL (23%−26%). The results add more details to the antimicrobial mechanisms of plant EOs, which could be very helpful in the direction of the reasonable use of EOs in the food industry and in the control of phytopathogenic microbials. Full article
Show Figures

Graphical abstract

Article
A Comparative Study of Black and White Allium sativum L.: Nutritional Composition and Bioactive Properties
Molecules 2019, 24(11), 2194; https://doi.org/10.3390/molecules24112194 - 11 Jun 2019
Cited by 12 | Viewed by 2286
Abstract
Garlic (Allium sativum L.) has been used worldwide not only for its being a subject of dietary interest, but also for medicinal purposes, in prophylaxis, and for the treatment of diverse pathologies. New processing techniques have been developed and placed on the [...] Read more.
Garlic (Allium sativum L.) has been used worldwide not only for its being a subject of dietary interest, but also for medicinal purposes, in prophylaxis, and for the treatment of diverse pathologies. New processing techniques have been developed and placed on the market in recent years to improve the organoleptic and nutritional value of food products. The present work aimed to study bulbils (cloves) of white (commercial and traditionally cultivated samples with different proveniences) and black (processed samples) garlic. All samples were compared with regard to their nutritional composition as well as their antioxidant and antimicrobial activities. Black garlic had the lowest moisture content but the highest total amount of sugars and energetic value. Black garlic also presented the highest antioxidant and antimicrobial (especially against methicillin-resistant Staphylococcus aureus) activities. Thus, black garlic, obtained by processing techniques, can be considered a promising product with high value that will be able to be exploited by the functional food/nutraceutical industry. Full article
Show Figures

Graphical abstract

Article
In Vitro Human Metabolism and Inhibition Potency of Verbascoside for CYP Enzymes
Molecules 2019, 24(11), 2191; https://doi.org/10.3390/molecules24112191 - 11 Jun 2019
Cited by 6 | Viewed by 1583
Abstract
Verbascoside is found in many medicinal plant families such as Verbenaceae. Important biological activities have been ascribed to verbascoside. Investigated in this study is the potential of verbascoside as an adjuvant during tuberculosis treatment. The present study reports on the in vitro metabolism [...] Read more.
Verbascoside is found in many medicinal plant families such as Verbenaceae. Important biological activities have been ascribed to verbascoside. Investigated in this study is the potential of verbascoside as an adjuvant during tuberculosis treatment. The present study reports on the in vitro metabolism in human hepatic microsomes and cytosol incubations as well as the presence and quantity of verbascoside within Lippia scaberrima. Additionally, studied are the inhibitory properties on human hepatic CYP enzymes together with antioxidant and cytotoxic properties. The results yielded no metabolites in the hydrolysis or cytochrome P450 (CYP) oxidation incubations. However, five different methylated conjugates of verbascoside could be found in S-adenosylmethionine incubation, three different sulphate conjugates with 3′-phosphoadenosine 5′-phosphosulfate (PAPS) incubation with human liver samples, and very low levels of glucuronide metabolites after incubation with recombinant human uridine 5’-diphospho-glucuronosyltransferase (UGT) 1A7, UGT1A8, and UGT1A10. Additionally, verbascoside showed weak inhibitory potency against CYP1A2 and CYP1B1 with IC50 values of 83 µM and 86 µM, respectively. Potent antioxidant and low cytotoxic potential were observed. Based on these data, verbascoside does not possess any clinically relevant CYP-mediated interaction potential, but it has effective biological activity. Therefore, verbascoside could be considered as a lead compound for further drug development and as an adjuvant during tuberculosis treatment. Full article
Show Figures

Graphical abstract

Communication
Anti-Inflammatory Compounds from Atractylodes macrocephala
Molecules 2019, 24(10), 1859; https://doi.org/10.3390/molecules24101859 - 14 May 2019
Cited by 12 | Viewed by 1534
Abstract
In relation to anti-inflammatory agents from medicinal plants, we have isolated three compounds from Atractylodes macrocephala; 1, 2-[(2E)-3,7-dimethyl-2,6-octadienyl]-6-methyl-2, 5-cyclohexadiene-1, 4-dione; 2, 1-acetoxy-tetradeca-6E,12E-diene-8, 10-diyne-3-ol; 3, 1,3-diacetoxy-tetradeca-6E, 12E-diene-8, 10-diyne. Compounds 1 [...] Read more.
In relation to anti-inflammatory agents from medicinal plants, we have isolated three compounds from Atractylodes macrocephala; 1, 2-[(2E)-3,7-dimethyl-2,6-octadienyl]-6-methyl-2, 5-cyclohexadiene-1, 4-dione; 2, 1-acetoxy-tetradeca-6E,12E-diene-8, 10-diyne-3-ol; 3, 1,3-diacetoxy-tetradeca-6E, 12E-diene-8, 10-diyne. Compounds 13 showed concentration-dependent inhibitory effects on production of nitric oxide (NO) and prostaglandin E2 (PGE2) in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages. Western blotting and RT-PCR analyses demonstrated that compounds 13 suppressed the protein and mRNA levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Furthermore, compounds 13 inhibited transcriptional activity of nuclear factor-κB (NF-κB) and nuclear translocation of NF-κB in LPS-activated RAW 264.7 cells. The most active compound among them, compound 1, could reduce the mRNA levels of pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) and suppress the phosphorylation of MAPK including p38, JNK, and ERK1/2. Taken together, these results suggest that compounds 13 from A. macrocephala can be therapeutic candidates to treat inflammatory diseases. Full article
Show Figures

Graphical abstract

Review
A Review on Daphnane-Type Diterpenoids and Their Bioactive Studies
Molecules 2019, 24(9), 1842; https://doi.org/10.3390/molecules24091842 - 13 May 2019
Cited by 17 | Viewed by 2094
Abstract
Natural daphnane diterpenoids, mainly distributed in plants of the Thymelaeaceae and Euphorbiaceae families, usually include a 5/7/6-tricyclic ring system with poly-hydroxyl groups located at C-3, C-4, C-5, C-9, C-13, C-14, or C-20, while some special types have a characteristic orthoester motif triaxially connectedat [...] Read more.
Natural daphnane diterpenoids, mainly distributed in plants of the Thymelaeaceae and Euphorbiaceae families, usually include a 5/7/6-tricyclic ring system with poly-hydroxyl groups located at C-3, C-4, C-5, C-9, C-13, C-14, or C-20, while some special types have a characteristic orthoester motif triaxially connectedat C-9, C-13, and C-14. The daphnane-type diterpenoids can be classified into five types: 6-epoxy daphnane diterpenoids, resiniferonoids, genkwanines, 1-alkyldaphnanes and rediocides, based on the oxygen-containing functions at rings B and C, as well as the substitution pattern of ring A. Up to now, nearly 200 daphnane-type diterpenoids have been isolated and elucidated from the Thymelaeaceae and Euphorbiaceae families. In-vitro and in-vivo experiments of these compounds have shown that they possess a wide range of biological activities, including anti-HIV, anti-cancer, anti-leukemic, neurotrophic, pesticidal and cytotoxic effects. A comprehensive account of the structural diversity is given in this review, along with the cytotoxic activities of daphnane-type diterpenoids, up to April 2019. Full article
Show Figures

Figure 1

Article
Phenolic Profile and Bioactive Properties of Carissa macrocarpa (Eckl.) A.DC.: An In Vitro Comparative Study between Leaves, Stems, and Flowers
Molecules 2019, 24(9), 1696; https://doi.org/10.3390/molecules24091696 - 30 Apr 2019
Cited by 10 | Viewed by 1601
Abstract
The present work aimed to characterize leaves, stems, and flowers of Carissa macrocarpa (Eckl.) A.DC., by performing an analysis of the phenolic compounds by HPLC-DAD/ESI-MS, correlating them with bioactive properties, such as antioxidant, anti-inflammatory, cytotoxic, and antimicrobial activities. Thirty polyphenols were identified in [...] Read more.
The present work aimed to characterize leaves, stems, and flowers of Carissa macrocarpa (Eckl.) A.DC., by performing an analysis of the phenolic compounds by HPLC-DAD/ESI-MS, correlating them with bioactive properties, such as antioxidant, anti-inflammatory, cytotoxic, and antimicrobial activities. Thirty polyphenols were identified in the hydroethanolic extract, including phenolic acids, flavan-3-ols, and flavonol glycosides derivatives (which presented the highest number of identified compounds). However, flavan-3-ols showed the highest concentration in stems (mainly owing to the presence of dimers, trimmers, and tetramers of type B (epi)catechin). Leaves were distinguished by their high antioxidant and anti-inflammatory activities, as well as their bactericidal effect against E. coli, while stems presented a higher cytotoxic activity and bactericidal effect against Gram-positive bacteria. Moreover, a high correlation between the studied bioactivities and the presence of phenolic compounds was also verified. The obtained results bring added value to the studied plant species. Full article
Show Figures

Graphical abstract

Article
Anticancer Effects of Five Biflavonoids from Ginkgo Biloba L. Male Flowers In Vitro
Molecules 2019, 24(8), 1496; https://doi.org/10.3390/molecules24081496 - 16 Apr 2019
Cited by 26 | Viewed by 2133
Abstract
Ginkgo biloba L., an ancient dioecious gymnosperm, is now cultivated worldwide for landscaping and medical purposes. A novel biflavonoid—amentoflavone 7′′-O-β-d-glucopyranoside (1)—and four known biflavonoids were isolated and identified from the male flowers of Ginkgo. The anti-proliferative [...] Read more.
Ginkgo biloba L., an ancient dioecious gymnosperm, is now cultivated worldwide for landscaping and medical purposes. A novel biflavonoid—amentoflavone 7′′-O-β-d-glucopyranoside (1)—and four known biflavonoids were isolated and identified from the male flowers of Ginkgo. The anti-proliferative activities of five biflavonoids were evaluated on different cancer lines. Bilobetin (3) and isoginkgetin (4) exhibited better anti-proliferative activities on different cancer lines. Their effects were found to be cell-specific and in a dose and time dependent manner for the most sensitive HeLa cells. The significant morphological changes validated their anticancer effects in a dose-dependent manner. They were capable of arresting the G2/M phase of the cell cycle, inducing the apoptosis of HeLa cells dose-dependently and activating the proapoptotic protein Bax and the executor caspase-3. Bilobetin (3) could also inhibit the antiapoptotic protein Bcl-2. These might be the mechanism underlying their anti-proliferation. In short, bilobetin (3) and isoginkgetin (4) might be the early lead compounds for new anticancer agents. Full article
Show Figures

Graphical abstract

Article
Discovery of Nosiheptide, Griseoviridin, and Etamycin as Potent Anti-Mycobacterial Agents against Mycobacterium avium Complex
Molecules 2019, 24(8), 1495; https://doi.org/10.3390/molecules24081495 - 16 Apr 2019
Cited by 7 | Viewed by 2031
Abstract
Mycobacterium avium complex (MAC) is a serious disease mainly caused by M. avium and M. intracellulare. Although the incidence of MAC infection is increasing worldwide, only a few agents are clinically used, and their therapeutic effects are limited. Therefore, new anti-MAC agents are [...] Read more.
Mycobacterium avium complex (MAC) is a serious disease mainly caused by M. avium and M. intracellulare. Although the incidence of MAC infection is increasing worldwide, only a few agents are clinically used, and their therapeutic effects are limited. Therefore, new anti-MAC agents are needed. Approximately 6600 microbial samples were screened for new anti-mycobacterial agents that inhibit the growth of both M. avium and M. intracellulare, and two culture broths derived from marine actinomycete strains OPMA1245 and OPMA1730 had strong activity. Nosiheptide (1) was isolated from the culture broth of OPMA1245, and griseoviridin (2) and etamycin (viridogrisein) (3) were isolated from the culture broth of OPMA1730. They had potent anti-mycobacterial activity against M. avium and M. intracellulare with minimum inhibitory concentrations (MICs) between 0.024 and 1.56 μg/mL. In addition, a combination of 2 and 3 markedly enhanced the anti-mycobacterial activity against both M. avium and M. intracellulare. Furthermore, a combination 2 and 3 had a therapeutic effect comparable to that of ethambutol in a silkworm infection assay with M. smegmatis. Full article
Show Figures

Figure 1

Communication
A Rapid UPLC-MS Method for Quantification of Gomisin D in Rat Plasma and Its Application to a Pharmacokinetic and Bioavailability Study
Molecules 2019, 24(7), 1403; https://doi.org/10.3390/molecules24071403 - 10 Apr 2019
Cited by 4 | Viewed by 1274
Abstract
Gomisin D, a lignan compound isolated from Fructus Schisandra, is a potential antidiabetic and anti-Alzheimer’s agent. Recently, gomisin D was used as a quality marker of some traditional Chinese medicine (TCM) formulas. In this study, a rapid ultra-performance liquid chromatography/tandem mass spectrometry [...] Read more.
Gomisin D, a lignan compound isolated from Fructus Schisandra, is a potential antidiabetic and anti-Alzheimer’s agent. Recently, gomisin D was used as a quality marker of some traditional Chinese medicine (TCM) formulas. In this study, a rapid ultra-performance liquid chromatography/tandem mass spectrometry method (UPLC-MS/MS) was developed and validated to quantify gomisin D in rat plasma for a pharmacokinetic and bioavailability study. Acetonitrile was used to precipitate plasma proteins. Separations were performed on a BEH C18 column with a gradient mobile phase comprising of acetonitrile and water (0.1% formic acid). An electrospray ionization source was applied and operated in the positive ion mode. The multiple reaction monitoring mode (MRM) was utilized to quantify gomisin D and nomilin (internal standard, IS) using the transitions of m/z 531.2 → 383.1 and m/z 515.3 → 161.0, respectively. The calibration curve was linear over the working range from 1 to 4000 ng/mL (R2 = 0.993). The intra- and interday precision ranged from 1.9% to 12.9%. The extraction recovery of gomisin D was in the range of 79.2–86.3%. The validated UPLC-MS/MS method was then used to obtain the pharmacokinetic characteristics of gomisin D after intravenous (5 mg/kg) and intragastric (50 mg/kg) administration to rats. The bioavailability of gomisin D was 107.6%, indicating that this compound may become a promising intragastrical medication. Our results provided useful information for further preclinical studies on gomisin D. Full article
Show Figures

Figure 1

Review
Alcyonium Octocorals: Potential Source of Diverse Bioactive Terpenoids
Molecules 2019, 24(7), 1370; https://doi.org/10.3390/molecules24071370 - 08 Apr 2019
Cited by 6 | Viewed by 1671
Abstract
Alcyonium corals are benthic animals, which live in different climatic areas, including temperate, Antarctic and sub-Antarctic waters. They were found to produce different chemical substances with molecular diversity and unique architectures. These metabolites embrace several terpenoidal classes with different functionalities. This wide array [...] Read more.
Alcyonium corals are benthic animals, which live in different climatic areas, including temperate, Antarctic and sub-Antarctic waters. They were found to produce different chemical substances with molecular diversity and unique architectures. These metabolites embrace several terpenoidal classes with different functionalities. This wide array of structures supports the productivity of genus Alcyonium. Yet, majority of the reported compounds are still biologically unscreened and require substantial efforts to explore their importance. This review is an entryway to push forward the bio-investigation of this genus. It covers the era from the beginning of reporting metabolites from Alcyonium up to March 2019. Ninety-two metabolites are presented; forty-two sesquiterpenes, twenty-five diterpenes and twenty-five steroids have been reported from sixteen species. Full article
Show Figures

Figure 1

Article
The Impact of Processing Parameters on the Content of Phenolic Compounds in New Gluten-Free Precooked Buckwheat Pasta
Molecules 2019, 24(7), 1262; https://doi.org/10.3390/molecules24071262 - 01 Apr 2019
Cited by 8 | Viewed by 1603
Abstract
Buckwheat is a generous source of phenolic compounds, vitamins and essential amino acids. This paper discusses the procedure of obtaining innovative gluten-free, precooked pastas from roasted buckwheat grains flour, a fertile source of natural antioxidants, among them, phenolic acids. The authors also determined [...] Read more.
Buckwheat is a generous source of phenolic compounds, vitamins and essential amino acids. This paper discusses the procedure of obtaining innovative gluten-free, precooked pastas from roasted buckwheat grains flour, a fertile source of natural antioxidants, among them, phenolic acids. The authors also determined the effect of the extruder screw speed and the level of moisture content in the raw material on the quantity of free phenolic acids. The qualitative and quantitative analysis of phenolic acids in pasta was carried out using high-performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). The chromatographic method was validated. For extracts with the highest total content of free phenolic acids and unprocessed flour from roasted buckwheat grain, the TLC-DPPH test was also performed to determine the antioxidant properties of the tested pasta. The level of moisture in the raw material had an impact on the content of phenolic acids. All pastas made from buckwheat flour moistened up to 32% exhibited a higher total content of free phenolic acids than other mixes moistened to 30 and 34% of water. Full article
Show Figures

Figure 1

Article
Four Novel Dammarane-Type Triterpenoids from Pearl Knots of Panax ginseng Meyer cv. Silvatica
Molecules 2019, 24(6), 1159; https://doi.org/10.3390/molecules24061159 - 23 Mar 2019
Cited by 5 | Viewed by 1511
Abstract
Panax ginseng Meyer cv. Silvatica (PGS), which is also known as “Lin-Xia-Shan-Shen” or “Zi-Hai” in China, is grown in forests and mountains by broadcasting the seeds of ginseng and is harvested at the cultivation age of 15–20 years. In this study, four new [...] Read more.
Panax ginseng Meyer cv. Silvatica (PGS), which is also known as “Lin-Xia-Shan-Shen” or “Zi-Hai” in China, is grown in forests and mountains by broadcasting the seeds of ginseng and is harvested at the cultivation age of 15–20 years. In this study, four new dammarane-type triterpenoids, ginsengenin-S1 (1), ginsengenin-S2 (2), ginsenoside-S3 (3), ginsenoside-S4 (4), along with one known compound were isolated from pearl knots of PGS. Ginsengenin-S2 significantly alleviated oxidative damage when A549 cells were exposed to cigarette smoke (CS) extract. In addition, ginsengenin-S2 could inhibit the CS-induced inflammatory reaction in A549 cells. Protective effects of ginsengenin-S2 against CS-mediated oxidative stress and the inflammatory response in A549 cells may involve the Nrf2 and HDAC2 pathways. Full article
Show Figures

Figure 1

Article
Cytinus hypocistis (L.) L. subsp. macranthus Wettst.: Nutritional Characterization
Molecules 2019, 24(6), 1111; https://doi.org/10.3390/molecules24061111 - 20 Mar 2019
Cited by 8 | Viewed by 1984
Abstract
The habit of eating wild plants in Europe is often associated with times of famine; an example of such is the nectar of Cytinus hypocistis (L.) L., a parasitic plant. To the authors’ best knowledge, there are no studies on its nutritional and [...] Read more.
The habit of eating wild plants in Europe is often associated with times of famine; an example of such is the nectar of Cytinus hypocistis (L.) L., a parasitic plant. To the authors’ best knowledge, there are no studies on its nutritional and chemical composition; thus, the whole C. hypocistis (L.) L. subsp. macranthus Wettst. plant (CH) and its nectar (NCH) were nutritionally and chemically characterized. The proximate composition of CH and NCH were very similar in terms of energy, ash, and carbohydrate content. Protein and fat were approximately 2-fold higher in NCH, and crude fiber was 4.6-fold higher in CH compared to NCH. Fructose, glucose, sucrose, and trehalose were the free sugars present in both samples. Oxalic, malic, and citric acids were the identified organic acids in both samples, with citric acid as the most abundant molecule. For both samples, polyunsaturated and saturated fatty acids (PUFA and SFA, respectively) predominate over monounsaturated fatty acids (MUFA) due to the significant contribution of linoleic and palmitic acids, respectively. However, unsaturated fatty acids (UFA) prevail over SFA in CH and NCH. Therefore, CH proved to be an excellent source of nutritional compounds, which supports its use during past periods of scarcity. Full article
Show Figures

Graphical abstract

Article
Optimization of Ultrasound-Assisted Extraction of Phenolic Compounds from Annona muricata By-Products and Pulp
Molecules 2019, 24(5), 904; https://doi.org/10.3390/molecules24050904 - 05 Mar 2019
Cited by 19 | Viewed by 1955
Abstract
Ultrasound-assisted extraction (UAE) is widely used; however, the efficiency of extraction depends on the raw materials. Therefore, optimization of UAE must be investigated for each type of plant material. By-products from soursop fruit have not been studied as a source of bioactive compounds. [...] Read more.
Ultrasound-assisted extraction (UAE) is widely used; however, the efficiency of extraction depends on the raw materials. Therefore, optimization of UAE must be investigated for each type of plant material. By-products from soursop fruit have not been studied as a source of bioactive compounds. In this work, the optimization of UAE conditions (extraction time (5, 10, and 15 min), pulse cycle (0.4, 0.7, and 1 s), and sonication amplitude (40%, 70%, and 100%)) for the extraction of phenolic compounds (soluble, hydrolyzable, condensed tannins, and total polyphenols) from soursop by-products (seed, peel, and columella) and pulp was evaluated using response surface methodology. The optimal conditions for UAE to obtain the highest total polyphenol content from by-products and pulp was dependent on the raw material. Peel resulted in the highest content of total polyphenols (187.32 mg/g dry matter [DM]) followed by columella (164.14 mg/g DM), seed (36.15 mg/g DM), and pulp (33.24 mg/g DM). The yield of polyphenolic content from peel and columella obtained with UAE was higher (32–37%) than conventional extraction for 2 h under stirring (14–16%). The contents of gallic acid (0.36–15.86 µg/g DM), coumaric acid (0.07–1.37 µg/g DM), and chlorogenic acid (9.18–32.67 µg/g DM) in the different parts of the fruit were higher in the extracts obtained by UAE compared with a conventional extraction method (0.08–0.61, 0.05–0.08, 3.15–13.08 µg/g DM, respectively), although it was dependent on the raw materials. Soursop by-products can be functionally important if they are used to extract bioactive compounds by UAE; a technology with high potential for commercial extraction on a large scale. Full article
Show Figures

Figure 1

Article
Echinacoside Isolated from Cistanche tubulosa Putatively Stimulates Growth Hormone Secretion via Activation of the Ghrelin Receptor
Molecules 2019, 24(4), 720; https://doi.org/10.3390/molecules24040720 - 17 Feb 2019
Cited by 12 | Viewed by 2440
Abstract
Cistanche species, the ginseng of the desert, has been recorded to possess many biological activities in traditional Chinese pharmacopoeia and has been used as an anti-aging medicine. Three phenylethanoid glycosides—echinacoside, tubuloside A, and acteoside—were detected in the water extract of Cistanche tubulosa (Schenk) [...] Read more.
Cistanche species, the ginseng of the desert, has been recorded to possess many biological activities in traditional Chinese pharmacopoeia and has been used as an anti-aging medicine. Three phenylethanoid glycosides—echinacoside, tubuloside A, and acteoside—were detected in the water extract of Cistanche tubulosa (Schenk) R. Wight and the major constituent, echinacoside, was further purified. Echinacoside of a concentration higher than 10−6 M displayed significant activity to stimulate growth hormone secretion of rat pituitary cells. Similar to growth hormone-releasing hormone-6, a synthetic analog of ghrelin, the stimulation of growth hormone secretion by echinacoside was inhibited by [D-Arg1, D-Phe5, D-Trp7,9, Leu11]-substance P, an inverse agonist of the ghrelin receptor. Molecular modeling showed that all the three phenylethanoid glycosides adequately interacted with the binding pocket of the ghrelin receptor, and echinacoside displayed a slightly better interaction with the receptor than tubuloside A and acteoside. The results suggest that phenylethanoid glycosides, particularly echinacoside, are active constituents putatively responsible for the anti-aging effects of C. tubulosa and may be considered to develop as non-peptidyl analogues of ghrelin. Full article
Show Figures

Graphical abstract