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Abstract: Despite the presence of toxic compounds in inedible mushrooms, the question 

whether the chemical nutrients and non-nutrients compositions in edible and inedible 

Lactarius species are similar remains unanswered. To answer this question, Lactarius 

citriolens Pouzar and Lactarius turpis (Weinm.) Fr., two inedible species, were studied in 

order to obtain information about their chemical composition and bioactivity. Free sugars, 

fatty acids, tocopherols, organic and phenolic acids were analysed by chromatographic 

techniques coupled to different detectors. L. citriolens and L. turpis methanolic extracts 

were tested regarding antioxidant potential (reducing power, radical scavenging activity 

and lipid peroxidation inhibition). The composition of macronutrients varied among the 

two species, but the profiles were similar between them and among other Lactarius 

species; L. citriolens gave the highest energy contribution, saturated fatty acids and organic 

acids, while the L. turpis sample was richer in free sugars, mono- and polyunsaturated fatty 

acids, tocopherols and phenolic compounds. L. turpis methanolic extract showed the 

highest antioxidant activity. The absence of hepatoxicity of the methanolic extracts was 

confirmed in porcine liver primary cells (in vitro conditions). The present study provided 

new information about wild L. citriolens and L. turpis, comparing their chemical 
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composition and antioxidant properties with other Lactarius species, and expanding the 

knowledge about this genus. 

Keywords: Lactarius citriolens; Lactarius turpis; wild mushrooms; chemical composition; 

antioxidant activity 

 

1. Introduction 

Wild mushrooms have become more important in our diet for their nutritional [1], organoleptic [2] 

and medicinal [3] characteristics. The scientific community has studied several mushroom species in 

order to develop new therapies [3,4]. In fact, they contain a large diversity of compounds with a wide 

range of nutritional and health benefits such as stimulation of the immune system, providing an  

anti-cancer function as well as controlling blood lipids in humans [1,3]. The nutraceuticals present in 

mushrooms have been related with their antioxidant activity [4]. 

Lactarius, popularly known as “milk cap”, is one of the larger genera of ectomycorrhizal 

Basidiomycota, with about 400 species recognized worldwide. Members of the genus are reported in 

association with numerous trees and shrubs [5]. One particular character of the genus Lactarius is that 

all species exude a typical milky fluid when their basidiocarps are broken. This milky fluid or latex 

may taste mild or acrid and may be white or colored or may have a changing color depending on the 

species, providing important taxonomical information [6]. They are considered medicinal and 

nutritionally important and promising mushrooms [3,4]. 

Lactarius citriolens Pouzar and Lactarius turpis (Weinm.) Fr. are inedible species that occur in 

Bragança, Northeastern of Portugal, and there is not much information about them. Concerning  

L. turpis, there are some studies reporting lead, cadmium and mercury contents [7], antifungal activity 

against Penicillium expansum [8], identification of necatorone (an alkaloid pigment) [9], tolerance to 

toxic metal minerals [10], and determination of isotope activity (e.g., radiocesium) from contaminated 

areas [11]. However, nothing has been reported on its chemical composition and bioactivity. Regarding 

L. citriolens, as far as we know, only phylogenetic studies are available in the literature [12]. 

Our research group has published several works that intend to contribute to inventorying and 

documenting the chemical and antioxidant properties of wild mushrooms from Northeastern Portugal 

(including different Lactarius species) [13–15]. The present work aims to expand the knowledge on 

the Lactarius genus by presenting a detailed chemical characterization of L. citriolens and  

L. turpis, including evaluation of nutrients (e.g. macronutrients, free sugars, fatty acids and 

tocopherols), non-nutrients (e.g. phenolic compounds and organic acids) and antioxidant activity of 

their methanolic extracts (e.g. reducing power, radical-scavenging activity and inhibition of lipid 

peroxidation). The confirmation of non-toxicity of the extracts was performed in a primary cell culture 

of porcine liver cells. 
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2. Results and Discussion 

2.1. Chemical Composition of the Fruiting Bodies  

The macronutrients composition of L. citriolens and L. turpis fruiting bodies is presented in Table 1. 

L. turpis showed the highest level of proteins, ash and carbohydrates, however, the energetic 

contribution of L. citriolens was superior, due to its higher fat content. It was possible to find some 

reports about other species of the same genus, namely L. deliciosus [15–23], L. hatsudake [19],  

L. piperatus [16], L. quieticolor [24], L. salmonicolor [13,21], L. sanguifluus [23,25],  

L. semisanguifluus [23] and L. volemus [19]. All of these species also presented carbohydrates and 

proteins as major macronutrients, and some of them similar energetic contributions (317–389 kcal/100 g 

dry weight) [13,15].  

Table 1. Macronutrients, free sugars, fatty acids and tocopherols of the fruiting bodies 

expressed in dry weight basis (mean ± SD). 

Parameter Lactarius citriolens Lactarius turpis t-Student Test p-value

Fat (g/100 g) 5.37 ± 0.30 2.06 ± 0.27 <0.001 
Proteins (g/100 g) 10.89 ± 0.33 13.06 ± 0.29 <0.001 

Ash (g/100 g) 6.99 ± 0.23 7.21 ± 0.12 0.109 
Carbohydrates (g/100 g) 76.76 ± 0.35 77.68 ± 0.35 0.033 

Energy (kcal/100 g) 398.89 ± 1.74 381.47 ± 1.29 <0.001 

Mannitol (g/100 g) 8.31 ± 0.30 19.21 ± 0.45 <0.001 
Trehalose (g/100 g) 0.45 ± 0.01 0.33 ± 0.03 <0.001 

Total sugars (g/100 g) 8.76 ± 0.29 19.54 ± 0.47 <0.001 

C16:0  5.35 ± 0.01 8.02 ± 0.09 <0.001 
C18:0 40.58 ± 0.41 12.60 ± 0.83 <0.001 

C18:1n9 25.00 ± 0.78 26.29 ± 0.98 0.065 
C18:2n6 22.46 ± 0.03 48.55 ± 0.14 <0.001 

SFA (relative percentage) 51.85 ± 0.70 23.73 ± 1.00 <0.001 
MUFA (relative percentage) 25.42 ± 0.78 27.18 ± 0.98 0.026 
PUFA (relative percentage) 22.74 ± 0.08 49.09 ± 0.01 <0.001 

α-tocopherol (µg/100 g) 20.43 ± 1.27 45.84 ± 5.61 <0.001 
β-tocopherol (µg/100 g) 70.65 ± 7.45 14.79 ± 1.54 <0.001 
γ-tocopherol (µg/100 g) 4.69 ± 0.70 72.32 ± 7.44 <0.001 
δ-tocopherol (µg/100 g) 5.28 ± 0.42 nd - 

Total tocopherols (µg/100 g) 101.05 ± 7.30 132.94 ± 11.50 <0.001 

nd‒not detected. Main fatty acids: C16:0 (palmitic acid), C18:0 (stearic acid), C18:1n9 (oleic acid) and 

C18:2n6 (linoleic acid); 20 more fatty acids were identified in trace amounts. SFA‒saturated fatty acids; 

MUFA‒monounsaturated fatty acids; PUFA‒polyunsaturated fatty acids.  

Observing the macronutrient profile of the genus it can be concluded that the two studied species 

have similar characteristics to the edible species. However, since there are reports of the presence of 

necatorin, a highly mutagenic compound, in L. turpis, [26], and the possibility of poisoning which 

manifests by stomach and intestinal troubles [27], L. turpis is nowadays considered non-edible [28]. 
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Regarding L. citriolens, although this species is rarely found, it should be consumed with caution given 

the lack of information [28]. 

Analyzing the free sugars composition, mannitol and trehalose were detected in both samples 

(Table 1; Figure 1A). L. turpis and L. citriolens revealed the highest content in mannitol and trehalose, 

respectively. L. turpis gave the highest content in total free sugars. As far as we know, there are only 

some Portuguese studies, all of them from our research group, on the free sugars in Lactarius spp., 

namely in L. bertillonii [29], L. deliciosus [15–18], L. hepaticus [30], L. piperatus [16], L. quietus [14],  

L. salmonicolor [13] and L. vellereus [29]. All the mentioned species presented mannitol and trehalose, 

with the exception of the report of Fernandes et al. [15] who also found fructose, but in this case in 

lower amounts (0.18 g/100 g dry weight). In fact, mannitol, a sugar alcohol, and trehalose, an 

oligosaccharide, are the main representatives sugars present in mushrooms [1,16]. Mannitol, has half 

the calories of sucrose and because of their mannitol contents, mushrooms are useful for diabetic 

patients [31]. Trehalose is a common sugar component of most immature sporocarps and it may 

function as a reserve material, which can be metabolised when the sporocarps are maturing [32].  

The fatty acids quantified in higher amounts in both species were palmitic (C16:0), stearic (C18:0), 

oleic (C18:1n9) and linoleic (C18:2n6) acids (Table 1; Figure 1B). Concerning saturated fatty acids 

(SFA), palmitic acid was found in higher percentages in L. turpis, while stearic acid was presented in 

higher percentages in L. citriolens. Oleic acid (monounsaturated fatty acid-MUFA) and linoleic acid 

(polyunsaturated fatty acid-PUFA) were found in higher percentages in L. turpis. 

Figure 1. Individual profile in sugars (A) of L. turpis: 1-mannitol, 2-trehalose, 3-raffinose 

(IS); fatty acids (B) of L. citriolens: 1-caproic acid (C6:0); 2-caprylic acid (C8:0);  

3-capric acid (C10:0); 4-lauric acid (C12:0); 5-myristic acid (C14:0); 6-myristoleic acid 

(C14:1); 7-pentadecanoic acid (C15:0); 8-palmitic acid (C16:0); 9-palmitoleic acid 

(C16:1); 10-heptadecanoic acid (C17:0); 11-stearic acid (C18:0); 12-oleic acid (C18:1n9c); 

13-linoleic acid (C18:2n6c); 14-α-linolenic acid (C18:3n3c); 15-arachidic acid (C20:0);  

16-eicosenoic acid (C20:1c); 17-cis-11,14-eicosadienoic acid (C20:2c); 18-cis-11,14,17-

eicosatrienoic acid and heneicosanoic acid (C20:3n3 + C21:0); 19-cis-5,8,11,14,17-

eicosapentaenoic acid (C20:5n3); 20-behenic acid (C22:0); 21-tricosanoic acid (C23:0);  

22-lignoceric acid (C24:0); 23-nervonic acid (C24:1); and tocopherols (C) of L turpis:  

1-α-tocopherol, 2-BHT, 3-β-tocopherol, 4-γ-tocopherol, 5-tocol (IS). MP-mobile phase. 
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Figure 1. Cont. 

 

 

The L. citriolens sample was richer in SFA, however the L. turpis sample presented the highest level 

of MUFA and PUFA. Like L. citriolens, there are other Lactarius species with stearic acid (C18:0) as 

the main fatty acid present, namely L. aurantiacus [33], L. bertillonii [29], L. deliciosus [15,16,34],  

L. salmonicolor [13], L. piperatus [16] and L. vellereus [29]. However, linoleic acid (C18:2) is the 

major fatty acid in other Lactarius species, as occurred in the herein studied L. turpis sample,  

L. deliciosus [23,25], L. hepaticus [30], L. quietus [14], L. rufus [35], L. salmonicolor [36],  

L. sanguifluus [23,25], L. semisanguifluus [23], L. thejogalus [35], L. volemus [14]. Only one report 

mentioned oleic acid as the main fatty acid, and it was in a L. delicious sample from Portugal [18]. 

Stearic acid is proved to have a high antibacterial activity since it presents a strong efficacy against 

Gram-positive and Gram-negative bacteria [37]. Linoleic acid is known as precursor of 1-octen-3-ol, 

the alcohol of fungi, which is the principal aromatic compound in most fungi [2]. 

Concerning tocopherols, both samples presented α-, β- and γ-isoforms (Table 1; Figure 1C).  

The α- and γ-isoforms were the most abundant in L. turpis. On the other hand, β-tocopherol was 

present in higher amounts in L. citriolens. This was also the only sample presenting δ-tocopherol. It 

was L. turpis that revealed the highest content of total tocopherols. To our knowledge, there are only 
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and the total content reported varied between 15 µg/100 g to 316 µg/100 g [29,38]. Besides preventing 

lipid peroxidation, vitamin E appears to exert effects on other cardiovascular risk factors including 

reduction of platelet adhesion and aggregation [39]. 

Regarding the organic acids profile, it was possible to identify and quantify four different 

compounds (Table 2; Figure 2A), namely oxalic, quinic, malic and fumaric acids. The wild mushroom 

L. turpis was the one that revealed the highest concentration of oxalic acid, while L. citriolens 

presented the highest malic and fumaric acids content. Quinic acid was only present in L. citriolens 

and this mushroom also showed the highest content in total organic acids. 

Table 2. Organic acids and phenolic compounds of the fruiting bodies expressed in dry 

weight basis (mean ± SD). 

Compound Lactarius citriolens Lactarius turpis t-Student test p-value

Oxalic acid (g/100 g) 0.06 ± 0.01 0.10 ± 0.01 <0.001 
Quinic acid (g/100 g) 0.18 ± 0.06 nd - 
Malic acid (g/100 g) 3.36 ± 0.03 2.96 ± 0.19 0.008 

Fumaric acid (g/100 g) 0.50 ± 0.02 0.24 ± 0.00 <0.001 
Total organic acids (g/100 g) 4.10 ± 0.06 3.30 ± 0.19 <0.001 

Gallic acid (mg/100 g) nd 0.08 ± 0.00 - 
p-Hydroxybenzoic acid (mg/100 g) 0.15 ± 0.01 0.12 ± 0.00 0.002 

Total phenolic acids (mg/100 g) 0.15 ± 0.01 0.20 ± 0.01 <0.001 
Cinnamic acid (mg/100 g) 0.15 ± 0.00 0.12 ± 0.00 <0.001 

nd—not detected. 

As far as we know, there are only two reports concerning organic acids in Lactarius spp. namely,  

L. deliciosus from different locations within Portugal and L. volemus, with malic acid as the main 

organic acid present [40,41].  

Concerning phenolic acids, the studied samples revealed the presence of gallic and  

p-hydroxybenzoic acids, and also the related compound cinnamic acid (Table 2; Figure 2B). Gallic 

acid was only found in L. turpis. However, it was L. citriolens that presented the highest amounts of  

p-hydroxybenzoic acid and of the related compound cinnamic acid. Analyzing these results we can 

conclude that the wild L. turpis sample was richer in phenolic acids compared to L. citriolens. It is 

difficult to establish a profile for the genus as for what concerns phenolic compounds. In fact, the 

phenolic compounds recorded in different species are not the same and the main phenolic compounds 

also vary among different species. For example, p-hydroxybenzoic acid was the main phenolic acid in  

L. deliciosus [42], L. salmonicolor [43] and L. volemus [14]. However, ο-coumaric [23],  

homogentisic [44] and tannic [45] acids were also reported as the main phenolic compounds in  

L. deliciosus and L. volemus samples. For L. volemus, protocatechuic acid was also reported as the 

main phenolic acid [46]. The same phenolic acid was in major abundance in L. vellereus [29]; catechin 

was also found in L. deterrimus [47] and L. vellereus [48]; and ο-coumaric was the major phenolic acid 

in L. semisanguifluus [23]. p-OH-Phenylacetic acid was the main phenolic acid in L. sanguifluus [23], 

however Puttaraju et al. [45] reported tannic acid as the principal compound for the same species. 

Regarding the related compound cinnamic acid, it was found in L. aurantiacus [43], L. bertillonii [29] 
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and L. quietus [14]. In fact, Lactarius spp. is a genus rich in phenolic compounds, which have been 

reported to display different health benefits. 

Figure 2. Individual profile in organic acids (A) of L. citriolens: 1-oxalic acid, 2-quinic 

acid, 3-malic acid, 4-fumaric acid; and phenolic acids (B) of L. turpis: 1-gallic acid;  

2-p-hydroxybenzoic acid; 3-cinnamic acid. MP-mobile phase. 

 

 

2.2. Antioxidant Activity of the Methanolic Extracts and Confirmation of Non-Toxicity 

Analyzing the results of the antioxidant potential (Table 3), L. turpis methanolic extract revealed 

the highest reducing power evaluated through the Folin-Ciocalteu and ferricyanide/Prussian blue 

assays. The same sample also revealed the highest radical scavenging activity, since it presented the 

lowest EC50 value for DPPH assay. L. turpis also showed the highest lipid peroxidation inhibition in 

the β-carotene/linoleate and TBARS assays.  
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Table 3. Antioxidant activity of the methanolic extracts (mean ± SD). 

Antioxidant 
Activity 

Assay 
Lactarius 
citriolens 

Lactarius 
turpis 

t-Student 
Test p-Value 

Reducing power 

Folin-Ciocalteu (mg 
GAE/g extract) 

13.13 ± 0.17 22.02 ± 0.09 <0.001 

Ferricyanide/Prussian 
blue (EC50; mg/mL) 

2.61 ± 0.13 1.53 ± 0.02 <0.001 

Radical scavenging 
activity 

DPPH scavenging 
activity (EC50; mg/mL) 

15.77 ± 0.27 4.18 ± 0.04 <0.001 

Lipid peroxidation 
inhibition 

β-Carotene/linoleate 
(EC50; mg/mL) 

6.21± 0.24 4.92 ± 0.27 <0.001 

TBARS (EC50; mg/mL) 0.82 ± 0.03 0.57 ± 0.02 <0.001 

Concerning the Folin-Ciocalteu assay, higher values mean higher reducing power (GAE-gallic acid 

equivalents); for the other assays, the results are presented in EC50 values, what means that higher values 

correspond to lower reducing power or antioxidant potential. EC50: Extract concentration corresponding to 

50% of antioxidant activity or 0.5 of absorbance for the Ferricyanide/Prussian blue assay.  

The highest total antioxidant activity in the genus, measured through Folin-Ciocalteu assay, was 

reported by Orhan and Üstün [49] in a L. deliciosus sample (51.27 mg GAE/g). L. deliciosus  

(EC50 = 500 µg/mL; [49]) and L. bertillonii (EC50 = 1.63 mg/mL; [29]) gave the highest reducing 

power. Regarding radical scavenging activity, the highest capacity was described by Unekwu et al. [50] 

for a L. deliciosus sample (EC50 = 300 µg/mL). Finally, regarding the lipid peroxidation inhibition,  

the highest antioxidant activity was obtained in L. deliciosus (IC50 = 148.0 µg/mL) measured by  

β-carotene/linoleate assay [34] and L. bertillonii (EC50 = 1.21 mg/mL) through TBARS assay [29]. 

Both of our samples present lower EC50 values in the TBARS assay being L. turpis the species with 

the highest antioxidant potential of the genus measured by this biochemical assay. Antioxidants can 

help the endogenous defense system, playing an important role as potential protective agents, reducing 

oxidative damage by free radicals so, preventing events related to aging and diseases, such as 

atherosclerosis, diabetes, cancer and cirrhosis [4]. 

As the methanolic extracts displayed antioxidant activity, it was important to evaluate their cytotoxicity 

against liver cells, which are considered the best in vitro model for studies of human cytotoxicity. 

Despite of the reported presence of toxic compounds in L. turpis fruiting bodies, the prepared extracts 

did not reveal any toxicity in PLP2 liver primary culture; the positive control ellipticine gave a GI50 

(sample concentration that inhibited 50% of the net cell growth) = 2.06 ± 0.03 µg/mL. This could 

indicate that the toxic compounds were not present in these extracts. Nevertheless, it should be 

highlighted that an in vitro assay was performed, and that under in vivo conditions the microbiota that 

inhabit our intestines can readily convert molecules, some of which becoming toxic.  

3. Experimental Section  

3.1. Sampling of Mushroom Species 

Lactarius citriolens Pouzar and Lactarius turpis (Weinm.) Fr. samples were collected in Bragança 

(Northeastern Portugal), in November 2012. The authentications were done at the Polytechnic Institute 
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of Bragança. Voucher specimens were deposited at herbarium of School of Agriculture of Polytechnic 

Institute of Bragança, Portugal. The samples were immediately lyophilised (FreeZone 4.5, Labconco, 

Kansas City, MO, USA), reduced to a fine dried powder (20 mesh), mixed to obtain a homogeneous 

sample and stored in a desiccator, protected from light, until further analysis.  

3.2. Chemical Composition of L. citriolens and L. turpis Fruiting Bodies  

3.2.1. Macronutrients.  

The samples were analysed for moisture, proteins, fat, carbohydrates and ash using the standard 

procedures [51]. The crude protein content (N × 4.38) of the samples was estimated by the macro-Kjeldahl 

method; the crude fat was determined by extracting a known weight of powdered sample with 

petroleum ether, using a Soxhlet apparatus; the ash content was determined by incineration at  

600 ± 15 °C. Total carbohydrates were calculated by difference. Energy was calculated according to 

the following equation: Energy (kcal) = 4 × (g protein + g carbohydrate) + 9 × (g fat).  

3.2.2. Individual Compounds 

Free sugars were determined by a high performance liquid chromatograph (HPLC) system coupled 

to a refraction index (RI) detector as previously described by the authors [13]. Fatty acids were 

determined after a transesterification procedure as described previously by the authors [13]. The fatty 

acids profile was analyzed using a gas chromatographer equipped with a flame ionization detector 

(GC-FID). Tocopherols were determined following a procedure previously described by the authors [13]. 

Analysis was performed by HPLC (equipment described above), and a fluorescence detector. Organic 

acids were determined by ultra-fast liquid chromatography (UFLC) coupled with a photodiode array 

detector (PDA) as previously described by the authors [41]. Phenolic acids determination was 

performed using the UFLC mentioned above, as previously described by Barros et al. [42].  

3.3. Bioactivity of L. citriolens and L. turpis Methanolic Extracts 

3.3.1. Extract Preparation 

Each lyophilized sample (1 g) was extracted by stirring with methanol (40 mL) for 1 h and 

subsequently filtered through Whatman No. 4 paper. The residue was then extracted with methanol  

(20 mL) for 1 h. The combined methanolic extracts were evaporated at 40 °C (Büchi R-210 rotary 

evaporator, Flawil, Switzerland) to dryness and re-dissolved in: (a) methanol for antioxidant activity assays 

(20 mg/mL) and (b) distillated water for the toxicity assay in porcine liver primary cells (8 mg/mL). 

3.3.2. Antioxidant Activity Assays 

The antioxidant activity of the methanolic extracts was evaluated by DPPH radical-scavenging 

activity, reducing power (Folin-Ciocalteu and ferricyanide/Prussian blue assays), inhibition of  

β-carotene bleaching in the presence of linoleic acid radicals and inhibition of lipid peroxidation using 

TBARS in brain homogenates. Trolox was used as positive control [13].  
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3.3.3. Toxicity for Porcine Liver Cells 

The assay was performed with a cell culture prepared from a freshly harvested porcine liver (PLP2), 

and by applying sulphorhodamine assay. A complete procedure was previously described by the 

authors [52]. Ellipticine was used as positive control. 

3.4. Statistical Analysis 

Three samples were used for each preparation and all the assays were carried out in triplicate. The 

results are expressed as mean values and standard deviation (SD). The results were analyzed using a  

t-student test and this treatment was carried out using the SPSS v. 22.0 program.  

4. Conclusions  

Overall, L. citriolens revealed the highest energetic contribution, saturated fatty acids content and 

organic acids concentration, while L. turpis was richer in free sugars, mono- and polyunsaturated fatty 

acids, tocopherols and phenolic compounds. L. turpis methanolic extract showed the highest 

antioxidant activity in all the in vitro assays. The studied extracts did not show toxicity in porcine liver 

primary cells. The edible species of the Lactarius genus are considered healthy foods due to their low 

content in calories and fat, but richness in proteins and carbohydrates. The macronutrients profiles of 

L. citriolens and L. turpis are similar to the ones reported for those edible species, despite the presence 

of some toxic compounds that make them not recommended for consumption. Nevertheless, they 

contain several interesting molecules with bioactive potential, namely antioxidant activity, which can 

be isolated to be used in drugs or nutraceuticals. This study provides new data concerning chemical 

characterization and bioactivity of L. citriolens and L. turpis.  
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