Toxicity and Repellency Efficacy of Benzyl Alcohol and Benzyl Benzoate as Eco-Friendly Choices to Control the Red Flour Beetle Tribolium castaneum (Herbst. 1797)
Abstract
:1. Introduction
2. Results
2.1. Contact Toxicity Bioassays of Benzyl Alcohol and Benzyl Benzoate against Adult Red Flour Beetles
2.2. Fumigant Toxicity of Benzyl Alcohol and Benzyl Benzoate against Adult Red Flour Beetles
2.3. Persistence of Toxicity of Benzyl Alcohol and Benzyl Benzoate at LC90 against Tribolium castaneum
2.4. Repellent Effect of Benzyl Alcohol and Benzyl Benzoate against Adult Red Flour Beetles
2.5. Biochemical Alterations in the Treated Insect
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Tribolium castaneum Colony
4.3. Contact Toxicity Bioassays
4.3.1. Impregnated-Paper Assay
4.3.2. Contact Toxicity of BA and BB with Wheat Flour
4.4. Fumigant Toxicity of BA and BB against T. castaneum Adults
4.5. Persistence of Activity of BA and BB against T. casteneum
4.6. Repellency Using Filter Paper Area Test
4.7. Determination of the Biochemical Alterations in the Treated T. castenuem
4.7.1. Acetylcholinesterase (AchE) Inhibition
4.7.2. Reduced Glutathione (GSH) Activity Assay
4.7.3. Malondialdehyde (MDA) (Lipid Peroxide)
4.8. Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hagstrum, D. Infestation records. In Atlas of Stored-Product Insects and Mites; Huang, D.W., Klejdysz, T.Z., Subramanyam, B., Nawrot, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 474–483. [Google Scholar]
- Ajayi, F.A.; Rahman, S.A. Susceptibility of some staple processed meals to red flour beetle, Tribolium castaneum (Herbst)(Coleoptera: Tenebrionidae). Pak. J. Biol. Sci. 2006, 9, 1744–1748. [Google Scholar] [CrossRef]
- El-Mofty, M.M.; Sakr, S.A.; Osman, S.I.; Toulan, B.A. Carcinogenic effect of biscuits made of flour infested with Tribolium castaneum in Buforegularis. Oncology 1989, 46, 63–65. [Google Scholar] [CrossRef] [PubMed]
- Shafique, M.; Ahmad, M.; Chaudry, M.A. Feeding preference and development of Tribolium castaneum (Herbst.) in wheat products. Pak. J. Zool. 2006, 38, 27–31. [Google Scholar]
- Fedina, T.Y.; Lewis, S.M. An integrative view of sexual selection in Tribolium flour beetles. Biol. Rev. 2008, 83, 151–171. [Google Scholar] [CrossRef]
- Bergerson, O.; Wool, D. The process of adaptation of flour beetles to new environments. Genetica 1988, 77, 3–13. [Google Scholar] [CrossRef]
- Arnaud, L.; Brostaux, Y.; Lallemand, S.; Haubruge, E. Reproductive strategies of Tribolium flour beetles. J. Insect Sci. 2005, 5, 33. [Google Scholar] [CrossRef]
- Bell, C.H. Fumigation in the 21st century. Crop Protect. 2000, 19, 563–569. [Google Scholar] [CrossRef]
- Carter, C.A.; Chalfant, J.A.; Goodhue, R.E.; Han, F.M.; DeSantis, M. The methyl bromide ban: Economic impacts on the California strawberry industry. Rev. Agric. Econ. 2005, 27, 181–197. [Google Scholar] [CrossRef]
- Anbar, A.D.; Yung, Y.L.; Chavez, F.P. Methyl bromide: Ocean sources, ocean sinks, and climate sensitivity. Glob. Biogeochem. Cycles 1996, 10, 175–190. [Google Scholar] [CrossRef]
- Benhalima, H.; Chaudhry, M.Q.; Mills, K.A.; Price, N.R. Phosphine resistance in stored-product insects collected from various grain storage facilities in Morocco. J. Stored Prod. Res. 2004, 40, 241–249. [Google Scholar] [CrossRef]
- Okwute, S.K. Plants as potential sources of pesticidal agents: A review. Pestic. Adv. Chem. Bot. Pestic. 2012, 10, 207–232. [Google Scholar]
- Chaudhary, S.; Kanwar, R.K.; Sehgal, A.; Cahill, D.M.; Barrow, C.J.; Sehgal, R.; Kanwar, J.R. Progress on Azadirachta indica based biopesticides in replacing synthetic toxic pesticides. Front. Plant Sci. 2017, 8, 610. [Google Scholar] [CrossRef]
- Pugh, S.; McKenna, R.; Halloum, I.; Nielsen, D.R. Engineering Escherichia coli for renewable benzyl alcohol production. Metab. Eng. Commun. 2015, 2, 39–45. [Google Scholar] [CrossRef]
- Ash, M.; Ash, I. Handbook of Preservatives. Synapse Information Resources; Endicott: New York, NY, USA, 2009; p. 1565. [Google Scholar]
- Stellman, J.M. Encyclopaedia of Occupational Health and Safety; International Labour Office: Geneva, Switzerland, 1998. [Google Scholar]
- Stoye, D.; Werner, F. (Eds.) Paints, Coatings and Solvents; John Wiley & Sons: New York, NY, USA, 2008. [Google Scholar]
- Nair, B. Final report on the safety assessment of Benzyl Alcohol, Benzoic Acid, and Sodium Benzoate. Int. J. Toxicol. 2001, 20 (Suppl. S3), 23–50. [Google Scholar]
- Fenaroli, G.; Burdock, G.A. Handbook of Flavor Ingredients; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Marriott, J.F. Pharmaceutical Compounding and Dispensing; Pharmaceutical Press: London, UK, 2010. [Google Scholar]
- Felton, L. Remington Essentials of Pharmaceutics; Pharmaceutical Press: London, UK, 2013. [Google Scholar]
- Meinking, T.L.; Villarm, M.E.; Vicaria, M.; Eyerdam, D.H.; Paquet, D.; Mertz-Rivera, K.; Rivera, H.F.; Hiriart, J.; Reyna, S. The clinical trials supporting benzyl alcohol lotion 5% (Ulesfia): A safe and effective topical treatment for head lice (Pediculosis humanus capitis). Pediatr. Dermatol. 2010, 27, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Budavari, S.; O’Neil, M.; Smith, A.; Heckelman, P. The Merck Index: An Encyclopedia of Chemicals, Drug, and Biologicals; Royal Society of Chemistry: London, UK, 1989. [Google Scholar]
- Aboelhadid, S.M.; Ibrahium, S.M.; Abdel-Baki, A.S.; Hassan, K.M.; Arafa, W.M.; Aboud, H.M.; Mohy, S.; Al-Quraishy, S.; Hassan, A.O.; Abdelgelil, N.H.; et al. An investigation of the acaricidal activity of benzyl alcohol on Rhipicephalus annulatus and Rhipicephalus sanguineus and its synergistic or antagonistic interaction with commonly used acaricides. Med. Vet. Entomol. 2023; Epub ahead of print. [Google Scholar] [CrossRef]
- Sangaré, A.K.; Doumbo, O.K.; Raoult, D. Management and Treatment of Human Lice. Biomed. Res. Int. 2016, 2016, 8962685. [Google Scholar] [CrossRef] [PubMed]
- Johnson, W.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; et al. Safety Assessment of Benzyl Alcohol, Benzoic Acid and its Salts, and Benzyl Benzoate. Int. J. Toxicol. 2017, 36 (Suppl. S3), 5S–30S. [Google Scholar] [CrossRef]
- Pearson, M.A.; Miller, G.W. Encyclopedia of Toxicology, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- World Health Organization. WHO Model Formulary 2008; Stuart, M.C., Kouimtzi, M., Hill, S.R., Eds.; World Health Organization: Geneva, Switzerland, 2009; p. 311.
- Harju, A.T.; Pennanen, S.M.; Liesivuori, J. The efficacy of benzyl benzoate sprays in killing the storage mite Tyrophagus putrescentiae (Acari: Acaridae). Ann. Agric. Environ. Med. 2004, 11, 115–119. [Google Scholar]
- Chang, J.H.; Becker, A.; Ferguson, A.; Manfreda, J.; Simons, E.; Chan, H.; Noertjojo, K.; Chan-Yeung, M. Effect of application of benzyl benzoate on house dust mite allergen levels. Ann. Allergy. Asthma Immunol. 1996, 77, 187–190. [Google Scholar] [CrossRef]
- Raynaud, S.; Fourneau, C.; Laurens, A.; Hocquemiller, R.; Loiseau, P.; Bories, C. Squamocin and benzyl benzoate, acaricidal components of Uvaria pauci-ovulata bark extracts. Planta Med. 2000, 66, 173–175. [Google Scholar] [CrossRef] [PubMed]
- Kalpaklioğlu, A.F.; Ferizli, A.G.; Misirligil, Z.; Demirel, Y.S.; Gürbüz, L. The effectiveness of benzyl benzoate and different chemicals as acaricides. Allergy 1996, 51, 164–170. [Google Scholar] [CrossRef]
- Forton, F.M.N.; De Maertelaer, V. Treatment of rosacea and demodicosis with benzyl benzoate: Effects of different doses on Demodex density and clinical symptoms. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 365–369. [Google Scholar] [CrossRef] [PubMed]
- Forton, F.M.N.; De Maertelaer, V. Effectiveness of benzyl benzoate treatment on clinical symptoms and Demodex density over time in patients with rosacea and demodicosis: A real life retrospective follow-up study comparing low- and high-dose regimens. J. Dermatol. Treat. 2022, 33, 456–465. [Google Scholar] [CrossRef]
- Forton, F.; Seys, B.; Marchal, J.L.; Song, M. Demodex folliculorum and topical treatments: Acaricide action evaluated by standardized skin-surface biopsy. Br. J. Dermatol. 1998, 138, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Page, S.W. Small Animal Clinical Pharmacology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Smith, L.W., Jr.; Pratt, I.N.I.I.; Umina, A.P. Baking and taste properties of bread made from hard wheat flour infested with species Tribolium, Tenebrio, Trogoderma and Oryzaphilus. J. Stored Prod. Res. 1971, 6, 307–316. [Google Scholar] [CrossRef]
- Boyer, S.; Zhang, H.; Lemperiere, G. A review of control methods and resistance mechanisms in stored-product insects. Bull. Entomol. Resour. 2012, 102, 213–229. [Google Scholar] [CrossRef] [PubMed]
- Guedes, R.N.C. Manejo integrado para a protecao de graos armazenados contra insetos. Review BrasilArmazen. Veg. Sobre Triboliumcastaneum Herbst. Agriscientia 1990, 14, 31–36. [Google Scholar]
- Brower, J.H.; Smith, L.; Vail, P.V.; Flinn, P.W. Biological Control. Integrated Management of Insect in Stored Products Pest; Subramanyam, B.H., Hagstrum, D.W., Eds.; Dekker: New York, NY, USA, 1996; pp. 23–286. [Google Scholar]
- Gottschalck, T.E.; Bailey, J.E. International Cosmetic Ingredient Dictionary and Handbook, 13th ed.; Personal Care Products Council: Washington, DC, USA, 2010. [Google Scholar]
- Acar, A.; Turkmen, Z.; Cavusoglu, K.; Yalcin, E. Investigation of benzyl benzoate toxicity with anatomical, physiological, cytogenetic and biochemical parameters in in vivo. Caryologia 2020, 73, 21–32. [Google Scholar] [CrossRef]
- Brooks, P.A.; Grace, R.F. Ivermectin is better than benzyl benzoate for childhood scabies in developing countries. J. Paediatr. Child Health 2002, 38, 401–404. [Google Scholar] [CrossRef]
- McDonald, L.G.; Tovey, E. The effectiveness of benzyl benzoate and some essential plant oils as laundry additives for killing house dust mites. J. Allergy Clin. Immunol. 1993, 92, 771–772. [Google Scholar] [CrossRef]
- Jantan, I.B.; Yalvema, M.F.; Ahmad, N.W.; Jamal, J.A. Insecticidal activities of the leaf oils of eight Cinnamomum. species against Aedes aegypti. and Aedes Albopictus. Pharm. Biol. 2005, 43, 526–532. [Google Scholar] [CrossRef]
- Diastuti, H.; Chasani, M.; Suwandri, S. Antibacterial Activity of Benzyl Benzoate and Crotepoxide from Kaempferia rotunda L. Rhizome. Indones. J. Chem. 2020, 20, 9–15. [Google Scholar] [CrossRef]
- Suhaili, Z.; Ho, T. Residual Activity of Benzyl Benzoate Against Dermatophagoides Pteronyssinus (Acari: Pyroglyphidae). Southeast Asian J. Trop. Med. Public Health 2008, 39, 507. [Google Scholar]
- Monteiro, I.N.; Monteiro, O.D.S.; Costa-Junior, L.M.; da Silva Lima, A.; Andrade, E.H.A.; Maia, J.G.S.; Mouchrek Filho, V.E. Chemical composition and acaricide activity of an essential oil from a rare chemotype of Cinnamomum verum Presl on Rhipicephalus microplus (Acari: Ixodidae). Vet. Parasitol. 2017, 238, 54–57. [Google Scholar] [CrossRef]
- Deb, M.; Kumar, D. Bioactivity and efficacy of essential oils extracted from Artemisia annua against Tribolium castaneum (Herbst. 1797) (Coleoptera: Tenebrionidae): An eco-friendly approach. Ecotoxicol. Environ. Saf. 2020, 189, 109988. [Google Scholar] [CrossRef]
- Rajashekar, Y.; Raghavendra, A.; Bakthavatsalam, N. Acetylcholinesterase inhibition by biofumigant (Coumaran) from leaves of Lantana camara in stored grain and household insect pests. BioMed Res. Int. 2014, 2014, 187019. [Google Scholar] [CrossRef] [PubMed]
- Cohen, E. Glutathione S transferase activity and its induction in several strains of Tribolium castaneum. Entomol. Exp. Appl. 1986, 41, 39–44. [Google Scholar] [CrossRef]
- Hasspieler, B.M.; Arnason, J.T.; Downe, A.E.R. Modes of action of the plant-derived phototoxin α-terthienyl in mosquito larvae. Pestic. Biochem. Physiol. 1990, 38, 41–47. [Google Scholar] [CrossRef]
- Yano, T.; Miyahara, Y.; Morii, N.; Okano, T.; Kubota, H. Pentanol and Benzyl Alcohol Attack Bacterial Surface Structures Differently. Appl. Environ. Microbiol. 2015, 82, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Aboelhadid, S.M.; Youssef, I.M. Control of red flour beetle (Tribolium castaneum) in feeds and commercial poultry diets via using a blend of clove and lemongrass extracts. Environ. Sci. Pollut. Res. 2021, 28, 30111–30120. [Google Scholar] [CrossRef]
- Kljajic, P.; Peric, I. Susceptibility to contact insecticides of granary weevil Sitophilus granarius (L.) (Coleoptera: Curculionidae) originating from different locations in the former Yugoslavia. J. Stored Prod. Res. 2006, 42, 149–161. [Google Scholar] [CrossRef]
- Busvine, J.R. Recommended Methods for Measurement of Pest Resistance to Pesticides; FAO: Rome, Italy, 1980; pp. 77–90. [Google Scholar]
- Hashem, A.S.; Awadalla, S.S.; Zayed, G.M.; Maggi, F.; Benelli, G. Pimpinella anisum essential oil nanoemulsions against Tribolium castaneum insecticidal activity and mode of action. Environ. Sci. Pollut. Res. 2018, 25, 18802–18812. [Google Scholar] [CrossRef] [PubMed]
- Abouelatta, A.M.; Keratum, A.Y.; Ahmed, S.I.; El-Zun, H.M. Repellent, contact and fumigant activities of geranium (Pelargonium graveolens L.’Hér) essential oils against Tribolium castaneum (Herbst) and Rhyzopertha dominica (F.). Int. J. Trop. Insect Sci. 2020, 40, 1021–1030. [Google Scholar] [CrossRef]
- Lak, F.; Zandi-Sohani, N.; Ghodoum Parizipour, M.H.; Ebadollahi, A. Synergic effects of some plant-derived essential oils and Iranian isolates of entomopathogenic fungus Metarhizium anisopliae Sorokin to control Acanthoscelides obtectus (Say) (Coleoptera: Chrysomelidae). Front. Plant Sci. 2022, 13, 1075761. [Google Scholar] [CrossRef]
- Ilboudo, Z.; Dabiré, L.C.B.; Nébié, R.C.H.; Dicko, I.O.; Dugravot, S.; Cortesero, A.M.; Sanon, A. Biological activity and persistence of four essential oils towards the main pest of stored cowpeas, Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). J. Stored Prod. Res. 2010, 46, 124–128. [Google Scholar] [CrossRef]
- Cosimi, S.; Rossi, E.; Cioni, P.L.; Canale, A. Bioactivity and qualitative analysis of some essential oils from Mediterranean plants against stored-product pests: Evaluation of repellency against Sitophilus zeamais Motschulsky, Cryptolestes ferrugineus (Stephens) and Tenebrio molitor (L.). J. Stored Prod. Res. 2009, 45, 125–132. [Google Scholar] [CrossRef]
- Cardoso, A.D.S.; Santos, E.G.G.; Lima, A.D.S.; Temeyer, K.B.; Pérez de León, A.A.; Costa, L.M.; Junior Soares, A.M.D.S. Terpenes on Rhipicephalus (Boophilus) microplus: Acaricidal activity and acetylcholinesterase inhibition. Vet. Parasitol. 2020, 280, 109090. [Google Scholar] [CrossRef] [PubMed]
- Ellman, G.L.; Courtney, K.D.; Andres, J.R.V.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Anderson, J.A.; Coats, J.R. Acetylcholinesterase inhibition by nootkatone and carvacrol in arthropods. Pestic. Biochem. Physiol. 2011, 102, 124–128. [Google Scholar] [CrossRef]
- Tavares, C.P.; Sabadin, G.A.; Sousa, I.C.; Gomes, M.N.; Soares, A.M.; Monteiro, C.M.; Costa-Junior, L.M. Effects of carvacrol and thymol on the antioxidant and detoxifying enzymes of Rhipicephalus microplus (Acari: Ixodidae). Ticks Tick Borne Dis. 2022, 13, 101929. [Google Scholar] [CrossRef]
- Bar-Or, D.; Rael, L.T.; Lau, E.P.; Rao, N.K.; Thomas, G.W.; Winkler, J.V.; Yukl, R.L.; Kingston, R.G.; Curtis, C.G. An analog of the human albumin N-terminus (Asp-Ala-His-Lys) prevents formation of copper-induced reactive oxygen species. Biochem. Biophys. Res. Commun. 2001, 284, 856–862. [Google Scholar] [CrossRef] [PubMed]
- EFSA (European Food Safety Authority). Scientific Opinion on the safety and efficacy of benzyl alcohols, aldehydes, acids, esters and acetals (chemical group 23) when used as flavourings for all animal species. EFSA J. 2012, 10, 2785. [Google Scholar]
Product Concentration % | Mortality Rate of Benzyl Alcohol Mean ± SD | Mortality Rate of Benzyl Benzoate Mean ± SD | ||
---|---|---|---|---|
Filter Paper Residue | Contact Toxicity | Filter Paper Residue | Contact Toxicity | |
5 | 100 ± 0.00 a* | 100 ± 0.00 a* | 12.7 ± 2.52 a | 55.0 ± 5.00 a |
2.5 | 36.7 ± 5.77 b* | 53.3 ± 5.77 b* | 10.0 ± 1.00 b | 33.3 ± 5.77 b |
1.25 | 11.3 ± 1.53 c | 40.0 ± 0.00 c* | 8.33 ± 1.53 b,c | 23.3 ± 5.77 c |
0.625 | 7.67 ± 3.05 c,d | 33.3 ± 5.77 d* | 7.00 ± 1.00 c | 16.6 ± 5.77 c |
0.312 | 7.00 ± 1.00 c,d,e | 20.0 ± 0.00 e* | 4.33 ± 1.15 d | 6.67 ± 5.77 d |
0.156 | 5.67 ± 3.06 d,e,f | 8.33 ± 2.88 f | 3.66 ± 0.58 d | 5.00 ± 5.77 d |
0.078 | 4.66 ± 0.58 d,e,f | 6.67 ± 5.77 f | 3.33 ± 0.58 d | 3.33 ± 5.77 d |
0.039 | 2.67 ± 0.57 e,f | 4.67 ± 4.16 f | 2.33 ± 0.57 d | 3.00 ± 2.64 d |
Negative control: acetone | 2.00 ± 1.00 f | 2.00 ± 1.00 f | 2.00 ± 1.00 d | 2.00 ± 1.00 d |
LC50 (95% confidence limits) | 2.63 (2.24–3.15) | 1.90 (1.40–2.83) | 11.7 (7.71–29.6) | 4.17 (3.24–6.01) |
LC90 (95% confidence limits) | 4.33 (3.69–5.31) | 3.69 (2.78–5.82) | 20.1 (12.9–52.7) | 7.64 (5.85–11.56) |
Regression equation | y = 0.55x − 1.77 | y = 0.67x − 1.33 | y = 0.15x − 1.76 | y = 0.39x − 1.59 |
Coefficient (R2) | 0.949 | 0.768 | 0.734 | 0.850 |
Concentrations µL/L Air | Mortality Rate of Fumigation Assay Mean ± SD | |
---|---|---|
Benzyl Alcohol | Benzyl Benzoate | |
300 | 100 ± 0.00 a* | 26.0 ± 5.47 a |
150 | 100 ± 0.00 a* | 16.0 ± 5.47 a |
75 | 100 ± 0.00 a* | 8.00 ± 1.87 c |
35 | 100 ± 0.00 a* | 7.20 ± 2.58 c |
20 | 86.0 ± 5.48 b* | 6.60 ± 3.13 c |
10 | 66.0 ± 5.48 c* | 6.20 ± 3.56 c |
5 | 40.0 ± 7.07 d* | 5.80 ± 3.89 c |
2.5 | 12.0 ± 8.37 e | 5.20 ± 4.43 c |
Untreated control | 4.00 ± 5.47 f | 4.00 ± 5.47 c |
LC50 (95% confidence limits) | 6.72 (6.12–7.39) | 464 (364–665) |
LC90 (95% confidence limits) | 23.6 (19.9–26.9) | 822 (632–1213) |
Regression equation | y = 0.12x − 1.08 | y = 0.32x − 1.59 |
R2 | 0.876 | 0.977 |
Source | Df | Mean Square | F | p |
---|---|---|---|---|
Day | 9 | 6945.56 | 352.5 | 0.0001 |
Day × Group | 18 | 2262.889 | 114.846 | 0.0001 |
Error | 108 | 19.704 |
LC90/Time | Benzyl Alcohol, BA (3.69%) | Benzyl Benzoate, BB (7.64%) | Untreated Negative Control |
---|---|---|---|
Day 1 | 100 ± 0.00 | 100 ± 0.00 | 0.00 ± 0.00 |
Day 2 | 94.0 ± 5.47 | 62.0 ± 4.47 | 2.00 ± 4.47 |
Day 3 | 88.0 ± 4.47 | 46.0 ± 5.47 | 2.00 ± 4.47 |
Day 4 | 72.0 ± 4.47 | 36.0 ± 5.47 | 4.01 ± 0.43 |
Day 5 | 56.0 ± 5.47 | 22.0 ± 4.47 | 4.01 ± 0.43 |
Day 6 | 44.0 ± 5.47 | 14.0 ± 5.47 | 4.10 ± 2.31 |
Day 7 | 32.0 ± 4.47 | 12.0 ± 8.37 | 4.10 ± 2.42 |
Day 8 | 16.0 ± 5.47 | 6.00 ± 5.47 | 3.00 ± 1.47 |
Day 9 | 6.00 ± 5.47 | 4.00 ± 5.47 | 3.00 ± 1.43 |
Day 10 | 6.00 ± 5.47 | 4.00 ± 5.47 | 3.03 ± 1.01 |
Mean ± SE | 51.4 ± 1.4 c | 30.4 ± 1.4 b | 3.20 ± 1.4 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aboelhadid, S.M.; Ibrahium, S.M.; Abdel-Tawab, H.; Hassan, A.O.; Al-Quraishy, S.; Saleh, F.E.-z.R.; Abdel-Baki, A.-A.S. Toxicity and Repellency Efficacy of Benzyl Alcohol and Benzyl Benzoate as Eco-Friendly Choices to Control the Red Flour Beetle Tribolium castaneum (Herbst. 1797). Molecules 2023, 28, 7731. https://doi.org/10.3390/molecules28237731
Aboelhadid SM, Ibrahium SM, Abdel-Tawab H, Hassan AO, Al-Quraishy S, Saleh FE-zR, Abdel-Baki A-AS. Toxicity and Repellency Efficacy of Benzyl Alcohol and Benzyl Benzoate as Eco-Friendly Choices to Control the Red Flour Beetle Tribolium castaneum (Herbst. 1797). Molecules. 2023; 28(23):7731. https://doi.org/10.3390/molecules28237731
Chicago/Turabian StyleAboelhadid, Shawky M., Samar M. Ibrahium, Heba Abdel-Tawab, Ahmed O. Hassan, Saleh Al-Quraishy, Fatma El-zahraa R. Saleh, and Abdel-Azeem S. Abdel-Baki. 2023. "Toxicity and Repellency Efficacy of Benzyl Alcohol and Benzyl Benzoate as Eco-Friendly Choices to Control the Red Flour Beetle Tribolium castaneum (Herbst. 1797)" Molecules 28, no. 23: 7731. https://doi.org/10.3390/molecules28237731
APA StyleAboelhadid, S. M., Ibrahium, S. M., Abdel-Tawab, H., Hassan, A. O., Al-Quraishy, S., Saleh, F. E. -z. R., & Abdel-Baki, A. -A. S. (2023). Toxicity and Repellency Efficacy of Benzyl Alcohol and Benzyl Benzoate as Eco-Friendly Choices to Control the Red Flour Beetle Tribolium castaneum (Herbst. 1797). Molecules, 28(23), 7731. https://doi.org/10.3390/molecules28237731