Effects of Eupatilin and Jaceosidin on Cytochrome P450 Enzyme Activities in Human Liver Microsomes
Abstract
:1. Introduction
2. Results and Discussion
CYP activity | CYP | IC50 (μM) of eupatilin | IC50 (μM) of jaceosidin | ||
---|---|---|---|---|---|
no preincubation | with preincubation* | no preincubation | with preincubation* | ||
Phenacetin O-deethylation | 1A2 | 9.4 ± 1.5 | 11.8 ± 1.3 | 5.3 ± 0.81 | 6.0 ± 0.45 |
Coumarin 7-hydroxylation | 2A6 | No inhibition | No inhibition | No inhibition | No inhibition |
Amodiaquine N-deethylation | 2C8 | 104.9 ± 7.2 | 110.1 ± 6.5 | 106.4 ± 8.6 | 135.5 ± 9.4 |
Diclofenac 4-hydroxylation | 2C9 | 4.1 ± 0.49 | 4.9 ± 0.91 | 10.2 ± 1.0 | 8.6 ± 0.91 |
S-Mephenytoin 4'-hydroxylation | 2C19 | 48.1 ± 12.0 | 57.7 ± 16.3 | 64.9 ± 4.8 | 69.8 ± 3.8 |
Bufuralol 1'-hydroxylation | 2D6 | 58.7 ± 7.6 | 79.1 ± 7.5 | 79.1 ± 1.8 | 82.3 ± 2.4 |
Midazolam 1'-hydroxylation | 3A | No inhibition | No inhibition | No inhibition | No inhibition |
CYP | Marker reactions | Ki (μM) | |
---|---|---|---|
eupatilin | jaceosidin | ||
1A2 | Phenacetin O-deethylation | 2.3 ± 0.18 (competitive) | 3.8 ± 0.23 (competitive) |
2C8 | Amodiaquine N-deethylation | 101.9 ± 8.9 (competitive) | 109.4 ± 7.3 (competitive) |
2C9 | Diclofenac 4-hydroxylation | 1.6 ± 0.17 (mixed, α* = 10.3) | 6.4 ± 0.25 (competitive) |
2C19 | S-Mephenytoin 4'-hydroxylation | 28.7 ± 3.6 (mixed, α = 8.7) | 45.1 ± 4.2 (mixed, α = 3.7) |
2D6 | Bufuralol 1'-hydroxylation | 94.6 ± 5.8 (competitive) | 57.8 ± 3.6 (competitive) |
3. Experimental
3.1. Materials and reagents
3.2. Inhibitory effects of eupatilin and jaceosidin on 7 major CYP activities in human liver microsomes
3.3. Kinetic analysis
3.4. LC/MS/MS analysis
CYP | Compound | SRM Transitions | Tube lens (V) | Collision energy (V) | |
---|---|---|---|---|---|
CYP1A2 | Metabolite | acetaminophen | 152.19>110.19 | 59 | 23 |
Internal standard | [13C2,15N]-acetaminophen | 155.05>111.29 | 58 | 21 | |
CYP2A6 | Metabolite | 7-hydroxycoumarin | 163.04>107.38 | 70 | 22 |
Internal standard | [2H5]-7-hydroxycoumarin | 168.00>112.53 | 73 | 22 | |
CYP2C8 | Metabolite | N-desethylamodiaquine | 328.01>282.64 | 45 | 19 |
Internal standard | [13C2,15N]-acetaminophen | 155.05>111.29 | 58 | 21 | |
CYP2C9 | Metabolite | 4-hydroxydiclofenac | 312.12>231.05 | 54 | 23 |
Internal standard | [13C6]-4-hydroxydiclofenac | 318.49>237.28 | 54 | 20 | |
CYP2C19 | Metabolite | 4'-hydoxymephenytoin | 235.03>150.19 | 50 | 27 |
Internal standard | [2H3]-4'-hydoxymephenytoin | 238.18>150.40 | 50 | 25 | |
CYP2D6 | Metabolite | 1'-hydroxybufuralol | 278.08>186.31 | 54 | 19 |
Internal standard | [2H9]-1'-hydroxybufuralol | 287.12>187.09 | 54 | 20 | |
CYP3A | Metabolite | 1'-hydroxymidazolam | 342.08>324.09 | 73 | 25 |
Internal standard | [2H3]-4'-hydoxymephenytoin | 238.18>150.40 | 50 | 25 |
3.5. Data analysis
4. Conclusions
Acknowledgements
- Sample Availability: Not Available.
References
- Kim, A.R.; Zou, Y.N.; Park, T.H.; Shim, K.H.; Kim, M.S.; Kim, N.D.; Kim, J.D.; Bae, S.J.; Choi, J.S.; Chung, H.Y. Active components from Artemisia iwayomogi displaying ONOO(-) scavenging activity. Phytother. Res. 2004, 18, 1–7. [Google Scholar]
- Moscatelli, V.; Hnatyszyn, O.; Acevedo, C.; Megias, J.; Alcaraz, M.J.; Ferraro, G. Flavonoids from Artemisia copa with anti-inflammatory activity. Planta Med. 2006, 72, 72–74. [Google Scholar]
- Clavin, M.; Gorzalczany, S.; Macho, A.; Munoz, E.; Ferraro, G.; Acevedo, C.; Martino, V. Anti-inflammatory activity of flavonoids from Eupatorium arnottianum. J. Ethnopharmacol. 2007, 112, 585–589. [Google Scholar] [CrossRef]
- Choi, E.J.; Oh, H.M.; Na, B.R.; Ramesh, T.P.; Lee, H.J.; Choi, C.S.; Choi, S.C.; Kim, K.H.; Oh, T.Y.; Choi, S.J.; Chae, J.R.; Kim, S.W.; Jun, C.D. Eupatilin protects gastric epithelial cells from oxidative damage and down-regulates genes responsible for the cellular oxidative stress. Pharm. Res. 2008, 25, 1355–1364. [Google Scholar] [CrossRef]
- Kim, M.J.; Han, J.M.; Jin, Y.Y.; Baek, N.I.; Bang, M.H.; Chung, H.G.; Choi, M.S.; Lee, K.T.; Sok, D.E.; Jeong, T.S. In vitro antioxidant and anti-inflammatory activities of jaceosidin from Artemisia princeps Pampanini cv. Sajabal. Arch. Pharm. Res. 2008, 31, 429–437. [Google Scholar] [CrossRef]
- Song, H.J.; Shin, C.Y.; Oh, T.Y.; Sohn, U.D. Protective effect of eupatilin on indomethacin-induced cell damage in cultured feline ileal smooth muscle cells: involvement of HO-1 and ERK. J. Ethnopharmacol. 2008, 118, 94–101. [Google Scholar] [CrossRef]
- Kim, J.M.; Lee, D.H.; Kim, J.S.; Lee, J.Y.; Park, H.G.; Kim, Y.J.; Oh, Y.-K.; Jung, H.C.; Kim, S.I. 5,7-dihydroxy-3,4,6-trimethoxyflavone inhibits the inflammatory effects induced by Bactertlides fragilis enterotoxin via dissociating the complex of heat shock protein 90 and IκBα and IκB kinase-γ in intestinal epithelial cell culture. Clin. Exp. Immunol. 2008, 155, 541–551. [Google Scholar]
- Min, S.W.; Kim, N.J.; Baek, N.I.; Kim, D.H. Inhibitory effect of eupatilin and jaceosidin isolated from Artemisia princeps on carrageenan-induced inflammation in mice. J. Ethnopharmacol. 2009, 125, 497–500. [Google Scholar] [CrossRef]
- Song, H.J.; Shin, C.Y.; Oh, T.Y.; Min, Y.S.; Park, E.S.; Sohn, U.D. Eupatilin with heme oxygenase-1-inducing ability protects cultured feline esophageal epithelial cells from cell damage caused by indomethacin. Biol. Pharm. Bull. 2009, 32, 589–596. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kwon, E.Y.; Lee, Y.S.; Kim, W.B.; Ro, J.Y. Eupatilin blocks mediator release via tyrosine kinase inhibition in activated guinea pig lung mast cells. J. Toxicol. Environ. Health Part A 2005, 68, 2063–2080. [Google Scholar] [CrossRef]
- Lee, S.H.; Bae, E.A.; Park, E.K.; Shin, Y.W.; Baek, N.I.; Han, E.J.; Chung, H.G.; Kim, D.H. Inhibitory effect of eupatilin and jaceosidin isolated from Artemisia princeps in IgE-induced hypersensitivity. Int. Immunopharmacol. 2007, 7, 1678–1684. [Google Scholar] [CrossRef]
- Nakasugi, T.; Nakashima, M.; Komai, K. Antimutagens in gaiyou (Artemisia argyi levl. et vant.). J. Agric. Food Chem. 2000, 48, 3256–3266. [Google Scholar] [CrossRef]
- Seo, H.J.; Surh, Y.J. Eupatilin, a pharmacologically active flavone derived from Artemisia plants, induces apoptosis in human promyelocytic leukemia cells. Mutat. Res. 2001, 496, 191–198. [Google Scholar] [CrossRef]
- Nagao, T.; Abe, F.; Kinjo, J.; Okabe, H. Antiproliferative constituents in plants 10. Flavones from the leaves of Lantana montevidensis BRIQ. and consideration of structure-activity relationship. Biol. Pharm. Bull. 2002, 25, 875–879. [Google Scholar] [CrossRef]
- Lee, H.G.; Yu, K.A.; Oh, W.K.; Baeg, T.W.; Oh, H.C.; Ahn, J.S.; Jang, W.C.; Kim, J.W.; Lim, J.S.; Choe, Y.K.; Yoon, D.Y. Inhibitory effect of jaceosidin isolated from Artemisia argyi on the function of E6 and E7 oncoproteins of HPV 16. J. Ethnopharmacol. 2005, 98, 339–343. [Google Scholar] [CrossRef]
- Kim, M.J.; Kim, D.H.; Na, H.K.; Oh, T.Y.; Shin, C.Y.; Surh, Y.J. Eupatilin, a pharmacologically active flavone derived from Artemisia plants, induces apoptosis in human gastric cancer (AGS) cells. J. Environ. Pathol. Toxicol. Oncol. 2005, 24, 261–269. [Google Scholar] [CrossRef]
- Park, S.C.; Yoon, J.H.; Kim, W.; Gwak, G.-Y.; Kim, K.M.; Lee, S.H.; Lee, S.-M.; Lee, H.-S. Eupatilin attenuates bile acid-induced hepatocyte apoptosis. J. Gastroenterol. 2006, 41, 772–778. [Google Scholar] [CrossRef]
- Kim, M.J.; Kim, D.H.; Lee, K.W.; Yoon, D.Y.; Surh, Y.J. Jaceosidin induces apoptosis in ras-transformed human breast epithelial cells through generation of reactive oxygen species. Ann. N. Y. Acad. Sci. 2007, 1095, 483–495. [Google Scholar] [CrossRef]
- Jeong, M.A.; Lee, K.W.; Yoon, D.Y.; Surh, Y.J. Jaceosidin, a pharmacologically active flavone derived from Artemisia argyi, inhibits phorbolester-induced upregulation of COX-2 and MMP-9 by blocking phosphorylation of ERK-1 and -2 in cultured human mammary epithelial cells. Ann. N. Y. Acad. Sci. 2007, 1095, 458–466. [Google Scholar] [CrossRef]
- Lee, S.; Lee, M.; Kim, S.H. Eupatilin inhibits H2O2-induced apoptotic cell death through inhibition of mitogen-activated protein kinases and nuclear factor-κB. Food Chem. Toxicol. 2008, 46, 2865–2870. [Google Scholar] [CrossRef]
- Lv, W.; Sheng, X.; Chen, T.; Xu, Q.; Xie, X. Jaceosidin induces apoptosis in human ovary cancer cells through mitochondrial pathway. J. Biomed. Biotechnol. 2008, 394802. [Google Scholar]
- Choi, E.J.; Oh, H.M.; Wee, H.; Choi, C.S.; Choi, S.C.; Kim, K.H.; Han, W.C.; Oh, T.Y.; Kim, S.H.; Jun, C.D. Eupatilin exhibits a novel anti-tumor activity through the induction of cell cycle arrest and differentiation of gastric carcinoma AGS cells. Differentiation 2009, 77, 412–423. [Google Scholar] [CrossRef]
- Kang, Y.J.; Jung, U.J.; Lee, M.K.; Kim, H.J.; Jeon, S.M.; Park, Y.B.; Chung, H.G.; Baek, N.I.; Lee, K.T.; Jeong, T.S.; Choi, M.S. Eupatilin, isolated from Artemisia princeps Pampanini, enhances hepatic glucose metabolism and pancreatic beta-cell function in type 2 diabetic mice. Diabetes Res. Clin. Pract. 2008, 82, 25–32. [Google Scholar] [CrossRef]
- Ji, H.Y.; Lee, H.W.; Shim, H.J.; Kim, S.H.; Kim, W.B.; Lee, H.S. Metabolism of eupatilin in rats using liquid chromatography/electrospray mass spectrometry. Biomed. Chromatogr. 2004, 18, 173–177. [Google Scholar] [CrossRef]
- Lee, H.S.; Ji, H.Y.; Park, E.J.; Kim, S.Y. In vitro metabolism of eupatilin by multiple cytochrome P450 and UDP-glucuronosyltransferase enzymes. Xenobiotica 2007, 37, 803–817. [Google Scholar] [CrossRef]
- Chang, J. Medicinal herbs: drugs or dietary supplements. Biochem. Pharmacol. 2000, 59, 211–219. [Google Scholar] [CrossRef]
- FDA/Center for Drug Evaluation and Research. Guidance for industry Botanical drug products. Available online: http://www.fda.gov/cder/guidance/index.htm (accessed on 14 June, 2004).
- Shord, S.S.; Shah, K.; Lukose, A. Drug-botanical interactions: a review of the laboratory, animal, and human data for 8 common botanicals. Integr. Cancer Ther. 2009, 8, 208–227. [Google Scholar]
- Zhou, S.F.; Yang, L.P.; Zhou, Z.W.; Liu, Y.H.; Chan, E. Insights into the substrate specificity, inhibitors, regulation, and polymorphisms and the clinical impact of human cytochrome P450 1A2. APPS J. 2009, 11, 481–494. [Google Scholar]
- Zhou, S.F.; Wang, B.; Yang, L.P.; Liu, J.P. Structure, function and polymorphism and the clinical significance of human cytochrome P450 1A2. Drug Metab. Rev. 2010, 42, 268–354. [Google Scholar] [CrossRef]
- Zhou, S.F.; Zhou, Z.W.; Yang, L.P.; Cai, J.P. Substrate, inducers, inhibitors and structure-activity relationships of human cytochrome P450 2C9 and implications in drug development. Curr. Med. Chem. 2009, 16, 3480–3675. [Google Scholar] [CrossRef]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ji, H.Y.; Kim, S.Y.; Kim, D.K.; Jeong, J.H.; Lee, H.S. Effects of Eupatilin and Jaceosidin on Cytochrome P450 Enzyme Activities in Human Liver Microsomes. Molecules 2010, 15, 6466-6475. https://doi.org/10.3390/molecules15096466
Ji HY, Kim SY, Kim DK, Jeong JH, Lee HS. Effects of Eupatilin and Jaceosidin on Cytochrome P450 Enzyme Activities in Human Liver Microsomes. Molecules. 2010; 15(9):6466-6475. https://doi.org/10.3390/molecules15096466
Chicago/Turabian StyleJi, Hye Young, Sung Yeon Kim, Dong Kyun Kim, Ji Hyun Jeong, and Hye Suk Lee. 2010. "Effects of Eupatilin and Jaceosidin on Cytochrome P450 Enzyme Activities in Human Liver Microsomes" Molecules 15, no. 9: 6466-6475. https://doi.org/10.3390/molecules15096466