-
Interaction of Hoechst 33342 with POPC Membranes at Different pH Values
-
A Novel Red Phosphor of High Conversion Efficiency
-
Supramolecular Assemblies of Fluorescent Nitric Oxide Photoreleasers with Ultrasmall Cyclodextrin Nanogels
-
Syntheses, Structures, and Corrosion Inhibition of Various Alkali Metal Carboxylate Complexes
Journal Description
Molecules
Molecules
is the leading international, peer-reviewed, open access journal of chemistry. Molecules is published semimonthly online by MDPI. The International Society of Nucleosides, Nucleotides & Nucleic Acids (IS3NA), the Spanish Society of Medicinal Chemistry (SEQT) and the International Society of Heterocyclic Chemistry (ISHC) are affiliated with Molecules and their members receive a discount on the article processing charges.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, MEDLINE, PMC, Reaxys, Embase, CaPlus / SciFinder, MarinLit, AGRIS, and other databases.
- Journal Rank: JCR - Q2 (Chemistry, Multidisciplinary) / CiteScore - Q1 (Chemistry (miscellaneous))
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 13.6 days after submission; acceptance to publication is undertaken in 2.8 days (median values for papers published in this journal in the first half of 2023).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
- Sections: published in 26 topical sections.
- Testimonials: See what our editors and authors say about Molecules.
- Companion journals for Molecules include: Foundations and Photochem.
Impact Factor:
4.6 (2022);
5-Year Impact Factor:
4.9 (2022)
Latest Articles
Further Quinolizidine Derivatives as Antiarrhythmic Agents- 3
Molecules 2023, 28(19), 6916; https://doi.org/10.3390/molecules28196916 (registering DOI) - 03 Oct 2023
Abstract
Fourteen quinolizidine derivatives, structurally related to the alkaloids lupinine and cytisine and previously studied for other pharmacological purposes, were presently tested for antiarrhythmic, and other cardiovascular effects on isolated guinea pig heart tissues in comparison to well-established reference drugs. According to their structures,
[...] Read more.
Fourteen quinolizidine derivatives, structurally related to the alkaloids lupinine and cytisine and previously studied for other pharmacological purposes, were presently tested for antiarrhythmic, and other cardiovascular effects on isolated guinea pig heart tissues in comparison to well-established reference drugs. According to their structures, the tested compounds are assembled into three subsets: (a) N-(quinolizidinyl-alkyl)-benzamides; (b) 2-(benzotriazol-2-yl)methyl-1-(quinolizidinyl)alkyl-benzimidazoles; (c) N-substituted cytisines. All compounds but two displayed antiarrhythmic activity that was potent for compounds 4, 1, 6, and 5 (in ascending order). The last compound (N-(3,4,5-trimethoxybenzoyl)aminohomolupinane) was outstanding, exhibiting a nanomolar potency (EC50 = 0.017 µM) for the increase in the threshold of ac-arrhythmia. The tested compounds shared strong negative inotropic activity; however, this does not compromise the value of their antiarrhythmic action. On the other hand, only moderate or modest negative chronotropic and vasorelaxant activities were commonly observed. Compound 5, which has high antiarrhythmic potency, a favorable cardiovascular profile, and is devoid of antihypertensive activity in spontaneously hypertensive rats, represents a lead worthy of further investigation.
Full article
(This article belongs to the Special Issue Biological Activity of Phenolics and Polyphenols in Nature Products)
►
Show Figures
Open AccessCommunication
Photo-Induced, Phenylhydrazine-Promoted Transition-Metal-Free Dehalogenation of Aryl Fluorides, Chlorides, Bromides, and Iodides
Molecules 2023, 28(19), 6915; https://doi.org/10.3390/molecules28196915 (registering DOI) - 03 Oct 2023
Abstract
►▼
Show Figures
In this study, we present a straightforward and highly effective photo-triggered hydrogenation method for aryl halides, devoid of transition-metal catalysts. Through the synergistic utilization of light, PhNHNH2, and a base, we have successfully initiated the desired radical-mediated hydrogenation process. Remarkably, utilizing
[...] Read more.
In this study, we present a straightforward and highly effective photo-triggered hydrogenation method for aryl halides, devoid of transition-metal catalysts. Through the synergistic utilization of light, PhNHNH2, and a base, we have successfully initiated the desired radical-mediated hydrogenation process. Remarkably, utilizing mild reaction conditions, a wide range of aryl halides, including fluorides, chlorides, bromides, and iodides, can be selectively transformed into their corresponding (hetero)arene counterparts, with exceptional yields. Additionally, this approach demonstrates a remarkable compatibility with diverse functional groups and heterocyclic compounds, highlighting its versatility and potential for use in various chemical transformations.
Full article

Scheme 1
Open AccessArticle
ZnS/CoS@C Derived from ZIF-8/67 Rhombohedral Dodecahedron Dispersed on Graphene as High-Performance Anode for Sodium-Ion Batteries
Molecules 2023, 28(19), 6914; https://doi.org/10.3390/molecules28196914 (registering DOI) - 03 Oct 2023
Abstract
Metal sulfides are highly promising anode materials for sodium-ion batteries due to their high theoretical capacity and ease of designing morphology and structure. In this study, a metal–organic framework (ZIF-8/67 dodecahedron) was used as a precursor due to its large specific surface area,
[...] Read more.
Metal sulfides are highly promising anode materials for sodium-ion batteries due to their high theoretical capacity and ease of designing morphology and structure. In this study, a metal–organic framework (ZIF-8/67 dodecahedron) was used as a precursor due to its large specific surface area, adjustable pore structure, morphology, composition, and multiple active sites in electrochemical reactions. The ZIF-8/67/GO was synthesized using a water bath method by introducing graphene; the dispersibility of ZIF-8/67 was improved, the conductivity increased, and the volume expansion phenomenon that occurs during the electrochemical deintercalation of sodium was prevented. Furthermore, vulcanization was carried out to obtain ZnS/CoS@C/rGO composite materials, which were tested for their electrochemical properties. The results showed that the ZnS/CoS@C/rGO composite was successfully synthesized, with dodecahedrons dispersed in large graphene layers. It maintained a capacity of 414.8 mAh g−1 after cycling at a current density of 200 mA g−1 for 70 times, exhibiting stable rate performance with a reversible capacity of 308.0 mAh g−1 at a high current of 2 A g−1. The excellent rate performance of the composite is attributed to its partial pseudocapacitive contribution. The calculation of the diffusion coefficient of Na+ indicates that the rapid sodium ion migration rate of this composite material is also one of the reasons for its excellent performance. This study highlights the broad application prospects of metal–organic framework-derived metal sulfides as anode materials for sodium-ion batteries.
Full article
(This article belongs to the Special Issue Advanced Electrode Materials for Electrochemical Energy Storage and Conversion, 2nd Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
Microplastics’ Shape and Morphology Analysis in the Presence of Natural Organic Matter Using Flow Imaging Microscopy
Molecules 2023, 28(19), 6913; https://doi.org/10.3390/molecules28196913 - 03 Oct 2023
Abstract
Ubiquitous microplastics in urban waters have raised substantial public concern due to their high chemical persistence, accumulative effects, and potential adverse effects on human health. Reliable and standardized methods are urgently needed for the identification and quantification of these emerging environmental pollutants in
[...] Read more.
Ubiquitous microplastics in urban waters have raised substantial public concern due to their high chemical persistence, accumulative effects, and potential adverse effects on human health. Reliable and standardized methods are urgently needed for the identification and quantification of these emerging environmental pollutants in wastewater treatment plants (WWTPs). In this study, we introduce an innovative rapid approach that employs flow imaging microscopy (FlowCam) to simultaneously identify and quantify microplastics by capturing high-resolution digital images. Real-time image acquisition is followed by semi-automated classification using customized libraries for distinct polyethylene (PE) and polystyrene (PS) microplastics. Subsequently, these images are subjected to further analysis to extract precise morphological details of microplastics, providing insights into their behavior during transport and retention within WWTPs. Of particular significance, a systematic investigation was conducted to explore how the presence of natural organic matter (NOM) in WWTPs affects the accuracy of the FlowCam’s measurement outputs for microplastics. It was observed that varying concentrations of NOM induced a more curled shape in microplastics, indicating the necessity of employing pre-treatment procedures to ensure accurate microplastic identification when utilizing the FlowCam. These observations offer valuable new perspectives and potential solutions for designing appropriate treatment technologies for removing microplastics within WWTPs.
Full article
(This article belongs to the Special Issue Tracing the Fate of Microplastics from Daily Activities to Environments)
►▼
Show Figures

Figure 1
Open AccessArticle
In Silico Studies of Four Compounds of Cecropia obtusifolia against Malaria Parasite
Molecules 2023, 28(19), 6912; https://doi.org/10.3390/molecules28196912 (registering DOI) - 03 Oct 2023
Abstract
Malaria is a disease that affects many people in the world. In Mexico, malaria remains an active disease in certain regions, particularly in the states of Chiapas and Chihuahua. While antimalarial effects have been attributed to some species of Cecropia in various countries,
[...] Read more.
Malaria is a disease that affects many people in the world. In Mexico, malaria remains an active disease in certain regions, particularly in the states of Chiapas and Chihuahua. While antimalarial effects have been attributed to some species of Cecropia in various countries, no such studies have been conducted in Mexico. Therefore, the objective of this study was to evaluate the in silico antimalarial activity of some active compounds identified according to the literature in the species of Cecropia obtusifolia, belonging to the Cecropiaceae family, such as ursolic acid, α-amyrin, chrysin, and isoorientin. These compounds were evaluated with specific molecular docking and molecular dynamics (MD) studies using three different malarial targets with the PDB codes 1CET, 2BL9, and 4ZL4 as well as the prediction of their pharmacokinetic (Pk) properties. Docking analysis revealed the following best binding energies (kcal/mol): isoorientin–1CET (−9.1), isoorientin–2BL9 (−8.8), and chrysin–4ZL4 (−9.6). MD simulation validated the stability of the complexes. Pharmacokinetics analysis suggested that the compounds would generally perform well if administered. Therefore, these results suggest that these compounds may be used as potential drugs for the treatment of malaria.
Full article
(This article belongs to the Section Medicinal Chemistry)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Syntheses, Crystal Structures, and Catalytic Properties of Three Cu(II) and Cobalt(II) Coordination Compounds Based on an Ether-Bridged Tetracarboxylic Acid
Molecules 2023, 28(19), 6911; https://doi.org/10.3390/molecules28196911 - 02 Oct 2023
Abstract
Three new products, [Cu2(μ3-dppa)(2,2′-bipy)2(H2O)]n·2nH2O (1), [Co4(μ4-dppa)2(phen)4(H2O)4]·2H2O (2),
[...] Read more.
Three new products, [Cu2(μ3-dppa)(2,2′-bipy)2(H2O)]n·2nH2O (1), [Co4(μ4-dppa)2(phen)4(H2O)4]·2H2O (2), and [Co2(μ6-dppa)(μ-4,4′-bipy)(H2O)2]n·3nH2O (3) were synthesized using a hydrothermal method from Cu(II) and Co(II) metal(II) chlorides, 3-(3,4-dicarboxyphenoxy)phthalic acid (H4dppa), and different auxiliary ligands, namely 2,2′-bipyridine (2,2′-bipy),1,10-phenanthroline (phen), and 4,4′-bipyridine (4,4′-bipy). Products 1–3 were characterized by elemental analysis, FTIR, TGA, PXRD, SEM, and single-crystal X-ray crystallography. The structure of 1 features a 1D chain of the 2C1 topological type. Compound 2 shows a discrete tetrameric complex. Product 3 demonstrates a 3D metal–organic framework (MOF) with the new topology. Their structure and topology, thermal stability, and catalytic activity were studied. In particular, excellent catalytic activity was demonstrated for copper(II)-polymer 1 in the cyanosilylation reaction at 35 °C.
Full article
(This article belongs to the Section Inorganic Chemistry)
►▼
Show Figures

Figure 1
Open AccessArticle
Thymus Vulgaris Oil Nanoemulsion: Synthesis, Characterization, Antimicrobial and Anticancer Activities
by
, , , , , , and
Molecules 2023, 28(19), 6910; https://doi.org/10.3390/molecules28196910 - 02 Oct 2023
Abstract
Essential oil nanoemulsions have received much attention due to their biological activities. Thus, a thyme essential oil nanoemulsion (Th-nanoemulsion) was prepared using a safe and eco-friendly method. DLS and TEM were used to characterize the prepared Th-nanoemulsion. Our findings showed that the nanoemulsion
[...] Read more.
Essential oil nanoemulsions have received much attention due to their biological activities. Thus, a thyme essential oil nanoemulsion (Th-nanoemulsion) was prepared using a safe and eco-friendly method. DLS and TEM were used to characterize the prepared Th-nanoemulsion. Our findings showed that the nanoemulsion was spherical and ranged in size from 20 to 55.2 nm. The micro-broth dilution experiment was used to evaluate the in vitro antibacterial activity of a Th-emulsion and the Th-nanoemulsion. The MIC50 values of the thymol nanoemulsion were 62.5 mg/mL against Escherichia coli and Klebsiella oxytoca, 250 mg/mL against Bacillus cereus, and 125 mg/mL against Staphylococcus aureus. Meanwhile, it emerged that the MIC50 values of thymol against four strains were not detected. Moreover, the Th-nanoemulsion exhibited promising antifungal activity toward A. brasiliensis and A. fumigatus, where inhibition zones and MIC50 were 20.5 ± 1.32 and 26.4 ± 1.34 mm, and 12.5 and 6.25 mg/mL, respectively. On the other hand, the Th-nanoemulsion displayed weak antifungal activity toward C. albicans where the inhibition zone was 12.0 ± 0.90 and MIC was 50 mg/mL. Also, the Th-emulsion exhibited antifungal activity, but lower than that of the Th-nanoemulsion, toward all the tested fungal strains, where MIC was in the range of 12.5–50 mg/mL. The in vitro anticancer effects of Taxol, Th-emulsion, and Th-nanoemulsion were evaluated using the standard MTT method against breast cancer (MCF-7) and hepatocellular carcinoma (HepG2). Additionally, the concentration of VEGFR-2 was measured, and the activities of caspase-8 (casp-8) and caspase-9 (casp-9) were evaluated. The cytotoxic effect was the most potent against the MCF-7 breast cancer cell line after the Th-nanoemulsion treatment (20.1 ± 0.85 µg/mL), and was 125.1 ± 5.29 µg/mL after the Th-emulsion treatment. The lowest half-maximal inhibitory concentration (IC50) value, 20.1 ± 0.85 µg/mL, was achieved when the MCF-7 cell line was treated with the Th-nanoemulsion. In addition, Th-nanoemulsion treatments on MCF-7 cells led to the highest elevations in casp-8 and casp-9 activities (0.66 ± 0.042 ng/mL and 17.8 ± 0.39 pg/mL, respectively) compared to those with Th-emulsion treatments. In comparison to that with the Th-emulsion (0.982 0.017 ng/mL), the VEGFR-2 concentration was lower with the Th-nanoemulsion treatment (0.672 ± 0.019ng/mL). In conclusion, the Th-nanoemulsion was successfully prepared and appeared in nanoform with a spherical shape according to DLS and TEM, and also exhibited antibacterial, antifungal, as well as anticancer activities.
Full article
(This article belongs to the Special Issue Bioactive Compounds from Plants with Pharmaceutical Interest II)
►▼
Show Figures

Figure 1
Open AccessArticle
Molecular Dynamics Simulation Study of the Selective Inhibition of Coagulation Factor IXa over Factor Xa
Molecules 2023, 28(19), 6909; https://doi.org/10.3390/molecules28196909 - 02 Oct 2023
Abstract
Thromboembolic disorders, arising from abnormal coagulation, pose a significant risk to human life in the modern world. The FDA has recently approved several anticoagulant drugs targeting factor Xa (FXa) to manage these disorders. However, these drugs have potential side effects, leading to bleeding
[...] Read more.
Thromboembolic disorders, arising from abnormal coagulation, pose a significant risk to human life in the modern world. The FDA has recently approved several anticoagulant drugs targeting factor Xa (FXa) to manage these disorders. However, these drugs have potential side effects, leading to bleeding complications in patients. To mitigate these risks, coagulation factor IXa (FIXa) has emerged as a promising target due to its selective regulation of the intrinsic pathway. Due to the high structural and functional similarities of these coagulation factors and their inhibitor binding modes, designing a selective inhibitor specifically targeting FIXa remains a challenging task. The dynamic behavior of protein–ligand interactions and their impact on selectivity were analyzed using molecular dynamics simulation, considering the availability of potent and selective compounds for both coagulation factors and the co-crystal structures of protein–ligand complexes. Throughout the simulations, we examined ligand movements in the binding site, as well as the contact frequencies and interaction fingerprints, to gain insights into selectivity. Interaction fingerprint (IFP) analysis clearly highlights the crucial role of strong H-bond formation between the ligand and D189 and A190 in the S1 subsite for FIXa selectivity, consistent with our previous study. This dynamic analysis also reveals additional FIXa-specific interactions. Additionally, the absence of polar interactions contributes to the selectivity for FXa, as observed from the dynamic profile of interactions. A contact frequency analysis of the protein–ligand complexes provides further confirmation of the selectivity criteria for FIXa and FXa, as well as criteria for binding and activity. Moreover, a ligand movement analysis reveals key interaction dynamics that highlight the tighter binding of selective ligands to the proteins compared to non-selective and inactive ligands.
Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
►▼
Show Figures

Figure 1
Open AccessArticle
Identification of Absorption Spectrum for IED Precursors Using Laser Photoacoustic Spectroscopy
Molecules 2023, 28(19), 6908; https://doi.org/10.3390/molecules28196908 - 02 Oct 2023
Abstract
Among the many commonly encountered hazards, improvised explosive devices (IEDs) remain the primary threat to military and civilian personnel due to the ease of their production and the widespread availability of their raw materials and precursors. Identifying traces of potential precursors is the
[...] Read more.
Among the many commonly encountered hazards, improvised explosive devices (IEDs) remain the primary threat to military and civilian personnel due to the ease of their production and the widespread availability of their raw materials and precursors. Identifying traces of potential precursors is the first step in developing appropriate control measures. An interesting approach is to identify the precursors that are released around the site as they are handled and transformed into the final IEDs. CO2 laser photoacoustic spectroscopy can offer the spectral characterization of a number of explosives-related compounds without sample preparation. Benzene, toluene, acetone, and ethylene glycol absorption spectra were determined in the IR region between 9.2 and 10.8 µm. Each substance emitted a unique photoacoustic response corresponding to its chemical composition that could be further used to identify the explosive material.
Full article
(This article belongs to the Section Physical Chemistry)
Open AccessArticle
Cannabidiol-Loaded Lipid-Stabilized Nanoparticles Alleviate Psoriasis Severity in Mice: A New Approach for Improved Topical Drug Delivery
Molecules 2023, 28(19), 6907; https://doi.org/10.3390/molecules28196907 - 02 Oct 2023
Abstract
Cannabidiol (CBD) is a promising natural agent for treating psoriasis. CBD activity is attributed to inhibition of NF-kB, IL-1β, IL-6, and IL-17A. The present study evaluated the anti-psoriatic effect of cannabidiol in lipid-stabilized nanoparticles (LSNs) using an imiquimod (IMQ)-induced psoriasis model in mice.
[...] Read more.
Cannabidiol (CBD) is a promising natural agent for treating psoriasis. CBD activity is attributed to inhibition of NF-kB, IL-1β, IL-6, and IL-17A. The present study evaluated the anti-psoriatic effect of cannabidiol in lipid-stabilized nanoparticles (LSNs) using an imiquimod (IMQ)-induced psoriasis model in mice. CBD-loaded LSNs were stabilized with three types of lipids, Cetyl alcohol (CA), Lauric acid (LA), and stearic-lauric acids (SALA), and were examined in-vitro using rat skin and in-vivo using the IMQ-model. LSNs loaded with coumarin-6 showed a localized penetration depth of about 100 µm into rat skin. The LSNs were assessed by the IMQ model accompanied by visual (psoriasis area severity index; PASI), histological, and pro-psoriatic IL-17A evaluations. Groups treated with CBD-loaded LSNs were compared to groups treated with CBD-containing emulsion, unloaded LSNs, and clobetasol propionate, and to an untreated group. CBD-loaded LSNs significantly reduced PASI scoring compared to the CBD emulsion, the unloaded LSNs, and the untreated group (negative controls). In addition, SALA- and CA-containing nanoparticles significantly inhibited IL-17A release, showing a differential response: SALA > CA > LA. The data confirms the effectiveness of CBD in psoriasis therapy and underscores LSNs as a promising platform for delivering CBD to the skin.
Full article
(This article belongs to the Special Issue Recent Trends of Functional Nanomaterials for Biomedical and Healthcare Applications)
►▼
Show Figures

Figure 1
Open AccessArticle
Annona cherimola Seed Extracts Trigger an Early Apoptosis Response and Selective Anticlonogenic Activity against the Human Gastric Carcinoma Cell Line SNU-1
by
, , , , , and
Molecules 2023, 28(19), 6906; https://doi.org/10.3390/molecules28196906 - 02 Oct 2023
Abstract
►▼
Show Figures
The aim of this study was to evaluate, for the first time, the antiproliferative, apoptotic and diminishing effects of the anchored growth-independent capacity of an ethanol macerate extract from the Annona cherimola seed (EMCHS) in the human gastric cancer cell line SNU-1. The
[...] Read more.
The aim of this study was to evaluate, for the first time, the antiproliferative, apoptotic and diminishing effects of the anchored growth-independent capacity of an ethanol macerate extract from the Annona cherimola seed (EMCHS) in the human gastric cancer cell line SNU-1. The cells treated with EMCHS (20 μg/mL) significantly reduced the capacity to form clones of the tumor cell. Moreover, 50 μg/mL of EMCHS extract induced apoptosis, as was shown by the Annexin-V assay. UHPLC-MS/MS analysis detected two acetogenins (Annonacinone and Annonacin) in the EMCHS, which could be largely responsible for its selective antiproliferative effect. The identification of fatty acids by GC-FID showed the presence of eight fatty acids, among which was, oleic acid, which has recognized activity as an adjuvant in antitumor treatments. Taken together, our results indicate that the EMCHS seems promising for use as a natural therapy against gastric cancer disease.
Full article

Figure 1
Open AccessArticle
Suppressing Dendrite Growth with Eco-Friendly Sodium Lignosulfonate Additive in Quasi-Solid-State Li Metal Battery
by
, , , , , , , and
Molecules 2023, 28(19), 6905; https://doi.org/10.3390/molecules28196905 - 02 Oct 2023
Abstract
The application of lithium metal batteries is limited by the drawbacks of safety problems and Li dendrite formation. Quasi-solid-state electrolytes (QSSEs) are the most promising alternatives to commercial liquid electrolytes due to their high safety and great compatibility with electrodes. However, Li dendrite
[...] Read more.
The application of lithium metal batteries is limited by the drawbacks of safety problems and Li dendrite formation. Quasi-solid-state electrolytes (QSSEs) are the most promising alternatives to commercial liquid electrolytes due to their high safety and great compatibility with electrodes. However, Li dendrite formation and the slow Li+ diffusion in QSSEs severely hinder uniform Li deposition, thus leading to Li dendrite growth and short circuits. Herein, an eco-friendly and low-cost sodium lignosulfonate (LSS)-assisted PVDF-based QSSE is proposed to induce uniform Li deposition and inhibit Li dendrite growth. Li symmetric cells with 5%-LSS QSSE possess a high Li+ transfer number of 0.79, and they exhibit a long cycle life of 1000 h at a current density/areal capacity of 1 mA cm−2/5 mAh cm−2. Moreover, due to the fast electrochemical dynamics endowed by the improved compatibility of the electrodes and fast Li+ diffusion, the LFP/5%-LSS/Li full cells still maintain a high capacity of 110 mAh g−1 after 250 cycles at 6C. This work provides a novel and promising choice that uses eco-friendly LSS as an additive to PVDF-based QSSE in Li metal batteries.
Full article
(This article belongs to the Special Issue Emerging Efficient Electronic and Energy Materials)
►▼
Show Figures

Figure 1
Open AccessArticle
Synergistic Antibiofilm Action of Cinnamomum verum and Brazilian Green Propolis Hydroethanolic Extracts against Multidrug-Resistant Strains of Acinetobacter baumannii and Pseudomonas aeruginosa and Their Biocompatibility on Human Keratinocytes
by
, , , , , , and
Molecules 2023, 28(19), 6904; https://doi.org/10.3390/molecules28196904 - 01 Oct 2023
Abstract
The accumulated dental biofilm can be a source of oral bacteria that are aspirated into the lower respiratory tract causing ventilator-associated pneumonia in hospitalized patients. The aim of this study was to evaluate the synergistic antibiofilm action of the produced and phytochemically characterized
[...] Read more.
The accumulated dental biofilm can be a source of oral bacteria that are aspirated into the lower respiratory tract causing ventilator-associated pneumonia in hospitalized patients. The aim of this study was to evaluate the synergistic antibiofilm action of the produced and phytochemically characterized extracts of Cinnamomum verum and Brazilian green propolis (BGP) hydroethanolic extracts against multidrug-resistant clinical strains of Acinetobacter baumannii and Pseudomonas aeruginosa, in addition to their biocompatibility on human keratinocyte cell lines (HaCaT). For this, High-performance liquid chromatography analysis of the plant extracts was performed; then the minimum inhibitory and minimum bactericidal concentrations of the extracts were determined; and antibiofilm activity was evaluated with MTT assay to prevent biofilm formation and to reduce the mature biofilms. The cytotoxicity of the extracts was verified using the MTT colorimetric test, evaluating the cellular enzymatic activity. The data were analyzed with one-way ANOVA and Tukey’s tests as well as Kruskal–Wallis and Dunn’s tests, considering a significance level of 5%. It was possible to identify the cinnamic aldehyde in C. verum and p-coumaric, caffeic, and caffeoylquinic acids as well as flavonoids such as kaempferol and kaempferide and Artepillin-C in BGP. The combined extracts were effective in preventing biofilm formation and reducing the mature biofilms of A. baumannii and P. aeruginosa. Moreover, both extracts were biocompatible in different concentrations. Therefore, C. verum and BGP hydroethanolic extracts have bactericidal and antibiofilm action against multidrug resistant strains of A. baumannii and P. aeruginosa. In addition, the combined extracts were capable of expressively inhibiting the formation of A. baumannii and P. aeruginosa biofilms (prophylactic effect) acting similarly to 0.12% chlorhexidine gluconate.
Full article
(This article belongs to the Section Natural Products Chemistry)
►▼
Show Figures

Figure 1
Open AccessArticle
Heterointerface Engineered Core-Shell Fe2O3@TiO2 for High-Performance Lithium-Ion Storage
by
, , , , , , , , , , , and
Molecules 2023, 28(19), 6903; https://doi.org/10.3390/molecules28196903 - 01 Oct 2023
Abstract
The rational design of the heterogeneous interfaces enables precise adjustment of the electronic structure and optimization of the kinetics for electron/ion migration in energy storage materials. In this work, the built-in electric field is introduced to the iron-based anode material (Fe2O
[...] Read more.
The rational design of the heterogeneous interfaces enables precise adjustment of the electronic structure and optimization of the kinetics for electron/ion migration in energy storage materials. In this work, the built-in electric field is introduced to the iron-based anode material (Fe2O3@TiO2) through the well-designed heterostructure. This model serves as an ideal platform for comprehending the atomic-level optimization of electron transfer in advanced lithium-ion batteries (LIBs). As a result, the core-shell Fe2O3@TiO2 delivers a remarkable discharge capacity of 1342 mAh g−1 and an extraordinary capacity retention of 82.7% at 0.1 A g−1 after 300 cycles. Fe2O3@TiO2 shows an excellent rate performance from 0.1 A g−1 to 4.0 A g−1. Further, the discharge capacity of Fe2O3@TiO2 reached 736 mAh g−1 at 1.0 A g−1 after 2000 cycles, and the corresponding capacity retention is 83.62%. The heterostructure forms a conventional p-n junction, successfully constructing the built-in electric field and lithium-ion reservoir. The kinetic analysis demonstrates that Fe2O3@TiO2 displays high pseudocapacitance behavior (77.8%) and fast lithium-ion reaction kinetics. The capability of heterointerface engineering to optimize electrochemical reaction kinetics offers novel insights for constructing high-performance iron-based anodes for LIBs.
Full article
(This article belongs to the Special Issue Modern Materials in Energy Storage and Conversion)
►▼
Show Figures

Figure 1
Open AccessReview
Sulforaphane’s Multifaceted Potential: From Neuroprotection to Anticancer Action
by
and
Molecules 2023, 28(19), 6902; https://doi.org/10.3390/molecules28196902 - 01 Oct 2023
Abstract
Sulforaphane (SFN) is a naturally occurring compound found in cruciferous vegetables such as broccoli and cauliflower. It has been widely studied for its potential as a neuroprotective and anticancer agent. This review aims to critically evaluate the current evidence supporting the neuroprotective and
[...] Read more.
Sulforaphane (SFN) is a naturally occurring compound found in cruciferous vegetables such as broccoli and cauliflower. It has been widely studied for its potential as a neuroprotective and anticancer agent. This review aims to critically evaluate the current evidence supporting the neuroprotective and anticancer effects of SFN and the potential mechanisms through which it exerts these effects. SFN has been shown to exert neuroprotective effects through the activation of the Nrf2 pathway, the modulation of neuroinflammation, and epigenetic mechanisms. In cancer treatment, SFN has demonstrated the ability to selectively induce cell death in cancer cells, inhibit histone deacetylase, and sensitize cancer cells to chemotherapy. SFN has also shown chemoprotective properties through inhibiting phase I metabolizing enzymes, modulating phase II xenobiotic-metabolizing enzymes, and targeting cancer stem cells. In addition to its potential as a therapeutic agent for neurological disorders and cancer treatment, SFN has shown promise as a potential treatment for cerebral ischemic injury and intracranial hemorrhage. Finally, the ongoing and completed clinical trials on SFN suggest potential therapeutic benefits, but more research is needed to establish its effectiveness. Overall, SFN holds significant promise as a natural compound with diverse therapeutic applications.
Full article
(This article belongs to the Section Natural Products Chemistry)
Open AccessArticle
Photodynamic Treatment of Human Breast and Prostate Cancer Cells Using Rose Bengal-Encapsulated Nanoparticles
by
, , , , , , , , , , and
Molecules 2023, 28(19), 6901; https://doi.org/10.3390/molecules28196901 - 01 Oct 2023
Abstract
Cancer, a prominent cause of death, presents treatment challenges, including high dosage requirements, drug resistance, poor tumour penetration and systemic toxicity in traditional chemotherapy. Photodynamic therapy, using photosensitizers like rose bengal (RB) with a green laser, shows promise against breast cancer cells in
[...] Read more.
Cancer, a prominent cause of death, presents treatment challenges, including high dosage requirements, drug resistance, poor tumour penetration and systemic toxicity in traditional chemotherapy. Photodynamic therapy, using photosensitizers like rose bengal (RB) with a green laser, shows promise against breast cancer cells in vitro. However, the hydrophilic RB struggles to efficiently penetrate the tumour site due to the unique clinical microenvironment, aggregating around rather than entering cancer cells. In this study, we have synthesized and characterized RB-encapsulated chitosan nanoparticles with a peak particle size of ~200 nm. These nanoparticles are readily nternalized by cells and, in combination with a green laser (λ = 532 nm) killed 94–98% of cultured human breast cancer cells (MCF-7) and prostate cancer cells (PC3) at a low dosage (25 μg/mL RB-nanoparticles, fluence ~126 J/cm2, and irradiance ~0.21 W/cm2). Furthermore, these nanoparticles are not toxic to cultured human normal breast cells (MCF10A), which opens an avenue for translational applications.
Full article
(This article belongs to the Special Issue Feature Papers in Applied Chemistry 2.0)
►▼
Show Figures

Figure 1
Open AccessArticle
Differences of Atomic-Level Interactions between Midazolam and Two CYP Isoforms 3A4 and 3A5
Molecules 2023, 28(19), 6900; https://doi.org/10.3390/molecules28196900 - 01 Oct 2023
Abstract
►▼
Show Figures
CYP 3A4 and CYP 3A5 are two important members of the human cytochrome P450 family. Although their overall structures are similar, the local structures of the active site are different, which directly leads to obvious individual differences in drug metabolic efficacy and toxicity.
[...] Read more.
CYP 3A4 and CYP 3A5 are two important members of the human cytochrome P450 family. Although their overall structures are similar, the local structures of the active site are different, which directly leads to obvious individual differences in drug metabolic efficacy and toxicity. In this work, midazolam (MDZ) was selected as the probe substrate, and its interaction with two proteins, CYP 3A4 and CYP 3A5, was studied by molecular dynamics simulation (MD) along with the calculation of the binding free energy. The results show that two protein–substrate complexes have some similarities in enzyme–substrate binding; that is, in both complexes, Ser119 forms a high occupancy hydrogen bond with MDZ, which plays a key role in the stability of the interaction between MDZ and the enzymes. However, the complex formed by CYP 3A4 and MDZ is more stable, which may be attributed to the sandwich structure formed by the fluorophenyl group of the substrate with Leu216 and Leu482. Our study interprets the binding differences between two isoform–substrate complexes and reveals a structure–function relationship from the atomic perspective, which is expected to provide a theoretical basis for accurately measuring the effectiveness and toxicity of drugs for individuals in the era of precision medicine.
Full article

Figure 1
Open AccessArticle
First-Row Transition Metal Complexes Incorporating the 2-(2′-pyridyl)quinoxaline Ligand (pqx), as Potent Inflammatory Mediators: Cytotoxic Properties and Biological Activities against the Platelet-Activating Factor (PAF) and Thrombin
by
, , , , , , , , and
Molecules 2023, 28(19), 6899; https://doi.org/10.3390/molecules28196899 - 01 Oct 2023
Abstract
Inflammatory mediators constitute a recently coined term in the field of metal-based complexes with antiplatelet activities. Our strategy targets Platelet-Activating Factor (PAF) and its receptor, which is the most potent lipid mediator of inflammation. Thus, the antiplatelet (anti-PAF) potency of any substance could
[...] Read more.
Inflammatory mediators constitute a recently coined term in the field of metal-based complexes with antiplatelet activities. Our strategy targets Platelet-Activating Factor (PAF) and its receptor, which is the most potent lipid mediator of inflammation. Thus, the antiplatelet (anti-PAF) potency of any substance could be exerted by inhibiting the PAF-induced aggregation in washed rabbit platelets (WRPs), which internationally is a well-accepted methodology. Herein, a series of mononuclear (mer-[Cr(pqx)Cl3(H2O]) (1), [Co(pqx)Cl2(DMF)] (2) (DMF = N,N′-dimethyl formamide), [Cu(pqx)Cl2(DMSO)] (3) (DMSO = dimethyl sulfoxide), [Zn(pqx)Cl2] (4)) and dinuclear complexes ([Mn(pqx)(H2O)2Cl2]2 (5), [Fe(pqx)Cl2]2 (6) and [Ni(pqx)Cl2]2 (7)) incorporating the 2-(2′-pyridyl)quinoxaline ligand (pqx), were biologically evaluated as inhibitors of the PAF- and thrombin-induced aggregation in washed rabbit platelets (WRPs). The molecular structure of the five-co-ordinate analog (3) has been elucidated by single-crystal X-ray diffraction revealing a trigonal bipyramidal geometry. All complexes are potent inhibitors of the PAF-induced aggregation in WRPs in the micromolar range. Complex (6) displayed a remarkable in vitro dual inhibition against PAF and thrombin, with IC50 values of 1.79 μM and 0.46 μM, respectively. Within the series, complex (5) was less effective (IC50 = 39 μM) while complex (1) was almost 12-fold more potent against PAF, as opposed to thrombin-induced aggregation. The biological behavior of complexes 1, 6 and 7 on PAF’s basic metabolic enzymatic pathways reveals that they affect key biosynthetic and catabolic enzymes of PAF underlying the anti-inflammatory properties of the relevant complexes. The in vitro cytotoxic activities of all complexes in HEK293T (human embryonic kidney cells) and HeLa cells (cervical cancer cells) are described via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The results reveal that complex 3 is the most potent within the series.
Full article
(This article belongs to the Special Issue Metal-Based Drugs: Past, Present and Future II)
►▼
Show Figures

Figure 1
Open AccessArticle
Ultrasound Assisted Coextraction of Cornicabra Olives and Thyme to Obtain Flavored Olive Oils
Molecules 2023, 28(19), 6898; https://doi.org/10.3390/molecules28196898 - 01 Oct 2023
Abstract
Flavoring olive oils is a new trend in consumer preferences, and different enrichment techniques can be used. Coextraction of olives with a flavoring agent is an option for obtaining a flavored product without the need for further operations. Moreover, ultrasound (US) assisted extraction
[...] Read more.
Flavoring olive oils is a new trend in consumer preferences, and different enrichment techniques can be used. Coextraction of olives with a flavoring agent is an option for obtaining a flavored product without the need for further operations. Moreover, ultrasound (US) assisted extraction is an emergent technology able to increase extractability. Combining US and coextraction, it is possible to obtain new products using different types of olives (e.g., cultivar and ripening stage), ingredient(s) with the greatest flavoring and/or bioactive potential, as well as extraction conditions. In the present study, mastic thyme (Thymus mastichina L.) (TM) and lemon thyme (Thymus x citriodorus) (TC) were used for flavoring Cornicabra oils by coextraction. The coextraction trials were performed by (i) thyme addition to the olives during crushing or malaxation and (ii) US application before malaxation. Several parameters were evaluated in the oil: quality criteria parameters, total phenols, fatty acid composition, chlorophyll pigments, phenolic profile and oxidative stability. US application did not change the phenolic profile of Cornicabra olive oils, while the enrichment of olive oils with phenolic compounds or pigments by coextraction was very dependent on the thyme used. TM enrichment showed an improvement of several new phenolic compounds in the oils, while with TC, fewer new phenols were observed. In turn, in the trials with TC, the extraction of chlorophyll pigments was higher, particularly in crushing coprocessing. Moreover, the oils obtained with US and TM added in the mill or in the malaxator showed lower phenol decrease (59%) than oils flavored with TC (76% decrease) or Cornicabra virgin olive oil (80% decrease) over an 8-month storage period. Multivariate data analysis, considering quality parameters, pigments and phenolic contents, showed that flavored oils were mainly grouped by age.
Full article
(This article belongs to the Special Issue Virgin Olive Oil: Processing, Byproducts, Quality Control, and Nutraceutical Profile II)
►▼
Show Figures

Figure 1
Open AccessArticle
The Equilibrium Molecular Structure of Cyclic (Alkyl)(Amino) Carbene Copper(I) Chloride via Gas-Phase Electron Diffraction and Quantum Chemical Calculations
by
, , , , and
Molecules 2023, 28(19), 6897; https://doi.org/10.3390/molecules28196897 - 01 Oct 2023
Abstract
Copper-centered carbene–metal–halides (CMHs) with cyclic (alkyl)(amino) carbenes (CAACs) are bright phosphorescent emitters and key precursors in the synthesis of the highly promising class of the materials carbene–metal–amides (CMAs) operating via thermally activated delayed fluorescence (TADF). Aiming to reveal the molecular geometry for CMH
[...] Read more.
Copper-centered carbene–metal–halides (CMHs) with cyclic (alkyl)(amino) carbenes (CAACs) are bright phosphorescent emitters and key precursors in the synthesis of the highly promising class of the materials carbene–metal–amides (CMAs) operating via thermally activated delayed fluorescence (TADF). Aiming to reveal the molecular geometry for CMH phosphors in the absence of the intermolecular contacts, we report here the equilibrium molecular structure of the (CAAC)Cu(I)Cl (1) molecule in the gas-phase. We demonstrate that linear geometry around a copper atom shows no distortions in the ground state. The structure of complex 1 has been determined using the electron diffraction method, supported by quantum chemical calculations with RI-MP2/def2-QZVPP level of theory and compared with the crystal structure determined by X-ray diffraction analysis. Mean vibrational amplitudes, uij,h1, and anharmonic vibrational corrections (rij,e • rij,a) were calculated for experimental temperature T = 20 °C, using quadratic and cubic force constants, respectively. The quantum theory of atoms in molecules (QTAIM) and natural bond order (NBO) analysis of wave function at MN15/def2TZVP level of theory revealed two Cu…H, three H…H, and one three-center H…H…H bond paths with bond critical points. NBO analysis also revealed three-center, four-electron hyperbonds, (3c4e), [π(N–C) nπ(Cu) ↔ nπ(N) π(N–Cu)], or [N–C: Cu ↔ N: C–Cu] and nπ(Cu) → π(C–N)* hyperconjugation, that is the delocalization of the lone electron pair of Cu atom into the antibonding orbital of C–N bond.
Full article
(This article belongs to the Topic Materials, Structure Designs and Device Fabrications for Highly Efficient/Long Lifetime Organic Light-Emitting Diodes)
►▼
Show Figures

Figure 1

Journal Menu
► ▼ Journal Menu-
- Molecules Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal Browser-
arrow_forward_ios
Forthcoming issue
arrow_forward_ios Current issue - Vol. 28 (2023)
- Vol. 27 (2022)
- Vol. 26 (2021)
- Vol. 25 (2020)
- Vol. 24 (2019)
- Vol. 23 (2018)
- Vol. 22 (2017)
- Vol. 21 (2016)
- Vol. 20 (2015)
- Vol. 19 (2014)
- Vol. 18 (2013)
- Vol. 17 (2012)
- Vol. 16 (2011)
- Vol. 15 (2010)
- Vol. 14 (2009)
- Vol. 13 (2008)
- Vol. 12 (2007)
- Vol. 11 (2006)
- Vol. 10 (2005)
- Vol. 9 (2004)
- Vol. 8 (2003)
- Vol. 7 (2002)
- Vol. 6 (2001)
- Vol. 5 (2000)
- Vol. 4 (1999)
- Vol. 3 (1998)
- Vol. 2 (1997)
- Volumes not published by MDPI
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Energies, Membranes, Molecules, Separations, Water
Sustainable Water Purification Technologies for Multiple Applications
Topic Editors: Marco Pellegrini, Cesare Saccani, Alessandro GuzziniDeadline: 15 October 2023
Topic in
Catalysts, Energies, Hydrogen, Molecules, Nanomaterials
Hydrogen Generation, Storage, and Utilization
Topic Editors: In-Hwan Lee, Duy Thanh Tran, Vandung DaoDeadline: 31 October 2023
Topic in
Antioxidants, Biomolecules, Molecules, Pharmaceutics, Separations
Application of Analytical Chemistry in Exercise Physiology and Pharmacology
Topic Editors: Andrzej Pokrywka, Dorota KwiatkowskaDeadline: 15 November 2023
Topic in
Catalysts, Materials, Molecules, Nanomaterials, Photochem
New Materials and Advanced Applications in Photocatalysis
Topic Editors: Jose L. Hueso, Ewa Kowalska, Zhishun WeiDeadline: 30 November 2023

Conferences
Special Issues
Special Issue in
Molecules
Molybdenum and Tungsten Enzymes—State of the Art in Research
Guest Editor: Ralf R. MendelDeadline: 6 October 2023
Special Issue in
Molecules
Synthesis and Screening of Some Novel Thiazole, Bithiazole and Thiazolidin-4-One Compounds with Biological Activity
Guest Editors: Brindusa Tiperciuc, Cristina Nastasă, Ioana IonuțDeadline: 15 October 2023
Special Issue in
Molecules
Nanomaterials for Electrocatalytic Applications
Guest Editor: Paolo BertoncelloDeadline: 31 October 2023
Special Issue in
Molecules
Sustainable Chemistry in the Organic Synthesis of Bioactive Compounds
Guest Editors: Paola Costanzo, Antonio De Nino, Loredana MaiuoloDeadline: 15 November 2023
Topical Collections
Topical Collection in
Molecules
Bioactive Compounds
Collection Editors: Roberto Fabiani, Eliana Pereira, Isabel C.F.R. Ferreira, Nancy D. Turner
Topical Collection in
Molecules
Natural Products as Leads or Drugs against Neglected Tropical Diseases
Collection Editors: Thomas J. Schmidt, Valeria Sülsen, Josphat Matasyoh
Topical Collection in
Molecules
Efficient Pharmaceutical and Chemical Approaches for Anticancer Therapy: Design, Preliminary Evaluations, and Further Developments
Collection Editors: Helen Osborn, Mohammad Najlah, Jean Jacques Vanden Eynde, Annie Mayence
Topical Collection in
Molecules
Neuroprotection Mediated by Natural Products and Their Chemical Derivatives
Collection Editor: Lucian Hritcu