Journal Description
Molecules
Molecules
is the leading international, peer-reviewed, open access journal of chemistry. Molecules is published semimonthly online by MDPI. The International Society of Nucleosides, Nucleotides & Nucleic Acids (IS3NA), the Spanish Society of Medicinal Chemistry (SEQT) and the International Society of Heterocyclic Chemistry (ISHC) are affiliated with Molecules and their members receive a discount on the article processing charges.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, MEDLINE, PMC, Reaxys, Embase, CaPlus / SciFinder, MarinLit, AGRIS, and other databases.
- Journal Rank: JCR - Q2 (Chemistry, Multidisciplinary) / CiteScore - Q1 (Chemistry (miscellaneous))
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 13.4 days after submission; acceptance to publication is undertaken in 3.5 days (median values for papers published in this journal in the second half of 2022).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
- Sections: published in 26 topical sections.
- Testimonials: See what our editors and authors say about Molecules.
- Companion journals for Molecules include: Foundations and Photochem.
Impact Factor:
4.927 (2021);
5-Year Impact Factor:
5.110 (2021)
Latest Articles
Piplartine-Inspired 3,4,5-Trimethoxycinnamates: Trypanocidal, Mechanism of Action, and In Silico Evaluation
Molecules 2023, 28(11), 4512; https://doi.org/10.3390/molecules28114512 (registering DOI) - 02 Jun 2023
Abstract
Chagas disease (CD) is one of the main neglected tropical diseases that promote relevant socioeconomic impacts in several countries. The therapeutic options for the treatment of CD are limited, and parasite resistance has been reported. Piplartine is a phenylpropanoid imide that has diverse
[...] Read more.
Chagas disease (CD) is one of the main neglected tropical diseases that promote relevant socioeconomic impacts in several countries. The therapeutic options for the treatment of CD are limited, and parasite resistance has been reported. Piplartine is a phenylpropanoid imide that has diverse biological activities, including trypanocidal action. Thus, the objective of the present work was to prepare a collection of thirteen esters analogous to piplartine (1–13) and evaluate their trypanocidal activity against Trypanosoma cruzi. Of the tested analogues, compound 11 ((E)-furan-2-ylmethyl 3-(3,4,5-trimethoxyphenyl)acrylate) showed good activity with IC50 values = 28.21 ± 5.34 μM and 47.02 ± 8.70 μM, against the epimastigote and trypomastigote forms, respectively. In addition, it showed a high rate of selectivity to the parasite. The trypanocidal mechanism of action occurs through the induction of oxidative stress and mitochondrial damage. In addition, scanning electron microscopy showed the formation of pores and leakage of cytoplasmic content. Molecular docking indicated that 11 probably produces a trypanocidal effect through a multi-target mechanism, including affinity with proteins CRK1, MPK13, GSK3B, AKR, UCE-1, and UCE-2, which are important for the survival of the parasite. Therefore, the results suggest chemical characteristics that can serve for the development of new trypanocidal prototypes for researching drugs against Chagas disease.
Full article
(This article belongs to the Special Issue Natural Products and Their Synthetic Scaffolds for Chronic Diseases: A Ray of Hope)
►
Show Figures
Open AccessArticle
Odor Perception and Descriptions of Rose-Scented Geranium Pelargonium graveolens ‘Dr. Westerlund’–Sensory and Chemical Analyses
Molecules 2023, 28(11), 4511; https://doi.org/10.3390/molecules28114511 (registering DOI) - 02 Jun 2023
Abstract
A recent study found that the natural scent from the rose-scented geranium Pelargonium graveolens ‘Dr. Westerlund’ had positive effects on stress reduction. Essential oils from many pelargonium species are known to have phytochemical properties and pharmacological activities. No study has, so far, explored
[...] Read more.
A recent study found that the natural scent from the rose-scented geranium Pelargonium graveolens ‘Dr. Westerlund’ had positive effects on stress reduction. Essential oils from many pelargonium species are known to have phytochemical properties and pharmacological activities. No study has, so far, explored and identified the chemical compounds and the sensory perception of these compounds in ‘Dr. Westerlund’ plants. Such knowledge would be an important contribution to an increased understanding of the effects of plants’ chemical odor properties on human well-being, and link this to the expressed perceived scents. This study aimed to identify the sensory profile and suggest responsible chemical compounds of Pelargonium graveolens ‘Dr. Westerlund’. The sensory and chemical analysis results revealed sensory profiles of Pelargonium graveolens ‘Dr. Westerlund’s and provided suggestions for the chemical compounds attributed to the sensory profiles. Further studies are recommended to investigate the correlation between volatile compounds and possible stress reduction in humans.
Full article
(This article belongs to the Section Flavours and Fragrances)
►▼
Show Figures

Figure 1
Open AccessEditorial
Advances in Cytoprotective Drug Discovery
Molecules 2023, 28(11), 4510; https://doi.org/10.3390/molecules28114510 (registering DOI) - 02 Jun 2023
Abstract
This Special Issue was announced as a platform for authors studying the isolation and identification of various natural products with cytoprotective effects and those studying cytoprotective synthetic compounds [...]
Full article
(This article belongs to the Special Issue Advances in Cytoprotective Drug Discovery)
Open AccessOpinion
Mathematical Geometry and Groups for Low-Symmetry Metal Complex Systems
Molecules 2023, 28(11), 4509; https://doi.org/10.3390/molecules28114509 (registering DOI) - 02 Jun 2023
Abstract
►▼
Show Figures
Since chemistry, materials science, and crystallography deal with three-dimensional structures, they use mathematics such as geometry and symmetry. In recent years, the application of topology and mathematics to material design has yielded remarkable results. It can also be seen that differential geometry has
[...] Read more.
Since chemistry, materials science, and crystallography deal with three-dimensional structures, they use mathematics such as geometry and symmetry. In recent years, the application of topology and mathematics to material design has yielded remarkable results. It can also be seen that differential geometry has been applied to various fields of chemistry for a relatively long time. There is also the possibility of using new mathematics, such as the crystal structure database, which represents big data, for computational chemistry (Hirshfeld surface analysis). On the other hand, group theory (space group and point group) is useful for crystal structures, including determining their electronic properties and the symmetries of molecules with relatively high symmetry. However, these strengths are not exhibited in the low-symmetry molecules that are actually handled. A new use of mathematics for chemical research is required that is suitable for the age when computational chemistry and artificial intelligence can be used.
Full article

Figure 1
Open AccessArticle
Morphological and Compositional Analysis on Thermal Deposition of Supercritical Aviation Kerosene in Micro Channels
Molecules 2023, 28(11), 4508; https://doi.org/10.3390/molecules28114508 (registering DOI) - 01 Jun 2023
Abstract
The integration of active cooling systems in super or hypersonic aircraft using endothermic hydrocarbon fuels is considered an effective way to relieve the thermal management issues caused by overheating. When the temperature of aviation kerosene exceeds 150 °C, the oxidation reaction of fuel
[...] Read more.
The integration of active cooling systems in super or hypersonic aircraft using endothermic hydrocarbon fuels is considered an effective way to relieve the thermal management issues caused by overheating. When the temperature of aviation kerosene exceeds 150 °C, the oxidation reaction of fuel is accelerated, forming insoluble deposits that could cause safety hazards. This work investigates the deposition characteristic as well as the morphology of the deposits formed by thermal-stressed Chinese RP-3 aviation kerosene. A microchannel heat transfer simulation device is used to simulate the heat transfer process of aviation kerosene under various conditions. The temperature distribution of the reaction tube was monitored by an infrared thermal camera. The properties and morphology of the deposition were analyzed by scanning electron microscopy and Raman spectroscopy. The mass of the deposits was measured using the temperature-programmed oxidation method. It is observed that the deposition of RP-3 is highly related to dissolved oxygen content (DOC) and temperature. When the outlet temperature increased to 527 °C, the fuel underwent violent cracking reactions, and the structure and morphology of deposition were significantly different from those caused by oxidation. Specifically, this study reveals that the structure of the deposits caused by short-to-medium term oxidation are dense, which is different from long-term oxidative deposits.
Full article
(This article belongs to the Special Issue Advances in the Applications of Surface Enhanced Raman Scattering)
Open AccessArticle
Effect of Controlling Thiophene Rings on D-A Polymer Photocatalysts Accessed via Direct Arylation for Hydrogen Production
Molecules 2023, 28(11), 4507; https://doi.org/10.3390/molecules28114507 (registering DOI) - 01 Jun 2023
Abstract
Conjugated polymer photocatalysts for hydrogen production have the advantages of an adjustable structure, strong response in the visible light region, adjustable energy levels, and easy functionalization. Using an atom- and step-economic direct C–H arylation method, dibromocyanostilbene was polymerized with thiophene, dithiophene, terthiophene, and
[...] Read more.
Conjugated polymer photocatalysts for hydrogen production have the advantages of an adjustable structure, strong response in the visible light region, adjustable energy levels, and easy functionalization. Using an atom- and step-economic direct C–H arylation method, dibromocyanostilbene was polymerized with thiophene, dithiophene, terthiophene, and fused thienothiophene and dithienothiophene, respectively, to produce donor–acceptor (D-A)-type linear conjugated polymers containing different thiophene derivatives with different conjugation lengths. Among them, the D-A polymer photocatalyst constructed from dithienothiophene could significantly broaden the spectral response, with a hydrogen evolution rate up to 12.15 mmol h−1 g−1. The results showed that the increase in the number of fused rings on thiophene building blocks was beneficial to the photocatalytic hydrogen production of cyanostyrylphene-based linear polymers. For the unfused dithiophene and terthiophene, the increase in the number of thiophene rings enabled more rotation freedom between the thiophene rings and reduced the intrinsic charge mobility, resulting in lower hydrogen production performance accordingly. This study provides a suitable process for the design of electron donors for D-A polymer photocatalysts.
Full article
(This article belongs to the Special Issue π-Conjugated Functional Molecules & Polymers)
►▼
Show Figures

Figure 1
Open AccessArticle
Naringenin Induces HepG2 Cell Apoptosis via ROS-Mediated JAK-2/STAT-3 Signaling Pathways
Molecules 2023, 28(11), 4506; https://doi.org/10.3390/molecules28114506 (registering DOI) - 01 Jun 2023
Abstract
Hepatocarcinoma is one of the most prevalent digestive system tumors worldwide and lacks effective therapy. Recently, naringenin has been isolated from some citrus fruits, and its anticancer effects have been tested. However, the molecular mechanisms of naringenin and the potential implications of oxidative
[...] Read more.
Hepatocarcinoma is one of the most prevalent digestive system tumors worldwide and lacks effective therapy. Recently, naringenin has been isolated from some citrus fruits, and its anticancer effects have been tested. However, the molecular mechanisms of naringenin and the potential implications of oxidative stress in naringenin-induced cytotoxicity in HepG2 cells remain elusive. Based on the above, the present study examined the effect of naringenin on the cytotoxic and anticancer mechanisms of HepG2 cells. Naringenin-induced HepG2 cell apoptosis was confirmed via the accumulation of the sub-G1 cell population, phosphatidylserine exposure, mitochondrial transmembrane potential loss, DNA fragmentation, caspase-3 activation, and caspase-9 activation. Furthermore, naringenin enhanced cytotoxic effects on HepG2 cells and triggered intracellular reactive oxygen species; the signaling pathways of JAK-2/STAT-3 were inhibited, and caspase-3 was activated to advance cell apoptosis. These results suggest that naringenin plays an important role in inducing apoptosis in HepG2 cells and that naringenin may be a promising candidate for cancer therapy.
Full article
Open AccessArticle
A Window into the Workings of anti-B18H22 Luminescence—Blue-Fluorescent Isomeric Pair 3,3′-Cl2-B18H20 and 3,4′-Cl2-B18H20 (and Others)
by
, , , , , , , , and
Molecules 2023, 28(11), 4505; https://doi.org/10.3390/molecules28114505 (registering DOI) - 01 Jun 2023
Abstract
The action of AlCl3 on room-temperature tetrachloromethane solutions of anti-B18H22 (1) results in a mixture of fluorescent isomers, 3,3′-Cl2-B18H20 (2) and 3,4′-Cl2-B18H20 (3
[...] Read more.
The action of AlCl3 on room-temperature tetrachloromethane solutions of anti-B18H22 (1) results in a mixture of fluorescent isomers, 3,3′-Cl2-B18H20 (2) and 3,4′-Cl2-B18H20 (3), together isolated in a 76% yield. Compounds 2 and 3 are capable of the stable emission of blue light under UV-excitation. In addition, small amounts of other dichlorinated isomers, 4,4′-Cl2-B18H20 (4), 3,1′-Cl2-B18H20 (5), and 7,3′-Cl2-B18H20 (6) were isolated, along with blue-fluorescent monochlorinated derivatives, 3-Cl-B18H21 (7) and 4-Cl-B18H21 (8), and trichlorinated species 3,4,3′-Cl3-B18H19 (9) and 3,4,4′-Cl3-B18H19 (10). The molecular structures of these new chlorinated derivatives of octadecaborane are delineated, and the photophysics of some of these species are discussed in the context of the influence that chlorination bears on the luminescence of anti-B18H22. In particular, this study produces important information on the effect that the cluster position of these substitutions has on luminescence quantum yields and excited-state lifetimes.
Full article
(This article belongs to the Special Issue New Developments in Boron Chemistry: From Oxidoborates to Hydrido(hetero)borane Derivatives – in Celebration of Professor John D. Kennedy’s 80th Birthday)
►▼
Show Figures

Figure 1
Open AccessArticle
Identification of Chemical Constituents in Blumea balsamifera Using UPLC–Q–Orbitrap HRMS and Evaluation of Their Antioxidant Activities
Molecules 2023, 28(11), 4504; https://doi.org/10.3390/molecules28114504 (registering DOI) - 01 Jun 2023
Abstract
Blumea balsamifera (L.) DC., a perennial herb in the Asteraceae family native to China and Southeast Asia, has a notable history of medicinal use due to its pharmacological properties. Using UPLC–Q–Orbitrap HRMS techniques, we systematically investigated the chemical constituents of this plant. A
[...] Read more.
Blumea balsamifera (L.) DC., a perennial herb in the Asteraceae family native to China and Southeast Asia, has a notable history of medicinal use due to its pharmacological properties. Using UPLC–Q–Orbitrap HRMS techniques, we systematically investigated the chemical constituents of this plant. A total of 31 constituents were identified, of which 14 were flavonoid compounds. Significantly, 18 of these compounds were identified in B. balsamifera for the first time. Furthermore, the mass spectrometry fragmentation patterns of significant chemical constituents identified in B. balsamifera were analyzed, providing important insights into their structural characteristics. The in vitro antioxidative potential of the methanol extract of B. balsamifera was assessed using DPPH and ABTS free-radical-scavenging assays, total antioxidative capacity, and reducing power. The antioxidative activity exhibited a direct correlation with the mass concentration of the extract, with IC50 values of 105.1 ± 0.503 μg/mL and 12.49 ± 0.341 μg/mL for DPPH and ABTS, respectively. For total antioxidant capacity, the absorbance was 0.454 ± 0.009 at 400 μg/mL. In addition, the reducing power was 1.099 ± 0.03 at 2000 μg/mL. This study affirms that UPLC–Q–Orbitrap HRMS can effectively discern the chemical constituents in B. balsamifera, primarily its flavonoid compounds, and substantiates its antioxidative properties. This underscores its potential utility as a natural antioxidant in the food, pharmaceutical, and cosmetics sectors. This research provides a valuable theoretical basis and reference value for the comprehensive development and utilization of B. balsamifera and expands our understanding of this medicinally valuable plant.
Full article
(This article belongs to the Special Issue The Development of Bioactive Compounds Based on Naturally Occurring Compounds)
►▼
Show Figures

Figure 1
Open AccessArticle
Effect of Chemical Refining on the Reduction of β-Carboline Content in Sesame Seed Oil
Molecules 2023, 28(11), 4503; https://doi.org/10.3390/molecules28114503 (registering DOI) - 01 Jun 2023
Abstract
β-carbolines (harman and norharman) are potentially mutagenic and have been reported in some vegetable oils. Sesame seed oil is obtained from roasted sesame seeds. During sesame oil processing, roasting is the key procedure to aroma enhancement, in which β-carbolines are produced. Pressed sesame
[...] Read more.
β-carbolines (harman and norharman) are potentially mutagenic and have been reported in some vegetable oils. Sesame seed oil is obtained from roasted sesame seeds. During sesame oil processing, roasting is the key procedure to aroma enhancement, in which β-carbolines are produced. Pressed sesame seed oils cover most market share, while leaching solvents are used to extract oils from the pressed sesame cake to improve the utilization of the raw materials. β-carbolines are nonpolar heterocyclic aromatic amines with good solubility in leaching solvents (n-hexane); therefore, the β-carbolines in sesame cake migrated to the leaching sesame seed oil. The refining procedures are indispensable for leaching sesame seed oil, in which some small molecules can be reduced. Thus, the critical aim is to evaluate the changes in β-carboline content during the refining of leaching sesame seed oil and the key process steps for the removal of β-carbolines. In this work, the levels of β-carbolines (harman and norharman) in sesame seed oil during chemical refining processes (degumming, deacidification, bleaching and deodorization) have been determined using solid phase extraction and high performance liquid chromatography-mass spectrometry (LC-MS). The results indicated that in the entire refining process, the levels of total β-carbolines greatly decreased, and the adsorption decolorization was the most effective process in reducing β-carbolines, which might be related to the adsorbent used in the decolorization process. In addition, the effects of adsorbent type, adsorbent dosage and blended adsorbent on β-carbolines in sesame seed oil during the decolorization process were investigated. It was concluded that oil refining can not only improve the quality of sesame seed oil, but also reduce most of the harmful β-carbolines.
Full article
(This article belongs to the Special Issue Extraction, Modification, Functionality and Bioactivity of Plant Proteins for a Healthy and Sustainable Food System)
►▼
Show Figures

Figure 1
Open AccessArticle
Theoretical Description of Attosecond X-ray Absorption Spectroscopy of Frenkel Exciton Dynamics
Molecules 2023, 28(11), 4502; https://doi.org/10.3390/molecules28114502 (registering DOI) - 01 Jun 2023
Abstract
Frenkel excitons are responsible for the transport of light energy in many molecular systems. Coherent electron dynamics govern the initial stage of Frenkel-exciton transfer. Capability to follow coherent exciton dynamics in real time will help to reveal their actual contribution to the efficiency
[...] Read more.
Frenkel excitons are responsible for the transport of light energy in many molecular systems. Coherent electron dynamics govern the initial stage of Frenkel-exciton transfer. Capability to follow coherent exciton dynamics in real time will help to reveal their actual contribution to the efficiency of light-harvesting. Attosecond X-ray pulses are the tool with the necessary temporal resolution to resolve pure electronic processes with atomic sensitivity. We describe how attosecond X-ray pulses can probe coherent electronic processes during Frenkel-exciton transport in molecular aggregates. We analyze time-resolved absorption cross section taking broad spectral bandwidth of an attosecond pulse into account. We demonstrate that attosecond X-ray absorption spectra can reveal delocalization degree of coherent exciton transfer dynamics.
Full article
(This article belongs to the Special Issue Ultrafast X-ray Spectroscopy)
►▼
Show Figures

Figure 1
Open AccessArticle
Various Energetic Metabolism of Microglia in Response to Different Stimulations
Molecules 2023, 28(11), 4501; https://doi.org/10.3390/molecules28114501 (registering DOI) - 01 Jun 2023
Abstract
The activation of the microglia plays an important role in the neuroinflammation induced by different stimulations associated with Alzheimer’s disease (AD). Different stimulations, such as pathogen-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs) and cytokines, trigger a consequence of activation in the microglia
[...] Read more.
The activation of the microglia plays an important role in the neuroinflammation induced by different stimulations associated with Alzheimer’s disease (AD). Different stimulations, such as pathogen-associated molecular patterns (PAMPs), damage-associated molecular patterns (DAMPs) and cytokines, trigger a consequence of activation in the microglia with diverse changes of the microglial cell type response in AD. The activation of the microglia is often accompanied by metabolic changes in response to PAMPs, DAMPs and cytokines in AD. Actually, we do not know the distinct differences on the energetic metabolism of microglia when subject to these stimuli. This research assessed the changes of the cell type response and energetic metabolism in mouse-derived immortalized cells (BV-2 cells) induced by a PAMP (LPS), DAMPs (Aβ and ATP) and a cytokine (IL-4) in mouse-derived immortalized cells (BV-2 cells) and whether the microglial cell type response was improved by targeting the metabolism. We uncovered that LPS, a proinflammatory stimulation of PAMPs, modified the morphology from irregular to fusiform, with stronger cell viability, fusion rates and phagocytosis in the microglia accompanied by a metabolic shift to the promotion of glycolysis and the inhibition of oxidative phosphorylation (OXPHOS). Aβ and ATP, which are two known kinds of DAMPs that trigger microglial sterile activation, induced the morphology from irregular to amoebic, and significantly decreased others in the microglia, accompanied by boosting or reducing both glycolysis and OXPHOS. Monotonous pathological changes and energetic metabolism of microglia were observed under IL-4 exposure. Further, the inhibition of glycolysis transformed the LPS-induced proinflammatory morphology and decreased the enhancement of LPS-induced cell viability, the fusion rate and phagocytosis. However, the promotion of glycolysis exerted a minimal effect on the changes of morphology, the fusion rate, cell viability and phagocytosis induced by ATP. Our study reveals that microglia induced diverse pathological changes accompanied by various changes in the energetic metabolism in response to PAMPs, DAMPs and cytokines, and it may be a potential application of targeting the cellular metabolism to interfere with the microglia-mediated pathological changes in AD.
Full article
(This article belongs to the Special Issue Therapeutic Agents for Neurodegenerative Disorders)
Open AccessReview
Recent Progress in the Integration of CO2 Capture and Utilization
Molecules 2023, 28(11), 4500; https://doi.org/10.3390/molecules28114500 (registering DOI) - 01 Jun 2023
Abstract
CO2 emission is deemed to be mainly responsible for global warming. To reduce CO2 emissions into the atmosphere and to use it as a carbon source, CO2 capture and its conversion into valuable chemicals is greatly desirable. To reduce the
[...] Read more.
CO2 emission is deemed to be mainly responsible for global warming. To reduce CO2 emissions into the atmosphere and to use it as a carbon source, CO2 capture and its conversion into valuable chemicals is greatly desirable. To reduce the transportation cost, the integration of the capture and utilization processes is a feasible option. Here, the recent progress in the integration of CO2 capture and conversion is reviewed. The absorption, adsorption, and electrochemical separation capture processes integrated with several utilization processes, such as CO2 hydrogenation, reverse water–gas shift reaction, or dry methane reforming, is discussed in detail. The integration of capture and conversion over dual functional materials is also discussed. This review is aimed to encourage more efforts devoted to the integration of CO2 capture and utilization, and thus contribute to carbon neutrality around the world.
Full article
(This article belongs to the Special Issue Exclusive Review Papers in Green Chemistry)
►▼
Show Figures

Figure 1
Open AccessArticle
The Benzothiazine Core as a Novel Motif for DNA-Binding Small Molecules
by
, , , , , , , , , and
Molecules 2023, 28(11), 4499; https://doi.org/10.3390/molecules28114499 (registering DOI) - 01 Jun 2023
Abstract
A new series of 4H-1,3-benzothiazine dyes were prepared and fully characterized in an aqueous medium. Benzothiazine salts were synthesized either through the classical synthetic pathway using Buchwald–Hartwig amination or through economical and environmentally friendly electrochemical synthesis. The latest synthetic approach employs
[...] Read more.
A new series of 4H-1,3-benzothiazine dyes were prepared and fully characterized in an aqueous medium. Benzothiazine salts were synthesized either through the classical synthetic pathway using Buchwald–Hartwig amination or through economical and environmentally friendly electrochemical synthesis. The latest synthetic approach employs successful electrochemical intramolecular dehydrogenative cyclization of N-benzylbenzenecarbothioamides to form 4H-1,3-benzothiazines. 4H-1,3-Benzothiazines were evaluated as novel DNA/RNA probes. Through the use of several methods such as UV/vis spectrophotometric titrations, circular dichroism and thermal melting experiments, the binding of four benzothiazine-based molecules to polynucleotides was examined. Compounds 1 and 2 acted as DNA/RNA groove binders, thus suggesting the potential of these compounds as novel DNA/RNA probes. This is a proof-of-concept study and will be expanded to include SAR/QSAR studies.
Full article
(This article belongs to the Special Issue Heterocycles: Design, Synthesis and Biological Evaluation)
►▼
Show Figures

Figure 1
Open AccessArticle
Preparation of Biocompatible Manganese Selenium-Based Nanoparticles with Antioxidant and Catalytic Functions
Molecules 2023, 28(11), 4498; https://doi.org/10.3390/molecules28114498 (registering DOI) - 01 Jun 2023
Abstract
►▼
Show Figures
The specificity of the tumor microenvironment (TME) severely limits the effectiveness of tumor treatment. In this study, we prepared a composite nanoparticle of manganese dioxide and selenite by a one-step redox method, and their stability under physiological conditions was improved with a bovine
[...] Read more.
The specificity of the tumor microenvironment (TME) severely limits the effectiveness of tumor treatment. In this study, we prepared a composite nanoparticle of manganese dioxide and selenite by a one-step redox method, and their stability under physiological conditions was improved with a bovine serum protein modification to obtain MnO2/Se-BSA nanoparticles (SMB NPs). In the SMB NPs, manganese dioxide and selenite endowed the SMB NPs with acid-responsive and catalytic, and antioxidant properties, respectively. The weak acid response, catalytic activity, and antioxidant properties of composite nanoparticles were verified experimentally. Moreover, in an in vitro hemolysis assay, different concentrations of nanoparticles were incubated with mouse erythrocytes, and the hemolysis ratio was less than 5%. In the cell safety assay, the cell survival ratio was as high as 95.97% after the co-culture with L929 cells at different concentrations for 24 h. In addition, the good biosafety of composite nanoparticles was verified at the animal level. Thus, this study helps to design high-performance and comprehensive therapeutic reagents that are responsive to the hypoxia, weak acidity, hydrogen peroxide overexpression nature of TME and overcome the limitations of TME.
Full article

Figure 1
Open AccessArticle
Carbon Adsorbents Obtained from Pistachio Nut Shells Used as Potential Ingredients of Drinking Water Filters
Molecules 2023, 28(11), 4497; https://doi.org/10.3390/molecules28114497 (registering DOI) - 01 Jun 2023
Abstract
Water resources are increasingly degraded due to the discharge of waste generated in municipal, industrial and agricultural areas. Therefore, the search for new materials enabling the effective treatment of drinking water and sewage is currently of great interest. This paper deals with the
[...] Read more.
Water resources are increasingly degraded due to the discharge of waste generated in municipal, industrial and agricultural areas. Therefore, the search for new materials enabling the effective treatment of drinking water and sewage is currently of great interest. This paper deals with the adsorption of organic and inorganic pollutants on the surface of carbonaceous adsorbents prepared by thermochemical conversion of common pistachio nut shells. The influence of the direct physical activation with CO2 and chemical activation with H3PO4 on parameters, such as elemental composition, textural parameters, acidic–basic character of the surface as well as electrokinetic properties of the prepared carbonaceous materials was checked. The suitability of the activated biocarbons prepared as the adsorbents of iodine, methylene blue and poly(acrylic acid) from the aqueous solutions was estimated. The sample obtained via chemical activation of the precursor turned out to be much more effective in terms of all the tested pollutants adsorption. Its maximum sorption capacity toward iodine was 1059 mg/g, whereas in relation to methylene blue and poly(acrylic acid) 183.1 mg/g and 207.9 mg/g was achieved, respectively. For both carbonaceous materials, a better fit to the experimental data was achieved with a Langmuir isotherm than a Freundlich one. It has also been shown that the efficiency of organic dye, and especially anionic polymer adsorption from aqueous solutions, is significantly affected by solution pH and temperature of the adsorbate–adsorbent system.
Full article
(This article belongs to the Collection Porous Materials)
►▼
Show Figures

Figure 1
Open AccessArticle
Anti-Inflammatory Potential of Seasonal Sonoran Propolis Extracts and Some of Their Main Constituents
by
, , , , , , , , and
Molecules 2023, 28(11), 4496; https://doi.org/10.3390/molecules28114496 (registering DOI) - 01 Jun 2023
Abstract
Biological properties of Sonoran propolis (SP) are influenced by harvest time. Caborca propolis showed cellular protective capacity against reactive oxygen species, which might be implicated in anti-inflammatory effects. However, the anti-inflammatory activity of SP has not been investigated so far. This study investigated
[...] Read more.
Biological properties of Sonoran propolis (SP) are influenced by harvest time. Caborca propolis showed cellular protective capacity against reactive oxygen species, which might be implicated in anti-inflammatory effects. However, the anti-inflammatory activity of SP has not been investigated so far. This study investigated the anti-inflammatory activity of previously characterized seasonal SP extracts (SPE) and some of their main constituents (SPC). The anti-inflammatory activity of SPE and SPC was evaluated by measuring nitric oxide (NO) production, protein denaturation inhibition, heat-induced hemolysis inhibition, and hypotonicity-induced hemolysis inhibition. SPE from spring, autumn, and winter showed a higher cytotoxic effect on RAW 264.7 cells (IC50: 26.6 to 30.2 µg/mL) compared with summer extract (IC50: 49.4 µg/mL). SPE from spring reduced the NO secretion to basal levels at the lowest concentration tested (5 µg/mL). SPE inhibited the protein denaturation by 79% to 100%, and autumn showed the highest inhibitory activity. SPE stabilized erythrocyte membrane against heat-induced and hypotonicity-induced hemolysis in a concentration-dependent manner. Results indicate that the flavonoids chrysin, galangin, and pinocembrin could contribute to the anti-inflammatory activity of SPE and that the harvest time influences such a property. This study presents evidence of SPE pharmacological potential and some of their constituents.
Full article
(This article belongs to the Special Issue Biological Activity of Natural and Synthetic Compounds 2.0)
►▼
Show Figures

Figure 1
Open AccessArticle
Effect of Reaction Temperature on the Microstructure and Properties of Magnesium Phosphate Chemical Conversion Coatings on Titanium
Molecules 2023, 28(11), 4495; https://doi.org/10.3390/molecules28114495 (registering DOI) - 01 Jun 2023
Abstract
Magnesium phosphate (MgP) has garnered growing interest in hard tissue replacement processes due to having similar biological characteristics to calcium phosphate (CaP). In this study, an MgP coating with the newberyite (MgHPO4·3H2O) was prepared on the surface of pure
[...] Read more.
Magnesium phosphate (MgP) has garnered growing interest in hard tissue replacement processes due to having similar biological characteristics to calcium phosphate (CaP). In this study, an MgP coating with the newberyite (MgHPO4·3H2O) was prepared on the surface of pure titanium (Ti) using the phosphate chemical conversion (PCC) method. The influence of reaction temperature on the phase composition, microstructure, and properties of coatings was systematically researched with the use of an X-ray diffractometer (XRD), a scanning electron microscope (SEM), a laser scanning confocal microscope (LSCM), a contact angle goniometer, and a tensile testing machine. The formation mechanism of MgP coating on Ti was also explored. In addition, the corrosion resistance of the coatings on Ti was researched by assessing the electrochemical behavior in 0.9% NaCl solution using an electrochemical workstation. The results showed that temperature did not obviously affect the phase composition of the MgP coatings, but affected the growth and nucleation of newberyite crystals. In addition, an increase in reaction temperature had a great impact on properties including surface roughness, thickness, bonding strength, and corrosion resistance. Higher reaction temperatures resulted in more continuous MgP, larger grain size, higher density, and better corrosion resistance.
Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Physical Chemistry)
►▼
Show Figures

Figure 1
Open AccessArticle
Enhancing Cu2+ Ion Removal: An Innovative Approach Utilizing Modified Frankincense Gum Combined with Multiwalled Carbon Tubes and Iron Oxide Nanoparticles as Adsorbent
by
, , , , , , , , , , and
Molecules 2023, 28(11), 4494; https://doi.org/10.3390/molecules28114494 (registering DOI) - 01 Jun 2023
Abstract
Aquatic pollution, which includes organic debris and heavy metals, is a severe issue for living things. Copper pollution is hazardous to people, and there is a need to develop effective methods for eliminating it from the environment. To address this issue, a novel
[...] Read more.
Aquatic pollution, which includes organic debris and heavy metals, is a severe issue for living things. Copper pollution is hazardous to people, and there is a need to develop effective methods for eliminating it from the environment. To address this issue, a novel adsorbent composed of frankincense-modified multi-walled carbon nanotubes (Fr-MMWCNTs) and Fe3O4 [Fr-MWCNT-Fe3O4] was created and subjected to characterization. Batch adsorption tests showed that Fr-MWCNT-Fe3O4 had a maximum adsorption capacity of 250 mg/g at 308 K and could efficiently remove Cu2+ ions over a pH range of 6 to 8. The adsorption process followed the pseudo-second-order and Langmuir models, and its thermodynamics were identified as endothermic. Functional groups on the surface of modified MWCNTs improved their adsorption capacity, and a rise in temperature increased the adsorption efficiency. These results highlight the Fr-MWCNT-Fe3O4 composites’ potential as an efficient adsorbent for removing Cu2+ ions from untreated natural water sources.
Full article
(This article belongs to the Special Issue Environmental Nanoparticles: Separation, Characterization, and Analysis)
►▼
Show Figures

Figure 1
Open AccessArticle
Ultrastructural, Energy-Dispersive X-ray Spectroscopy, Chemical Study and LC-DAD-QToF Chemical Characterization of Cetraria islandica (L.) Ach
by
, , , , , , , and
Molecules 2023, 28(11), 4493; https://doi.org/10.3390/molecules28114493 (registering DOI) - 01 Jun 2023
Abstract
The lichen Cetraria islandica (L.) Ach. has been used in traditional and modern medicines for its many biological properties such as immunological, immunomodulating, antioxidant, antimicrobial, and anti-inflammatory activities. This species is gaining popularity in the market, with interest from many industries for selling
[...] Read more.
The lichen Cetraria islandica (L.) Ach. has been used in traditional and modern medicines for its many biological properties such as immunological, immunomodulating, antioxidant, antimicrobial, and anti-inflammatory activities. This species is gaining popularity in the market, with interest from many industries for selling as medicines, dietary supplements, and daily herbal drinks. This study profiled the morpho-anatomical features by light, fluorescence, and scanning electron microscopy; conducted an elemental analysis using energy-dispersive X-ray spectroscopy; and phytochemical analysis was performed using high-resolution mass spectrometry combined with a liquid chromatography system (LC-DAD-QToF) of C. islandica. In total, 37 compounds were identified and characterized based on comparisons with the literature data, retention times, and their mass fragmentation mechanism/s. The identified compounds were classified under five different classes, i.e., depsidones, depsides, dibenzofurans, aliphatic acids, and others that contain simple organic acids in majority. Two major compounds (fumaroprotocetraric acid and cetraric acid) were identified in the aqueous ethanolic and ethanolic extracts of C. islandica lichen. This detailed morpho-anatomical, EDS spectroscopy, and the developed LC-DAD-QToF approach for C. islandica will be important for correct species identification and can serve as a useful tool for taxonomical validation and chemical characterization. Additionally, chemical study of the extract of C. islandica led to isolation and structural elucidation of nine compounds, namely cetraric acid (1), 9′-(O-methyl)protocetraric acid (2), usnic acid (3), ergosterol peroxide (4), oleic acid (5), palmitic acid (6), stearic acid (7), sucrose (8), and arabinitol (9).
Full article
(This article belongs to the Special Issue Analysis and Identification of Natural Product Extracts for Use in Medicine, Public Health and Agriculture)
►▼
Show Figures

Figure 1

Journal Menu
► ▼ Journal Menu-
- Molecules Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal Browser-
arrow_forward_ios
Forthcoming issue
arrow_forward_ios Current issue - Vol. 28 (2023)
- Vol. 27 (2022)
- Vol. 26 (2021)
- Vol. 25 (2020)
- Vol. 24 (2019)
- Vol. 23 (2018)
- Vol. 22 (2017)
- Vol. 21 (2016)
- Vol. 20 (2015)
- Vol. 19 (2014)
- Vol. 18 (2013)
- Vol. 17 (2012)
- Vol. 16 (2011)
- Vol. 15 (2010)
- Vol. 14 (2009)
- Vol. 13 (2008)
- Vol. 12 (2007)
- Vol. 11 (2006)
- Vol. 10 (2005)
- Vol. 9 (2004)
- Vol. 8 (2003)
- Vol. 7 (2002)
- Vol. 6 (2001)
- Vol. 5 (2000)
- Vol. 4 (1999)
- Vol. 3 (1998)
- Vol. 2 (1997)
- Volumes not published by MDPI
Highly Accessed Articles
Latest Books
E-Mail Alert
News
25 May 2023
Meet Us at the 7th Scientific Meeting of Ph.D. Students (JPhD2023), 7–9 June 2023, Barcelona, Spain
Meet Us at the 7th Scientific Meeting of Ph.D. Students (JPhD2023), 7–9 June 2023, Barcelona, Spain

12 May 2023
Meet Us at the 2020-2023 China Mass Spectrometry Conference, 9–13 June 2023, Hangzhou, China
Meet Us at the 2020-2023 China Mass Spectrometry Conference, 9–13 June 2023, Hangzhou, China

Topics
Topic in
Chemosensors, Foods, Molecules, Nanomaterials, Toxics
Advances in Chemistry, XXVIth International Galician Portuguese Conference on Chemistry
Topic Editors: Jose Manuel Andrade, Luis Cuadros-RodríguezDeadline: 15 June 2023
Topic in
Biomolecules, Catalysts, IJMS, Microorganisms, Molecules
Advances in Enzymes and Protein Engineering
Topic Editors: Yung-Chuan Liu, Jose M. Guisan, Antonio ZuorroDeadline: 30 June 2023
Topic in
Antioxidants, Foods, Molecules, Oxygen, Plants
Antioxidant Activity in Plants, Plant-Derived Bioactive Compounds and Foods
Topic Editors: Andrei Mocan, Simone CarradoriDeadline: 31 July 2023
Topic in
Analytica, Molecules, Nanomaterials, Polymers, Separations
Nanomaterials in Green Analytical Chemistry
Topic Editors: George Zachariadis, Rosa Peñalver, Natalia ManousiDeadline: 15 August 2023

Conferences
Special Issues
Special Issue in
Molecules
Phytochemicals: Isolation, Identification, Biological Activity and Computational Studies
Guest Editor: Chia Ming ChangDeadline: 15 June 2023
Special Issue in
Molecules
2D Materials for Biomedical Applications
Guest Editors: Minas M. Stylianakis, Athanasios SkourasDeadline: 30 June 2023
Special Issue in
Molecules
Coordination Chemistry in Cancer Therapy
Guest Editors: Tiziana Pivetta, Sarah VascellariDeadline: 15 July 2023
Special Issue in
Molecules
Improvements and Opportunities on Natural Products for Novel Drug Discovery
Guest Editors: María Isabel Calvo, Maria Luisa Kennedy, Francisco LeonDeadline: 20 July 2023
Topical Collections
Topical Collection in
Molecules
Ultrasound- and Microwave-Assisted Extraction of Bioactive Compounds
Collection Editors: Stela Jokić, Jelena Vladić
Topical Collection in
Molecules
Novel Approache of Anticancer Therapy
Collection Editor: Isabelle Mus-Veteau
Topical Collection in
Molecules
Early-Career Researchers in Chemistry
Collection Editors: Antonella Curulli, Eugenio Aprea, Francesca Cardona, Ioanna Chinou, James Gauld, Lakshmi Kotra, Maurizio Peruzzini