Journal Description
Molecules
Molecules
is a leading international, peer-reviewed, open access journal of chemistry published semimonthly online by MDPI. The International Society of Nucleosides, Nucleotides & Nucleic Acids (IS3NA), Spanish Society of Medicinal Chemistry (SEQT) and International Society of Heterocyclic Chemistry (ISHC) are affiliated with Molecules and their members receive discounts on the article processing charges.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, MEDLINE, PMC, Reaxys, CaPlus / SciFinder, MarinLit, AGRIS, and other databases.
- Journal Rank: JCR - Q2 (Biochemistry and Molecular Biology) / CiteScore - Q1 (Organic Chemistry)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 16.1 days after submission; acceptance to publication is undertaken in 2.6 days (median values for papers published in this journal in the first half of 2025).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
- Sections: published in 25 topical sections.
- Testimonials: See what our editors and authors say about Molecules.
- Companion journal: Foundations.
- Journal Cluster of Chemical Reactions and Catalysis: Catalysts, Chemistry, Electrochem, Inorganics, Molecules, Organics, Oxygen, Photochem, Reactions, Sustainable Chemistry.
Impact Factor:
4.6 (2024);
5-Year Impact Factor:
5.0 (2024)
Latest Articles
Multi-Morphology CeO2 Synthesis via Synergistic Induction by Solvent and Ammonium Bicarbonate
Molecules 2026, 31(1), 116; https://doi.org/10.3390/molecules31010116 (registering DOI) - 29 Dec 2025
Abstract
CeO2 is a crucial functional material in catalysis and energy applications, whose performance is highly morphology-dependent. Traditional synthesis methods often rely on organic templates or surfactants, which complicate the processes and pose environmental concerns. This study introduces an eco-friendly approach utilizing a
[...] Read more.
CeO2 is a crucial functional material in catalysis and energy applications, whose performance is highly morphology-dependent. Traditional synthesis methods often rely on organic templates or surfactants, which complicate the processes and pose environmental concerns. This study introduces an eco-friendly approach utilizing a methanol–water (MeOH-H2O) mixed solvent system combined with NH4HCO3 to achieve controllable synthesis of multi-morphology CeO2 without surfactants or templates. The effects of different solvent systems (pure H2O, pure MeOH, and their mixtures) and NH4HCO3 as an inexpensive regulator on precursor phase behavior and crystallization were systematically investigated. By optimizing the Ce:N molar ratios (1:1 to 1:7) as well as reaction times (0.5 to 36 h), our findings indicate that H2O significantly enhances crystallinity (from 40.9% to 61.4% for precursors, reaching 70.3% after calcination) and promotes octahedra formation in the MeOH-H2O mixed system, while NH4HCO3 acts as a structure-directing agent to control size (e.g., ~240 nm octahedra at Ce:N = 1:1, up to 375 nm at Ce:N = 1:2) and partially substitutes for high-temperature calcination in improving crystallinity. Variety morphologies, including plates, dendrites, octahedra, and hollow structures, were successfully synthesized. This work elucidates the synergistic mechanism by which solvents and NH4HCO3 influence CeO2 nucleation and growth, thereby providing an environmentally friendly synthesis route with significant potential applications in catalysis and energy storage.
Full article
(This article belongs to the Special Issue Advanced Materials for Energy Applications: From Fuels to Batteries and Beyond, 2nd Edition)
►
Show Figures
Open AccessArticle
Harnessing Both Phase Change and Isomerization: High-Energy-Density Azobenzene-Composites for Efficient Solar Energy Storage
by
Yan Jiang, Jiawei Chen, Yupeng Guo, Rui Liu, Hai Wang, Jin Huang and Wen Luo
Molecules 2026, 31(1), 115; https://doi.org/10.3390/molecules31010115 - 29 Dec 2025
Abstract
Organic phase change materials (OPCMs) show immense application potential in solar energy storages owing to high energy storage capacity and latent heat efficiency. However, it is difficult to achieve prolonged energy storage due to the sensitivity of phase change to environmental temperature, and
[...] Read more.
Organic phase change materials (OPCMs) show immense application potential in solar energy storages owing to high energy storage capacity and latent heat efficiency. However, it is difficult to achieve prolonged energy storage due to the sensitivity of phase change to environmental temperature, and adding other substances will lead to a decrease in total energy density. Herein, azobenzene organic phase change composite (C14Azo-MA) was designed and prepared by doping myristic acid (MA) with an azobenzene derivative (C14Azo) featuring a carbon chain identical to that of the MA matrix. C14Azo-MA was systematically characterized by UV–Visible absorption spectroscopy and differential scanning calorimetry. The results showed that the C14Azo-MA retains the same isomerization properties as the C14Azo dopant. C14Azo-MA, due to its molecular photoisomerization and enhanced intermolecular interactions, establishes a new energy barrier and forms supercooling within C14Azo-MA, thereby allowing the storage of thermal energy below the crystallization temperature of MA. Notably, the C14Azo-MA exhibits a high energy density of 225.08 J g−1, surpassing that of pure MA by 14.42%. This work holds significant potential for solar energy storage applications.
Full article
(This article belongs to the Special Issue Photochemistry in Asia)
►▼
Show Figures

Figure 1
Open AccessReview
Pharmacological Effects of Humic Substances and Their Signaling Mechanisms
by
Maria V. Zykova, Evgenia S. Trofimova, Lyudmila A. Azarkina, Tatyana V. Lasukova, Dmitrii A. Mihalyov, Larisa A. Drygunova, Marina G. Danilets, Anastasia A. Ligacheva, Andrey V. Tsupko, Sergey R. Bashirov and Mikhail V. Belousov
Molecules 2026, 31(1), 114; https://doi.org/10.3390/molecules31010114 - 29 Dec 2025
Abstract
►▼
Show Figures
This comprehensive review presents the results of an in-depth analytical literature search on the biological activity of humic substances and their possible pharmacological mechanisms of action. The unique chemical structure of humic substances has determined their widespread use in many economic sectors, including
[...] Read more.
This comprehensive review presents the results of an in-depth analytical literature search on the biological activity of humic substances and their possible pharmacological mechanisms of action. The unique chemical structure of humic substances has determined their widespread use in many economic sectors, including medicine. Thanks to modern advances in pharmaceuticals, pharmacology, and toxicology, it has been possible to demonstrate the multifaceted biological activity of humic substances and, consequently, the possibility of using them to treat and prevent many infectious and non-infectious pathologies, including diseases considered incurable. The article presents data on their immunotropic, antibacterial, antiviral (including HIV), antitumor, antioxidant and antiradical, cardiotropic, hepatoprotective, regenerative, detoxifying, and adaptogenic effects; their influence on the intestinal microbiome; studies of the toxic properties of humic substances and the safety of their use in medicine; and the current trend of using humic substances as unique matrices for creating next-generation bionanomaterials. An analysis of data on the intracellular mechanisms that play a key role in the implementation of the effects of humic substances is conducted. Thus, the natural genesis of humic substances, their multifaceted biological activity, and the absence of toxic and allergenic properties explain the growing interest of scientists from all over the world in their study.
Full article

Figure 1
Open AccessArticle
Surface and Interface Modulation of V2O5/Ni(OH)2 Nanomaterials for Enhanced Alkaline Water Splitting
by
Jia Feng, Yongren Yu, Yinxin Zhang, Haojie Sun, Xiaomei Wang, Shiwei Song, Yucai Li, Jian Wang, Depeng Zhao and Fang Hu
Molecules 2026, 31(1), 113; https://doi.org/10.3390/molecules31010113 - 29 Dec 2025
Abstract
To optimize the electrocatalytic reaction process through the synergistic effects of V and Ni, this study employed a two-step hydrothermal method to successfully construct a V2O5 composite structure grown on a Ni(OH)2 substrate (denoted V2O5/Ni(OH)
[...] Read more.
To optimize the electrocatalytic reaction process through the synergistic effects of V and Ni, this study employed a two-step hydrothermal method to successfully construct a V2O5 composite structure grown on a Ni(OH)2 substrate (denoted V2O5/Ni(OH)2-2). Electrochemical evaluation revealed that this catalyst exhibits efficient bifunctional activity in 1.0 M KOH electrolyte. For the hydrogen evolution reaction (HER), it requires a mere 89.6 mV overpotential to achieve a current density of −10 mA cm−2. The catalyst also demonstrates excellent performance in the oxygen evolution reaction (OER), demanding only 198 mV overpotential to drive a current density of 10 mA cm−2, while maintaining low overpotential increases even at high current densities. Furthermore, it exhibits outstanding long-term stability during a 12 h continuous test. When assembled as a dual-electrode overall water splitting device, the system requires a voltage of only 2.82 V to drive a high current density of 100 mA cm−2, showcasing its significant potential for practical applications.
Full article
(This article belongs to the Section Electrochemistry)
►▼
Show Figures

Figure 1
Open AccessRetraction
RETRACTED: Tarawneh et al. Berberine Inhibited Growth and Migration of Human Colon Cancer Cell Lines by Increasing Phosphatase and Tensin and Inhibiting Aquaporins 1, 3 and 5 Expressions. Molecules 2023, 28, 3823
by
Noor Tarawneh, Lama Hamadneh, Bashaer Abu-Irmaileh, Ziad Shraideh, Yasser Bustanji and Shtaywy Abdalla
Molecules 2026, 31(1), 112; https://doi.org/10.3390/molecules31010112 - 29 Dec 2025
Abstract
The journal retracts the article “Berberine Inhibited Growth and Migration of Human Colon Cancer Cell Lines by Increasing Phosphatase and Tensin and Inhibiting Aquaporins 1, 3 and 5 Expressions” [...]
Full article
Open AccessArticle
D-Penicillamine/Dihydroquercetin Dual-Loaded Metal–Organic Framework as a Microenvironment Copper Regulator for Enhancing the Therapeutic Efficacy of Polyphenolic Antioxidant in Alzheimer’s Disease
by
Xuhan Wu, Gang Huang, Licong Chen, Yiling Xie, Qi Ding, Enpeng Xi, Yun Zhao and Nan Gao
Molecules 2026, 31(1), 111; https://doi.org/10.3390/molecules31010111 - 28 Dec 2025
Abstract
Polyphenols like dihydroquercetin, rutin, and rifampicin show promise for Alzheimer’s disease (AD) therapy due to their ability to inhibit amyloid-β (Aβ) aggregation and reduce reactive oxygen species (ROS), garnering significant recent interest. However, their efficacy is substantially diminished because excess metal ions present
[...] Read more.
Polyphenols like dihydroquercetin, rutin, and rifampicin show promise for Alzheimer’s disease (AD) therapy due to their ability to inhibit amyloid-β (Aβ) aggregation and reduce reactive oxygen species (ROS), garnering significant recent interest. However, their efficacy is substantially diminished because excess metal ions present in amyloid plaques can chelate these compounds. Therefore, reshaping the metal microenvironment in the patient’s brain is particularly important for the therapeutic effect of AD. To address the above issues, we have constructed a composite system formed by NH2-MIL-101(Fe) (MOF), dihydroquercetin (DHQ), and D-penicillamine (D-pen). Due to the lack of π-π interaction and the low adsorption energy between D-pen/MOF, the release order and speed of D-pen was much faster than DHQ, thus achieving metal microenvironment regulation and ensuring the therapeutic effect of DHQ. In a 5 × FAD transgenic mouse model, DD@MOF treated and improved spatial learning and memory deficits. Therefore, the DD@MOF based on polyphenolic compounds provides a potential research direction for intervention in Alzheimer’s disease through chelating copper ions and antioxidant properties.
Full article
(This article belongs to the Special Issue 10th Anniversary of Organometallic Chemistry Section)
►▼
Show Figures

Figure 1
Open AccessArticle
Histatin 8 Interactions with Copper, Zinc, and Nickel Ions, and Its Antimicrobial Profile in Relation to Histatin 5
by
Justyna Sokołowska, Joanna Słowik, Katarzyna Zamłyńska, Jolanta Kutkowska, Paweł Lenartowicz and Danuta Witkowska
Molecules 2026, 31(1), 110; https://doi.org/10.3390/molecules31010110 - 28 Dec 2025
Abstract
Histatins are histidine-rich antimicrobial peptides present in human saliva, with histatin 5 (Hst5) demonstrating the most potent antifungal activity. Previous studies have linked the antifungal properties of histatins, particularly those against Candida species, to their ability to bind metal ions such as Cu(II)
[...] Read more.
Histatins are histidine-rich antimicrobial peptides present in human saliva, with histatin 5 (Hst5) demonstrating the most potent antifungal activity. Previous studies have linked the antifungal properties of histatins, particularly those against Candida species, to their ability to bind metal ions such as Cu(II) and Zn(II). While the antimicrobial activity of some histatins is well established, the impact of metal ion coordination on this activity remains an area of ongoing investigation. This study focuses on histatin 8 (Hst8), a less-explored member of the histatin family, and compares its metal-binding and antimicrobial properties to those of Hst5. Using isothermal titration microcalorimetry (ITC), we examined the interactions of Hst8 with Cu(II), Zn(II), and Ni(II) ions and evaluated its antimicrobial activity against Escherichia coli, Staphylococcus aureus and two Candida albicans strains. Our findings revealed significant differences in copper and zinc binding between Hst5 and Hst8, with both peptides exhibiting distinct antifungal profiles. Interestingly, it has been shown that copper ions bind to Hst5 in a distinctly different manner than to Hst8. Hst5 exhibits two binding sites with dissociation constants (KDITC) of 0.2 µM and 14.8 µM, whereas Hst8 has only one set of binding sites with a KDITC of 12.3 µM. These results highlight the potential role of metal ion coordination in modulating the antimicrobial efficacy of histatins, providing further insight into their therapeutic potential.
Full article
(This article belongs to the Section Bioorganic Chemistry)
►▼
Show Figures

Figure 1
Open AccessArticle
Substituent Effects in the Thermal Decomposition of 1,2,4-Triazol-3(2H)-Ones and Their Thione Analogues: A DFT Study with Functional Performance
by
Rosalinda Ipanaque-Chávez, Marcos Loroño, Tania Cordova-Sintjago and José L. Paz
Molecules 2026, 31(1), 109; https://doi.org/10.3390/molecules31010109 - 27 Dec 2025
Abstract
This computational study investigates the thermal decomposition of 1,2,4-triazol-3(2H)-ones and their thione analogues using Density Functional Theory (DFT). The reaction proceeds via a concerted, six-membered cyclic transition state, primarily driven by the breaking of the N–N bond. A key finding is that the
[...] Read more.
This computational study investigates the thermal decomposition of 1,2,4-triazol-3(2H)-ones and their thione analogues using Density Functional Theory (DFT). The reaction proceeds via a concerted, six-membered cyclic transition state, primarily driven by the breaking of the N–N bond. A key finding is that the accuracy of the calculated activation energies (Ea) strongly depends on the choice of DFT functional. For sulfur-containing systems (thiones), the hybrid functional APFD (with 25% Hartree–Fock exchange) provides the most reliable results, effectively describing their higher polarizability. In contrast, for oxygen-containing systems (triazolones), the dispersion-corrected functional B97D-GD3BJ (with 0% Hartree–Fock exchange) delivers superior accuracy by better modeling electrostatic and dispersion interactions. The -CH2CH2CN group at the N-2 position acts not only as a protecting group but also stabilizes the transition state through non-covalent interactions. Electron-withdrawing substituents slightly increase the Eₐ, while electron-donating groups decrease it. Sulfur analogues consistently show significantly lower activation energies (by ~40 kJ/mol) than their oxygen counterparts, explaining their experimentally observed faster decomposition. This work establishes a dual-methodology computational framework for accurately predicting the kinetics of these reactions, providing valuable insights for the regioselective synthesis of biologically relevant triazole derivatives via controlled pyrolysis.
Full article
(This article belongs to the Special Issue Advances in Density Functional Theory (DFT) Calculation)
Open AccessReview
Cationic Gemini Surfactants in the Oil Industry: Applications in Extraction, Transportation and Refinery Products
by
Bogumił Brycki, Adrianna Szulc, Justyna Brycka and Iwona Kowalczyk
Molecules 2026, 31(1), 108; https://doi.org/10.3390/molecules31010108 - 27 Dec 2025
Abstract
The petroleum industry faces intensifying challenges related to the depletion of easily accessible reservoirs and the growing energy demand, necessitating the adoption of advanced chemical agents that can operate under extreme conditions. Cationic gemini surfactants, characterized by their unique dimeric architecture consisting of
[...] Read more.
The petroleum industry faces intensifying challenges related to the depletion of easily accessible reservoirs and the growing energy demand, necessitating the adoption of advanced chemical agents that can operate under extreme conditions. Cationic gemini surfactants, characterized by their unique dimeric architecture consisting of two hydrophilic head groups and two hydrophobic tails, have emerged as superior alternatives to conventional monomeric surfactants due to their enhanced interfacial activity and physicochemical resilience. This review provides a comprehensive analysis of the literature concerning the molecular structure, synthesis, and functional applications of cationic gemini surfactants across the entire oil value chain, from extraction to refining. The analysis reveals that gemini surfactants exhibit critical micelle concentrations significantly lower than their monomeric analogs and maintain stability in high-temperature and high-salinity environments. They demonstrate exceptional efficacy in enhanced oil recovery through ultra-low interfacial tension reduction and wettability alteration, while simultaneously serving as effective drag reducers, wax inhibitors, and dual-action biocidal corrosion inhibitors in transportation pipelines. Cationic gemini surfactants represent a transformative class of multifunctional materials for the oil industry.
Full article
(This article belongs to the Special Issue Gemini Surfactant Application Studies)
►▼
Show Figures

Figure 1
Open AccessArticle
Integrative Evaluation of Kigelia africana Fruit Extract: Broad-Spectrum Anticancer Activity, Synergism with Cisplatin and Mechanistic Insights in Colorectal Carcinoma
by
Rositsa Mihaylova, Nikolay Bebrivenski, Dimitrina Zheleva-Dimitrova, Rumyana Simeonova, Nisha Singh, Spiro Konstantinov and Georgi Momekov
Molecules 2026, 31(1), 107; https://doi.org/10.3390/molecules31010107 - 26 Dec 2025
Abstract
Kigelia africana (“sausage tree”) is an established medicinal plant in African traditional medicine, now recognized for its diverse bioactive constituents and emerging anticancer potential. This study systematically evaluates Kigelia africana fruit extract (KAE) in an in vitro model of HT-29 colorectal carcinoma cells,
[...] Read more.
Kigelia africana (“sausage tree”) is an established medicinal plant in African traditional medicine, now recognized for its diverse bioactive constituents and emerging anticancer potential. This study systematically evaluates Kigelia africana fruit extract (KAE) in an in vitro model of HT-29 colorectal carcinoma cells, focusing on its cytotoxic effects, mechanistic impact on protein expression, and synergy with cisplatin chemotherapy. Across 42 oncology-related proteins, covering cell survival, apoptosis, adhesion, invasion, and signaling, KAE demonstrated extensive but typically moderate modulation, while cisplatin produced more pronounced responses in most markers. Protein changes linked to metastasis, therapy resistance, and survival were broadly suppressed, indicating significant antitumor activity. Notably, co-treatment with KAE and cisplatin in HT-29 cells resulted in marked synergistic cytotoxicity, permitting lower cisplatin doses while maintaining efficacy. LC-HRMS analyses revealed 14 metabolites in the extract, including phenolic acids naphthoquinones and iridoids, which may contribute to these effects.
Full article
(This article belongs to the Special Issue Advances and Opportunities of Natural Products in Drug Discovery)
►▼
Show Figures

Figure 1
Open AccessArticle
Electrochemical Removal of Cephalosporin Antibiotic—Cefuroxime Axetil from Aquatic Media Using Boron-Doped Diamond Electrodes: Process Optimization, Degradation Studies and Transformation Products Characterization
by
Michał Wroński, Jakub Trawiński and Robert Skibiński
Molecules 2026, 31(1), 106; https://doi.org/10.3390/molecules31010106 - 26 Dec 2025
Abstract
Growing environmental concern over pharmaceutical contaminants in water, combined with the limited effectiveness of conventional treatment methods in removing persistent antibiotics, creates a need for advanced remediation technologies. This study investigates the degradation of the cephalosporin antibiotic cefuroxime axetil using an electrochemical advanced
[...] Read more.
Growing environmental concern over pharmaceutical contaminants in water, combined with the limited effectiveness of conventional treatment methods in removing persistent antibiotics, creates a need for advanced remediation technologies. This study investigates the degradation of the cephalosporin antibiotic cefuroxime axetil using an electrochemical advanced oxidation process with a boron-doped diamond (BDD) anode. Experiments were conducted under varying pH levels and in natural water matrices, specifically river and lake water, to evaluate the process efficiency under realistic conditions. Significant differences were observed between matrices, with the best result obtained in river water, enabling complete degradation of cefuroxime axetil within 30 min. To clarify the factors influencing process efficiency, additional experiments examined the effects of dissolved organic matter (DOM) and chlorides. Cefuroxime axetil proved highly susceptible to electrooxidation, generally following pseudo-first-order kinetics, and chloride significantly accelerated its degradation. Using high-resolution mass spectrometry, ten transformation products were identified, including six not previously reported in the literature, representing a key novelty of this work. Their potential aquatic toxicity was subsequently evaluated in silico using fish and algae models. Finally, energy consumption analysis was conducted to evaluate the impact of various factors on the process’s economic efficiency.
Full article
(This article belongs to the Special Issue Advances in Remediation Methods of Pharmaceutical Pollutants in Water)
►▼
Show Figures

Graphical abstract
Open AccessReview
Advances in Flow Chemistry for Organolithium-Based Synthesis: A Process Perspective
by
Feng Zhou, Yijun Zhou, Chuansong Duanmu, Yanxing Li, Jin Li, Haiqing Xu, Pan Wang and Kai Zhu
Molecules 2026, 31(1), 105; https://doi.org/10.3390/molecules31010105 - 26 Dec 2025
Abstract
While organolithium reactions hold great promise in synthetic chemistry, their high reactivity, strong exothermicity, and the instability of intermediates often limit their application, making the effective control of reaction processes difficult in traditional batch reactors. This review systematically summarizes the latest advances in
[...] Read more.
While organolithium reactions hold great promise in synthetic chemistry, their high reactivity, strong exothermicity, and the instability of intermediates often limit their application, making the effective control of reaction processes difficult in traditional batch reactors. This review systematically summarizes the latest advances in utilizing flow chemistry technology to address process challenges related to organolithium reactions from 2014 to 2025. From a process perspective, we systematically discuss the literature cases regarding three key themes: the synthesis of organic compounds applied in the pharmaceutical field, the development of novel methods centered on effective process control (reaction temperature, residence time, phase state, multi-step reaction sequence, and safety), and fundamental process research on continuous flow organolithium reactions. Analysis shows that continuous flow systems provide a powerful platform for fully realizing the potential of organolithium chemistry by enhancing heat/mass transfer and precisely controlling reaction parameters. This review emphasizes how flow chemistry technology not only improves process safety and efficiency but also enables transformations and process scaling that are difficult or impossible in batch modes, thus providing a novel process intensification method for modern synthetic chemistry.
Full article
Open AccessArticle
Phase Change Mechanism and Safety Control During the Shutdown and Restart Process of Supercritical Carbon Dioxide Pipelines
by
Xinze Li, Dezhong Wang, Weijie Zou, Jianye Li and Xiaokai Xing
Molecules 2026, 31(1), 104; https://doi.org/10.3390/molecules31010104 - 26 Dec 2025
Abstract
Supercritical CO2 pipeline transportation is a crucial link in Carbon Capture, Utilization, and Storage (CCUS). Compared with traditional oil and gas pipelines, if a supercritical CO2 pipeline is shut down for an excessively long time, the phase state of CO2
[...] Read more.
Supercritical CO2 pipeline transportation is a crucial link in Carbon Capture, Utilization, and Storage (CCUS). Compared with traditional oil and gas pipelines, if a supercritical CO2 pipeline is shut down for an excessively long time, the phase state of CO2 may transform into a gas–liquid two-phase state. It is urgently necessary to conduct research on the phase change mechanism and safety control during the restart process of gas–liquid two-phase CO2 pipelines. Based on a certain planned supercritical carbon dioxide pipeline demonstration project, this paper proposes a new pipeline safety restart scheme that actively seeks the liquefaction of gaseous CO2 inside the pipeline by injecting liquid-phase CO2 at the initial station. Through numerical simulation and experimental methods, the co-variation laws of parameters such as temperature, pressure, density, and phase state during the pipeline restart process were revealed. It was found that the pipeline shutdown and restart process could be subdivided into four stages: shutdown stage, liquefaction stage, pressurization stage, and displacement stage. The phase transition line would form a closed curve that is approximately trapezoidal. It is suggested to optimize the restart scheme from aspects such as reducing the restart time, controlling the pressure rise rate, and saving CO2 consumption. It is proposed that the liquid holdup of CO2 fluid in the pipe at the initial moment of restart and the mass flow rate of CO2 injected at the initial station during the restart process are the main controlling factors affecting the evolution of the phase path of pipeline restart. For the demonstration project, the specific critical threshold values are given. The research results can provide a certain theoretical guidance and reference basis for the safe restart method of supercritical CO2 pipelines.
Full article
(This article belongs to the Section Materials Chemistry)
Open AccessReview
From Broad-Spectrum Health to Targeted Prevention: A Review of Functional Foods in Chronic Disease Management
by
Xinyun Zhang, Qinghua Zeng and Wanchong He
Molecules 2026, 31(1), 103; https://doi.org/10.3390/molecules31010103 - 26 Dec 2025
Abstract
Chronic diseases, characterized by their high prevalence and protracted course, represent a paramount challenge to global public health, necessitating effective, evidence-based preventive strategies. While functional foods are widely recognized for their potential, a comprehensive synthesis elucidating their multitargeted mechanisms within a “food-medicine homology”
[...] Read more.
Chronic diseases, characterized by their high prevalence and protracted course, represent a paramount challenge to global public health, necessitating effective, evidence-based preventive strategies. While functional foods are widely recognized for their potential, a comprehensive synthesis elucidating their multitargeted mechanisms within a “food-medicine homology” framework and a clear trajectory from broad-spectrum health promotion to targeted intervention remains lacking. This review bridges this critical gap by systematically evaluating the scientific evidence and application potential of functional foods, with a specific focus on key bioactive compounds—β-glucan, omega-3 polyunsaturated fatty acids (PUFAs), dietary fiber, and catechins. We provide a critical analysis of how these components orchestrate synergistic effects at molecular, cellular, and systemic levels to counteract core pathological processes, including oxidative stress, chronic inflammation, metabolic dysregulation, and gut microbiota imbalance. Our unique contribution lies in integrating the ancient wisdom of food-medicine homology with modern multi-omics and evidence-based research, thereby proposing a refined nutritional intervention paradigm. The review offers critical insights into the convergent actions of these bioactives, their dose-response relationships substantiated by clinical meta-analyses, and the emerging role of gut microbiota-derived metabolites. Furthermore, this review also explores the emerging evidence for synergistic interactions among these key bioactives, proposing that their combined use may yield amplified and more network-based protective effects against chronic diseases through complementary mechanisms, aims to develop integrated prevention strategies targeting both cardiometabolic and neurodegenerative diseases. The integrated prevention strategies systematically connect mechanistic insights into bioactive compounds, evaluates the strength of clinical evidence, and examines the implications for regulatory standards and societal acceptance, thereby bridging the gap between basic science, clinical application, and public health policy. The “mechanism-to-evidence-to-regulation” framework in this review links molecular insights with clinical validation and regulatory implications, offering a holistic perspective rarely addressed in existing literature.
Full article
(This article belongs to the Special Issue Exploring the Antioxidant Activity of Natural Extracts: New Findings and Potential Food- and Non-Food-Related Applications)
►▼
Show Figures

Figure 1
Open AccessArticle
Thermodynamic, Kinetic, and UV–Vis/CD Spectroelectrochemical Studies on Interaction and Electron Transfer Between Glucose Oxidase and Ferrocene Carboxylic Acid
by
Luis Gabriel Talavera-Contreras, Marisela Cruz-Ramírez, Juan Pablo F. Rebolledo-Chávez, Janet Ocampo-Hernández, Gilberto Rocha-Ortiz and Luis Ortiz-Frade
Molecules 2026, 31(1), 102; https://doi.org/10.3390/molecules31010102 - 26 Dec 2025
Abstract
In this research, we investigate the interaction between the redox mediator ferrocene carboxylic acid (Fc-COOH) and glucose oxidase (GOD) in order to determine the thermodynamics parameters Kint, ΔGint, ΔHint, and ΔSint using simple UV–visible experiments at different
[...] Read more.
In this research, we investigate the interaction between the redox mediator ferrocene carboxylic acid (Fc-COOH) and glucose oxidase (GOD) in order to determine the thermodynamics parameters Kint, ΔGint, ΔHint, and ΔSint using simple UV–visible experiments at different temperatures. Positive values of ΔHint, ΔSint, together with a negative value of ΔGint indicate an entropy-driven hydrophobic interaction typical of spontaneous association processes. The homogeneous electron transfer rate constants between the oxidized organometallic mediator and the reduced enzyme (ks), along with their activation parameters (ΔGET≠, ΔHET≠ and ΔSET≠), were calculated using data obtained from foot of the wave analysis (FOWA) of cyclic voltammetry experiments performed at variable temperature. According to transition state theory, the obtained parameters indicate a low activation enthalpy that reflects minimal energetic requirements for electron transfer, while the large negative activation entropy suggests the formation of an ordered transition state. The positive activation free energy falls within the expected range for biological electron transfer processes. Variable temperature cyclic voltammetry experiments of ferrocene carboxylic acid (Fc-COOH) were also performed. The obtained ΔG°, ΔH°, and ΔS° parameters indicate strong stabilization of the redox pair, consistent with a small difference in solvation energy. Circular dichroism, UV–vis spectroscopy, and combined CD and UV–Vis Spectroelectrochemistry measurements performed during redox mediation demonstrate that no significant structural alterations occur in either the enzyme or the redox mediator before or during the electron transfer processes.
Full article
(This article belongs to the Special Issue Recent Advances in Electrochemistry: Analysis and Application)
►▼
Show Figures

Figure 1
Open AccessArticle
White Organic Light-Emitting Diodes from Single-Component Nonconjugated Polymers by Combining Monomer Emission with Electromer Emission
by
Chao Zheng, Mingze Li, Zhiwen Xu, Yaxuan Pan, Qi Zhou, Yujie Fu, Dongyue Cui, Huanhuan Li, Ye Tao and Runfeng Chen
Molecules 2026, 31(1), 101; https://doi.org/10.3390/molecules31010101 - 26 Dec 2025
Abstract
White organic light-emitting diodes (OLEDs) offer a promising solution for next-generation lighting technologies and their ability to emit white light through various mechanisms make them an attractive option for illumination and display applications. Here, we design and prepare a series of N,
[...] Read more.
White organic light-emitting diodes (OLEDs) offer a promising solution for next-generation lighting technologies and their ability to emit white light through various mechanisms make them an attractive option for illumination and display applications. Here, we design and prepare a series of N,N-difluorenevinylaniline-based small molecules and polymer, and realize white OLEDs based on these luminescent materials with combined blue monomer emission and orange electromer emission upon electronic excitation in the solution-processed devices. Impressively, the single-component nonconjugated polymer exhibits the best device performance, because the nonconjugated structure favors good solubility of the polymers, while the conjugated starburst unit functions as highly luminescent fluorophore in both single molecular and aggregated structures for the blue and orange emissions, respectively. Specifically, the non-doped solution-processed OLEDs achieve warm white electroluminescence with a maximum luminance of 1806 cd/m2 and a maximum external quantum efficiency of 2.63%. And, the OLEDs based on the monomer also exhibit white electroluminescence with Commission Internationale de L’Eclairage coordinates of (0.30, 0.32). These results highlight a promising strategy for the material design and preparation of single-component nonconjugated polymers with rich emissive behaviors in solid states towards efficient and solution-processable white OLEDs.
Full article
(This article belongs to the Special Issue Insight into Organic Semiconductor Materials)
►▼
Show Figures

Figure 1
Open AccessArticle
Methods in PES-Learn: Direct-Fit Machine Learning of Born–Oppenheimer Potential Energy Surfaces
by
Ian T. Beck, Justin M. Turney and Henry F. Schaefer III
Molecules 2026, 31(1), 100; https://doi.org/10.3390/molecules31010100 - 25 Dec 2025
Abstract
The release of PES-Learn version 1.0 as an open-source software package for the automatic construction of machine learning models of semi-global molecular potential energy surfaces (PESs) is presented. Improvements to PES-Learn’s interoperability are stressed with new Python API that simplifies workflows for
[...] Read more.
The release of PES-Learn version 1.0 as an open-source software package for the automatic construction of machine learning models of semi-global molecular potential energy surfaces (PESs) is presented. Improvements to PES-Learn’s interoperability are stressed with new Python API that simplifies workflows for PES construction via interaction with QCSchema input and output infrastructure. In addition, a new machine learning method is introduced to PES-Learn: kernel ridge regression (KRR). The capabilities of KRR are emphasized with examination of select semi-global PESs. All machine learning methods available in PES-Learn are benchmarked with benzene and ethanol datasets from the rMD17 database to illustrate PES-Learn’s performance ability. Fitting performance and timings are assessed for both systems. Finally, the ability to predict gradients with neural network models is presented and benchmarked with ethanol and benzene. PES-Learn is an active project and welcomes community suggestions and contributions.
Full article
(This article belongs to the Special Issue 30th Anniversary of Molecules—Recent Advances in Computational and Theoretical Chemistry)
►▼
Show Figures

Graphical abstract
Open AccessReview
A Comprehensive Review on Hydrogen Production from Biomass Gasification
by
Mattia Bartoli, Candido Fabrizio Pirri and Sergio Bocchini
Molecules 2026, 31(1), 99; https://doi.org/10.3390/molecules31010099 - 25 Dec 2025
Abstract
Hydrogen production from biomass gasification has emerged as a strategic pathway for achieving carbon-neutral energy systems, circular resource utilization, and sustainable fuel generation. As global energy systems transition toward renewable sources, biomass-derived hydrogen represents a cornerstone of waste valorization, negative-emission bioenergy, and green
[...] Read more.
Hydrogen production from biomass gasification has emerged as a strategic pathway for achieving carbon-neutral energy systems, circular resource utilization, and sustainable fuel generation. As global energy systems transition toward renewable sources, biomass-derived hydrogen represents a cornerstone of waste valorization, negative-emission bioenergy, and green hydrogen economies. Among all technologies, hydrogen production through gasification is one of the most consolidated routes with plenty of operative industrial-scale plants. The field of gasification is quite complex, and this comprehensive review describes the current scientific and technological achievements of biomass gasification for hydrogen production, describing the effect of feedstock, reactivity phenomena, reactor design, and catalyst systems. Furthermore, we report on a quantitative analysis regarding the operative cost of gasification of biomass compared with green hydrogen production and methane reforming. We provide a complete and synthetic picture for one of the most critical fields in the hydrogen economy that can actively promote a transition towards a more sustainable society.
Full article
(This article belongs to the Collection Recycling of Biomass Resources: Biofuels and Biochemicals)
►▼
Show Figures

Graphical abstract
Open AccessReview
Recent Advances in Ent-Abietane Diterpenes: Natural Sources, Biological Activities and Total Synthesis
by
Lu Li, Yongjie Zhu, Haixia Deng, Liqiong Xie, Chang-Bo Zheng, Jian-Neng Yao and Ji Li
Molecules 2026, 31(1), 98; https://doi.org/10.3390/molecules31010098 (registering DOI) - 25 Dec 2025
Abstract
Ent-abietane diterpenoids constitute a class of terpenes with a C20 carbon skeleton that underlie a wide range of biological activities. Ent-abietane diterpenoids, enantiomeric to the abietane counterparts, represent a family of diterpenoid natural products characterized by their distinct 6/6/6 tricyclic
[...] Read more.
Ent-abietane diterpenoids constitute a class of terpenes with a C20 carbon skeleton that underlie a wide range of biological activities. Ent-abietane diterpenoids, enantiomeric to the abietane counterparts, represent a family of diterpenoid natural products characterized by their distinct 6/6/6 tricyclic carbocyclic skeletons with exceptional structural complexity. An increasing number of these ent-abietane diterpenoids have recently been identified, constituting a well-defined group of naturally occurring compounds. This review provides a comprehensive summary of the natural sources, chemical structures, biological profiles and total synthesis of these ent-abietane diterpenoids from 2016 to early 2025.
Full article
(This article belongs to the Special Issue Trends of Drug Synthesis in Medicinal Chemistry)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Multifunctional NADES-Based Extracts from Paeonia lactiflora Pall. Flowers for Potential Cosmetic and Pharmaceutical Applications
by
Carla Villa, Eleonora Russo, Anna Maria Schito, Francesco Saverio Robustelli della Cuna, Cristina Sottani, Marta Barabino and Debora Caviglia
Molecules 2026, 31(1), 97; https://doi.org/10.3390/molecules31010097 - 25 Dec 2025
Abstract
Paeonia lactiflora Pall. is a perennial herbaceous plant widely renowned for its floral ornamental appeal, distinctive pleasant scent, and utilization in folk remedies. Roots and barks are traditionally used in Chinese medicine for various properties, including anti-inflammatory, antioxidant, antibacterial, anticancer, cardiovascular, and neuroprotective
[...] Read more.
Paeonia lactiflora Pall. is a perennial herbaceous plant widely renowned for its floral ornamental appeal, distinctive pleasant scent, and utilization in folk remedies. Roots and barks are traditionally used in Chinese medicine for various properties, including anti-inflammatory, antioxidant, antibacterial, anticancer, cardiovascular, and neuroprotective effects. Considering the growing interest and demand in the pharmaceutical and cosmetic fields for sustainable and bioactive botanical derivatives, this study aimed to apply NADES (natural deep eutectic solvents) extraction on fresh flowers of Paeonia lactiflora Pall. The purpose was to obtain a natural, multifunctional, and ready-to-use cosmetic ingredient with concurrent antioxidant activity, antimicrobial functionalities, and olfactive properties. The eutectic systems selected in this study were composed of betaine as the hydrogen bond acceptor and glycerol and/or sorbitol as the hydrogen bond donors. These eutectic systems under microwave activation led to a rapid extraction, from peony fresh flowers, of considerable phenolic amounts (from 33.0 to 34.4 mg of gallic acid equivalents per gram of fresh flowers), which confer to the whole NADES-based extract an excellent radical scavenging activity (around 87.5%, compared to Trolox) and a pleasant fragrance, due to the extraction of some characteristic volatile compounds, as confirmed by GC-MS analysis. Antimicrobial assays against different Gram-positive and Gram-negative strains demonstrated good inhibitory activity of the sample against multidrug-resistant Staphylococcus species (MIC ranging from 0.9 to 14.5 mg/mL) and against Enterococcus species (from 28.8 to 57.8 mg/mL). Furthermore, results on different Staphylococcus aureus strains disclosed additional interesting anti-biofilm properties. Preliminary long-term studies (up to 9 months) on these combined properties highlighted the stabilizing effect of NADESs on the active metabolites, confirming their potential as natural and functional ingredients that could be directly incorporated into pharmaceutical and cosmetic formulations, offering enhanced efficacy and improved stability.
Full article
(This article belongs to the Special Issue Deep Eutectic Solvents for the Extraction of Bioactive Compounds from Natural Sources)
►▼
Show Figures

Figure 1
Journal Menu
► ▼ Journal Menu-
- Molecules Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal Browser-
arrow_forward_ios
Forthcoming issue
arrow_forward_ios Current issue - Vol. 31 (2026)
- Vol. 30 (2025)
- Vol. 29 (2024)
- Vol. 28 (2023)
- Vol. 27 (2022)
- Vol. 26 (2021)
- Vol. 25 (2020)
- Vol. 24 (2019)
- Vol. 23 (2018)
- Vol. 22 (2017)
- Vol. 21 (2016)
- Vol. 20 (2015)
- Vol. 19 (2014)
- Vol. 18 (2013)
- Vol. 17 (2012)
- Vol. 16 (2011)
- Vol. 15 (2010)
- Vol. 14 (2009)
- Vol. 13 (2008)
- Vol. 12 (2007)
- Vol. 11 (2006)
- Vol. 10 (2005)
- Vol. 9 (2004)
- Vol. 8 (2003)
- Vol. 7 (2002)
- Vol. 6 (2001)
- Vol. 5 (2000)
- Vol. 4 (1999)
- Vol. 3 (1998)
- Vol. 2 (1997)
- Volumes not published by MDPI
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Biomass, Energies, Materials, Molecules, Nanomaterials, Polymers
Biomass for Energy, Chemicals and Materials
Topic Editors: Shaohua Jiang, Changlei Xia, Shifeng Zhang, Xiaoshuai HanDeadline: 31 December 2025
Topic in
J. Compos. Sci., Materials, Molecules, Nanomaterials, Polymers, Processes, Recycling
Science and Technology of Polymeric Blends, Composites, and Nanocomposites
Topic Editors: Roberto Scaffaro, Emmanuel Fortunato GulinoDeadline: 28 February 2026
Topic in
Cancers, IJMS, Pharmaceuticals, Pharmaceutics, Sci. Pharm., Current Oncology, Molecules
Recent Advances in Anticancer Strategies, 2nd Edition
Topic Editors: Hassan Bousbaa, Zhiwei HuDeadline: 31 March 2026
Topic in
Applied Nano, Catalysts, Materials, Nanomaterials, Polymers, Molecules
Application of Nanomaterials in Environmental Analysis
Topic Editors: Yonggang Zhao, Yun ZhangDeadline: 13 April 2026
Conferences
Special Issues
Special Issue in
Molecules
Nanomaterials for Catalytic Upcycling/Conversion of Plastics/Biomass
Guest Editors: Lei Huang, Xiang Wang, Zhili LiDeadline: 30 December 2025
Special Issue in
Molecules
Opportunities and Challenges in Organic Optoelectronic Materials
Guest Editors: Chien-Jung Huang, Mu-Chun WangDeadline: 30 December 2025
Special Issue in
Molecules
Exploring the Potential of Biodegradable and Biocompatible Natural Polymers
Guest Editors: Meng He, Dingfeng XuDeadline: 30 December 2025
Special Issue in
Molecules
Essential Oils and Their Multifaceted Studies: From Extraction to Applications
Guest Editor: Mozaniel Santana de OliveiraDeadline: 30 December 2025
Topical Collections
Topical Collection in
Molecules
Recent Advances in Flavors and Fragrances
Collection Editor: Luca Forti
Topical Collection in
Molecules
Natural Products as Leads or Drugs against Neglected Tropical Diseases
Collection Editors: Thomas J. Schmidt, Valeria Sülsen, Josphat Matasyoh
Topical Collection in
Molecules
Featured Reviews in Natural Products Chemistry
Collection Editors: Enrique Barrajón-Catalán, Vicente Micol, María Herranz-López
Topical Collection in
Molecules
Preanalytical Methods for Natural Products Production
Collection Editors: Young Hae Choi, Farid Chemat, Giancarlo Cravotto, Erica G. Wilson





