Journal Description
Molecules
Molecules
is the leading international, peer-reviewed, open access journal of chemistry. Molecules is published semimonthly online by MDPI. The International Society of Nucleosides, Nucleotides & Nucleic Acids (IS3NA), the Spanish Society of Medicinal Chemistry (SEQT) and the International Society of Heterocyclic Chemistry (ISHC) are affiliated with Molecules and their members receive a discount on the article processing charges.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, MEDLINE, PMC, Reaxys, Embase, CaPlus / SciFinder, MarinLit, AGRIS, and other databases.
- Journal Rank: JCR - Q2 (Chemistry, Multidisciplinary) / CiteScore - Q1 (Chemistry (miscellaneous))
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 13.4 days after submission; acceptance to publication is undertaken in 3.5 days (median values for papers published in this journal in the second half of 2022).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
- Sections: published in 26 topical sections.
- Testimonials: See what our editors and authors say about Molecules.
- Companion journals for Molecules include: Foundations and Photochem.
Impact Factor:
4.927 (2021);
5-Year Impact Factor:
5.110 (2021)
Latest Articles
Synthesis, Crystal Structure, DFT Calculations, Hirshfeld Surface Analysis and In Silico Drug-Target Profiling of (R)-2-(2-(1,3-Dioxoisoindolin-2-yl)propanamido)benzoic Acid Methyl Ester
Molecules 2023, 28(11), 4375; https://doi.org/10.3390/molecules28114375 (registering DOI) - 26 May 2023
Abstract
The work here reflects synthesis, DFT studies, Hirshfeld charge analysis and crystal data exploration of pharmacologically important (R)-2-(2-(1,3-dioxoisoindolin-2-yl)propanamido)benzoic acid methyl ester (5) to understand its properties for further chemical transformations. The methyl anthranilate (2) was produced by
[...] Read more.
The work here reflects synthesis, DFT studies, Hirshfeld charge analysis and crystal data exploration of pharmacologically important (R)-2-(2-(1,3-dioxoisoindolin-2-yl)propanamido)benzoic acid methyl ester (5) to understand its properties for further chemical transformations. The methyl anthranilate (2) was produced by the esterification of anthranilic acid in an acidic medium. The phthaloyl-protected alanine (4) was rendered by the fusion of alanine with phthalic anhydride at 150 °C, followed by coupling with (2) furnished isoindole (5). The characterization of products was performed using IR, UV-Vis, NMR and MS. Single-crystal XRD also verified the structure of (5) in which N-H…O bonding stabilizes the molecular configuration of (5), resulting in the formation of S(6) hydrogen-bonded loop. The molecules of isoindole (5) are connected in the form of dimers, and the π…π stacking interaction between aromatic rings further stabilizes the crystal packing. DFT studies suggest that HOMO is over the substituted aromatic ring, the LUMO is present mainly over the indole side, and nucleophilic and electrophilic corners point out the reactivity of the product (5). In vitro and in silico analysis of (5) shows its potential as an antibacterial agent targeting DNA gyrase and Dihydroorotase from E. coli and tyrosyl-tRNA synthetase and DNA gyrase from Staphylococcus aureus.
Full article
(This article belongs to the Special Issue Chemistry of Indoles)
Open AccessArticle
Phenolic-Rich Extracts from Circular Economy: Chemical Profile and Activity against Filamentous Fungi and Dermatophytes
by
, , , , and
Molecules 2023, 28(11), 4374; https://doi.org/10.3390/molecules28114374 (registering DOI) - 26 May 2023
Abstract
Fungal infections represent a relevant issue in agri-food and biomedical fields because they could compromise quality of food and humans’ health. Natural extracts represent a safe alternative to synthetic fungicides and in the green chemistry and circular economy scenario, agro-industrial wastes and by-products
[...] Read more.
Fungal infections represent a relevant issue in agri-food and biomedical fields because they could compromise quality of food and humans’ health. Natural extracts represent a safe alternative to synthetic fungicides and in the green chemistry and circular economy scenario, agro-industrial wastes and by-products offer an eco-friendly source of bioactive natural compounds. In this paper, phenolic-rich extracts from Olea europaea L. de-oiled pomace, Castanea sativa Mill. wood, Punica granatum L. peel, and Vitis vinifera L. pomace and seeds were characterized by HPLC-MS-DAD analysis. Finally, these extracts were tested as antimicrobial agents against pathogenic filamentous fungi and dermatophytes such as Aspergillus brasiliensis, Alternaria sp., Rhizopus stolonifer, and Trichophyton interdigitale. The experimental results evidenced that all extracts exhibited a significant growth inhibition for Trichophyton interdigitale. Punica granatum L., Castanea sativa Mill., and Vitis vinifera L. extracts showed a high activity against Alternaria sp. and Rhizopus stolonifer. These data are promising for the potential applications of some of these extracts as antifungal agents in the food and biomedical fields.
Full article
(This article belongs to the Special Issue Advances in Research on Food Bioactive Molecules and Health)
Open AccessArticle
Enhancing Methane Removal Efficiency of ZrMnFe Alloy by Partial Replacement of Fe with Co
Molecules 2023, 28(11), 4373; https://doi.org/10.3390/molecules28114373 (registering DOI) - 26 May 2023
Abstract
High-purity hydrogen is extensively employed in chemical vapor deposition, and the existence of methane impurity significantly impacts the device performance. Therefore, it is necessary to purify hydrogen to remove methane. The ZrMnFe getter commonly used in the industry reacts with methane at a
[...] Read more.
High-purity hydrogen is extensively employed in chemical vapor deposition, and the existence of methane impurity significantly impacts the device performance. Therefore, it is necessary to purify hydrogen to remove methane. The ZrMnFe getter commonly used in the industry reacts with methane at a temperature as high as 700 °C, and the removal depth is not sufficient. To overcome these limitations, Co partially substitutes Fe in the ZrMnFe alloy. The alloy was prepared by suspension induction melting method, and was characterized by means of XRD, ICP, SEM and XPS. The concentration of methane at the outlet was detected by gas chromatography to characterize the hydrogen purification performance of the alloy. The removal effect of the alloy on methane in hydrogen increases first and then decreases with the increase in substitution amount, and increases with the increase in temperature. Specifically, the ZrMnFe0.7Co0.3 alloy reduces methane levels in hydrogen from 10 ppm to 0.215 ppm at 500 °C. ZrMnFe0.7Co0.3 alloy can remove 50 ppm of methane in helium to less than 0.01 ppm at 450 °C, demonstrating its excellent methane reactivity. Moreover, Co substitution reduces the formation energy barrier of ZrC, and Co in the electron-rich state demonstrates superior catalytic activity for methane decomposition.
Full article
(This article belongs to the Special Issue Advanced Optical Materials for Photodetector and Energy Conversion)
Open AccessReview
Electroactive Microorganisms in Advanced Energy Technologies
by
, , , , , , , and
Molecules 2023, 28(11), 4372; https://doi.org/10.3390/molecules28114372 (registering DOI) - 26 May 2023
Abstract
Large-scale production of green and pollution-free materials is crucial for deploying sustainable clean energy. Currently, the fabrication of traditional energy materials involves complex technological conditions and high costs, which significantly limits their broad application in the industry. Microorganisms involved in energy production have
[...] Read more.
Large-scale production of green and pollution-free materials is crucial for deploying sustainable clean energy. Currently, the fabrication of traditional energy materials involves complex technological conditions and high costs, which significantly limits their broad application in the industry. Microorganisms involved in energy production have the advantages of inexpensive production and safe process and can minimize the problem of chemical reagents in environmental pollution. This paper reviews the mechanisms of electron transport, redox, metabolism, structure, and composition of electroactive microorganisms in synthesizing energy materials. It then discusses and summarizes the applications of microbial energy materials in electrocatalytic systems, sensors, and power generation devices. Lastly, the research progress and existing challenges for electroactive microorganisms in the energy and environment sectors described herein provide a theoretical basis for exploring the future application of electroactive microorganisms in energy materials.
Full article
(This article belongs to the Special Issue Energy-Relevant Advanced Materials)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Highly Luminescent Europium(III) Complexes in Solution and PMMA-Doped Films for Bright Red Electroluminescent Devices
by
, , , , , , , and
Molecules 2023, 28(11), 4371; https://doi.org/10.3390/molecules28114371 (registering DOI) - 26 May 2023
Abstract
This paper reports the synthesis, structure, photophysical, and optoelectronic properties of five eight-coordinate Europium(III) ternary complexes, namely, [Eu(hth)3(L)2], bearing 4,4,5,5,6,6,6-heptafluoro-1-(2-thienyl)-1,3-hexanedione (hth) as a sensitizer and L = H2O (1), dpso (diphenyl sulphoxide, 2), dpsoCH
[...] Read more.
This paper reports the synthesis, structure, photophysical, and optoelectronic properties of five eight-coordinate Europium(III) ternary complexes, namely, [Eu(hth)3(L)2], bearing 4,4,5,5,6,6,6-heptafluoro-1-(2-thienyl)-1,3-hexanedione (hth) as a sensitizer and L = H2O (1), dpso (diphenyl sulphoxide, 2), dpsoCH3 (4,4′-dimethyl diphenyl sulfoxide, 3), dpsoCl (bis(4-chlorophenyl)sulphoxide, 4), and tppo (triphenylphosphine oxide, 5) as co-ligands. The NMR and the crystal structure analysis confirmed the eight-coordinate structures of the complexes in solution and in a solid state. Upon UV-excitation on the absorption band of the β-diketonate ligand hth, all complexes showed the characteristic bright red luminescence of the Europium ion. The tppo derivative (5) displayed the highest quantum yield (up to 66%). As a result, an organic light-emitting device, OLED, was fabricated with a multi-layered structure—ITO/MoO3/mCP/SF3PO:[complex 5] (10%)/TPBi:[complex 5] (10%)/TmPyPB/LiF/Al—using complex 5 as the emitting component.
Full article
(This article belongs to the Special Issue Applications of Metal Complexes)
Open AccessReview
Application of Metal-Based Nanomaterials in In Vitro Diagnosis of Tumor Markers: Summary and Prospect
Molecules 2023, 28(11), 4370; https://doi.org/10.3390/molecules28114370 (registering DOI) - 26 May 2023
Abstract
Cancer, which presents with high incidence and mortality rates, has become a significant health threat worldwide. However, there is currently no effective solution for rapid screening and high-quality treatment of early-stage cancer patients. Metal-based nanoparticles (MNPs), as a new type of compound with
[...] Read more.
Cancer, which presents with high incidence and mortality rates, has become a significant health threat worldwide. However, there is currently no effective solution for rapid screening and high-quality treatment of early-stage cancer patients. Metal-based nanoparticles (MNPs), as a new type of compound with stable properties, convenient synthesis, high efficiency, and few adverse reactions, have become highly competitive tools for early cancer diagnosis. Nevertheless, challenges such as the difference between the microenvironment of detected markers and the real-life body fluids remain in achieving widespread clinical application of MNPs. This review provides a comprehensive review of the research progress made in the field of in vitro cancer diagnosis using metal-based nanoparticles. By delving into the characteristics and advantages of these materials, this paper aims to inspire and guide researchers towards fully exploiting the potential of metal-based nanoparticles in the early diagnosis and treatment of cancer.
Full article
(This article belongs to the Special Issue New Trends in the Design of Metal Nanoparticles and Their Medical Applications)
Open AccessReview
On the Use of Deuterated Organic Solvents without TMS to Report 1H/13C NMR Spectral Data of Organic Compounds: Current State of the Method, Its Pitfalls and Benefits, and Related Issues
Molecules 2023, 28(11), 4369; https://doi.org/10.3390/molecules28114369 (registering DOI) - 26 May 2023
Abstract
The quite popular, simple but imperfect method of referencing NMR spectra to residual 1H and 13C signals of TMS-free deuterated organic solvents (referred to as Method A) is critically discussed for six commonly used NMR solvents with respect to their δ
[...] Read more.
The quite popular, simple but imperfect method of referencing NMR spectra to residual 1H and 13C signals of TMS-free deuterated organic solvents (referred to as Method A) is critically discussed for six commonly used NMR solvents with respect to their δH and δC data that exist in the literature. Taking into account the most reliable data, it was possible to recommend ‘best’ δX values for such secondary internal standards. The position of these reference points on the δ scale strongly depends on the concentration and type of analyte under study and the solvent medium used. For some solvents, chemically induced shifts (CISs) of residual 1H lines were considered, also taking into account the formation of 1:1 molecular complexes (for CDCl3). Typical potential errors that can occur as a result of improper application of Method A are considered in detail. An overview of all found δX values adopted by users of this method revealed a discrepancy of up to 1.9 ppm in δC reported for CDCl3, most likely caused by the CIS mentioned above. The drawbacks of Method A are discussed in relation to the classical use of an internal standard (Method B), two ‘instrumental’ schemes in which Method A is often implicitly applied, that is, the default Method C using 2H lock frequencies and Method D based on Ξ values, recommended by the IUPAC but only occasionally used for 1H/13C spectra, and external referencing (Method E). Analysis of current needs and opportunities for NMR spectrometers led to the conclusion that, for the most accurate application of Method A, it is necessary to (a) use dilute solutions in a single NMR solvent and (b) to report δX data applied for the reference 1H/13C signals to the nearest 0.001/0.01 ppm to ensure the precise characterization of new synthesized or isolated organic systems, especially those with complex or unexpected structures. However, the use of TMS in Method B is strongly recommended in all such cases.
Full article
(This article belongs to the Special Issue New Insights into Nuclear Magnetic Resonance (NMR) Spectroscopy)
Open AccessArticle
Microscopic Droplet Size Analysis (MDSA) of “Five Thieves’ Oil” (Olejek Pięciu Złodziei) Essential Oil after the Nebulization Process
by
, , , , , , , , , , , , and
Molecules 2023, 28(11), 4368; https://doi.org/10.3390/molecules28114368 (registering DOI) - 26 May 2023
Abstract
Nowadays, due to a higher resistance to drugs, antibiotics, and antiviral medicaments, new ways of fighting pathogens are intensively studied. The alternatives for synthesized compositions are natural products, most of which have been known in natural medicine for a long time. One of
[...] Read more.
Nowadays, due to a higher resistance to drugs, antibiotics, and antiviral medicaments, new ways of fighting pathogens are intensively studied. The alternatives for synthesized compositions are natural products, most of which have been known in natural medicine for a long time. One of the best-known and intensively investigated groups are essential oils (EOs) and their compositions. However, it is worth noting that the method of application can play a second crucial part in the effectiveness of the antimicrobial activity. EOs possess various natural compounds which exhibit antimicrobial activity. One of the compositions which is based on the five main ingredients of eucalyptus, cinnamon, clove, rosemary, and lemon is named “five thieves’ oil” (Polish name: olejek pięciu złodziei) (5TO) and is used in natural medicine. In this study, we focused on the droplet size distribution of 5TO during the nebulization process, evaluated by the microscopic droplet size analysis (MDSA) method. Furthermore, viscosity studies, as well as UV-Vis of the 5TO suspensions in medical solvents such as physiological salt and hyaluronic acid, were presented, along with measurements of refractive index, turbidity, pH, contact angle, and surface tension. Additional studies on the biological activity of 5TO solutions were made on the P. aeruginosa strain NFT3. This study opens a way for the possible use of 5TO solutions or emulsion systems for active antimicrobial applications, i.e., for surface spraying.
Full article
(This article belongs to the Special Issue Essential Oils II)
Open AccessReview
The Corey-Seebach Reagent in the 21st Century: A Review
by
, , , , , , , , and
Molecules 2023, 28(11), 4367; https://doi.org/10.3390/molecules28114367 (registering DOI) - 26 May 2023
Abstract
The Corey-Seebach reagent plays an important role in organic synthesis because of its broad synthetic applications. The Corey-Seebach reagent is formed by the reaction of an aldehyde or a ketone with 1,3-propane-dithiol under acidic conditions, followed by deprotonation with n-butyllithium. A large
[...] Read more.
The Corey-Seebach reagent plays an important role in organic synthesis because of its broad synthetic applications. The Corey-Seebach reagent is formed by the reaction of an aldehyde or a ketone with 1,3-propane-dithiol under acidic conditions, followed by deprotonation with n-butyllithium. A large variety of natural products (alkaloids, terpenoids, and polyketides) can be accessed successfully by utilizing this reagent. This review article focuses on the recent contributions (post-2006) of the Corey-Seebach reagent towards the total synthesis of natural products such as alkaloids (lycoplanine A, diterpenoid alkaloids, etc.), terpenoids (bisnorditerpene, totarol, etc.), polyketide (ambruticin J, biakamides, etc.), and heterocycles such as rodocaine and substituted pyridines, as well and their applications towards important organic synthesis.
Full article
(This article belongs to the Special Issue Recent Advances in Organic Synthesis Related to Natural Compounds)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Fe-Incorporated Nickel-Based Bimetallic Metal–Organic Frameworks for Enhanced Electrochemical Oxygen Evolution
Molecules 2023, 28(11), 4366; https://doi.org/10.3390/molecules28114366 (registering DOI) - 26 May 2023
Abstract
Developing cost-effective and high-efficiency catalysts for electrocatalytic oxygen evolution reaction (OER) is crucial for energy conversions. Herein, a series of bimetallic NiFe metal–organic frameworks (NiFe-BDC) were prepared by a simple solvothermal method for alkaline OER. The synergistic effect between Ni and Fe as
[...] Read more.
Developing cost-effective and high-efficiency catalysts for electrocatalytic oxygen evolution reaction (OER) is crucial for energy conversions. Herein, a series of bimetallic NiFe metal–organic frameworks (NiFe-BDC) were prepared by a simple solvothermal method for alkaline OER. The synergistic effect between Ni and Fe as well as the large specific surface area lead to a high exposure of Ni active sites during the OER. The optimized NiFe-BDC-0.5 exhibits superior OER performances with a small overpotential of 256 mV at a current density of 10 mA cm−2 and a low Tafel slope of 45.4 mV dec−1, which outperforms commercial RuO2 and most of the reported MOF-based catalysts reported in the literature. This work provides a new insight into the design of bimetallic MOFs in the applications of electrolysis.
Full article
(This article belongs to the Special Issue Advanced Electrode Materials for Electrochemical Energy Storage and Conversion)
►▼
Show Figures

Figure 1
Open AccessArticle
Isolation, Identification and Molecular Mechanism Analysis of the Nematicidal Compound Spectinabilin from Newly Isolated Streptomyces sp. DT10
by
, , , , , , and
Molecules 2023, 28(11), 4365; https://doi.org/10.3390/molecules28114365 (registering DOI) - 26 May 2023
Abstract
►▼
Show Figures
Plant parasitic nematodes (PPNs) are highly destructive and difficult to control, while conventional chemical nematicides are highly toxic and cause serious environmental pollution. Additionally, resistance to existing pesticides is becoming increasingly common. Biological control is the most promising method for the controlling of
[...] Read more.
Plant parasitic nematodes (PPNs) are highly destructive and difficult to control, while conventional chemical nematicides are highly toxic and cause serious environmental pollution. Additionally, resistance to existing pesticides is becoming increasingly common. Biological control is the most promising method for the controlling of PPNs. Therefore, the screening of nematicidal microbial resources and the identification of natural products are of great significance and urgency for the environmentally friendly control of PPNs. In this study, the DT10 strain was isolated from wild moss samples and identified as Streptomyces sp. by morphological and molecular analysis. Using Caenorhabditis elegans as a model, the extract of DT10 was screened for nematicidal activity, which elicited 100% lethality. The active compound was isolated from the extracts of strain DT10 using silica gel column chromatography and semipreparative high-performance liquid chromatography (HPLC). The compound was identified as spectinabilin (chemical formula C28H31O6N) using liquid chromatography mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR). Spectinabilin exhibited a good nematicidal activity on C. elegans L1 worms, with a half-maximal inhibitory concentration (IC50) of 2.948 μg/mL at 24 h. The locomotive ability of C. elegans L4 worms was significantly reduced when treated with 40 μg/mL spectinabilin. Further analysis of spectinabilin against known nematicidal drug target genes in C. elegans showed that it acts via target(s) different from those of some currently used nematicidal drugs such as avermectin and phosphine thiazole. This is the first report on the nematicidal activity of spectinabilin on C. elegans and the southern root-knot nematode Meloidogyne incognita. These findings may pave the way for further research and application of spectinabilin as a potential biological nematicide.
Full article

Figure 1
Open AccessArticle
A General Synthesis of Cross-Conjugated Enynones through Pd Catalyzed Sonogashira Coupling with Triazine Esters
by
, , , , , , , and
Molecules 2023, 28(11), 4364; https://doi.org/10.3390/molecules28114364 (registering DOI) - 26 May 2023
Abstract
The palladium-catalyzed Sonogashira coupling of α, β-unsaturated acid derivatives offers a diversity-oriented synthetic strategy for cross-conjugated enynones. However, the susceptibility of the unsaturated C-C bonds adjacent to the carbonyl group toward Pd catalysts makes the direct conversion of α, β-unsaturated derivatives as acyl
[...] Read more.
The palladium-catalyzed Sonogashira coupling of α, β-unsaturated acid derivatives offers a diversity-oriented synthetic strategy for cross-conjugated enynones. However, the susceptibility of the unsaturated C-C bonds adjacent to the carbonyl group toward Pd catalysts makes the direct conversion of α, β-unsaturated derivatives as acyl electrophiles to cross-conjugated ketones rare. This work presents a highly selective C-O activation approach to prepare cross-conjugated enynones using α, β-unsaturated triazine esters as acyl electrophiles. Under base and phosphine ligand-free conditions, NHC-Pd(II)-Allyl precatalyst alone catalyzed the cross-coupling of α, β-unsaturated triazine esters with terminal alkynes efficiently, yielding 31 cross-conjugated enynones with diverse functional groups. This method demonstrates the potential of triazine-mediated C-O activation for preparing highly functionalized ketones.
Full article
(This article belongs to the Section Organometallic Chemistry)
►▼
Show Figures

Scheme 1
Open AccessArticle
Impact of Fermentation Conditions on Physicochemical Properties, Antioxidant Activity, and Sensory Properties of Apple–Tomato Pulp
Molecules 2023, 28(11), 4363; https://doi.org/10.3390/molecules28114363 (registering DOI) - 26 May 2023
Abstract
The aim of the study was to optimize the conditions [inoculum size (4, 6, and 8%), fermentation temperature (31, 34, and 37 °C), and apple: tomato ratio (2:1, 1:1, and 1:2)] on the viable cell count and sensory evaluation in apple–tomato pulp by
[...] Read more.
The aim of the study was to optimize the conditions [inoculum size (4, 6, and 8%), fermentation temperature (31, 34, and 37 °C), and apple: tomato ratio (2:1, 1:1, and 1:2)] on the viable cell count and sensory evaluation in apple–tomato pulp by response surface methodology (RSM), and determine the physicochemical properties, antioxidant activity, and sensory properties during fermentation. The optimal treatment parameters obtained were an inoculum size of 6.5%, a temperature of 34.5 °C, and an apple: tomato ratio of 1:1. After fermentation, the viable cell count reached 9.02 lg(CFU/mL), and the sensory evaluation score was 32.50. During the fermentation period, the pH value, total sugar, and reducing sugar decreased by 16.67%, 17.15%, and 36.05%, respectively. However, the total titratable acid (TTA), viable cell count, total phenol content (TPC), and total flavone content (TFC) increased significantly by 13.64%, 9.04%, 21.28%, and 22.22%, respectively. The antioxidant activity [2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging ability, 2,2′-azino-di(2-ethyl-benzthiazoline-sulfonic acid-6) ammonium salt (ABTS) free-radical scavenging ability, and ferric-reducing antioxidant capacity power (FRAP)] also increased by 40.91%, 22.60%, and 3.65%, respectively, during fermentation. A total of 55 volatile flavour compounds were detected using HS-SPME-GC–MS among the uninoculated samples and fermented samples before and after fermentation. The results showed that fermentation increased the types and total amount of volatile components in apple–tomato pulp, and eight new alcohols and seven new esters were formed. Alcohols, esters, and acids were the main volatile components in apple–tomato pulp, accounting for 57.39%, 10.27%, and 7.40% of the total volatile substances, respectively.
Full article
(This article belongs to the Section Food Chemistry)
►▼
Show Figures

Figure 1
Open AccessArticle
Anti-Photoaging Effects of Nanocomposites of Amphiphilic Chitosan/18β-Glycyrrhetinic Acid
by
, , , , , , , and
Molecules 2023, 28(11), 4362; https://doi.org/10.3390/molecules28114362 (registering DOI) - 26 May 2023
Abstract
►▼
Show Figures
Improving the transdermal absorption of weakly soluble drugs for topical use can help to prevent and treat skin photoaging. Nanocrystals of 18β-glycyrrhetinic acid (i.e., NGAs) prepared by high-pressure homogenization and amphiphilic chitosan (ACS) were used to form ANGA composites by electrostatic adsorption, and
[...] Read more.
Improving the transdermal absorption of weakly soluble drugs for topical use can help to prevent and treat skin photoaging. Nanocrystals of 18β-glycyrrhetinic acid (i.e., NGAs) prepared by high-pressure homogenization and amphiphilic chitosan (ACS) were used to form ANGA composites by electrostatic adsorption, and the optimal ratio of NGA to ACS was 10:1. Dynamic light scattering analysis and zeta potential analysis were used to evaluate the nanocomposites’ suspension, and the results showed that mean particle size was 318.8 ± 5.4 nm and the zeta potential was 30.88 ± 1.4 mV after autoclaving (121 °C, 30 min). The results of CCK-8 showed that the half-maximal inhibitory concentration (IC50) of ANGAs (71.9 μg/mL) was higher than that of NGAs (51.6 μg/mL), indicating that the cytotoxicity of ANGAs was weaker than that of NGAs at 24 h. After the composite had been prepared as a hydrogel, the vertical diffusion (Franz) cells were used to investigate skin permeability in vitro, and it was shown that the cumulative permeability of the ANGA hydrogel increased from 56.5 ± 1.4% to 75.3 ± 1.8%. The efficacy of the ANGA hydrogel against skin photoaging was studied by constructing a photoaging animal model under ultraviolet (UV) irradiation and staining. The ANGA hydrogel improved the photoaging characteristics of UV-induced mouse skin significantly, improved structural changes (e.g., breakage and clumping of collagen and elastic fibers in the dermis) significantly, and improved skin elasticity, while it inhibited the abnormal expression of matrix metalloproteinase (MMP)-1 and MMP-3 significantly, thereby reducing the damage caused by UV irradiation to the collagen-fiber structure. These results indicated that the NGAs could enhance the local penetration of GA into the skin and significantly improve the photoaging of mouse skin. The ANGA hydrogel could be used to counteract skin photoaging.
Full article

Graphical abstract
Open AccessArticle
Pro-Apoptotic Activity and Cell Cycle Arrest of Caulerpa sertularioides against SKLU-1 Cancer Cell in 2D and 3D Cultures
by
, , , , , and
Molecules 2023, 28(11), 4361; https://doi.org/10.3390/molecules28114361 (registering DOI) - 26 May 2023
Abstract
Cancer is a disease with the highest mortality and morbidity rate worldwide. First-line drugs induce several side effects that drastically reduce the quality of life of people with this disease. Finding molecules to prevent it or generate less aggressiveness or no side effects
[...] Read more.
Cancer is a disease with the highest mortality and morbidity rate worldwide. First-line drugs induce several side effects that drastically reduce the quality of life of people with this disease. Finding molecules to prevent it or generate less aggressiveness or no side effects is significant to counteract this problem. Therefore, this work searched for bioactive compounds of marine macroalgae as an alternative treatment. An 80% ethanol extract of dried Caulerpa sertularioides (CSE) was analyzed by HPLS-MS to identify the chemical components. CSE was utilized through a comparative 2D versus 3D culture model. Cisplatin (Cis) was used as a standard drug. The effects on cell viability, apoptosis, cell cycle, and tumor invasion were evaluated. The IC50 of CSE for the 2D model was 80.28 μg/mL versus 530 μg/mL for the 3D model after 24 h of treatment exposure. These results confirmed that the 3D model is more resistant to treatments and complex than the 2D model. CSE generated a loss of mitochondrial membrane potential, induced apoptosis by extrinsic and intrinsic pathways, upregulated caspases-3 and -7, and significantly decreased tumor invasion of a 3D SKLU-1 lung adenocarcinoma cell line. CSE generates biochemical and morphological changes in the plasma membrane and causes cell cycle arrest at the S and G2/M phases. These findings conclude that C. sertularioides is a potential candidate for alternative treatment against lung cancer. This work reinforced the use of complex models for drug screening and suggested using CSE’s primary component, caulerpin, to determine its effect and mechanism of action on SKLU-1 in the future. A multi-approach with molecular and histological analysis and combination with first-line drugs must be included.
Full article
(This article belongs to the Special Issue Advances in Natural Products and Their Biological Activities)
►▼
Show Figures

Figure 1
Open AccessArticle
Optical Window to Polarity of Electrolyte Solutions
by
and
Molecules 2023, 28(11), 4360; https://doi.org/10.3390/molecules28114360 (registering DOI) - 26 May 2023
Abstract
Medium polarity plays a crucial role in charge-transfer processes and electrochemistry. The added supporting electrolyte in electrochemical setups, essential for attaining the needed electrical conductivity, sets challenges for estimating medium polarity. Herein, we resort to Lippert–Mataga–Ooshika (LMO) formalism for estimating the Onsager polarity
[...] Read more.
Medium polarity plays a crucial role in charge-transfer processes and electrochemistry. The added supporting electrolyte in electrochemical setups, essential for attaining the needed electrical conductivity, sets challenges for estimating medium polarity. Herein, we resort to Lippert–Mataga–Ooshika (LMO) formalism for estimating the Onsager polarity of electrolyte organic solutions pertinent to electrochemical analysis. An amine derivative of 1,8-naphthalimide proves to be an appropriate photoprobe for LMO analysis. An increase in electrolyte concentration enhances the polarity of the solutions. This effect becomes especially pronounced for low-polarity solvents. Adding 100 mM tetrabutylammonium hexafluorophosphate to chloroform results in solution polarity exceeding that of neat dichloromethane and 1,2-dichloroethane. Conversely, the observed polarity enhancement that emerges upon the same electrolyte addition to solvents such as acetonitrile and N,N-dimethylformamide is hardly as dramatic. Measured refractive indices provide a means for converting Onsager to Born polarity, which is essential for analyzing medium effects on electrochemical trends. This study demonstrates a robust optical means, encompassing steady-state spectroscopy and refractometry, for characterizing solution properties important for charge-transfer science and electrochemistry.
Full article
(This article belongs to the Special Issue Chemical Insights in Photofunctional Organic Compounds—a Themed Issue Dedicated to Professor Vaidhyanathan Ramamurthy)
►▼
Show Figures

Figure 1
Open AccessArticle
Stretch-Induced Down-Regulation of HCN2 Suppresses Contractile Activity
by
, , , , , , , , and
Molecules 2023, 28(11), 4359; https://doi.org/10.3390/molecules28114359 (registering DOI) - 26 May 2023
Abstract
Although hyperpolarization-activated and cyclic nucleotide-gated 2 channels (HCN2) are expressed in multiple cell types in the gut, the role of HCN2 in intestinal motility is poorly understood. HCN2 is down-regulated in intestinal smooth muscle in a rodent model of ileus. Thus, the purpose
[...] Read more.
Although hyperpolarization-activated and cyclic nucleotide-gated 2 channels (HCN2) are expressed in multiple cell types in the gut, the role of HCN2 in intestinal motility is poorly understood. HCN2 is down-regulated in intestinal smooth muscle in a rodent model of ileus. Thus, the purpose of this study was to determine the effects of HCN inhibition on intestinal motility. HCN inhibition with ZD7288 or zatebradine significantly suppressed both spontaneous and agonist-induced contractile activity in the small intestine in a dose-dependent and tetrodotoxin-independent manner. HCN inhibition significantly suppressed intestinal tone but not contractile amplitude. The calcium sensitivity of contractile activity was significantly suppressed by HCN inhibition. Inflammatory mediators did not affect the suppression of intestinal contractile activity by HCN inhibition but increased stretch of the intestinal tissue partially attenuated the effects of HCN inhibition on agonist-induced intestinal contractile activity. HCN2 protein and mRNA levels in intestinal smooth muscle tissue were significantly down-regulated by increased mechanical stretch compared to unstretched tissue. Increased cyclical stretch down-regulated HCN2 protein and mRNA levels in primary human intestinal smooth muscle cells and macrophages. Overall, our results suggest that decreased HCN2 expression induced by mechanical signals, such as intestinal wall distension or edema development, may contribute to the development of ileus.
Full article
(This article belongs to the Special Issue Channels and Transporters as Drug Targets)
►▼
Show Figures

Figure 1
Open AccessArticle
In Silico and In Vitro Methods in the Characterization of Beta-Carotene as Pharmaceutical Material via Acetylcholine Esterase Inhibitory Actions
by
, , , , , and
Molecules 2023, 28(11), 4358; https://doi.org/10.3390/molecules28114358 (registering DOI) - 26 May 2023
Abstract
Molecular docking is widely used in the assessment of the therapeutic potential of pharmaceutical agents. The binding properties of beta-carotene (BC) to acetylcholine esterase (AChE) proteins were characterized using the molecular docking method. The mechanism of AChE inhibition was assessed by an experimental
[...] Read more.
Molecular docking is widely used in the assessment of the therapeutic potential of pharmaceutical agents. The binding properties of beta-carotene (BC) to acetylcholine esterase (AChE) proteins were characterized using the molecular docking method. The mechanism of AChE inhibition was assessed by an experimental in vitro kinetic study. In addition, the role of BC action was tested by the zebrafish embryo toxicity test (ZFET). The results of the docking ability of BC to AChE showed significant ligand binding mode. The kinetic parameter, i.e., the low AICc value shown as the compound was the competitive type of inhibition of AChE. Further, BC also showed mild toxicity at a higher dose (2200 mg/L) in ZFET assessment with changes in biomarkers. The LC50 value of BC is 1811.94 mg/L. Acetylcholine esterase (AChE) plays a pivotal role in the hydrolysis of acetylcholine, which leads to the development of cognitive dysfunction. BC possesses the regulation of acetylcholine esterase (AChE) and acid phosphatase (AP) activity to prevent neurovascular dysfunction. Therefore, the characterization of BC could be used as a pharmaceutical agent for the treatment of cholinergic neurotoxicity-associated neurovascular disorders such as developmental toxicity, vascular dementia, and Alzheimer’s disease due to its AChE and AP inhibitory actions.
Full article
(This article belongs to the Special Issue Computational Studies on the Development and Characterization of Pharmaceutical Materials)
►▼
Show Figures

Figure 1
Open AccessReview
MicroRNA Regulation in Infectious Diseases and Its Potential as a Biosensor in Future Aquaculture Industry: A Review
Molecules 2023, 28(11), 4357; https://doi.org/10.3390/molecules28114357 (registering DOI) - 26 May 2023
Abstract
An infectious disease is the most apprehensive problem in aquaculture as it can lead to high mortality in aquatic organisms and massive economic loss. Even though significant progress has been accomplished in therapeutic, prevention, and diagnostic using several potential technologies, more robust inventions
[...] Read more.
An infectious disease is the most apprehensive problem in aquaculture as it can lead to high mortality in aquatic organisms and massive economic loss. Even though significant progress has been accomplished in therapeutic, prevention, and diagnostic using several potential technologies, more robust inventions and breakthroughs should be achieved to control the spread of infectious diseases. MicroRNA (miRNA) is an endogenous small non-coding RNA that post-transcriptionally regulates the protein-coding genes. It involves various biological regulatory mechanisms in organisms such as cell differentiation, proliferation, immune responses, development, apoptosis, and others. Furthermore, an miRNA also acts as a mediator to either regulate host responses or enhance the replication of diseases during infection. Therefore, the emergence of miRNAs could be potential candidates for the establishment of diagnostic tools for numerous infectious diseases. Interestingly, studies have revealed that miRNAs can be used as biomarkers and biosensors to detect diseases, and can also be used to design vaccines to attenuate pathogens. This review provides an overview of miRNA biogenesis and specifically focuses on its regulation during infection in aquatic organisms, especially on the host immune responses and how miRNAs enhance the replication of pathogens in the organism. In addition to that, we explored the potential applications, including diagnostic methods and treatments, that can be employed in the aquaculture industry.
Full article
(This article belongs to the Section Food Chemistry)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Biotech Application of Exopolysaccharides from Curvularia brachyspora: Optimization of Production, Structural Characterization, and Biological Activity
by
, , , , , , and
Molecules 2023, 28(11), 4356; https://doi.org/10.3390/molecules28114356 - 26 May 2023
Abstract
C. brachyspora, a widespread dematiaceous fungus, was evaluated in this study to optimize the production of exopolysaccharides (CB-EPS). Optimization was performed using response surface methodology, and the best production yielded 75.05% of total sugar at pH 7.4, with 0.1% urea, after 197
[...] Read more.
C. brachyspora, a widespread dematiaceous fungus, was evaluated in this study to optimize the production of exopolysaccharides (CB-EPS). Optimization was performed using response surface methodology, and the best production yielded 75.05% of total sugar at pH 7.4, with 0.1% urea, after 197 h. The obtained CB-EPS showed typical signals of polysaccharides, which was confirmed by FT-IR and NMR. The HPSEC analysis indicated a polydisperse polymer, showing a non-uniform peak, with an average molar mass (Mw) of 24,470 g/mol. The major monosaccharide was glucose (63.9 Mol%), followed by mannose (19.7 Mol%), and galactose (16.4 Mol%). Methylation analysis encountered derivatives that indicated the presence of a β-d-glucan and a highly branched glucogalactomannan. CB-EPS was tested on murine macrophages to verify its immunoactivity, and the treated cells were able to produce TNF-α, IL-6, and IL-10. However, the cells did not produce superoxide anions or nitric oxide nor stimulated phagocytosis. The results demonstrated an indirect antimicrobial activity of macrophages by stimulating cytokines, showing another biotech applicability for the exopolysaccharides produced by C. brachyspora.
Full article
(This article belongs to the Special Issue Polysaccharides and Their Biological Activities)
►▼
Show Figures

Figure 1
Journal Menu
► ▼ Journal Menu-
- Molecules Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal Browser-
arrow_forward_ios
Forthcoming issue
arrow_forward_ios Current issue - Vol. 28 (2023)
- Vol. 27 (2022)
- Vol. 26 (2021)
- Vol. 25 (2020)
- Vol. 24 (2019)
- Vol. 23 (2018)
- Vol. 22 (2017)
- Vol. 21 (2016)
- Vol. 20 (2015)
- Vol. 19 (2014)
- Vol. 18 (2013)
- Vol. 17 (2012)
- Vol. 16 (2011)
- Vol. 15 (2010)
- Vol. 14 (2009)
- Vol. 13 (2008)
- Vol. 12 (2007)
- Vol. 11 (2006)
- Vol. 10 (2005)
- Vol. 9 (2004)
- Vol. 8 (2003)
- Vol. 7 (2002)
- Vol. 6 (2001)
- Vol. 5 (2000)
- Vol. 4 (1999)
- Vol. 3 (1998)
- Vol. 2 (1997)
- Volumes not published by MDPI
Highly Accessed Articles
Latest Books
E-Mail Alert
News
25 May 2023
Meet Us at the 7th Scientific Meeting of Ph.D. Students (JPhD2023), 7–9 June 2023, Barcelona, Spain
Meet Us at the 7th Scientific Meeting of Ph.D. Students (JPhD2023), 7–9 June 2023, Barcelona, Spain
12 May 2023
Meet Us at the 2020-2023 China Mass Spectrometry Conference, 9–13 June 2023, Hangzhou, China
Meet Us at the 2020-2023 China Mass Spectrometry Conference, 9–13 June 2023, Hangzhou, China
Topics
Topic in
Applied Sciences, Biosensors, Micromachines, Molecules, Sensors
Advances in Microfluidics and Lab on a Chip Technology
Topic Editors: Roman Grzegorz Szafran, Yi YangDeadline: 31 May 2023
Topic in
Chemosensors, Foods, Molecules, Nanomaterials, Toxics
Advances in Chemistry, XXVIth International Galician Portuguese Conference on Chemistry
Topic Editors: Jose Manuel Andrade, Luis Cuadros-RodríguezDeadline: 15 June 2023
Topic in
Biomolecules, Catalysts, IJMS, Microorganisms, Molecules
Advances in Enzymes and Protein Engineering
Topic Editors: Yung-Chuan Liu, Jose M. Guisan, Antonio ZuorroDeadline: 30 June 2023
Topic in
Antioxidants, Foods, Molecules, Oxygen, Plants
Antioxidant Activity in Plants, Plant-Derived Bioactive Compounds and Foods
Topic Editors: Andrei Mocan, Simone CarradoriDeadline: 31 July 2023
Conferences
Special Issues
Special Issue in
Molecules
Biorefineries
Guest Editors: Jalel Labidi, Xabier ErdociaDeadline: 1 June 2023
Special Issue in
Molecules
Phytochemicals: Isolation, Identification, Biological Activity and Computational Studies
Guest Editor: Chia Ming ChangDeadline: 15 June 2023
Special Issue in
Molecules
2D Materials for Biomedical Applications
Guest Editors: Minas M. Stylianakis, Athanasios SkourasDeadline: 30 June 2023
Special Issue in
Molecules
Coordination Chemistry in Cancer Therapy
Guest Editors: Tiziana Pivetta, Sarah VascellariDeadline: 15 July 2023
Topical Collections
Topical Collection in
Molecules
Ultrasound- and Microwave-Assisted Extraction of Bioactive Compounds
Collection Editors: Stela Jokić, Jelena Vladić
Topical Collection in
Molecules
Novel Approache of Anticancer Therapy
Collection Editor: Isabelle Mus-Veteau
Topical Collection in
Molecules
Early-Career Researchers in Chemistry
Collection Editors: Antonella Curulli, Eugenio Aprea, Francesca Cardona, Ioanna Chinou, James Gauld, Lakshmi Kotra, Maurizio Peruzzini




