- Article
Effect of Alkyl Chain Length and Hydroxyl Substitution on the Antioxidant Activity of Gallic Acid Esters
- Qi Chen,
- Shuaiwei Cui and
- Wenwen Zhang
- + 6 authors
Gallic acid (GA) exhibits excellent antioxidant properties but suffers from chemical instability due to its carboxyl group, which limits practical application. To address this, we designed and investigated 14 distinct ester derivatives of GA, which were categorized into two major groups based on their substituents: chain alkyl and hydroxyl-substituted alkyl groups. Systematic evaluation revealed a striking decline in the DPPH radical scavenging activity of alkyl esters with increasing carbon chain length, from 91.9% for GA-C3 to 55.6% for GA-C30. The hydroxyl-functionalized GA esters GA-EG, GA-GL, and GA-PT maintain high antioxidant activity (>90%) while improving applicability through carboxyl substitution. In the oil system, all derivatives significantly prolong the oxidation induction time, with GA-C3 exhibiting the highest performance by extending the induction time by 2.15 h. Hydroxyl-functionalized esters such as GA-EG, GA-GL, and GA-PT also demonstrated significant efficacy, prolonging oxidation induction by 1.92 to 2.03 h. The results suggest how the structure of GA esters affects their antioxidant behavior, providing a direction for designing antioxidants suitable for specific systems.
7 January 2026







