You are currently viewing a new version of our website. To view the old version click .

Molecules

Molecules is a leading international, peer-reviewed, open access journal of chemistry published semimonthly online by MDPI.
Indexed in PubMed | Quartile Ranking JCR - Q2 (Biochemistry and Molecular Biology | Chemistry, Multidisciplinary)

All Articles (62,504)

Herba Hyssopi is a key remedy in Uighur medicine for asthma and cough, frequently used as the monarch or minister herb in prescriptions. However, the lack of effective quality assessment methods complicates the detection of adulteration with common substitutes. In this study, UPLC-LTQ-Orbitrap-MS, network pharmacology, molecular docking, and cell experiments were employed to establish scientific and effective quality control methods to differentiate Hyssopus cuspidatus Boiss from its common adulterants. The results showed that a total of 41 chemical constituents were identified from Herba Hyssopi. Network pharmacology analysis revealed 133 potential target genes associated with its therapeutic actions, among which EGFR, MMP9, TNF, PTGS2, MAPK3, ESR1, and TP53 emerged as key targets. Cellular experiments further demonstrated that diosmin, linarin, and rosmarinic acid significantly suppressed nitric oxide (NO) generation and the release of pro-inflammatory cytokines. Based on these findings, a validated HPLC method was established for the simultaneous quantification of these three bioactive markers, providing a reliable tool for the quality assessment and authentication of Herba Hyssopi. This study offers a scientific basis for improving the standardization and quality control of Herba Hyssopi in traditional medicine applications.

6 January 2026

Total ion chromatograms of Herba Hyssopi in both positive (A) and negative (B) ion modes.

Organic light-emitting diodes (OLEDs) have attracted remarkable interest in display and lighting. To effectively address triplet exciton harvesting and enhance external quantum efficiency (EQE), delayed fluorescence AIEgens have gained significant prominence. The primary luminescence mechanism involves the efficient harvesting of triplet excitons via reverse intersystem crossing (RISC) channels, categorized into three types: thermally activated delayed fluorescence (TADF), hybridized local and charge transfer (HLCT), and triplet–triplet annihilation (TTA). In this review, we summarize the recent development of doped and non-doped delayed fluorescent AIEgens-based OLEDs. This review mainly discusses the molecular design strategies and photophysical properties of delayed fluorescent AIEgens and the electroluminescent properties of OLEDs as emitting layers. Finally, the challenges and prospects of delayed fluorescent AIEgens for the fabrication of OLEDs are also briefly discussed.

6 January 2026

Left: Schematic illustration of ACQ and AIE effect. Right: Molecular structures of typical ACQ fluorophores and AIEgens.

Fatty Acid and Amino Acid Derivatives in Organocatalyzed Michael Additions

  • Aljaž Flis,
  • Helena Brodnik and
  • Nejc Petek
  • + 5 authors

Amino acid derivatives, such as β-keto esters and pyrrolones, were used as nucleophiles in organocatalyzed Michael additions to nitroalkene acceptors, while fatty acid derivatives acted as both nucleophiles (β-keto esters) and electrophiles (nitroalkene acceptors). Bifunctional noncovalent organocatalysts were employed as asymmetric organocatalysts. Twenty compounds—including fatty acid and amino acid derivatives, as well as fatty acid–amino acid conjugates—were prepared with enantioselectivities of up to 98% ee. All novel products were fully characterized. This research demonstrates the ease of assembling readily available fatty acid and amino acid building blocks under ambient conditions.

6 January 2026

Molecular structure of the (1S,2S)-stereoisomer of product 17a, synthesized using catalyst I. Thermal ellipsoids are shown at 50% probability.

Converting agricultural solid waste into porous biochar for HCHO adsorption is considered as a “two birds with one stone” strategy, which can achieve the environmental goal of “treating waste with waste”. Unfortunately, the HCHO adsorption performance of pristine biochar is generally unsatisfactory, which is derived from its poor surface activity and insufficient number of pores. In this study, a series of nitrogen-doped porous biochars with adjustable N-containing groups and porosity were synthesized by one-step pyrolysis of melamine and waste jujube pit in different mass ratios (NBC-x, x represented the mass ratio of melamine to waste jujube pit, x = 4–12) for HCHO adsorption. The HCHO adsorption tests indicated that the insertion of nitrogen-containing species improved the adsorption capacity of pristine biochar (BC). However, after the insertion of excessive nitrogen-containing species, the porosity of the samples significantly decreased due to the blockage of pores, which could be disadvantageous for HCHO adsorption. DFT calculation results showed that N doping (especially pyrrolic-N) significantly increased the maxima of absolute ESP values of the carbonaceous models and consequently enhanced the affinity between polar HCHO and carbonaceous models (varied from −20.65 kJ/mol to −33.26 kJ/mol). Thus, the NBC-8 possessing both substantial nitrogen content (19.81 wt. %) and developed porosity (specific surface area of 223 m2/g) exhibited the highest HCHO uptake of 6.30 mg/g. This was approximately 6.4 times larger than that of BC. This work not only deepens the understanding of the HCHO adsorption mechanism at molecular scale, but also concurrently offers a facile and eco-friendly route of N-doped porous biochar preparation, an efficient technology with high-value utilization of waste biomass resources, and a sustainable method of pollution remediation.

6 January 2026

N2 sorption isotherms of original BC and NBC adsorbents.

News & Conferences

Issues

Open for Submission

Editor's Choice

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Molecules - ISSN 1420-3049