You are currently viewing a new version of our website. To view the old version click .

Molecules

Molecules is a leading international, peer-reviewed, open access journal of chemistry published semimonthly online by MDPI.
Indexed in PubMed | Quartile Ranking JCR - Q2 (Biochemistry and Molecular Biology | Chemistry, Multidisciplinary)

All Articles (62,531)

Environmental element monitoring is essential for assessing environmental quality, identifying pollution sources, evaluating ecological risks, and understanding long-term contamination trends. Modern monitoring campaigns routinely generate large volumes of complex data that require advanced analytical strategies. This study applied chemometric techniques to analyze elements and BVOCs (biogenic volatile organic compounds) measured from Posidonia oceanica and related environmental matrices (seawater, sediment, and rhizomes) during three sampling campaigns in the Tremiti Islands (Italy). Twenty-two trace elements were quantified, and BVOC profiles were obtained from the leaf samples. The dataset was analyzed using a combination of univariate visualizations, unsupervised and supervised multivariate techniques, and multi-way methods. PCA (Principal Component Analysis) and PLS-DA (Partial Least Squares-Discriminant Analysis) revealed distinct spatial (leaf section) and temporal (sampling period) trends, supported by consistent elemental markers. A low-level data fusion approach integrating BVOC and element data improved group discrimination and interpretability. PARAFAC (PARAllel FACtor analysis) applied to a three-way array successfully separated background trends from meaningful compositional changes, uncovering latent structures across chemical, spatial, and temporal dimensions. This work illustrates the usefulness of chemometrics in environmental monitoring and the effectiveness of combining multivariate tools and data fusion to improve the interpretability of complex environmental datasets. The methodology used in this study is fully generalizable and applicable to other environmental multi-way datasets.

9 January 2026

Visualization of elemental mass fraction data under different preprocessing conditions. Row profiles (left column) and Box-and-Whisker plots (right column) are shown for (a,b) raw data, (c,d) autoscaled data, and (e,f) log-transformed data. The interquartile range is shown as a blue box. The robust data range is indicated by vertical blue whiskers. The median is represented by an open blue circle, while the mean is shown as a filled red circle. Outliers are displayed as open circles, whereas extreme outliers are indicated by filled blue circles.

This work explores a novel and efficient synthetic approach to a new class of boron cluster derivatives via the nucleophilic addition of stabilized phosphorus ylides, Ph3P=CHR2 (R2 = COOEt, CN), to a series of nitrilium salts of the closo-decaborate anion, [2-B10H9NCR1] (R1 = Me, Et, nPr, iPr, Ph). The reaction proceeds regio- and stereospecifically, affording a diverse range of iminoacyl phosphorane derivatives, [2-B10H9NH=C(R1)C(PPh3)R2], in high isolated yields (up to 95%). The obtained compounds (10 examples) were isolated as tetrabutylammonium or tetraphenylphosphonium salts and thoroughly characterized by multinuclear NMR (11B, 1H, 13C, 31P), high-resolution mass spectrometry, and single-crystal X-ray diffraction. The reaction feasibility was found to be strongly influenced by the steric hindrance of the R1 group. Furthermore, the practical utility of these novel hybrids was demonstrated by employing the [2-B10H9NH=C(CH3)C(COOC2H5)=PPh3] anion as a highly effective membrane-active component in ion-selective electrodes. The developed tetraphenylphosphonium (TPP+) sensor exhibited a near-Nernstian response, a low detection limit of 3 × 10−8 M, and excellent selectivity over a range of common inorganic and organic cations, showcasing the potential of closo-borate-based ionophores in analytical chemistry.

9 January 2026

Reaction scheme of iminoacylation process of stabilized phosphorus ylides.

Hawthorn (Crataegus monogyna Jacq.) is a medicinal and nutritional plant widely recognized for its rich phytochemical composition and diverse health-promoting properties. The fruit, leaves, and flowers contain significant amounts of polyphenols, flavonoids, flavonols, phenolic acids and dye compounds with antioxidant properties that contribute to its strong antioxidant capacity. Numerous studies have demonstrated hawthorn’s beneficial effects on cardiovascular health, including regulation of blood pressure, lipid metabolism, and cardiac function. Additionally, hawthorn exhibits anti-inflammatory, antimicrobial, hypolipidemic, and antidiabetic properties, supporting its role in the prevention and management of chronic diseases. Its potential as a functional food ingredient and natural health supplement is increasingly recognized. However, further clinical trials and standardization of bioactive components are needed to confirm its efficacy, safety, and optimal dosage. Overall, hawthorn represents a valuable natural resource for promoting human health and well-being through diet and phytotherapy. Therefore, the aim of this study is to present—based on the scientific literature—the antioxidant properties of hawthorn and to assess the possibility of using this plant as a functional ingredient.

9 January 2026

Crataegus monogyna Jacq. and its morphological parts.

Canagliflozin (CFZ), a sodium–glucose cotransporter 2 (SGLT2) inhibitor, is extensively utilized in the management of type 2 diabetes. Among its various polymorphic forms, the hemi-hydrate (Hemi-CFZ) has been selected as the active pharmaceutical ingredient (API) for CFZ tablets due to its superior solubility. However, during the production, storage, and transportation of CFZ tablets, Hemi-CFZ can undergo transformations into anhydrous (An-CFZ) and monohydrate (Mono-CFZ) forms under the influence of environmental factors such as temperature, humidity, and pressure, which may adversely impact the bioavailability and clinical efficacy of CFZ tablets. Therefore, it is imperative to develop rapid, accurate, non-destructive, and non-contact methods for quantifying An-CFZ and Mono-CFZ content in CFZ tablets to control polymorphic impurity levels and ensure product quality. This research evaluated the feasibility and reliability of using near-infrared spectroscopy (NIR) combined with partial least squares regression (PLSR) for simultaneous quantitative analysis of An-CFZ and Mono-CFZ in CFZ tablets, elucidating the quantifying mechanisms of the quantitative analysis model. Orthogonal experiments were designed to investigate the effects of different pretreatment methods and ant colony optimization (ACO) algorithms on the performance of quantitative models. An optimal PLSR model for simultaneous quantification of An-CFZ and Mono-CFZ in CFZ tablets was established and validated over a concentration range of 0.0000 to 10.0000 w/w%. The resulting model, YAn-CFZ/Mono-CFZ = 0.0207 + 0.9919 X, achieved an R2 value of 0.9919. By analyzing the relationship between the NIR spectral signals selected by the ACO algorithm and the molecular structure information of An-CFZ and Mono-CFZ, we demonstrated the feasibility and reliability of the NIR-PLSR approach for quantifying these polymorphic forms. Additionally, the mechanism of PLSR quantitative analysis was further explained through the variance contribution rates of latent variables (LVs), the correlations between LVs loadings and tablets composition, and the relationships between LV scores and An-CFZ/Mono-CFZ content. This study not only provides a robust method and theoretical foundation for monitoring An-CFZ and Mono-CFZ content in CFZ tablets throughout production, processing, storage, and transportation, but also offers a reliable methodological reference for the simultaneous quantitative analysis and quality control of multiple polymorphic impurities in other similar drugs.

9 January 2026

Samples used to establish and verify the quantitative models.

News & Conferences

Issues

Open for Submission

Editor's Choice

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Molecules - ISSN 1420-3049