Latest Articles

Open AccessArticle
Properties of Nitrogen/Silicon Doped Vertically Oriented Graphene Produced by ICP CVD Roll-to-Roll Technology
Coatings 2019, 9(1), 60; https://doi.org/10.3390/coatings9010060 (registering DOI) -
Abstract
Simultaneous mass production of high quality vertically oriented graphene nanostructures and doping them by using an inductively coupled plasma chemical vapor deposition (ICP CVD) is a technological problem because little is understood about their growth mechanism over enlarged surfaces. We introduce a new
[...] Read more.
Simultaneous mass production of high quality vertically oriented graphene nanostructures and doping them by using an inductively coupled plasma chemical vapor deposition (ICP CVD) is a technological problem because little is understood about their growth mechanism over enlarged surfaces. We introduce a new method that combines the ICP CVD with roll-to-roll technology to enable the in-situ preparation of vertically oriented graphene by using propane as a precursor gas and nitrogen or silicon as dopants. This new technology enables preparation of vertically oriented graphene with distinct morphology and composition on a moving copper foil substrate at a lower cost. The technological parameters such as deposition time (1–30 min), gas partial pressure, composition of the gas mixture (propane, argon, nitrogen or silane), heating treatment (1–60 min) and temperature (350–500 °C) were varied to reveal the nanostructure growth, the evolution of its morphology and heteroatom’s intercalation by nitrogen or silicon. Unique nanostructures were examined by FE-SEM microscopy, Raman spectroscopy and energy dispersive X-Ray scattering techniques. The undoped and nitrogen- or silicon-doped nanostructures can be prepared with the full area coverage of the copper substrate on industrially manufactured surface defects. Longer deposition time (30 min, 450 °C) causes carbon amorphization and an increased fraction of sp3-hybridized carbon, leading to enlargement of vertically oriented carbonaceous nanostructures and growth of pillars. Full article
Open AccessArticle
Demand for Stream Mitigation in Colorado, USA
Water 2019, 11(1), 174; https://doi.org/10.3390/w11010174 (registering DOI) -
Abstract
Colorado, the headwaters for much of the United States, is one of the fastest growing states in terms of both population and land development. These land use changes are impacting jurisdictional streams, and thus require compensatory stream mitigation via environmental restoration. In this
[...] Read more.
Colorado, the headwaters for much of the United States, is one of the fastest growing states in terms of both population and land development. These land use changes are impacting jurisdictional streams, and thus require compensatory stream mitigation via environmental restoration. In this article, we first characterize current demand and supply for stream mitigation for the entire state of Colorado. Second, we assess future demand by forecasting and mapping the lengths of streams that will likely be impacted by specific development and land use changes. Third, based on our interviews with experts, stakeholders, resource managers, and regulators, we provide insight on how regulatory climate, challenges, and water resource developments may influence demand for stream mitigation. From geospatial analyses of permit data, we found that there is currently demand for compensatory stream mitigation in 13 of the 89 HUC-8 watersheds across Colorado. Permanent riverine impacts from 2012–2017 requiring compensatory mitigation totaled 38,292 linear feet (LF). The supply of stream mitigation credits falls well short of this demand. There has only been one approved stream mitigation bank in Colorado, supplying only 2539 LF credits. Based on our analyses of future growth and development in Colorado, there will be relatively high demand for stream mitigation credits in the next 5–10 years. While most of these impacts will be around the Denver metropolitan area, we identified some new areas of the state that will experience high demand for stream mitigation. Given regulatory agencies’ stated preference for mitigation banks, the high demand for stream mitigation credits, and the short supply of stream credits, there should be an active market for stream mitigation banks in Colorado. However, there are some key obstacles preventing this market from moving forward, with permanent water rights’ acquisitions at the top of the list. Ensuring stream mitigation compliance is essential for restoring and maintaining the chemical, physical, and biological integrity of stream systems in Colorado and beyond. Full article
Figures

Graphical abstract

Open AccessFeature PaperArticle
Rare Earth Hydroxide as a Precursor for Controlled Fabrication of Uniform β-NaYF4 Nanoparticles: A Novel, Low Cost, and Facile Method
Molecules 2019, 24(2), 357; https://doi.org/10.3390/molecules24020357 (registering DOI) -
Abstract
In recent years, rare earth doped upconversion nanocrystals have been widely used in different fields owing to their unique merits. Although rare earth chlorides and trifluoroacetates are commonly used precursors for the synthesis of nanocrystals, they have certain disadvantages. For example, rare earth
[...] Read more.
In recent years, rare earth doped upconversion nanocrystals have been widely used in different fields owing to their unique merits. Although rare earth chlorides and trifluoroacetates are commonly used precursors for the synthesis of nanocrystals, they have certain disadvantages. For example, rare earth chlorides are expensive and rare earth trifluoroacetates produce toxic gases during the reaction. To overcome these drawbacks, we use the less expensive rare earth hydroxide as a precursor to synthesize β-NaYF4 nanoparticles with multiform shapes and sizes. Small-sized nanocrystals (15 nm) can be obtained by precisely controlling the synthesis conditions. Compared with the previous methods, the current method is more facile and has lower cost. In addition, the defects of the nanocrystal surface are reduced through constructing core–shell structures, resulting in enhanced upconversion luminescence intensity. Full article
Figures

Graphical abstract

Open AccessArticle
A Hybrid Current Mode Controller with Fast Response Characteristics for Super Capacitor Applications
Electronics 2019, 8(1), 112; https://doi.org/10.3390/electronics8010112 (registering DOI) -
Abstract
A wide-bandwidth current-controller is required for the fast charging and discharging of applications containing super capacitors. To accomplish this, peak current mode is generally used due to the speed of its response characteristics. On the other hand, peak current mode control must be
[...] Read more.
A wide-bandwidth current-controller is required for the fast charging and discharging of applications containing super capacitors. To accomplish this, peak current mode is generally used due to the speed of its response characteristics. On the other hand, peak current mode control must be provided with a slope compensation function to restrain sub-harmonic oscillations. However, if the controlled output voltage is varied, the slope must be changed accordingly. Nonetheless, it is not easy to change the slope for every change in output voltage. Another solution involves the slope being set at the maximum value, which results in a slow response. Therefore, in this paper, a hybrid mode controller was proposed that uses a peak current and a newly-specified valley current. Using the proposed hybrid mode control, sub-harmonic oscillation did not occur for duty cycles larger than 0.5 and response times were fast. Full article
Figures

Figure 1

Open AccessArticle
Preparation of La0.7Ca0.3−xSrxMnO3 Manganites by Four Synthesis Methods and Their Influence on the Magnetic Properties and Relative Cooling Power
Materials 2019, 12(2), 309; https://doi.org/10.3390/ma12020309 (registering DOI) -
Abstract
Manganites of the family La0.7Ca0.3−xSrxMnO3 were fabricated by four preparation methods: (a) the microwave-assisted sol-gel Pechini method; (b) sol-gel Pechini chemical synthesis; (c) solid-state reaction with a planetary mill; and (d) solid-state reaction with an attritor
[...] Read more.
Manganites of the family La0.7Ca0.3−xSrxMnO3 were fabricated by four preparation methods: (a) the microwave-assisted sol-gel Pechini method; (b) sol-gel Pechini chemical synthesis; (c) solid-state reaction with a planetary mill; and (d) solid-state reaction with an attritor mill, in order to study the effect of the preparation route used on its magnetocaloric and magnetic properties. In addition, the manganites manufactured by the Pechini sol-gel method were compacted using Spark Plasma Sintering (SPS) to determine how the consolidation process influences its magnetocaloric properties. The Curie temperatures of manganites prepared by the different methods were determined in ~295 K, with the exception of those prepared by a solid-state reaction with an attritor mill which was 301 K, so there is no correlation between the particle size and the Curie temperature. All samples gave a positive slope in the Arrot plots, which implies that the samples underwent a second order Ferromagnetic (FM)–Paramagnetic (PM) phase transition. Pechini sol-gel manganite presents higher values of Relative Cooling Power (RCP) than the solid-state reaction manganite, because its entropy change curves are smaller, but wider, associated to the particle size obtained by the preparation method. The SPS technique proved to be easier and faster in producing consolidated solids for applications in active magnetic regenerative refrigeration compared with other compaction methods. Full article
Figures

Figure 1

Open AccessArticle
Discrimination of Structural and Immunological Features of Polysaccharides from Persimmon Leaves at Different Maturity Stages
Molecules 2019, 24(2), 356; https://doi.org/10.3390/molecules24020356 (registering DOI) -
Abstract
In this study, we investigated changes in the structural and immunological features of polysaccharides (S1-PLE0, S2-PLE0, and S3-PLE0) extracted from persimmon leaves at three different growth stages. Physicochemical analyses revealed that their chemical compositions, molecular weight distributions, and linkage types differed. High-performance size-exclusion
[...] Read more.
In this study, we investigated changes in the structural and immunological features of polysaccharides (S1-PLE0, S2-PLE0, and S3-PLE0) extracted from persimmon leaves at three different growth stages. Physicochemical analyses revealed that their chemical compositions, molecular weight distributions, and linkage types differed. High-performance size-exclusion chromatograms showed that the molecular weights of the polysaccharides increased during successive growth stages. In addition, seasonal variation of persimmon leaves affected the sugar compositions and glycosidic linkages in the polysaccharides. S2-PLE0 was composed of comparatively more galactose, arabinose, rhamnose, xylose, and galacturonic acid, showing the presence of β-glucopyranoside linkages. Significant differences also occurred in their immunostimulatory effects on RAW264.7 macrophages, with respect to which their activities could be ordered as S2-PLE0 > S3-PLE0 > S1-PLE0. Evidently, S2-PLE0 showed the greatest immunostimulatory activity by enhancing the phagocytic capacity and promoting nitric oxide (NO) and cytokines secretion through the upregulation of their gene expression in macrophages. These results suggest that differences in the structural features of polysaccharides according to the different maturity of persimmon leaves might impact their immunostimulatory properties. The results also provide a basis for optimizing persimmon leaf cultivation strategies for food and medical uses of the polysaccharides. Full article
Open AccessReview
Recent Developments in the Functionalization of Betulinic Acid and Its Natural Analogues: A Route to New Bioactive Compounds
Molecules 2019, 24(2), 355; https://doi.org/10.3390/molecules24020355 (registering DOI) -
Abstract
Betulinic acid (BA) and its natural analogues betulin (BN), betulonic (BoA), and 23-hydroxybetulinic (HBA) acids are lupane-type pentacyclic triterpenoids. They are present in many plants and display important biological activities. This review focuses on the chemical transformations used to functionalize BA/BN/BoA/HBA in order
[...] Read more.
Betulinic acid (BA) and its natural analogues betulin (BN), betulonic (BoA), and 23-hydroxybetulinic (HBA) acids are lupane-type pentacyclic triterpenoids. They are present in many plants and display important biological activities. This review focuses on the chemical transformations used to functionalize BA/BN/BoA/HBA in order to obtain new derivatives with improved biological activity, covering the period since 2013 to 2018. It is divided by the main chemical transformations reported in the literature, including amination, esterification, alkylation, sulfonation, copper(I)-catalyzed alkyne-azide cycloaddition, palladium-catalyzed cross-coupling, hydroxylation, and aldol condensation reactions. In addition, the synthesis of heterocycle-fused BA/HBA derivatives and polymer‒BA conjugates are also addressed. The new derivatives are mainly used as antitumor agents, but there are other biological applications such as antimalarial activity, drug delivery, bioimaging, among others. Full article
Open AccessArticle
Measurements and Modeling of the Full Rain Drop Size Distribution
Atmosphere 2019, 10(1), 39; https://doi.org/10.3390/atmos10010039 (registering DOI) -
Abstract
The raindrop size distribution (DSD) is fundamental for quantitative precipitation estimation (QPE) and in numerical modeling of microphysical processes. Conventional disdrometers cannot capture the small drop end, in particular the drizzle mode which controls collisional processes as well as evaporation. To overcome this
[...] Read more.
The raindrop size distribution (DSD) is fundamental for quantitative precipitation estimation (QPE) and in numerical modeling of microphysical processes. Conventional disdrometers cannot capture the small drop end, in particular the drizzle mode which controls collisional processes as well as evaporation. To overcome this limitation, the DSD measurements were made using (i) a high-resolution (50 microns) meteorological particle spectrometer to capture the small drop end, and (ii) a 2D video disdrometer for larger drops. Measurements were made in two climatically different regions, namely Greeley, Colorado, and Huntsville, Alabama. To model the DSDs, a formulation based on (a) double-moment normalization and (b) the generalized gamma (GG) model to describe the generic shape with two shape parameters was used. A total of 4550 three-minute DSDs were used to assess the size-resolved fidelity of this model by direct comparison with the measurements demonstrating the suitability of the GG distribution. The shape stability of the normalized DSD was demonstrated across different rain types and intensities. Finally, for a tropical storm case, the co-variabilities of the two main DSD parameters (normalized intercept and mass-weighted mean diameter) were compared with those derived from the dual-frequency precipitation radar onboard the global precipitation mission satellite. Full article
Open AccessArticle
Selective Targeting of the Interconversion between Glucosylceramide and Ceramide by Scaffold Tailoring of Iminosugar Inhibitors
Molecules 2019, 24(2), 354; https://doi.org/10.3390/molecules24020354 (registering DOI) -
Abstract
A series of simple C-alkyl pyrrolidines already known as cytotoxic inhibitors of ceramide glucosylation in melanoma cells can be converted into their corresponding 6-membered analogues by means of a simple ring expansion. This study illustrated how an isomerisation from iminosugar pyrrolidine toward
[...] Read more.
A series of simple C-alkyl pyrrolidines already known as cytotoxic inhibitors of ceramide glucosylation in melanoma cells can be converted into their corresponding 6-membered analogues by means of a simple ring expansion. This study illustrated how an isomerisation from iminosugar pyrrolidine toward piperidine could invert their targeting from glucosylceramide (GlcCer) formation toward GlcCer hydrolysis. Thus, we found that the 5-membered ring derivatives did not inhibit the hydrolysis reaction of GlcCer catalysed by lysosomal β-glucocerebrosidase (GBA). On the other hand, the ring-expanded C-alkyl piperidine isomers, non-cytotoxic and inactive regarding ceramide glucosylation, revealed to be potent inhibitors of GBA. A molecular docking study showed that the positions of the piperidine ring of the compound 6b and its analogous 2-O-heptyl DIX 8 were similar to that of isofagomine. Furthermore, compound 6b promoted mutant GBA enhancements over 3-fold equivalent to that of the related O-Hept DIX 8 belonging to one of the most potent iminosugar-based pharmacological chaperone series reported to date. Full article
Open AccessArticle
Evaluation of the Recipe Function in Popular Dietary Smartphone Applications, with Emphasize on Features Relevant for Nutrition Assessment in Large-Scale Studies
Nutrients 2019, 11(1), 200; https://doi.org/10.3390/nu11010200 (registering DOI) -
Abstract
Nutrient estimations from mixed dishes require detailed information collection and should account for nutrient loss during cooking. This study aims to make an inventory of recipe creating features in popular food diary apps from a research perspective and to evaluate their nutrient calculation.
[...] Read more.
Nutrient estimations from mixed dishes require detailed information collection and should account for nutrient loss during cooking. This study aims to make an inventory of recipe creating features in popular food diary apps from a research perspective and to evaluate their nutrient calculation. A total of 12 out of 57 screened popular dietary assessment apps included a recipe function and were scored based on a pre-defined criteria list. Energy and nutrient content of three recipes calculated by the apps were compared with a reference procedure, which takes nutrient retention due to cooking into account. The quality of the recipe function varies across selected apps with a mean score of 3.0 (out of 5). More relevant differences (larger than 5% of the Daily Reference Intake) between apps and the reference were observed in micronutrients (49%) than in energy and macronutrients (20%). The primary source of these differences lies in the variation in food composition databases underlying each app. Applying retention factors decreased the micronutrient contents from 0% for calcium in all recipes to more than 45% for vitamins B6, B12, and folate in one recipe. Overall, recipe features and their ability to capture true nutrient intake are limited in current apps. Full article
Figures

Figure 1

Open AccessArticle
Deep-Blue and Hybrid-White Organic Light Emitting Diodes Based on a Twisting Carbazole-Benzofuro[2,3-b]Pyrazine Fluorescent Emitter
Molecules 2019, 24(2), 353; https://doi.org/10.3390/molecules24020353 (registering DOI) -
Abstract
A novel deep-blue fluorescent emitter was designed and synthesized. The external quantum efficiency (ηEQE) of the blue-emitting, doped, organic light-emitting diode (OLED) was as high as 4.34%. The device also exhibited an excellent color purity with Commission Internationale de l’Eclairage (CIE)
[...] Read more.
A novel deep-blue fluorescent emitter was designed and synthesized. The external quantum efficiency (ηEQE) of the blue-emitting, doped, organic light-emitting diode (OLED) was as high as 4.34%. The device also exhibited an excellent color purity with Commission Internationale de l’Eclairage (CIE) coordinates of x = 0.15 and y = 0.05. In addition, the triplet energy had a value of 2.7 eV, which is rare for an emitter with deep-blue emission, which makes it a preferred choice for high-performance white OLEDs. By optimizing the device architectures, the color of hybrid-white OLEDs could be tunable from warm white to cool white using the aforementioned material as a bifunctional material. That is, the ηEQE of the hybrid warm-white OLED is 20.1% with a CIE x and y of 0.46 and 0.48 and the ηEQE of the hybrid cool-white OLED is 9% with a CIE x and y of 0.34 and 0.33. Full article
Figures

Figure 1

Institutional Open Access Program (IOAP)

IOAP participants benefit from discounts and convenient payment options.

Feedback

We are keen to hear what you think about MDPI. To leave us your feedback, suggestions or questions please click here.

See what our authors and guest editors say about us.

About MDPI

MDPI.com is a platform for peer-reviewed, scientific open-access journals operated by MDPI, based in Basel, Switzerland. Additional offices are located in Beijing and Wuhan (China) as well as in Barcelona (Spain).

Back to Top