Advancing Open Science
for more than 25 years
MDPI is a pioneer in scholarly open access publishing
and has supported academic communities since 1996.
Article
Performance Comparison of Five Methods for Tetrahymena Number Counting on the ImageJ Platform: Assessing the Built-in Tool and Machine-Learning-Based Extension
by , , , , , , and
Int. J. Mol. Sci. 2022, 23(11), 6009; https://doi.org/10.3390/ijms23116009 (registering DOI) - 26 May 2022
Abstract
Previous methods to measure protozoan numbers mostly rely on manual counting, which suffers from high variation and poor efficiency. Although advanced counting devices are available, the specialized and usually expensive machinery precludes their prevalent utilization in the regular laboratory routine. In this study, [...] Read more.
Previous methods to measure protozoan numbers mostly rely on manual counting, which suffers from high variation and poor efficiency. Although advanced counting devices are available, the specialized and usually expensive machinery precludes their prevalent utilization in the regular laboratory routine. In this study, we established the ImageJ-based workflow to quantify ciliate numbers in a high-throughput manner. We conducted Tetrahymena number measurement using five different methods: particle analyzer method (PAM), find maxima method (FMM), trainable WEKA segmentation method (TWS), watershed segmentation method (WSM) and StarDist method (SDM), and compared their results with the data obtained from the manual counting. Among the five methods tested, all of them could yield decent results, but the deep-learning-based SDM displayed the best performance for Tetrahymena cell counting. The optimized methods reported in this paper provide scientists with a convenient tool to perform cell counting for Tetrahymena ecotoxicity assessment. Full article
(This article belongs to the Section Molecular Informatics)
Article
An Investigation into Which Methods Best Explain Children’s Exposure to Traffic-Related Air Pollution
Toxics 2022, 10(6), 284; https://doi.org/10.3390/toxics10060284 (registering DOI) - 26 May 2022
Abstract
There have been several methods employed to quantify individual-level exposure to ambient traffic-related air pollutants (TRAP). These include an individual’s residential proximity to roads, measurement of individual pollutants as surrogates or markers, as well as dispersion and land use regression (LUR) models. Hopanes [...] Read more.
There have been several methods employed to quantify individual-level exposure to ambient traffic-related air pollutants (TRAP). These include an individual’s residential proximity to roads, measurement of individual pollutants as surrogates or markers, as well as dispersion and land use regression (LUR) models. Hopanes are organic compounds still commonly found on ambient particulate matter and are specific markers of combustion engine primary emissions, but they have not been previously used in personal exposure studies. In this paper, children’s personal exposures to TRAP were evaluated using hopanes determined from weekly integrated filters collected as part of a personal exposure study in Windsor, Canada. These hopane measurements were used to evaluate how well other commonly used proxies of exposure to TRAP performed. Several of the LUR exposure estimates for a range of air pollutants were associated with the children’s summer personal hopane exposures (r = 0.41–0.74). However, all personal hopane exposures in summer were more strongly associated with the length of major roadways within 500 m of their homes. In contrast, metrics of major roadways and LUR estimates were poorly correlated with any winter personal hopanes. Our findings suggest that available TRAP exposure indicators have the potential for exposure misclassification in winter vs. summer and more so for LUR than for metrics of major road density. As such, limitations are evident when using traditional proxy methods for assigning traffic exposures and these may be especially important when attempting to assign exposures for children’s key growth and developmental windows. If long-term chronic exposures are being estimated, our data suggest that measures of major road lengths in proximity to homes are a more-specific approach for assigning personal TRAP exposures. Full article
(This article belongs to the Section Environmental Epidemiology)
Article
Transcriptional Dynamics of DNA Damage Responsive Genes in Circulating Leukocytes during Radiotherapy
Cancers 2022, 14(11), 2649; https://doi.org/10.3390/cancers14112649 (registering DOI) - 26 May 2022
Abstract
External beam radiation therapy leads to cellular activation of the DNA damage response (DDR). DNA double-strand breaks (DSBs) activate the ATM/CHEK2/p53 pathway, inducing the transcription of stress genes. The dynamic nature of this transcriptional response has not been directly observed in vivo in [...] Read more.
External beam radiation therapy leads to cellular activation of the DNA damage response (DDR). DNA double-strand breaks (DSBs) activate the ATM/CHEK2/p53 pathway, inducing the transcription of stress genes. The dynamic nature of this transcriptional response has not been directly observed in vivo in humans. In this study we monitored the messenger RNA transcript abundances of nine DNA damage-responsive genes (CDKN1A, GADD45, CCNG1, FDXR, DDB2, MDM2, PHPT1, SESN1, and PUMA), eight of them regulated by p53 in circulating blood leukocytes at different time points (2, 6–8, 16–18, and 24 h) in cancer patients (lung, neck, brain, and pelvis) undergoing radiotherapy. We discovered that, although the calculated mean physical dose to the blood was very low (0.038–0.169 Gy), an upregulation of Ferredoxin reductase (FDXR) gene transcription was detectable 2 h after exposure and was dose dependent from the lowest irradiated percentage of the body (3.5% whole brain) to the highest, (up to 19.4%, pelvic zone) reaching a peak at 6–8 h. The radiation response of the other genes was not strong enough after such low doses to provide meaningful information. Following multiple fractions, the expression level increased further and was still significantly up-regulated by the end of the treatment. Moreover, we compared FDXR transcriptional responses to ionizing radiation (IR) in vivo with healthy donors’ blood cells exposed ex vivo and found a good correlation in the kinetics of expression from the 8-hours time-point onward, suggesting that a molecular transcriptional regulation mechanism yet to be identified is involved. To conclude, we provided the first in vivo human report of IR-induced gene transcription temporal response of a panel of p53-dependant genes. FDXR was demonstrated to be the most responsive gene, able to reliably inform on the low doses following partial body irradiation of the patients, and providing an expression pattern corresponding to the % of body exposed. An extended study would provide individual biological dosimetry information and may reveal inter-individual variability to predict radiotherapy-associated adverse health outcomes. Full article
(This article belongs to the Special Issue Cancer and Non-cancer Effects following Ionizing Irradiation)
Show Figures

Graphical abstract

Article
Interaction between Gelatin and Mulberry Leaf Polysaccharides in Miscible System: Physicochemical Characteristics and Rheological Behavior
Foods 2022, 11(11), 1571; https://doi.org/10.3390/foods11111571 (registering DOI) - 26 May 2022
Abstract
In this study, the miscible system was formed by mixing gelatin (G) with mulberry leaf polysaccharides (MLPs) continuously extracted with a hot buffer (HBSS), a chelating agent (CHSS), a dilute alkali (DASS), and a concentrated alkali (CASS), and the zeta potential, turbidity, particle [...] Read more.
In this study, the miscible system was formed by mixing gelatin (G) with mulberry leaf polysaccharides (MLPs) continuously extracted with a hot buffer (HBSS), a chelating agent (CHSS), a dilute alkali (DASS), and a concentrated alkali (CASS), and the zeta potential, turbidity, particle size, distribution, and rheological properties of the miscible systems were evaluated. Under acidic conditions, the miscible systems of four polysaccharides and gelatin were in a clear state; under alkaline conditions, G-HBSS and G-CHSS were clarified, and G-DASS and G-CASS changed from clarification to turbidity. The zeta potential changed from positive to negative with the increase in pH. When the pH was at 7, it increased with the increase in polysaccharide concentration but was still negative. The four miscible systems all showed polydispersity. The particle sizes of G-HBSS and G-CHSS decreased with the increase in pH, while the particle sizes of G-DASS and G-CASS were increased. The four miscible systems showed “shear thinning” behavior, and the addition of gelatin reduced the apparent viscosity of the four polysaccharide solutions. G-CHSS was highly stable, and G-CASS was more suitable as a stabilizer in the freezing process. Full article
Show Figures

Graphical abstract

Review
Different DNA Sequencing Using DNA Graphs: A Study
Appl. Sci. 2022, 12(11), 5414; https://doi.org/10.3390/app12115414 (registering DOI) - 26 May 2022
Abstract
Natural genetic material may shed light on gene expression mechanisms and aid in the detection of genetic disorders. Single Nucleotide Polymorphism (SNP), small insertions and deletions (indels), and major chromosomal anomalies are all chromosomal abnormality-related disorders. As a result, several methods have been [...] Read more.
Natural genetic material may shed light on gene expression mechanisms and aid in the detection of genetic disorders. Single Nucleotide Polymorphism (SNP), small insertions and deletions (indels), and major chromosomal anomalies are all chromosomal abnormality-related disorders. As a result, several methods have been applied to analyze DNA sequences, which constitutes one of the most critical aspects of biological research. Thus, numerous mathematical and algorithmic contributions have been made to DNA analysis and computing. Cost minimization, deployment, and sensitivity analysis to many factors are all components of sequencing platforms built on a quantitative framework and their operating mechanisms. This study aims to investigate the role of DNA sequencing and its representation in the form of graphs in the analysis of different diseases by means of DNA sequencing. Full article
(This article belongs to the Special Issue AI and Security Application in Green Energy and Renewable Power)
Show Figures

Figure 1

Article
Improve the Midpoint Voltage and Structural Stability of Li-Rich Manganese-Based Cathode Material by Increasing the Nickel Content
Catalysts 2022, 12(6), 584; https://doi.org/10.3390/catal12060584 (registering DOI) - 26 May 2022
Abstract
Lithium-rich manganese is a promising new-generation cathode material for lithium-ion batteries. However, it has the common problems of serious discharge capacity decline, poor rate performance, and faster midpoint voltage decay. In this experiment, a sol-gel method was used to synthesize a high-nickel, lithium-rich [...] Read more.
Lithium-rich manganese is a promising new-generation cathode material for lithium-ion batteries. However, it has the common problems of serious discharge capacity decline, poor rate performance, and faster midpoint voltage decay. In this experiment, a sol-gel method was used to synthesize a high-nickel, lithium-rich layered oxide (1 − x)Li1.2Mn0.54Co0.13Ni0.13O2 − xLiNiO2 (x = 0, 1.0, 2.0, 3.0 and 4.0) that was characterized by XRD, SEM, XPS, TEM, and charge-discharge performance tests. The research results show that increasing Ni content can improve the stability of the material structure and enhance the electrochemical performance of the cathode material. When the LiNiO2 is 0.3, the electrochemical performance is better, the capacity retention rate is 100.3% after 60 cycles at a current density of 0.2 C, and the capacity retention rate for 100 cycles at 0.5 C is 99.0%. Full article
Show Figures

Figure 1

Article
EEG Signal Processing and Supervised Machine Learning to Early Diagnose Alzheimer’s Disease
Appl. Sci. 2022, 12(11), 5413; https://doi.org/10.3390/app12115413 (registering DOI) - 26 May 2022
Abstract
Electroencephalography (EEG) signal analysis is a fast, inexpensive, and accessible technique to detect the early stages of dementia, such as Mild Cognitive Impairment (MCI) and Alzheimer’s disease (AD). In the last years, EEG signal analysis has become an important topic of research to [...] Read more.
Electroencephalography (EEG) signal analysis is a fast, inexpensive, and accessible technique to detect the early stages of dementia, such as Mild Cognitive Impairment (MCI) and Alzheimer’s disease (AD). In the last years, EEG signal analysis has become an important topic of research to extract suitable biomarkers to determine the subject’s cognitive impairment. In this work, we propose a novel simple and efficient method able to extract features with a finite response filter (FIR) in the double time domain in order to discriminate among patients affected by AD, MCI, and healthy controls (HC). Notably, we compute the power intensity for each high- and low-frequency band, using their absolute differences to distinguish among the three classes of subjects by means of different supervised machine learning methods. We use EEG recordings from a cohort of 105 subjects (48 AD, 37 MCI, and 20 HC) referred for dementia to the IRCCS Centro Neurolesi “Bonino-Pulejo” of Messina, Italy. The findings show that this method reaches 97%, 95%, and 83% accuracy when considering binary classifications (HC vs. AD, HC vs. MCI, and MCI vs. AD) and an accuracy of 75% when dealing with the three classes (HC vs. AD vs. MCI). These results improve upon those obtained in previous studies and demonstrate the validity of our approach. Finally, the efficiency of the proposed method might allow its future development on embedded devices for low-cost real-time diagnosis. Full article
Article
Emotion Recognition in Preterm and Full-Term School-Age Children
Int. J. Environ. Res. Public Health 2022, 19(11), 6507; https://doi.org/10.3390/ijerph19116507 (registering DOI) - 26 May 2022
Abstract
Children born preterm (<37 weeks’ gestation) show a specific vulnerability for socio-emotional difficulties, which may lead to an increased likelihood of developing behavioral and psychiatric problems in adolescence and adulthood. The accurate decoding of emotional signals from faces represents a fundamental prerequisite for [...] Read more.
Children born preterm (<37 weeks’ gestation) show a specific vulnerability for socio-emotional difficulties, which may lead to an increased likelihood of developing behavioral and psychiatric problems in adolescence and adulthood. The accurate decoding of emotional signals from faces represents a fundamental prerequisite for early social interactions, allowing children to derive information about others’ feelings and intentions. The present study aims to explore possible differences between preterm and full-term children in the ability to detect emotional expressions, as well as possible relationships between this ability and socio-emotional skills and problem behaviors during everyday activities. We assessed 55 school-age children (n = 34 preterm and N = 21 full-term) with a cognitive battery that ensured comparable cognitive abilities between the two groups. Moreover, children were asked to identify emotional expressions from pictures of peers’ faces (Emotion Recognition Task). Finally, children’s emotional, social and behavioral outcomes were assessed with parent-reported questionnaires. The results revealed that preterm children were less accurate than full-term children in detecting positive emotional expressions and they showed poorer social and behavioral outcomes. Notably, correlational analyses showed a relationship between the ability to recognize emotional expressions and socio-emotional functioning. The present study highlights that early difficulties in decoding emotional signals from faces may be critically linked to emotional and behavioral regulation problems, with important implications for the development of social skills and effective interpersonal interactions. Full article
Article
Energy-Efficient Deterministic Approach for Coverage Hole Detection in Wireless Underground Sensor Network: Mathematical Model and Simulation
Computers 2022, 11(6), 86; https://doi.org/10.3390/computers11060086 (registering DOI) - 26 May 2022
Abstract
Wireless underground sensor networks (WUSNs) are being used in agricultural applications, in border patrol, and in the monitoring of remote areas. Coverage holes in WUSNs are an issue which needs to be dealt with. Coverage holes may occur due to random deployment of [...] Read more.
Wireless underground sensor networks (WUSNs) are being used in agricultural applications, in border patrol, and in the monitoring of remote areas. Coverage holes in WUSNs are an issue which needs to be dealt with. Coverage holes may occur due to random deployment of nodes as well as the failure of nodes with time. In this paper, a mathematical approach for hole detection using Delaunay geometry is proposed which divides the network region into Delaunay triangles and applies the laws of triangles to identify coverage holes. WUSNs comprise static nodes, and replacing underground nodes is a complex task. A simplistic algorithm for detecting coverage holes in static WSNs/WUSNs is proposed. The algorithm was simulated in the region of interest for the initially randomly deployed network and after energy depletion of the nodes with time. The performance of the algorithm was evaluated by varying the number of nodes and the sensing radius of the nodes. Our scheme is advantageous over other schemes in the following aspects: (1) it builds a mathematical model and polynomial-time algorithm for detecting holes, and (2) the scheme does not work on centralized computation and therefore provides better scalability, (3) is energy-efficient, and (4) provides a cost-effective solution to detect holes with great accuracy and a low detection time. The algorithm takes less than 0.1 milliseconds to detect holes in a 100 m × 100 m-size network with 100 sensor nodes having a sensing radius of 8 m. The detection time shows only a linear change with an increase in the number of nodes in the network, which makes the algorithm applicable for every network size from small to large. Full article
Show Figures

Figure 1

Article
Microbial Communities in Underground Gas Reservoirs Offer Promising Biotechnological Potential
Fermentation 2022, 8(6), 251; https://doi.org/10.3390/fermentation8060251 (registering DOI) - 26 May 2022
Abstract
Securing new sources of renewable energy and achieving national self-sufficiency in natural gas have become increasingly important in recent times. The study described in this paper focuses on three geologically diverse underground gas reservoirs (UGS) that are the natural habitat of methane-producing archaea, [...] Read more.
Securing new sources of renewable energy and achieving national self-sufficiency in natural gas have become increasingly important in recent times. The study described in this paper focuses on three geologically diverse underground gas reservoirs (UGS) that are the natural habitat of methane-producing archaea, as well as other microorganisms with which methanogens have various ecological relationships. The objective of this research was to describe the microbial metabolism of methane in these specific anoxic environments during the year. DNA sequencing analyses revealed the presence of different methanogenic communities and their metabolic potential in all sites studied. Hydrogenotrophic Methanobacterium sp. prevailed in Lobodice UGS, members of the hydrogenotrophic order Methanomicrobiales predominated in Dolní Dunajovice UGS and thermophilic hydrogenotrophic members of the Methanothermobacter sp. were prevalent in Tvrdonice UGS. Gas composition and isotope analyses were performed simultaneously. The results suggest that the biotechnological potential of UGS for biomethane production cannot be neglected. Full article
Article
Transmission of Grapevine Red Blotch Virus by Spissistilus festinus [Say, 1830] (Hemiptera: Membracidae) between Free-Living Vines and Vitis vinifera ‘Cabernet Franc’
Viruses 2022, 14(6), 1156; https://doi.org/10.3390/v14061156 (registering DOI) - 26 May 2022
Abstract
Grapevine red blotch disease emerged within the past decade, disrupting North American vine stock production and vineyard profitability. Our understanding of how grapevine red blotch virus (GRBV), the causal agent of the disease, interacts with its Vitis hosts and insect vector, Spissistilus festinus [...] Read more.
Grapevine red blotch disease emerged within the past decade, disrupting North American vine stock production and vineyard profitability. Our understanding of how grapevine red blotch virus (GRBV), the causal agent of the disease, interacts with its Vitis hosts and insect vector, Spissistilus festinus, is limited. Here, we studied the capabilities of S. festinus to transmit GRBV from and to free-living vines, identified as first-generation hybrids of V. californica and V. vinifera ‘Sauvignon blanc’ (Vcal hybrids), and to and from V. vinifera ‘Cabernet franc’ (Vvin Cf) vines. The transmission rate of GRBV was high from infected Vcal hybrid vines to healthy Vcal hybrid vines (77%, 10 of 13) and from infected Vvin Cf vines to healthy Vcal hybrid vines (100%, 3 of 3). In contrast, the transmission rate of GRBV was low from infected Vcal hybrid vines to healthy Vvin Cf vines (15%, 2 of 13), and from infected Vvin Cf vines to healthy Vvin Cf vines (19%, 5 of 27). No association was found between transmission rates and GRBV titer in donor vines used in transmission assays, but the virus titer was higher in the recipient leaves of Vcal hybrid vines compared with recipient leaves of Vvin Cf vines. The transmission of GRBV from infected Vcal hybrid vines was also determined to be trans-stadial. Altogether, our findings revealed that free-living vines can be a source for the GRBV inoculum that is transmissible by S. festinus to other free-living vines and a wine grape cultivar, illustrating the interconnected roles of the two virus hosts in riparian areas and commercial vineyards, respectively, for virus spread. These new insights into red blotch disease epidemiology will inform the implementation of disease management strategies. Full article
(This article belongs to the Special Issue Emerging Fruit and Vegetable Viruses)
Article
Evaluation of the Effect of Different Dietary Lipid Sources on Dogs’ Faecal Microbial Population and Activities
Animals 2022, 12(11), 1368; https://doi.org/10.3390/ani12111368 (registering DOI) - 26 May 2022
Abstract
Lipids represent a significant energy source in dogs’ diets. Moreover, dogs need some essential fatty acids, such as linoleic and α-linolenic fatty acids, because they are not able to produce them endogenously. This study aimed to evaluate the effect of different dietary lipid [...] Read more.
Lipids represent a significant energy source in dogs’ diets. Moreover, dogs need some essential fatty acids, such as linoleic and α-linolenic fatty acids, because they are not able to produce them endogenously. This study aimed to evaluate the effect of different dietary lipid sources on faecal microbial populations and activities using different evaluations. Hemp seed oil and swine tallow were tested as lipid supplements in a commercial canned diet at a ratio of 3.5% (HL1 and HL2, respectively). These diets were compared with one rich in starch (HS). Twelve dogs were recruited and equally divided into three groups. Faeces samples at 30 days were used as inoculum and incubated with three different substrates (MOS, inulin, and cellulose) using the in vitro gas production technique. The faecal cell numbers of relevant bacteria and secondary metabolites were analysed (in vivo trial). In vitro evaluation showed that the faeces of the group fed the diet with hemp supplementation had better fermentability despite lower gas production. The in vivo faecal bacterial count showed an increase in Lactobacillus spp. In the HL1 group. Moreover, a higher level of acetate was observed in both evaluations (in vitro and in vivo). These results seem to indicate a significant effect of the dietary fatty acid profile on the faecal microbial population. Full article
(This article belongs to the Section Animal Nutrition)
Article
Gallic Acid: A Natural Phenolic Compound Exerting Antitumoral Activities in Colorectal Cancer via Interaction with G-Quadruplexes
Cancers 2022, 14(11), 2648; https://doi.org/10.3390/cancers14112648 (registering DOI) - 26 May 2022
Abstract
Natural phenolic compounds have gained momentum for the prevention and treatment of cancer, but their antitumoral mechanism of action is not yet well understood. In the present study, we screened the antitumoral potential of several phenolic compounds in a cellular model of colorectal [...] Read more.
Natural phenolic compounds have gained momentum for the prevention and treatment of cancer, but their antitumoral mechanism of action is not yet well understood. In the present study, we screened the antitumoral potential of several phenolic compounds in a cellular model of colorectal cancer (CRC). We selected gallic acid (GA) as a candidate in terms of potency and selectivity and extensively evaluated its biological activity. We report on the role of GA as a ligand of DNA G-quadruplexes (G4s), explaining several of its antitumoral effects, including the transcriptional inhibition of ribosomal and CMYC genes. In addition, GA shared with other established G4 ligands some effects such as cell cycle arrest, nucleolar stress, and induction of DNA damage. We further confirmed the antitumoral and G4-stabilizing properties of GA using a xenograft model of CRC. Finally, we succinctly demonstrate that GA could be explored as a therapeutic agent in a patient cohort with CRC. Our work reveals that GA, a natural bioactive compound present in the diet, affects gene expression by interaction with G4s both in vitro and in vivo and paves the way towards G4s targeting with phenolic compounds. Full article
Article
Effects of Epichloë Endophyte and Transgenerational Effects on Physiology of Achnatherum inebrians under Drought Stress
Agriculture 2022, 12(6), 761; https://doi.org/10.3390/agriculture12060761 (registering DOI) - 26 May 2022
Abstract
The present study explored the effects of an Epichloë endophyte on growth and physiology parameters of drunken horse grass (DHG, Achnatherum inebrians) under four different soil water content. The possible transgenerational effects (TGE) on the above-mentioned indicators were examined. DHG plants with [...] Read more.
The present study explored the effects of an Epichloë endophyte on growth and physiology parameters of drunken horse grass (DHG, Achnatherum inebrians) under four different soil water content. The possible transgenerational effects (TGE) on the above-mentioned indicators were examined. DHG plants with (EI) and without (EF) this Epichloë endophyte, grown from seed of plants from the same seed line, were used. The seeds had originated in the relatively dry site at Yuzhong [YZ(D)], and also used were seed of plants from this original seed-line grown at the relatively wet site Xiahe [XH(W)]. The growth, photosynthesis, phytohormones, and elements were measured. This study showed that the endophyte increased the aboveground biomass and chlorophyll content, with the increasing of photosynthetic parameters. The presence of endophyte also significantly promoted abscisic acid and indolE3-acetic acid content but decreased the cytokinin content. The nitrogen and phosphorus content of EI plants was significantly higher than that of EF plants, but the endophyte decreased ratios of C:N and C:P at drought condition. In addition, TGE were present, affecting host growth and the above-mentioned parameters, and which indicated that the plants grown from the seeds in YZ(D) site are more competitive than those in the XH(W) site under water deficiency conditions. Full article
(This article belongs to the Special Issue Plant–Soil–Microorganism Interaction in Grassland Agroecosystem)
Article
Diallyl Trisulfide Promotes Placental Angiogenesis by Regulating Lipid Metabolism and Alleviating Inflammatory Responses in Obese Pregnant Mice
Nutrients 2022, 14(11), 2230; https://doi.org/10.3390/nu14112230 (registering DOI) - 26 May 2022
Abstract
The placental tissue serves as an exchanger between the mother and the fetus during pregnancy in mammals. Proper placental angiogenesis is central to the health of both the mother and the growth and development of the fetus. Maternal obesity is associated with impaired [...] Read more.
The placental tissue serves as an exchanger between the mother and the fetus during pregnancy in mammals. Proper placental angiogenesis is central to the health of both the mother and the growth and development of the fetus. Maternal obesity is associated with impaired placental function, resulting in restricted placental blood vessel development and fetal developmental disorders. Hydrogen sulfide (H2S) is a ubiquitous second messenger in cells that has many biological effects such as promoting angiogenesis, anti-inflammation, anti-oxidation and promoting lipid metabolism. However, in the case of maternal obesity, whether H2S can be used as an important signaling molecule to regulate body metabolism, alleviate placental inflammation levels and promote placental angiogenesis is still unclear. In this study, diallyl trisulfide (DATS), which is a well-known H2S donor, was derived from garlic and used to treat obese pregnant mice induced by a high-fat diet, to determine its effects on lipid metabolism and inflammation, as well as placental morphology and placental angiogenesis. Here, we show that DATS treatment increased litter size and alive litter size. DATS improved the H2S level in the serum and placenta of the mice. In addition, DATS treatment improved insulin resistance and lipid metabolism, reduced the inflammatory response and alleviated placental vascular dysplasia caused by obesity in obese mice. In summary, our research revealed that H2S is an important signaling molecule in vivo, which can regulate placental angiogenesis and improve the reproductive performance in maternal obesity. The addition of H2S donor DATS during pregnancy promoted placental angiogenesis by regulating lipid metabolism and alleviating inflammatory responses in obese pregnant mice. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

Article
Impact of Extreme Weather Disasters on China’s Barley Industry under the Background of Trade Friction—Based on the Partial Equilibrium Model
Foods 2022, 11(11), 1570; https://doi.org/10.3390/foods11111570 (registering DOI) - 26 May 2022
Abstract
The world has entered a compound risk era with multiple crises, and the adverse impact of trade friction and extreme weather disasters on China’s barley import has become increasingly prominent. In this context, this study uses superimposed epoch analysis and partial equilibrium model [...] Read more.
The world has entered a compound risk era with multiple crises, and the adverse impact of trade friction and extreme weather disasters on China’s barley import has become increasingly prominent. In this context, this study uses superimposed epoch analysis and partial equilibrium model to evaluate the impact of extreme weather disasters in China’s major barley-exporting countries on China’s barley industry in the course of China–Australia trade friction. The results show that: (1) extreme weather disaster caused barley production in France and Canada to decrease by 7.95% and 18.36% respectively; (2) when the two external shocks occur at the same time, China’s barley import volume tends to decline compared with the basic scenario, the import price rises sharply, there are certain trade-diverting effects in barley import, and China’s imports from countries not affected by extreme weather disasters will increase to a certain extent; (3) China’s barley production remains at a low rate of growth and is vulnerable to external shocks, facing certain import risks. This study provides important policy implications for preventing import risks and ensuring the sufficient supply of domestic barley. Full article
Article
The Short-Day Cycle Induces Intestinal Epithelial Purine Metabolism Imbalance and Hepatic Disfunctions in Antibiotic-Mediated Gut Microbiota Perturbation Mice
Int. J. Mol. Sci. 2022, 23(11), 6008; https://doi.org/10.3390/ijms23116008 (registering DOI) - 26 May 2022
Abstract
Intestinal microbiota dysbiosis is related to many metabolic diseases in human health. Meanwhile, as an irregular environmental light–dark (LD) cycle, short day (SD) may induce host circadian rhythm disturbances and worsen the risks of gut dysbiosis. Herein, we investigated how LD cycles regulate [...] Read more.
Intestinal microbiota dysbiosis is related to many metabolic diseases in human health. Meanwhile, as an irregular environmental light–dark (LD) cycle, short day (SD) may induce host circadian rhythm disturbances and worsen the risks of gut dysbiosis. Herein, we investigated how LD cycles regulate intestinal metabolism upon the destruction of gut microbes with antibiotic treatments. The growth indices, serum parameters, concentrations of short-chain fatty acids (SCFAs), and relative abundance of intestinal microbes were measured after euthanasia; intestinal contents, epithelial metabolomics, and hepatic transcriptome sequencing were also assessed. Compared with a normal LD cycle (NLD), SD increased the body weight, spleen weight, and serum concentration of aspartate aminotransferase, while it decreased high-density lipoprotein. Meanwhile, SD increased the relative abundance of the Bacteroidetes phylum while it decreased the Firmicutes phylum in the gut of ABX mice, thus leading to a disorder of SCFA metabolism. Metabolomics data revealed that SD exposure altered gut microbial metabolism in ABX mice, which also displayed more serious alterations in the gut epithelium. In addition, most differentially expressed metabolites were decreased, especially the purine metabolism pathway in epithelial tissue. This response was mainly due to the down-regulation of adenine, inosine, deoxyguanosine, adenylsuccinic acid, hypoxanthine, GDP, IMP, GMP, and AMP. Finally, the transcriptome data also indicated that SD has some negative effects on hepatic metabolism and endocrine, digestive, and disease processes. Overall, SD induced an epithelial and hepatic purine metabolism pathway imbalance in ABX mice, as well as the gut microbes and their metabolites, all of which could contribute to host metabolism and digestion, endocrine system disorders, and may even cause diseases in the host. Full article
(This article belongs to the Collection State-of-the-Art Molecular Microbiology in China)
Article
Influence of Cortisol on the Fibril Formation Kinetics of Ab42 Peptide: A Multi-Technical Approach
Int. J. Mol. Sci. 2022, 23(11), 6007; https://doi.org/10.3390/ijms23116007 (registering DOI) - 26 May 2022
Abstract
Amyloid-β peptide (Aβ) aggregates are known to be correlated with pathological neurodegenerative diseases. The fibril formation process of such peptides in solution is influenced by several factors, such as the ionic strength of the buffer, concentration, pH, and presence of other molecules, just [...] Read more.
Amyloid-β peptide (Aβ) aggregates are known to be correlated with pathological neurodegenerative diseases. The fibril formation process of such peptides in solution is influenced by several factors, such as the ionic strength of the buffer, concentration, pH, and presence of other molecules, just to mention a few. In this paper, we report a detailed analysis of in vitro Aβ42 fibril formation in the presence of cortisol at different relative concentrations. The thioflavin T fluorescence assay allowed us to monitor the fibril formation kinetics, while a morphological characterization of the aggregates was obtained by atomic force microscopy. Moreover, infrared absorption spectroscopy was exploited to investigate the secondary structure changes along the fibril formation path. Molecular dynamics calculations allowed us to understand the intermolecular interactions with cortisol. The combined results demonstrated the influence of cortisol on the fibril formation process: indeed, at cortisol-Ab42 concentration ratio (r) close to 0.1 a faster organization of Aβ42 fragments into fibrils is promoted, while for r = 1 the formation of fibrils is completely inhibited. Full article
(This article belongs to the Special Issue Spectroscopy and Microscopy of Fibrillar Protein Aggregates)
Article
Polysaccharides from Volvariella volvacea Mushroom: Extraction, Biological Activities and Cosmetic Efficacy
J. Fungi 2022, 8(6), 572; https://doi.org/10.3390/jof8060572 (registering DOI) - 26 May 2022
Abstract
Polysaccharides from Volvariella volvacea (VVP) were investigated for their cosmetic-related activities and in vivo efficacy for use as a multifunctional active cosmetic ingredient. Three different polysaccharide extraction methods, including hot water shaking (HS), microwave-assisted (MA) and ultrasonic-assisted (UA), were used. Extractable yield, polysaccharide [...] Read more.
Polysaccharides from Volvariella volvacea (VVP) were investigated for their cosmetic-related activities and in vivo efficacy for use as a multifunctional active cosmetic ingredient. Three different polysaccharide extraction methods, including hot water shaking (HS), microwave-assisted (MA) and ultrasonic-assisted (UA), were used. Extractable yield, polysaccharide contents and biological activities, including antioxidant, anti-tyrosinase and anti-elastase activities, were compared. The polysaccharides from HS provided the highest extraction yield (15.58 ± 0.96% w/w) and the highest beta-glucan content (18.80 ± 0.81% w/w). The HS polysaccharides also possessed the highest inhibitory effects toward lipid peroxidation (IC50 of 0.0378 mg/mL), tyrosinase (51.46 mg KAE/g), and elastase (604.21 ± 73.66 mg EGCG/g). The cytotoxicity of the VVP was determined for safe use. A cosmetic gel cream containing VVP was developed and 0.2% VVP formulation was observed to be the most stable in color. UV protection factors, skin irritation by single patch test, and in vivo efficacy, including skin moisturization, anti-wrinkle and whitening, were measured. The VVP showed no cytotoxicity against human dermal skin fibroblast. The gel cream containing VVP provided less sun protection factor; however, it significantly exhibited the skin benefits of increasing moisture, gross elasticity, net elasticity, and skin firmness. Improvements to skin roughness, scaliness, wrinkles and in melanin content were also depicted gradually along 8 weeks. V. volvacea, therefore, could be a good source for polysaccharides being used as a moisturizing, anti-wrinkle, and whitening agent in cosmetic preparations. Full article
(This article belongs to the Special Issue Edible and Medicinal Macrofungi)
Article
Extracellular Enzymatic Activities of Oceanic Pelagic Fungal Strains and the Influence of Temperature
J. Fungi 2022, 8(6), 571; https://doi.org/10.3390/jof8060571 (registering DOI) - 26 May 2022
Abstract
Although terrestrial and aquatic fungi are well-known decomposers of organic matter, the role of marine fungi remains largely unknown. Recent studies based on omics suggest that marine fungi potentially play a major role in elemental cycles. However, there is very limited information on [...] Read more.
Although terrestrial and aquatic fungi are well-known decomposers of organic matter, the role of marine fungi remains largely unknown. Recent studies based on omics suggest that marine fungi potentially play a major role in elemental cycles. However, there is very limited information on the diversity of extracellular enzymatic activities performed by pelagic fungi in the ocean and how these might be affected by community composition and/or critical environmental parameters such as temperature. In order to obtain information on the potential metabolic activity of marine fungi, extracellular enzymatic activities (EEA) were investigated. Five marine fungal species belonging to the most abundant pelagic phyla (Ascomycota and Basidiomycota) were grown at 5 °C and 20 °C, and fluorogenic enzymatic assays were performed using six substrate analogues for the hydrolysis of carbohydrates (β-glucosidase, β-xylosidase, and N-acetyl-β-D-glucosaminidase), amino acids (leucine aminopeptidase), and of organic phosphorus (alkaline phosphatase) and sulfur compounds (sulfatase). Remarkably, all fungal strains were capable of hydrolyzing all the offered substrates. However, the hydrolysis rate (Vmax) and half-saturation constant (Km) varied among the fungal strains depending on the enzyme type. Temperature had a strong impact on the EEAs, resulting in Q10 values of up to 6.1 and was species and substrate dependent. The observed impact of temperature on fungal EEA suggests that warming of the global ocean might alter the contribution of pelagic fungi in marine biogeochemical cycles. Full article
(This article belongs to the Special Issue Marine Fungus)
Article
The “Empty-Goal” Rule Change from the Perspective of International-Level Team Handball Goalkeepers
Int. J. Environ. Res. Public Health 2022, 19(11), 6506; https://doi.org/10.3390/ijerph19116506 (registering DOI) - 26 May 2022
Abstract
The 2016 “empty-goal” rule change in team handball allowed for swift goalkeeper-player substitutions, which opened the door to a variety of tactical solutions that could not be implemented prior to the change. This change is one of many rule changes that have taken [...] Read more.
The 2016 “empty-goal” rule change in team handball allowed for swift goalkeeper-player substitutions, which opened the door to a variety of tactical solutions that could not be implemented prior to the change. This change is one of many rule changes that have taken place in ball games in general and in handball in particular that were aimed to improve the competition and make gameplay more interesting. Previous literature shows that more often than not, such rule changes have led to unforeseen and undesired effects on players’ and teams’ behavior and performance. The aim of the current study was to consider the empty-goal rule from the goalkeeper’s perspective, as their offense–defense game routine was drastically transformed following the introduction of this new rule. Results of a survey among 95 professional goalkeepers, 80 of whom participated in international matches, revealed that the keepers’ level of confidence in empty-goal situations is moderate to high, that empty goal is rarely practiced more than once a week, and that less experienced goalkeepers are more positive regarding this rule change. Additionally, we found that the amount of empty-goal practice is positively related to the approval of the empty-goal rule among goalkeepers. Full article
(This article belongs to the Special Issue Handball: Sport and Health)
Article
Epidemiology of Antibiotic Resistant Pathogens in Pediatric Urinary Tract Infections as a Tool to Develop a Prediction Model for Early Detection of Drug-Specific Resistance
Antibiotics 2022, 11(6), 720; https://doi.org/10.3390/antibiotics11060720 (registering DOI) - 26 May 2022
Abstract
Antibiotic resistance is an increasing problem, especially in children with urinary tract infections. Rates of drug-specific resistant pathogens were reported, and an easy prediction model to guide the clinical decision-making process for antibiotic treatment was proposed. Data on microbiological isolation from urinoculture, between [...] Read more.
Antibiotic resistance is an increasing problem, especially in children with urinary tract infections. Rates of drug-specific resistant pathogens were reported, and an easy prediction model to guide the clinical decision-making process for antibiotic treatment was proposed. Data on microbiological isolation from urinoculture, between January 2007–December 2018 at Istituto Gaslini, Italy, in patients aged <19 years were extracted. Logistic regression-based prediction scores were calculated. Discrimination was determined by the area under the receiver operating characteristic curve; calibration was assessed by the Hosmer and Lemeshow test and the Spiegelhalterz test. A total of 9449 bacterial strains were isolated in 6207 patients; 27.2% were < 6 months old at the first episode. Enterobacteriales (Escherichia coli and other Enterobacteriales) accounted for 80.4% of all isolates. Amoxicillin-clavulanate (AMC) and cefixime (CFI) Enterobacteriales resistance was 32.8% and 13.7%, respectively, and remained quite stable among the different age groups. On the contrary, resistance to ciprofloxacin (CIP) (overall 9.6%) and cotrimoxazole (SXT) (overall 28%) increased with age. After multivariable analysis, resistance to AMC/CFI could be predicted by the following: sex; age at sampling; department of admission; previous number of bacterial pathogens isolated. Resistance to CIP/SXT could be predicted by the same factors, excluding sex. The models achieved very good calibration but moderate discrimination performance. Specific antibiotic resistance among Enterobacteriales could be predicted using the proposed scoring system to guide empirical antibiotic choice. Further studies are needed to validate this tool. Full article
(This article belongs to the Special Issue Global Spread of Antibiotics)
Review
An Update on the Pathology and Molecular Features of Hodgkin Lymphoma
Cancers 2022, 14(11), 2647; https://doi.org/10.3390/cancers14112647 (registering DOI) - 26 May 2022
Abstract
Hodgkin lymphomas (HLs) are lymphoid neoplasms derived from B cells and consist histologically of large neoplastic cells known as Hodgkin and Reed–Sternberg cells and abundant reactive bystander cells. HLs include two main types, classic HL (CHL) and nodular lymphocyte predominant HL (NLPHL). Recent [...] Read more.
Hodgkin lymphomas (HLs) are lymphoid neoplasms derived from B cells and consist histologically of large neoplastic cells known as Hodgkin and Reed–Sternberg cells and abundant reactive bystander cells. HLs include two main types, classic HL (CHL) and nodular lymphocyte predominant HL (NLPHL). Recent molecular analyses have revealed that an immune evasion mechanism, particularly the PD-1/PD-L1 pathway, plays a key role in the development of CHL. Other highlighted key pathways in CHL are NF-κB and JAK/STAT. These advances have dramatically changed the treatment for CHL, particularly relapsed/refractory CHL. For example, PD-1 inhibitors are now widely used in relapsed/refractory CHL. Compared with CHL, NLPHL is more characterized by preserved B cell features. Overlapping morphological and molecular features between NLPHL and T-cell/histiocyte-rich large B-cell lymphoma (THRLBCL) have been reported, and biological continuity between these two entities has been highlighted. Some THRLBCLs are considered to represent progression from NLPHLs. With considerable new understanding becoming available from molecular studies in HLs, therapies and classification of HLs are continually evolving. This paper offers a summary of and update on the pathological and molecular features of HLs for a better understanding of the diseases. Full article
(This article belongs to the Special Issue Therapy of Hodgkin Lymphoma)
Article
Improving the Health of Emerging Adult Gamers—A Scoping Review of Influences
Nutrients 2022, 14(11), 2226; https://doi.org/10.3390/nu14112226 (registering DOI) - 26 May 2022
Abstract
Emerging adults (EAs), defined as adults aged 18 to 25, remain a difficult group to engage in healthy behaviours (including positive dieting and eating patterns). The environmental elements that influence the health behaviours of EAs have been studied. However, the literature is mixed [...] Read more.
Emerging adults (EAs), defined as adults aged 18 to 25, remain a difficult group to engage in healthy behaviours (including positive dieting and eating patterns). The environmental elements that influence the health behaviours of EAs have been studied. However, the literature is mixed on how online game environments, including eSports and game streaming, can be used to positively engage EAs. In this scoping review, we identified and analysed research on online games, EAs, and dietary patterns to create a behavioural ecological map of influences that intersect with EAs through online games. In total, 75 studies were found, identifying 23 influences that intersect with EAs through their online game use. ESports organisations, eSports athletes, and content creators may be areas of future research (and intervention) as these factors could positively influence the dietary behaviours of EAs (through online games). Full article
(This article belongs to the Section Nutritional Policies and Education for Health Promotion)
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop