Accelerating Open Access.
MDPI is a pioneer in scholarly open access publishing
and has supported academic communities since 1996.
Open AccessExtended Abstract
Role of Periodontal Therapy Plus Sodium Doxycycline in the Management of Desquamative Gingivitis: A Pilot Study
Proceedings 2019, 35(1), 19; https://doi.org/10.3390/proceedings2019035019 (registering DOI) - 11 Dec 2019
Abstract
Desquamative gingivitis (DG) is a clinical representation of many. [...] Full article
Open AccessFeature PaperCommunication
Interfacial Dilational Viscoelasticity of Adsorption Layers at the Hydrocarbon/Water Interface: The Fractional Maxwell Model
Colloids Interfaces 2019, 3(4), 66; https://doi.org/10.3390/colloids3040066 (registering DOI) - 10 Dec 2019
Abstract
In this communication, the single element version of the fractional Maxwell model (single-FMM or Scott–Blair model) is adopted to quantify the observed behavior of the linear interfacial dilational viscoelasticity. This mathematical tool is applied to the results obtained by capillary pressure experiments under [...] Read more.
In this communication, the single element version of the fractional Maxwell model (single-FMM or Scott–Blair model) is adopted to quantify the observed behavior of the linear interfacial dilational viscoelasticity. This mathematical tool is applied to the results obtained by capillary pressure experiments under low-gravity conditions aboard the International Space Station, for adsorption layers at the hydrocarbon/water interface. Two specific experimental sets of steady-state harmonic oscillations of interfacial area are reported, respectively: a drop of pure water into a Span-80 surfactant/paraffin-oil matrix and a pure n-hexane drop into a C13DMPO/TTAB mixed surfactants/aqueous-solution matrix. The fractional constitutive single-FMM is demonstrated to embrace the standard Maxwell model (MM) and the Lucassen–van-den-Tempel model (L–vdT), as particular cases. The single-FMM adequately fits the Span-80/paraffin-oil observed results, correctly predicting the frequency dependence of the complex viscoelastic modulus and the inherent phase-shift angle. In contrast, the single-FMM appears as a scarcely adequate tool to fit the observed behavior of the mixed-adsorption surfactants for the C13DMPO/TTAB/aqueous solution matrix (despite the single-FMM satisfactorily comparing to the phenomenology of the sole complex viscoelastic modulus). Further speculations are envisaged in order to devise combined FMM as rational guidance to interpret the properties and the interfacial structure of complex mixed surfactant adsorption systems. Full article
(This article belongs to the Special Issue B&D 2019)
Show Figures

Figure 1

Open AccessFeature PaperArticle
Meshless Local Petrov–Galerkin Formulation of Inverse Stefan Problem via Moving Least Squares Approximation
Math. Comput. Appl. 2019, 24(4), 101; https://doi.org/10.3390/mca24040101 (registering DOI) - 10 Dec 2019
Abstract
In this paper, we study the meshless local Petrov–Galerkin (MLPG) method based on the moving least squares (MLS) approximation for finding a numerical solution to the Stefan free boundary problem. Approximation of this problem, due to the moving boundary, is difficult. To overcome [...] Read more.
In this paper, we study the meshless local Petrov–Galerkin (MLPG) method based on the moving least squares (MLS) approximation for finding a numerical solution to the Stefan free boundary problem. Approximation of this problem, due to the moving boundary, is difficult. To overcome this difficulty, the problem is converted to a fixed boundary problem in which it consists of an inverse and nonlinear problem. In other words, the aim is to determine the temperature distribution and free boundary. The MLPG method using the MLS approximation is formulated to produce the shape functions. The MLS approximation plays an important role in the convergence and stability of the method. Heaviside step function is used as the test function in each local quadrature. For the interior nodes, a meshless Galerkin weak form is used while the meshless collocation method is applied to the the boundary nodes. Since MLPG is a truly meshless method, it does not require any background integration cells. In fact, all integrations are performed locally over small sub-domains (local quadrature domains) of regular shapes, such as intervals in one dimension, circles or squares in two dimensions and spheres or cubes in three dimensions. A two-step time discretization method is used to deal with the time derivatives. It is shown that the proposed method is accurate and stable even under a large measurement noise through several numerical experiments. Full article
Show Figures

Figure 1

Open AccessArticle
Synchronization of Mutually Delay-Coupled Quantum Cascade Lasers with Distinct Pump Strengths
Photonics 2019, 6(4), 125; https://doi.org/10.3390/photonics6040125 (registering DOI) - 10 Dec 2019
Abstract
The rate equations for two delay-coupled quantum cascade lasers are investigated analytically in the limit of weak coupling and small frequency detuning. We mathematically derive two coupled Adler delay differential equations for the phases of the two electrical fields and show that these [...] Read more.
The rate equations for two delay-coupled quantum cascade lasers are investigated analytically in the limit of weak coupling and small frequency detuning. We mathematically derive two coupled Adler delay differential equations for the phases of the two electrical fields and show that these equations are no longer valid if the ratio of the two pump parameters is below a critical power of the coupling constant. We analyze this particular case and derive new equations for a single optically injected laser where the delay is no longer present in the arguments of the dependent variables. Our analysis is motivated by the observations of Bogris et al. (IEEE J. Sel. Top. Quant. El. 23, 1500107 (2017)), who found better sensing performance using two coupled quantum cascade lasers when one laser was operating close to the threshold. Full article
(This article belongs to the Special Issue Semiconductor Laser Dynamics: Fundamentals and Applications)
Show Figures

Figure 1

Open AccessFeature PaperArticle
Multiple-Input Single-Output Control for Extending the Steady-State Operating Range—Use of Controllers with Different Setpoints
Processes 2019, 7(12), 941; https://doi.org/10.3390/pr7120941 (registering DOI) - 10 Dec 2019
Abstract
This paper deals with a case when multiple inputs are needed to cover the steady-state operating range. The most common implementation is to use split range control with a single controller. However, this approach has some limitations. In this paper, we use multiple [...] Read more.
This paper deals with a case when multiple inputs are needed to cover the steady-state operating range. The most common implementation is to use split range control with a single controller. However, this approach has some limitations. In this paper, we use multiple controllers with different setpoints and demonstrate that this structure can be optimal in some cases when the cost of the input can be traded off against the penalty of deviating from the desired setpoint. We describe a procedure to find the optimal setpoint deviations. We illustrate our procedure in a case in which three inputs (cooling and two sources of heating) are used to control the temperature of a room with a PID-based control structure and without the need of online optimization. Full article
Show Figures

Figure 1

Open AccessFeature PaperReview
Colloids at Fluid Interfaces
Processes 2019, 7(12), 942; https://doi.org/10.3390/pr7120942 (registering DOI) - 10 Dec 2019
Abstract
Over the last two decades, understanding of the attachment of colloids to fluid interfaces has attracted the interest of researchers from different fields. This is explained by considering the ubiquity of colloidal and interfacial systems in nature and technology. However, to date, the [...] Read more.
Over the last two decades, understanding of the attachment of colloids to fluid interfaces has attracted the interest of researchers from different fields. This is explained by considering the ubiquity of colloidal and interfacial systems in nature and technology. However, to date, the control and tuning of the assembly of colloids at fluid interfaces remain a challenge. This review discusses some of the most fundamental aspects governing the organization of colloidal objects at fluid interfaces, paying special attention to spherical particles. This requires a description of different physicochemical aspects, from the driving force involved in the assembly to its thermodynamic description, and from the interactions involved in the assembly to the dynamics and rheological behavior of particle-laden interfaces. Full article
(This article belongs to the Special Issue Particle-Laden Fluid Interfaces: Dynamics and Interfacial Rheology)
Open AccessFeature PaperArticle
The Enhancement of Academic Performance in Online Environments
Mathematics 2019, 7(12), 1219; https://doi.org/10.3390/math7121219 (registering DOI) - 10 Dec 2019
Abstract
Distance education has been gaining popularity for the last years. The proficiency in online environments of both learners and teachers explains the success of this methodology. An evaluation of graduate students’ performance within numerical analysis is discussed. In order to improve the marks [...] Read more.
Distance education has been gaining popularity for the last years. The proficiency in online environments of both learners and teachers explains the success of this methodology. An evaluation of graduate students’ performance within numerical analysis is discussed. In order to improve the marks obtained by the students, specific actions have been performed over the years and data from different classes has been analyzed using statistical tools. The results show that the actions proposed seemed to help the students in their learning process. Full article
(This article belongs to the Special Issue New trends in Mathematics Learning)
Open AccessArticle
Management of the Output Electrical Power in Thermoelectric Generators
Electronics 2019, 8(12), 1514; https://doi.org/10.3390/electronics8121514 (registering DOI) - 10 Dec 2019
Abstract
Thermoelectric Generators (TEGs) are devices for direct conversion of heat into electrical power and bear a great potential for applications in energy scavenging and green energy harvesting. Given a heat source, the conversion efficiency depends on the available temperature difference, and must be [...] Read more.
Thermoelectric Generators (TEGs) are devices for direct conversion of heat into electrical power and bear a great potential for applications in energy scavenging and green energy harvesting. Given a heat source, the conversion efficiency depends on the available temperature difference, and must be maximized for optimal operation of the TEG. In this frame, the choice of materials with high thermoelectric properties should be accompanied by the identification of criteria for an optimal exploitation of the electrical power output. In this work, we briefly review the main properties of TEGs, focusing on the electrical power output and the thermal-to-electrical conversion efficiency. Besides, we discuss principles of operation of TEGs enabling the optimization of the electrical power output, based on the suitable choice of the electrical load. In particular, we comparatively present and discuss the conditions for matching the electrical load—yielding to maximum power transfer—and those for maximizing the conversion efficiency. We compare the two conditions applying them to the exploitation of a heat reservoir for energy storage and to the recovery of heat from a heat exchanger. We conclude that the difference between the two conditions is not significant enough to justify the complexity required by the implementation of the maximum efficiency. In addition, we consider the effect of the thermal contact resistance on the electrical power output. Using a simple thermal-electrical model, we demonstrate that the equivalent electrical resistance measured between the terminals of the TEG depends on the thermal exchange. Hence, for maximum power transfer, the electrical load of the TEG should not match its parasitic resistance, but the equivalent electrical resistance in each specific operating conditions, which determine the thermal fluxes. The model can be applied for the development of efficient alternative algorithms for maximum power point tracking. Full article
(This article belongs to the Section Power Electronics)
Show Figures

Figure 1

Open AccessArticle
Molecular Dynamics Simulation of Transmembrane Transport of Chloride Ions in Mutants of Channelrhodopsin
Biomolecules 2019, 9(12), 852; https://doi.org/10.3390/biom9120852 (registering DOI) - 10 Dec 2019
Abstract
Channelrhodopsins (ChRs) are light-gated transmembrane cation channels which are widely used for optogenetic technology. Replacing glutamate located at the central gate of the ion channel with positively charged amino acid residues will reverse ion selectivity and allow anion conduction. The structures and properties [...] Read more.
Channelrhodopsins (ChRs) are light-gated transmembrane cation channels which are widely used for optogenetic technology. Replacing glutamate located at the central gate of the ion channel with positively charged amino acid residues will reverse ion selectivity and allow anion conduction. The structures and properties of the ion channel, the transport of chloride, and potential of mean force (PMF) of the chimera protein (C1C2) and its mutants, EK-TC, ER-TC and iChloC, were investigated by molecular dynamics simulation. The results show that the five-fold mutation in E122Q-E129R-E140S-D195N-T198C (iChloC) increases the flexibility of the transmembrane channel protein better than the double mutations in EK-TC and ER-TC, and results in an expanded ion channel pore size and decreased steric resistance. The iChloC mutant was also found to have a higher affinity for chloride ions and, based on surface electrostatic potential analysis, provides a favorable electrostatic environment for anion conduction. The PMF free energy curves revealed that high affinity Cl binding sites are generated near the central gate of the three mutant proteins. The energy barriers for the EK-TC and ER-TC were found to be much higher than that of iChloC. The results suggest that the transmembrane ion channel of iChloC protein is better at facilitating the capture and transport of chloride ions. Full article
(This article belongs to the Special Issue Advances in Membrane Proteins)
Show Figures

Figure 1

Open AccessArticle
Enhanced XRF Methods for Investigating the Erosion-Resistant Functional Coatings
Coatings 2019, 9(12), 847; https://doi.org/10.3390/coatings9120847 (registering DOI) - 10 Dec 2019
Abstract
The development of erosion-resistant functional materials usable as plasma facing first wall components (PFC) is crucial for increasing the lifetime of future fusion reactors. Generally, PFCs have to be quality checked and characterized regarding their composition, before integrating them into the fusion reactor [...] Read more.
The development of erosion-resistant functional materials usable as plasma facing first wall components (PFC) is crucial for increasing the lifetime of future fusion reactors. Generally, PFCs have to be quality checked and characterized regarding their composition, before integrating them into the fusion reactor vessel. Enhanced X-ray fluorescence (XRF) methods represent an effective alternative to conventional analysis methods for the characterization of refractive metallic coatings on large areas of fusion materials. We have developed and applied XRF methods as fast and robust methods for the characterization of the thickness and composition uniformity of complex functional coatings. These coatings consist of tungsten included in multilayer configuration and deposited on low or high Z substrates. We have further developed customized calibration protocols for quantifying the element composition and layer thickness of each investigated sample. The calibration protocols are based on a combination of standard samples measurements, Monte Carlo simulations, and fundamental parameter theoretical calculations. The calibrated results are discussed considering a selection of relevant PFC samples. The deposition uniformity was successfully investigated for different PFC-relevant tiles and lamella shaped samples with W layers below and over the W L-line saturation thickness. Also, the 2D thickness mapping capability of the XRF method was demonstrated by studying the plasma post-erosion pattern. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

Open AccessArticle
Structure Investigation of Titanium Metallization Coating Deposited onto AlN Ceramics Substrate by Means of Friction Surfacing Process
Coatings 2019, 9(12), 845; https://doi.org/10.3390/coatings9120845 (registering DOI) - 10 Dec 2019
Abstract
The article presents selected properties of a titanium metallization coating deposited on aluminum nitride (AlN) ceramics surface by means of the friction surfacing method. Its mechanism is based on the formation of a joint between the surface of an AlN ceramics substrate and [...] Read more.
The article presents selected properties of a titanium metallization coating deposited on aluminum nitride (AlN) ceramics surface by means of the friction surfacing method. Its mechanism is based on the formation of a joint between the surface of an AlN ceramics substrate and a thin Ti coating, involving a kinetic energy of friction, which is directly converted into heat and delivered in a precisely defined quantity to the resulting joint. The largest effects on the final properties of the obtained coating include the high affinity of titanium for oxygen and nitrogen and a relatively high temperature for the deposition process. The titanium metallization coating was characterized in terms of surface stereometric structure, thickness, surface morphology, metallographic microstructural properties, and phase structure. The titanium coating has a thickness ranging from 3 to 7 μm. The phase structure of the coating surface (XPS investigated) is dominated by TiNxOy with the presence of TiOx, TiN, metallic Ti, and AlN. The phase structure deeper below the surface (XRD investigated) is dominated by metallic Ti with additional AlN particles originating from the ceramic substrate due to friction by titanium tools. Full article
(This article belongs to the Special Issue Recent Advances in Friction Stir Processed Coatings)
Show Figures

Figure 1

Open AccessArticle
One-Step Preparation of Hyperbranched Polyether Functionalized Graphene Oxide for Improved Corrosion Resistance of Epoxy Coatings
Coatings 2019, 9(12), 844; https://doi.org/10.3390/coatings9120844 (registering DOI) - 10 Dec 2019
Abstract
In this paper, hyperbranched polyether functionalized graphene oxide (EHBPE-GO) was prepared by a facile one-step method. Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), thermogravimetric analyzer (TGA), and trans-mission electron microscopy (TEM) results confirmed the formation of EHBPE-GO. Then, EHBPE-GO was cured with [...] Read more.
In this paper, hyperbranched polyether functionalized graphene oxide (EHBPE-GO) was prepared by a facile one-step method. Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), thermogravimetric analyzer (TGA), and trans-mission electron microscopy (TEM) results confirmed the formation of EHBPE-GO. Then, EHBPE-GO was cured with phenolic amides at room temperature to prepare epoxy coatings. The corrosion resistance of epoxy coatings was investigated systematically by using electrochemical and traditional immersion methods. Results show that a small amount of EHBPE-GO (8 wt % of Diglycidyl ether of bisphenol A (DGEBA)) in epoxy coating achieves 50% higher improvement in acid-resistance than unmodified neat DGEBA resin. For the nanocomposite epoxy coating, the superior acid-resistance is attributed to the increased crosslink density and the impermeable 2D structure of EHBPE-GO. This work provides a facile strategy to develop the effective improved corrosion resistance nanofiller for epoxy coating. Full article
Show Figures

Figure 1

Open AccessFeature PaperArticle
Concentration Dependencies of Diffusion Permeability of Anion-Exchange Membranes in Sodium Hydrogen Carbonate, Monosodium Phosphate, and Potassium Hydrogen Tartrate Solutions
Membranes 2019, 9(12), 170; https://doi.org/10.3390/membranes9120170 (registering DOI) - 10 Dec 2019
Abstract
The concentration dependencies of diffusion permeability of homogeneous (AMX-Sb and AX) and heterogeneous (MA-41 and FTAM-EDI) anion-exchange membranes (AEMs) is obtained in solutions of ampholytes (sodium bicarbonate, NaHCO3; monosodium phosphate, NaH2PO4; and potassium hydrogen tartrate, KHT) and [...] Read more.
The concentration dependencies of diffusion permeability of homogeneous (AMX-Sb and AX) and heterogeneous (MA-41 and FTAM-EDI) anion-exchange membranes (AEMs) is obtained in solutions of ampholytes (sodium bicarbonate, NaHCO3; monosodium phosphate, NaH2PO4; and potassium hydrogen tartrate, KHT) and a strong electrolyte (sodium chloride, NaCl). It is established that the diffusion permeability of AEMs increases with dilution of the ampholyte solutions, while it decreases in the case of the strong electrolyte solution. The factors causing the unusual form of concentration dependencies of AEMs in the ampholyte solutions are considered: (1) the enrichment of the internal AEM solution with multiply charged counterions and (2) the increase in the pore size of AEMs with dilution of the external solution. The enrichment of the internal solution of AEMs with multiply charged counterions is caused by the Donnan exclusion of protons, which are the products of protolysis reactions. The increase in the pore size is conditioned by the stretching of the elastic polymer matrix due to the penetration of strongly hydrated anions of carbonic, phosphoric, and tartaric acids into the AEMs. Full article
(This article belongs to the Special Issue Ion-Exchange Membranes and Processes)
Show Figures

Graphical abstract

Open AccessArticle
Neutralization Dialysis for Phenylalanine and Mineral Salt Separation. Simple Theory and Experiment
Membranes 2019, 9(12), 171; https://doi.org/10.3390/membranes9120171 (registering DOI) - 10 Dec 2019
Abstract
A simple non-steady state mathematical model is proposed for the process of purification of an amino acid solution from mineral salts by the method of neutralization dialysis (ND), carried out in a circulating hydrodynamic mode. The model takes into account the characteristics of [...] Read more.
A simple non-steady state mathematical model is proposed for the process of purification of an amino acid solution from mineral salts by the method of neutralization dialysis (ND), carried out in a circulating hydrodynamic mode. The model takes into account the characteristics of membranes (thickness, exchange capacity and electric conductivity) and solution (concentration and components nature) as well as the solution flow rate in dialyzer compartments. In contrast to the known models, the new model considers a local change in the ion concentration in membranes and the adjacent diffusion layers. In addition, the model takes into consideration the ability of the amino acid to enter the protonation/deprotonation reactions. A comparison of the results of simulations with experimental data allows us to conclude that the model adequately describes the ND of a strong electrolyte (NaCl) and amino acid (phenylalanine) mixture solutions in the case where the diffusion ability of amino acids in membranes is much less, than mineral salts. An example shows the application of the model to predict the fluxes of salt ions through ion exchange membranes as well as pH of the desalination solution at a higher than in experiments flow rate of solutions in ND dialyzer compartments. Full article
(This article belongs to the Special Issue Ion-Exchange Membranes and Processes)

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop