Accelerating Open Access.
MDPI is a pioneer in scholarly open access publishing
and has supported academic communities since 1996.
Open AccessArticle
Effect of Deposition Parameters on Microstructure of the Ti-Mg Immiscible Alloy Thin Film Deposited by Multi-Arc Ion Plating
Metals 2019, 9(11), 1229; https://doi.org/10.3390/met9111229 (registering DOI) - 17 Nov 2019
Abstract
Ti-Mg immiscible alloy thin films were prepared using a multi-arc ion plating technique with various deposition parameters. The surface and cross-section morphologies, crystal structures, and chemical compositions of the Ti-Mg films were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission [...] Read more.
Ti-Mg immiscible alloy thin films were prepared using a multi-arc ion plating technique with various deposition parameters. The surface and cross-section morphologies, crystal structures, and chemical compositions of the Ti-Mg films were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM). The influence of the substrate negative bias voltage and Ar gas pressure on the microstructure of the Ti-Mg films was systematically studied. Mg atoms were incorporated into the Ti lattice to form an FCC immiscible supersaturated solid solution phase in the thin film. Microparticles were observed on the film surface, and the number of microparticles could be significantly reduced by decreasing the substrate bias voltage and increasing the Ar gas pressure. The appropriate substrate bias voltage and Ar gas pressure increased the deposition rate. The TEM results indicated that columnar, nanolayer, and equiaxed nanocrystals were present in the thin films. Ti and Mg fluctuations were still evident in the nanoscale structures. Full article
Open AccessArticle
Characteristics and Adoption Success of Shelter Dogs Assessed as Resource Guarders
Animals 2019, 9(11), 982; https://doi.org/10.3390/ani9110982 (registering DOI) - 17 Nov 2019
Abstract
Some domestic dogs aggressively guard resources. Canine resource guarding impacts public health through dog bites and affects dog welfare through adoption and euthanasia policies at animal shelters. However, little is known about the demographic characteristics and adoption success of dogs assessed as resource [...] Read more.
Some domestic dogs aggressively guard resources. Canine resource guarding impacts public health through dog bites and affects dog welfare through adoption and euthanasia policies at animal shelters. However, little is known about the demographic characteristics and adoption success of dogs assessed as resource guarders during shelter behavioral evaluations. I reviewed nearly five years of records from a New York (NY) SPCA and categorized 1016 dogs by sex; age; size; reproductive status; and resource guarding. I then examined how these characteristics influenced the returns of dogs by adopters. The prevalence of resource guarding in this shelter dog population was 15%. Resource guarding was more common in adult and senior dogs than in juvenile dogs; and it was more common in small and large dogs than medium-sized dogs. Spayed females were more likely than intact females to guard food; neutered males and intact males did not differ in their likelihood of food guarding. Most dogs identified as resource guarders showed mild to moderate guarding. Severe guarders were more likely to be returned by adopters; although almost all were eventually re-adopted and not returned to the shelter. Data presented here provide the most comprehensive description of resource guarders in a shelter dog population and show the successful re-homing of most. Full article
(This article belongs to the Special Issue Behavior of Shelter Animals)
Open AccessArticle
Influence of Cardiorespiratory Clinical Placements on the Specialty Interest of Physiotherapy Students
Healthcare 2019, 7(4), 148; https://doi.org/10.3390/healthcare7040148 (registering DOI) - 17 Nov 2019
Abstract
Clinical placements are an important part of health students’ training. Whilst much value is placed on the clinical environment as a place to learn, there is a paucity of direct evidence about its effectiveness. The aim of this study was to compare the [...] Read more.
Clinical placements are an important part of health students’ training. Whilst much value is placed on the clinical environment as a place to learn, there is a paucity of direct evidence about its effectiveness. The aim of this study was to compare the competence, importance, and interest in cardiorespiratory physiotherapy of students before and after one month of clinical practice. A pre- and post-placement questionnaire about students’ interest in different physiotherapy subspecialties was used. The students with a cardiorespiratory clinical placement showed a significant change in their perception about the importance of the cardiorespiratory specialty (0.348 ± 1.01; p < 0.001), while no significant change was observed in the students without cardiorespiratory placement (−0.014 ± 0.825; p = 0.883). The presence or absence of clinical placements seems to have a definitive impact on students’ choice of a specialty. This implies the need for developing a set of clinical placements in all the subareas of physiotherapy in order to give undergraduate students the opportunity to make a better decision. Full article
Open AccessCommentary
A Fundamental Reason for the Need of Two Different Semiconductor Technologies for Complementary Thin-Film Transistor Operations
Crystals 2019, 9(11), 603; https://doi.org/10.3390/cryst9110603 (registering DOI) - 17 Nov 2019
Abstract
In this short commentary, we discuss a fundamental reason why two different semiconductor technologies are needed for complementary thin-film transistor (TFT) operations. It is mainly related to an energy-level matching between the band edge of the semiconductor and the work-function energy of the [...] Read more.
In this short commentary, we discuss a fundamental reason why two different semiconductor technologies are needed for complementary thin-film transistor (TFT) operations. It is mainly related to an energy-level matching between the band edge of the semiconductor and the work-function energy of the metal, which is used for the source and drain electrodes. The reference energy level is determined by the energy range of work-functions of typical metals for the source and drain electrodes. With the exception of silicon, both the conduction band edge (EC) and valence band edge (EV) of a single organic or inorganic material are unlikely to match the metal work-function energy whose range is typically from –4 to –6 eV. For example, typical inorganic materials, e.g., Zn–O, have the EC of around –4.5 eV (i.e., electron affinity), so the conduction band edge is within the range of the metal work-function energy, suggesting its suitability for n-channel TFTs. On the other hand, p-type inorganic materials, such as Cu–O, have an EV of around –5.5 eV, so the valence band edge is aligned with metal work-function energy, thus the usage for p-channel TFTs. In the case of p-type and n-type organic materials, their highest occupied molecular orbital (HOMO) and lowest occupied molecular orbital (LUMO) should be aligned with metal work-function energy. For example, p-type organic material, e.g., pentacene, has a HOMO level around –5 eV, which is within the range of the metal work-function energy, implying usage for p-channel TFTs. However, its LUMO level is around –3 eV, not being aligned with the metals’ work-function energy. So it is hard to use pentacene for n-channel TFTs. Along with this, n-type organic materials (e.g., C60) should have HOMO levels within the typical metals’ work-function energy for the usage of n-channel TFT. To support this, we provide a qualitative and comparative study on electronic material properties, such as the electron affinity and band-gap of representative organic and inorganic materials, and the work-function energy of typical metals. Full article
(This article belongs to the Special Issue Advances in Thin Film Materials and Devices)
Open AccessArticle
Pseudomonas sp. COW3 Produces New Bananamide-Type Cyclic Lipopeptides with Antimicrobial Activity against Pythium myriotylum and Pyricularia oryzae
Molecules 2019, 24(22), 4170; https://doi.org/10.3390/molecules24224170 (registering DOI) - 17 Nov 2019
Abstract
Pseudomonas species are metabolically robust, with capacity to produce secondary metabolites including cyclic lipopeptides (CLPs). Herein we conducted a chemical analysis of a crude CLP extract from the cocoyam rhizosphere-derived biocontrol strain Pseudomonas sp. COW3. We performed in silico analyses on its whole [...] Read more.
Pseudomonas species are metabolically robust, with capacity to produce secondary metabolites including cyclic lipopeptides (CLPs). Herein we conducted a chemical analysis of a crude CLP extract from the cocoyam rhizosphere-derived biocontrol strain Pseudomonas sp. COW3. We performed in silico analyses on its whole genome, and conducted in vitro antagonistic assay using the strain and purified CLPs. Via LC-MS and NMR, we elucidated the structures of four novel members of the bananamide group, named bananamides D-G. Besides variability in fatty acid length, bananamides D-G differ from previously described bananamides A-C and MD-0066 by the presence of a serine and aspartic acid at position 6 and 2, respectively. In addition, bananamide G has valine instead of isoleucine at position 8. Kendrick mass defect (KMD) allowed the assignment of molecular formulae to bananamides D and E. We unraveled a non-ribosomal peptide synthetase cluster banA, banB and banC which encodes the novel bananamide derivatives. Furthermore, COW3 displayed antagonistic activity and mycophagy against Pythium myriotylum, while it mainly showed mycophagy on Pyricularia oryzae. Purified bananamides D-G inhibited the growth of P. myriotylum and P. oryzae and caused hyphal distortion. Our study shows the complementarity of chemical analyses and genome mining in the discovery and elucidation of novel CLPs. In addition, structurally diverse bananamides differ in their antimicrobial activity. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

Open AccessArticle
Adaptive Equalization for Dispersion Mitigation in Multi-Channel Optical Communication Networks
Electronics 2019, 8(11), 1364; https://doi.org/10.3390/electronics8111364 (registering DOI) - 17 Nov 2019
Abstract
Optical communication networks (OCNs) provide promising and cost-effective support for the ultra-fast broadband solutions, thus enabling them to address the ever growing demands of telecommunication industry such as high capacity and end users’ data rate. OCNs are used in both wired and wireless [...] Read more.
Optical communication networks (OCNs) provide promising and cost-effective support for the ultra-fast broadband solutions, thus enabling them to address the ever growing demands of telecommunication industry such as high capacity and end users’ data rate. OCNs are used in both wired and wireless access networks as they offer many advantages over conventional copper wire transmission such as low power consumption, low cost, ultra-high bandwidth, and high transmission rates. Channel effects caused by light propagation through the fiber limits the performance, hence the data rate of the overall transmission. To achieve the maximum performance gain in terms of transmission rate through the OCN, an optical downlink system is investigated in this paper using feed forward equalizer (FFE) along with decision feedback equalizer (DFE). The simulation results show that the proposed technique plays a key role in dispersion mitigation in multi-channel optical transmission to uphold multi-Gb/s transmission. Moreover, bit error rate (BER) and quality factor (Q-factor) below 10 5 and above 5, respectively, are achieved with electrical domain equalizers for the OCN in the presence of multiple distortion effects showing the effectiveness of the proposed adaptive equalization techniques. Full article
(This article belongs to the Section Networks)
Show Figures

Figure 1

Open AccessArticle
HIF1α-Dependent Metabolic Signals Control the Differentiation of Follicular Helper T Cells
Cells 2019, 8(11), 1450; https://doi.org/10.3390/cells8111450 (registering DOI) - 17 Nov 2019
Abstract
Follicular helper T (TFH) cells are critical for germinal center (GC) formation and are responsible for effective B cell-mediated immunity; metabolic signaling is an important regulatory mechanism for the differentiation of TFH cells. However, the precise roles of hypoxia inducible [...] Read more.
Follicular helper T (TFH) cells are critical for germinal center (GC) formation and are responsible for effective B cell-mediated immunity; metabolic signaling is an important regulatory mechanism for the differentiation of TFH cells. However, the precise roles of hypoxia inducible factor (HIF) 1α-dependent glycolysis and oxidative phosphorylation (OXPHOS) metabolic signaling remain unclear in TFH cell differentiation. Herein, we investigated the effects of glycolysis and OXPHOS on TFH cell differentiation and GC responses using a pharmacological approach in mice under a steady immune status or an activated immune status, which can be caused by foreign antigen stimulation and viral infection. GC and TFH cell responses are related to signals from glycolytic metabolism in mice of different ages. Foreign, specific antigen-induced GC, and TFH cell responses and metabolic signals are essential upon PR8 infection. Glycolysis and succinate-mediated OXPHOS are required for the GC response and TFH cell differentiation. Furthermore, HIF1α is responsible for glycolysis- and OXPHOS-induced alterations in the GC response and TFH cell differentiation under steady or activated conditions in vivo. Blocking glycolysis and upregulating OXPHOS signaling significantly recovered TFH cell differentiation upon PR8 infection and ameliorated inflammatory damage in mice. Thus, our data provide a comprehensive experimental basis for fully understanding the precise roles of HIF1α-mediated glycolysis and OXPHOS metabolic signaling in regulating the GC response and TFH cell differentiation during stable physiological conditions or an antiviral immune response. Full article
(This article belongs to the Section Cellular Immunology)
Open AccessArticle
Sensitive and Specific Detection of Ewing Sarcoma Minimal Residual Disease in Ovarian and Testicular Tissues in an In Vitro Model
Cancers 2019, 11(11), 1807; https://doi.org/10.3390/cancers11111807 (registering DOI) - 17 Nov 2019
Abstract
Ewing sarcoma (EWS) is a common pediatric solid tumor with high metastatic potential. Due to toxic effects of treatments on reproductive functions, the cryopreservation of ovarian tissue (OT) or testicular tissue (TT) is recommended to preserve fertility. However, the risk of reintroducing residual [...] Read more.
Ewing sarcoma (EWS) is a common pediatric solid tumor with high metastatic potential. Due to toxic effects of treatments on reproductive functions, the cryopreservation of ovarian tissue (OT) or testicular tissue (TT) is recommended to preserve fertility. However, the risk of reintroducing residual metastatic tumor cells should be evaluated before fertility restoration. Our goal was to validate a sensitive and specific approach for EWS minimal residual disease (MRD) detection in frozen germinal tissues. Thawed OT (n = 12) and TT (n = 14) were contaminated with tumor RD-ES cells (10, 100, and 1000 cells) and EWS-FLI1 tumor-specific transcript was quantified with RT-qPCR. All contaminated samples were found to be positive, with a strong correlation between RD-ES cell numbers and EWS-FLI1 levels in OT (r = 0.93) and TT (r = 0.96) (p < 0.001). No transcript was detected in uncontaminated control samples. The invasive potential of Ewing cells was evaluated using co-culture techniques. After co-culturing, tumor cells were detected in OT/TT with histology, FISH, and RT-qPCR. In addition, four OT and four TT samples from children with metastatic EWS were tested, and no MRD was found using RT-qPCR and histology. We demonstrated the high sensitivity and specificity of RT-qPCR to detect EWS MRD in OT/TT samples. Clinical trial: NCT 02400970. Full article
(This article belongs to the Special Issue Ewing Sarcoma)
Show Figures

Figure 1

Open AccessArticle
Fluorescence Properties and Density Functional Theory Calculation of a Structurally Characterized Heterotetranuclear [ZnII2–SmIII2] 4,4′-Bipy-Salamo-Constructed Complex
Crystals 2019, 9(11), 602; https://doi.org/10.3390/cryst9110602 (registering DOI) - 17 Nov 2019
Abstract
A new heterotetranuclear complex, [{Zn(L)Sm(NO3)3}2(4,4′-bipy)]·2CH3OH, was synthesized via an unsymmetrical single salamo-like ligand H2L: 6-methoxy-6′-ethoxy-2,2′-[ethylenedioxybis(azinomethyl)]diphenol, with Zn(OAc)2·2H2O, Sm(NO3)3·6H2O, and [...] Read more.
A new heterotetranuclear complex, [{Zn(L)Sm(NO3)3}2(4,4′-bipy)]·2CH3OH, was synthesized via an unsymmetrical single salamo-like ligand H2L: 6-methoxy-6′-ethoxy-2,2′-[ethylenedioxybis(azinomethyl)]diphenol, with Zn(OAc)2·2H2O, Sm(NO3)3·6H2O, and 4,4′-bipyridine by the one-pot method. The [ZnII2–SmIII2] complex was validated via elemental analysis, powder X-ray diffraction (PXRD) analysis, infrared spectroscopy, and ultraviolet–visible (UV–Vis) absorption spectroscopy. The X-ray single crystal diffraction analysis of the [ZnII2–SmIII2] complex was carried out via X-ray single-crystal crystallography. The crystal structure and supramolecular features were discussed. In addition, while studying the fluorescence properties of the [ZnII2–SmIII2] complex, the density functional theory (DFT) calculation of its structure was also performed. Full article
(This article belongs to the Special Issue Fluorescent Complexes)
Show Figures

Graphical abstract

Open AccessArticle
Survey and Characterization of Jingmen Tick Virus Variants
Viruses 2019, 11(11), 1071; https://doi.org/10.3390/v11111071 (registering DOI) - 17 Nov 2019
Abstract
We obtained a Jingmen tick virus (JMTV) isolate, following inoculation of a tick pool with detectable Crimean-Congo hemorrhagic fever virus (CCHFV) RNA. We subsequently screened 7223 ticks, representing 15 species in five genera, collected from various regions in Anatolia and eastern Thrace, Turkey. [...] Read more.
We obtained a Jingmen tick virus (JMTV) isolate, following inoculation of a tick pool with detectable Crimean-Congo hemorrhagic fever virus (CCHFV) RNA. We subsequently screened 7223 ticks, representing 15 species in five genera, collected from various regions in Anatolia and eastern Thrace, Turkey. Moreover, we tested specimens from various patient cohorts (n = 103), and canine (n = 60), bovine (n = 20) and avian specimens (n = 65). JMTV nucleic acids were detected in 3.9% of the tick pools, including those from several tick species from the genera Rhipicephalus and Haemaphysalis, and Hyalomma marginatum, the main vector of CCHFV in Turkey. Phylogenetic analysis supported two separate clades, independent of host or location, suggesting ubiquitous distribution in ticks. JMTV was not recovered from any human, animal or bird specimens tested. Near-complete viral genomes were sequenced from the prototype isolate and from three infected tick pools. Genome topology and functional organization were identical to the members of Jingmen group viruses. Phylogenetic reconstruction of individual viral genome segments and functional elements further supported the close relationship of the strains from Kosovo. We further identified probable recombination events in the JMTV genome, involving closely-related strains from Anatolia or China. Full article
(This article belongs to the Special Issue Emerging Arboviruses)
Show Figures

Figure 1

Open AccessArticle
Response of Submerged Aquatic Vegetation to Water Depth in a Large Shallow Lake after an Extreme Rainfall Event
Water 2019, 11(11), 2412; https://doi.org/10.3390/w11112412 (registering DOI) - 17 Nov 2019
Abstract
Submerged aquatic vegetation (SAV) is an important part of lake ecosystems, and a proper SAV community structure is the key factor in keeping a clear-water state. Although the response of SAV to water depth has been widely studied in different aquatic environments, little [...] Read more.
Submerged aquatic vegetation (SAV) is an important part of lake ecosystems, and a proper SAV community structure is the key factor in keeping a clear-water state. Although the response of SAV to water depth has been widely studied in different aquatic environments, little is known about the response of the SAV community to changes in water depth of a large lake after an extreme rainfall event. To examine this question, 780 samples were collected from Lake Taihu, China, between 2013 and 2017 to analyze the variations in SAV and water depth. The water level of the lake ranged from 2.75 to 4.87 m, and the water depth at sampling sites ranged from 1.07 to 3.31 m. The SAV biomass at the sampling sites ranged from 0 to 17.61 kg/m2. The influence of water depth on SAV biomass and frequency of occurrence differed by seasons and by species. The adaptation of SAV species to increasing water depth is a key element for community dynamics, which in turn contributes to water level regulation. A new method was proposed to identify the optimal water depth for SAV biomass accumulation based on calculation of the cumulative probability and probability density. Full article
(This article belongs to the Section Water Quality and Ecosystems)
Show Figures

Figure 1

Open AccessArticle
Effect of Hexavalent Chromium [Cr(VI)] on Phytoremediation Potential and Biochemical Response of Hybrid Napier Grass with and without EDTA Application
Plants 2019, 8(11), 515; https://doi.org/10.3390/plants8110515 (registering DOI) - 17 Nov 2019
Abstract
Hexavalent chromium [Cr(VI)] contamination has become an emergent concern in China. Previous field investigations have found that hybrid Napier grass is widely distributed in Cr(VI) contaminated areas. This study investigated the phytoremediation potential and biochemical response of hybrid Napier grass (Pennisetum americanus [...] Read more.
Hexavalent chromium [Cr(VI)] contamination has become an emergent concern in China. Previous field investigations have found that hybrid Napier grass is widely distributed in Cr(VI) contaminated areas. This study investigated the phytoremediation potential and biochemical response of hybrid Napier grass (Pennisetum americanus L. × Pennisetum purpureum Schumach) grown in soil contaminated with Cr(VI) (0, 20, 40, and 60 mg kg−1) with and without Ethylene diamine tetra acetic acid (EDTA) (4 mM) application. The results indicated that root length, shoot height, dry weight, leaf area, chlorophyll, and photosystem II (PSII) parameters viz.; apparent electron transport rate (ETR), effective quantum yield of PSII (ΦPSⅡ), maximal PSII photochemical efficiency (Fv/Fm), potential activity of PSII (Fv/Fo), photochemical quenching (qP), and non-photochemical quenching (qN) decreased with the increasing Cr(VI) concentration. EDTA application further aggravated reduction of dry biomass and photosystem II. The concentration and the accumulation of Cr in shoot and root, and both the bioaccumulation factor (BAF) and transfer factor (TF) increased with increasing Cr(VI) concentrations and further enhanced with EDTA application. Though the Cr(VI) and Ethylene diamine tetra acetic acid (EDTA) stress reduced tolerance, but, even at highest Cr(VI) concentration, plant could exhibited strong resistance, as evidenced by increase in superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities. Hybrid Napier grass, due to its BAF > 1 and a TF < 1, would be applicable for Cr phytostabilization. Moreover, limiting metal transport to aerial parts of plant would prevent animal’s ingestion, restrict soil mobility, and consequently reduce transmission across the food chain. Full article
Open AccessArticle
Tracking Reforestation in the Loess Plateau, China after the “Grain for Green” Project through Integrating PALSAR and Landsat Imagery
Remote Sens. 2019, 11(22), 2685; https://doi.org/10.3390/rs11222685 (registering DOI) - 17 Nov 2019
Abstract
An unprecedented reforestation process happened in the Loess Plateau, China due to the ecological restoration project ‘Grain for Green Project’, which has affected regional carbon and water cycles as well as brought climate feedbacks. Accurately mapping the area and spatial distribution of emerged [...] Read more.
An unprecedented reforestation process happened in the Loess Plateau, China due to the ecological restoration project ‘Grain for Green Project’, which has affected regional carbon and water cycles as well as brought climate feedbacks. Accurately mapping the area and spatial distribution of emerged forests in the Loess Plateau over time is essential for forest management but a very challenging task. Here we investigated the changes of forests in the Loess Plateau after the forest reconstruction project. First, we used a pixel and rule-based algorithm to identify and map the annual forests from 2007 to 2017 in the Loess Plateau by integrating 30 m Landsat data and 25 m resolution PALSAR data in this study. Then, we carried out the accuracy assessment and comparison with several existing forest products. The overall accuracy (OA) and Kappa coefficient of the resultant map, were about 91% and 0.77 in 2010, higher than those of the other forest products (FROM-GLC, GlobeLand30, GLCF-VCF, JAXA, and OU-FDL) with OA ranging from 83.57% to 87.96% and Kappa coefficients from 0.52 to 0.68. Based on the annual forest maps, we found forest area in the Loess Plateau has increased by around 15,000 km2 from 2007 to 2017. This study clearly demonstrates the advantages of data fusion between PALSAR and Landsat images for monitoring forest cover dynamics in the Loess Plateau, and the resultant forest maps with lower uncertainty would contribute to the regional forest management. Full article
(This article belongs to the Special Issue Mapping Forest Dynamics Using Multi-Source Remote Sensing)
Show Figures

Graphical abstract

Open AccessFeature PaperReview
A Perspective on the Development of TGF-β Inhibitors for Cancer Treatment
Biomolecules 2019, 9(11), 743; https://doi.org/10.3390/biom9110743 (registering DOI) - 17 Nov 2019
Abstract
Transforming growth factor (TGF)-β is a secreted multifunctional cytokine that signals via plasma membrane TGF-β type I and type II receptors and intercellular SMAD transcriptional effectors. Aberrant inter- and intracellular TGF-β signaling can contribute to cancer progression. In normal cells and early stages [...] Read more.
Transforming growth factor (TGF)-β is a secreted multifunctional cytokine that signals via plasma membrane TGF-β type I and type II receptors and intercellular SMAD transcriptional effectors. Aberrant inter- and intracellular TGF-β signaling can contribute to cancer progression. In normal cells and early stages of cancer, TGF-β can stimulate epithelial growth arrest and elicit a tumor suppressor function. However, in late stages of cancer, when the cytostatic effects of TGF-β in cancer cells are blocked, TGF-β signaling can act as tumor promoter by its ability to stimulate epithelial-to-mesenchymal transition of cancer cells, by stimulating angiogenesis, and by promoting evasion of immune responses. In this review, we will discuss the rationale and challenges of targeting TGF-β signaling in cancer and summarize the clinical status of TGF-β signaling inhibitors that interfere with TGFβ bioavailability, TGF-βreceptor interaction, or TGF-β receptor kinase function. Moreover, we will discuss targeting of TGF-β signaling modulators and downstream effectors as well as alternative approaches by using promising technologies that may lead to entirely new classes of drugs. Full article
(This article belongs to the Special Issue TGF-Beta Signaling in Physiology and Pathology)

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop