Latest Articles

Open AccessArticle
The VIIRS Sea-Ice Albedo Product Generation and Preliminary Validation
Remote Sens. 2018, 10(11), 1826; https://doi.org/10.3390/rs10111826 (registering DOI) -
Abstract
Ice albedo feedback amplifies climate change signals and thus affects the global climate. Global long-term records on sea-ice albedo are important to characterize the regional or global energy budget. As the successor of MODIS (Moderate Resolution Imaging Spectroradiometer), VIIRS (Visible Infrared Imaging Radiometer
[...] Read more.
Ice albedo feedback amplifies climate change signals and thus affects the global climate. Global long-term records on sea-ice albedo are important to characterize the regional or global energy budget. As the successor of MODIS (Moderate Resolution Imaging Spectroradiometer), VIIRS (Visible Infrared Imaging Radiometer Suite) started its observation from October 2011 on S-NPP (Suomi National Polar-orbiting Partnership). It has improved upon the capabilities of the operational Advanced Very High Resolution Radiometer (AVHRR) and provides observation continuity with MODIS. We used a direct estimation algorithm to produce a VIIRS sea-ice albedo (VSIA) product, which will be operational in the National Oceanic and Atmospheric Administration’s (NOAA) S-NPP Data Exploration (NDE) version of the VIIRS albedo product. The algorithm is developed from the angular bin regression method to simulate the sea-ice surface bidirectional reflectance distribution function (BRDF) from physical models, which can represent different sea-ice types and vary mixing fractions among snow, ice, and seawater. We compared the VSIA with six years of ground measurements at 30 automatic weather stations from the Programme for Monitoring of the Greenland Ice Sheet (PROMICE) and the Greenland Climate Network (GC-NET) as a proxy for sea-ice albedo. The results show that the VSIA product highly agreed with the station measurements with low bias (about 0.03) and low root mean square error (RMSE) (about 0.07) considering the Joint Polar Satellite System (JPSS) requirement is 0.05 and 0.08 at 4 km scale, respectively. We also evaluated the VSIA using two datasets of field measured sea-ice albedo from previous field campaigns. The comparisons suggest that VSIA generally matches the magnitude of the ground measurements, with a bias of 0.09 between the instantaneous albedos in the central Arctic and a bias of 0.077 between the daily mean albedos near Alaska. The discrepancy is mainly due to the scale difference at both spatial and temporal dimensions and the limited sample size. The VSIA data will serve for weather prediction applications and climate model calibrations. Combined with the historical observations from MODIS, current S-NPP VIIRS, and NOAA-20 VIIRS observations, VSIA will dramatically contribute to providing high-accuracy routine sea-ice albedo products and irreplaceable records for monitoring the long-term sea-ice albedo for climate research. Full article
Figures

Figure 1

Open AccessArticle
Determination of Tryptophan and Its Major Metabolites in Fluid from the Anterior Chamber of the Eye in Diabetic Patients with Cataract by Liquid Chromotography Mass Spectrometry (LC-MS/MS)
Molecules 2018, 23(11), 3012; https://doi.org/10.3390/molecules23113012 (registering DOI) -
Abstract
Tryptophan (TRP) is to an essential amino acid and its catabolites are significant to human health. By using ultra-high-performance liquid chromatography coupled to electrospray ionization triple quadrupole mass spectrometry (UHPLC-ESI-MS/MS), levels of three major components of kynurenic pathway namely tryptophan (TRP), kynurenic acid
[...] Read more.
Tryptophan (TRP) is to an essential amino acid and its catabolites are significant to human health. By using ultra-high-performance liquid chromatography coupled to electrospray ionization triple quadrupole mass spectrometry (UHPLC-ESI-MS/MS), levels of three major components of kynurenic pathway namely tryptophan (TRP), kynurenic acid (KYNA) and kynurenine (KYN) in fluid from the anterior chamber of the eye were determined. The analysis was carried out on a Synergi 4 μ Fusion-RP column using gradient elution mode. For quantitative determination, l-tryptophan-amino-15N, 99 ATOM % 15N was used as an internal standard. The method was linear in the concentration range 4–2000 ng mL−1 for TRP, KYNA and KYN. The mean recoveries measured at four concentration levels for TRP, KYN and KYNA included the following ranges 94.3–96.1; 91.0–95.0; and 96.0–97.6%, respectively. The intra-day precision parameters were smaller than 4.4, 6.4 and 5% respectively. The developed method was applied to study the level of TRP, KYNA and KYN in eye fluid for the retrospective case series which included 28 patients suffering from cataracts and diabetes (n = 8). The experimental data was subjected to statistical analysis. The Mann-Whitney U-test revealed clear differences in the level of TRP catabolites and the ratios of TRP/KYN representing the activities of specific enzyme of kynurenine pathway in examined groups of patients. A level of probability p < 0.05 was used throughout a paper to denote statistically significant differences between the groups. Full article
Figures

Graphical abstract

Open AccessArticle
A Comparison of Imputation Approaches for Estimating Forest Biomass Using Landsat Time-Series and Inventory Data
Remote Sens. 2018, 10(11), 1825; https://doi.org/10.3390/rs10111825 (registering DOI) -
Abstract
The prediction of forest biomass at the landscape scale can be achieved by integrating data from field plots with satellite imagery, in particular data from the Landsat archive, using k-nearest neighbour (kNN) imputation models. While studies have demonstrated different kNN imputation approaches for
[...] Read more.
The prediction of forest biomass at the landscape scale can be achieved by integrating data from field plots with satellite imagery, in particular data from the Landsat archive, using k-nearest neighbour (kNN) imputation models. While studies have demonstrated different kNN imputation approaches for estimating forest biomass from remote sensing data and forest inventory plots, there is no general agreement on which approach is most appropriate for biomass estimation across large areas. In this study, we compared several imputation approaches for estimating forest biomass using Landsat time-series and inventory plot data. We evaluated 18 kNN models to impute three aboveground biomass (AGB) variables (total AGB, AGB of live trees and AGB of dead trees). These models were developed using different distance techniques (Random Forest or RF, Gradient Nearest Neighbour or GNN, and Most Similar Neighbour or MSN) and different combinations of response variables (model scenarios). Direct biomass imputation models were trained according to the biomass variables while indirect biomass imputation models were trained according to combinations of forest structure variables (e.g., basal area, stem density and stem volume of live and dead-standing trees). We also assessed the ability of our imputation method to spatially predict biomass variables across large areas in relation to a forest disturbance history over a 30-year period (1987–2016). Our results show that RF consistently outperformed MSN and GNN distance techniques across different model scenarios and biomass variables. The lowest error rates were achieved by RF-based models with generalized root mean squared difference (gRMSD, RMSE divided by the standard deviation of the observed values) ranging from 0.74 to 1.24. Whereas gRMSD associated with MSN-based and GNN-based models ranged from 0.92 to 1.36 and from 1.04 to 1.42, respectively. The indirect imputation method generally achieved better biomass predictions than the direct imputation method. In particular, the kNN model trained with the combination of basal area and stem density variables was the most robust for estimating forest biomass. This model reported a gRMSD of 0.89, 0.95 and 1.08 for total AGB, AGB of live trees and AGB of dead trees, respectively. In addition, spatial predictions of biomass showed relatively consistent trends with disturbance severity and time since disturbance across the time-series. As the kNN imputation method is increasingly being used by land managers and researchers to map forest biomass, this work helps those using these methods ensure their modelling and mapping practices are optimized. Full article
Figures

Graphical abstract

Open AccessArticle
Experimental Evaluation of a Membrane Micro Channel Reactor for Liquid Phase Direct Synthesis of Hydrogen Peroxide in Continuous Flow Using Nafion® Membranes for Safe Utilization of Undiluted Reactants
Catalysts 2018, 8(11), 556; https://doi.org/10.3390/catal8110556 (registering DOI) -
Abstract
In recent years, various modular micro channel reactors have been developed to overcome limitations in challenging chemical reactions. Direct synthesis of hydrogen peroxide from hydrogen and oxygen is a very interesting process in this regard. However, the complex triphasic process (gaseous reactants, reaction
[...] Read more.
In recent years, various modular micro channel reactors have been developed to overcome limitations in challenging chemical reactions. Direct synthesis of hydrogen peroxide from hydrogen and oxygen is a very interesting process in this regard. However, the complex triphasic process (gaseous reactants, reaction in liquid solvent, solid catalyst) still holds challenges regarding safety, selectivity and productivity. The membrane micro reactor system for continuous liquid phase H2O2 direct synthesis was designed to reduce safety issues by separate dosing of the gaseous reactants via a membrane into a liquid-flow channel filled with a catalyst. Productivity is increased by enhanced mass transport, attainable in micro channels and by multiple re-saturation of the liquid with the reactants over the length of the reaction channel. Lastly, selectivity is optimized by controlling the reactant distribution. The influence of crucial technical features of the design, such as micro channel geometry, were studied experimentally in relationship with varying reaction conditions such as residence time, pressure, reactant ratio and solvent flow rate. Successful continuous operation of the reactor at pressures up to 50 bars showed the feasibility of this system. During the experiments, control over the reactant ratio was found to be crucial in order to maximize product yield. Thereby, yields above 80% were achieved. The results obtained are the key elements for future development and optimization of this reactor system, which will hopefully lead to a breakthrough in decentralized H2O2 production. Full article
Figures

Graphical abstract

Open AccessArticle
Synthesis of 1-(para-methoxyphenyl)tetrazolyl-Substituted 1,2,3,4-Tetrahydroisoquinolines and Their Transformations Involving Activated Alkynes
Molecules 2018, 23(11), 3010; https://doi.org/10.3390/molecules23113010 (registering DOI) -
Abstract
1-(p-Methoxyphenyl)tetrazolyl-substituted 6,7-dimethoxy(6,7-methylenedioxy)-1,2,3,4-tetrahydroisoquinolines formed tetrazolyl-substituted azocines in high yields by using activated alkynes. Unsubstituted at 6,7,8-aromatic fragment 1-tetrazolylisoquinoline interacted in several pathways forming tetrazolyl-substituted azocines, 1-tetrazolyl-1-R-vinylisoquinolines and 3-azaspiro[5.5]undeca-1,7,9-triene. Full article
Figures

Graphical abstract

Open AccessReview
Catalyst-Doped Anodic TiO2 Nanotubes: Binder-Free Electrodes for (Photo)Electrochemical Reactions
Catalysts 2018, 8(11), 555; https://doi.org/10.3390/catal8110555 (registering DOI) -
Abstract
Nanotubes of the transition metal oxide, TiO2, prepared by electrochemical anodization have been investigated and utilized in many fields because of their specific physical and chemical properties. However, the usage of bare anodic TiO2 nanotubes in (photo)electrochemical reactions is limited
[...] Read more.
Nanotubes of the transition metal oxide, TiO2, prepared by electrochemical anodization have been investigated and utilized in many fields because of their specific physical and chemical properties. However, the usage of bare anodic TiO2 nanotubes in (photo)electrochemical reactions is limited by their higher charge transfer resistance and higher bandgaps than those of semiconductor or metal catalysts. In this review, we describe several techniques for doping TiO2 nanotubes with suitable catalysts or active materials to overcome the insulating properties of TiO2 and enhance its charge transfer reaction, and we suggest anodization parameters for the formation of TiO2 nanotubes. We then focus on the (photo)electrochemistry and photocatalysis-related applications of catalyst-doped anodic TiO2 nanotubes grown on Ti foil, including water electrolysis, photocatalysis, and solar cells. We also discuss key examples of the effects of doping and the resulting improvements in the efficiency of doped TiO2 electrodes for the desired (photo)electrochemical reactions. Full article
Figures

Figure 1

Open AccessArticle
Development of an Energy-Efficient Smart Socket Based on STM32F103
Appl. Sci. 2018, 8(11), 2276; https://doi.org/10.3390/app8112276 (registering DOI) -
Abstract
Many efforts have recently been dedicated to developing smart sockets that seek to provide insights into the reduction of standby energy waste coupled to electric appliances. However, not all technical solutions consider the techno-economic benefits in the development. This research presents a hardware
[...] Read more.
Many efforts have recently been dedicated to developing smart sockets that seek to provide insights into the reduction of standby energy waste coupled to electric appliances. However, not all technical solutions consider the techno-economic benefits in the development. This research presents a hardware solution based on STM32F103 (STM32F103 devices use the Cortex-M3 core, with a maximum CPU speed of 72 MHz) for the development of an energy-efficient smart socket to address the standby energy waste of household electric appliances and associated economic losses. Input-output analysis on monitored voltage and current was employed to assess the performance and examine the precision of the developed system. As it was targeted at facilitating easier operation, the smart socket was developed to be compatible with other remote controllers of household electric appliances. Experimental results indicated that the developed system could measure voltage values accurately to avoid overvoltage for security protection. The measuring unit could monitor current values with high precision to support the energy-saving control. A functional testing was conducted on the prototypes with a lifecycle assessment employed to validate the economic attractiveness of the developed system. Results indicated that the system is user friendly and cost-effective as no extra wiring required and network environment independent. Indeed, indirect fruits, such as lifespan extension and safety enhancement, could also be achieved for appliances. Full article
Figures

Graphical abstract

Open AccessReview
DNA Replication: From Radioisotopes to Click Chemistry
Molecules 2018, 23(11), 3007; https://doi.org/10.3390/molecules23113007 (registering DOI) -
Abstract
The replication of nuclear and mitochondrial DNA are basic processes assuring the doubling of the genetic information of eukaryotic cells. In research of the basic principles of DNA replication, and also in the studies focused on the cell cycle, an important role is
[...] Read more.
The replication of nuclear and mitochondrial DNA are basic processes assuring the doubling of the genetic information of eukaryotic cells. In research of the basic principles of DNA replication, and also in the studies focused on the cell cycle, an important role is played by artificially-prepared nucleoside and nucleotide analogues that serve as markers of newly synthesized DNA. These analogues are incorporated into the DNA during DNA replication, and are subsequently visualized. Several methods are used for their detection, including the highly popular click chemistry. This review aims to provide the readers with basic information about the various possibilities of the detection of replication activity using nucleoside and nucleotide analogues, and to show the strengths and weaknesses of those different detection systems, including click chemistry for microscopic studies. Full article
Figures

Figure 1

Open AccessArticle
Synthesis and Characterization of a Biomimetic Formulation of Clofazimine Hydrochloride Microcrystals for Parenteral Administration
Pharmaceutics 2018, 10(4), 238; https://doi.org/10.3390/pharmaceutics10040238 (registering DOI) -
Abstract
Clofazimine (CFZ) is a broad spectrum antimycobacterial agent recommended by the World Health Organization as a first line treatment for leprosy and second line treatment for multidrug resistant tuberculosis. Oral administration of CFZ leads to a red skin pigmentation side effect. Since CFZ
[...] Read more.
Clofazimine (CFZ) is a broad spectrum antimycobacterial agent recommended by the World Health Organization as a first line treatment for leprosy and second line treatment for multidrug resistant tuberculosis. Oral administration of CFZ leads to a red skin pigmentation side effect. Since CFZ is a weakly basic, red phenazine dye, the skin pigmentation side effect results from lipophilic partitioning of the circulating, free base (neutral) form of CFZ into the skin. Here, we developed a stable and biocompatible formulation of CFZ-HCl microcrystals that mimics the predominant form of the drug that bioaccumulates in macrophages, following long term oral CFZ administration. In mice, intravenous injection of these biomimetic CFZ-HCl microcrystals led to visible drug accumulation in macrophages of the reticuloendothelial system with minimal skin accumulation or pigmentation. In fact, no skin pigmentation was observed when the total amount of CFZ-HCl administered was equivalent to the total oral dose leading to maximal skin pigmentation. Thus, parenteral (injected or inhaled) biomimetic formulations of CFZ-HCl could be instrumental to avoid the pigmentation side effect of oral CFZ therapy. Full article
Figures

Graphical abstract

Open AccessArticle
Inter-Laboratory Correlation Exercise with Portable Emissions Measurement Systems (PEMS) on Chassis Dynamometers
Appl. Sci. 2018, 8(11), 2275; https://doi.org/10.3390/app8112275 (registering DOI) -
Abstract
The recently introduced Real Driving Emissions (RDE) light-duty vehicle emissions regulation requires testing with Portable Emissions Measurement Systems (PEMS) during type approval and in-service conformity. The studies on the accuracy of PEMS today are limited. An inter-laboratory correlation exercise with PEMS took place
[...] Read more.
The recently introduced Real Driving Emissions (RDE) light-duty vehicle emissions regulation requires testing with Portable Emissions Measurement Systems (PEMS) during type approval and in-service conformity. The studies on the accuracy of PEMS today are limited. An inter-laboratory correlation exercise with PEMS took place in Italy in 2017. Eight laboratories measured exhaust emissions from a Golden Euro 6 gasoline vehicle with a Golden PEMS installed in it, along with the individual lab’s own PEMS, following the regulated laboratory method (bags from the dilution tunnel). The data of the exercise were used to estimate the repeatability and reproducibility of the methodology with PEMS. The statistical analysis estimated reproducibility of 2.9% (bags) to 5.5% (lab PEMS) for CO2, 20–25% for CO (all methods), 23–31% for NOx (all methods), and 29% (tunnel, Golden PEMS) to 39% (lab PEMS) for particle number. The mean differences of the PEMS to the regulated method were ±1.5 g/km (or ±1%) for CO2, <16 mg/km (or <5%) for CO, <4 mg/km (or <11%) for NOx and 1 × 1011 particles/km (40%) for particle number. The results of this study confirm the satisfactory performance of PEMS and the permissible tolerances introduced in RDE regulation. Full article
Figures

Graphical abstract

Institutional Open Access Program (IOAP)

IOAP participants benefit from discounts and convenient payment options.

Feedback

We are keen to hear what you think about MDPI. To leave us your feedback, suggestions or questions please click here.

See what our authors and guest editors say about us.

About MDPI

MDPI.com is a platform for peer-reviewed, scientific open-access journals operated by MDPI, based in Basel, Switzerland. Additional offices are located in Beijing and Wuhan (China) as well as in Barcelona (Spain).

Back to Top