Latest Articles

Open AccessFeature PaperArticle
Ordering a Normal Diet at the End of Surgery—Justified or Overhasty?
Nutrients 2018, 10(11), 1758; https://doi.org/10.3390/nu10111758 (registering DOI) -
Abstract
Early re-alimentation is advocated by enhanced recovery pathways (ERP). This study aimed to assess compliance to ERP-set early re-alimentation policy and to compare outcomes of early fed patients and patients in whom early feeding was withhold due to the independent decision making of
[...] Read more.
Early re-alimentation is advocated by enhanced recovery pathways (ERP). This study aimed to assess compliance to ERP-set early re-alimentation policy and to compare outcomes of early fed patients and patients in whom early feeding was withhold due to the independent decision making of the surgeon. For this purpose, demographic, surgical and outcome data of all consecutive elective colorectal surgical procedures (2011–2016) were retrieved from a prospectively maintained institutional ERP database. The primary endpoint was postoperative ileus (POI). Surgical 30-day outcome and length of stay were compared between patients undergoing the pathway-intended early re-alimentation pattern and patients in whom early re-alimentation was not compliant. Out of the 7103 patients included, 1241 (17.4%) were not compliant with ERP re-alimentation. Patients with delayed re-alimentation presented with more postoperative complications (37 vs. 21%, p < 0.001) and a prolonged length of hospital stay (8 ± 7 vs. 5 ± 4 days, p < 0.001). While male gender (odds ratio (OR) 1.24; 95% confidence interval (CI) 1.04–1.32), fluid overload (OR 1.38; 95% CI 1.16–1.65) and high American Society of Anaesthesiologists (ASA) score (OR 1.51; 95% CI 1.27–1.8) were independent risk factors for POI, laparoscopy (OR 0.51; 95% CI 0.38–0.68) and ERP compliant diet (OR 0.46; 95% CI 0.36–0.6) were both protective. Hence, this study provides further evidence of the beneficial effect of early oral feeding after colorectal surgery. Full article
Figures

Figure 1

Open AccessArticle
Structural and Fluorine Plasma Etching Behavior of Sputter-Deposition Yttrium Fluoride Film
Nanomaterials 2018, 8(11), 936; https://doi.org/10.3390/nano8110936 (registering DOI) -
Abstract
Yttrium fluoride (YF3) films were grown on sapphire substrate by a radio frequency magnetron using a commercial ceramic target in a vacuum chamber. The structure, composition, and plasma etching behavior of the films were systematically investigated. The YF3 film was
[...] Read more.
Yttrium fluoride (YF3) films were grown on sapphire substrate by a radio frequency magnetron using a commercial ceramic target in a vacuum chamber. The structure, composition, and plasma etching behavior of the films were systematically investigated. The YF3 film was deposited at a working pressure of 5 mTorr and an RF power of 150 W. The substrate-heating temperature was increased from 400 to 700 °C in increments of 100 °C. High-resolution transmission electron microscopy (HRTEM) and X-ray diffraction results confirmed an orthorhombic YF3 structure was obtained at a substrate temperature of 700 °C for 2 h. X-ray photoelectron spectroscopy revealed a strongly fluorinated bond (Y–F bond) on the etched surface of the YF3 films. HRTEM analysis also revealed that the YF3 films became yttrium-oxyfluorinated after exposure to fluorocarbon plasma. The etching depth was three times lower on YF3 film than on Al2O3 plate. These results showed that the YF3 films have excellent erosion resistance properties compared to Al2O3 plates. Full article
Figures

Figure 1

Open AccessArticle
Combustion Inhibition of Aluminum–Methane–Air Flames by Fine NaCl Particles
Energies 2018, 11(11), 3147; https://doi.org/10.3390/en11113147 (registering DOI) -
Abstract
The effect of NaCl as an extinguishing agent on metal dust fires require further exploration. This paper reports the results of an experimental study on the performance of micron-sized NaCl powders on hybrid aluminum–methane–air flames. NaCl particles with sub-10 μm sizes were newly
[...] Read more.
The effect of NaCl as an extinguishing agent on metal dust fires require further exploration. This paper reports the results of an experimental study on the performance of micron-sized NaCl powders on hybrid aluminum–methane–air flames. NaCl particles with sub-10 μm sizes were newly fabricated via a simple solution/anti-solvent method. The combustion characteristics of aluminum combustion in a methane-air flame were investigated prior to the particle inhibition study to verify the critical aluminum concentration that enables conical aluminum-powder flame formation. To study the inhibition effectiveness, the laminar burning velocity was measured for the established aluminum–methane–air flames with the added NaCl using a modified nozzle burner over a range of dust concentrations. The results were also compared to flames with quartz sand and SiC particles. It is shown that the inhibition performance of NaCl considerably outperformed the sand and SiC particles by more rapidly decreasing the burning velocity. The improved performance can be attributed to contributions from both dilution and thermal effects. In addition, the dynamic behavior of the NaCl particles in the laminar aluminum–methane–air flame was investigated based on experimental observations. The experimental data provided quantified the capabilities of NaCl for metal fire suppression on a fundamental level. Full article
Figures

Figure 1

Open AccessArticle
The H2S Donor GYY4137 Stimulates Reactive Oxygen Species Generation in BV2 Cells While Suppressing the Secretion of TNF and Nitric Oxide
Molecules 2018, 23(11), 2966; https://doi.org/10.3390/molecules23112966 (registering DOI) -
Abstract
GYY4137 is a hydrogen sulfide (H2S) donor that has been shown to act in an anti-inflammatory manner in vitro and in vivo. Microglial cells are among the major players in immunoinflammatory, degenerative, and neoplastic disorders of the central nervous system, including
[...] Read more.
GYY4137 is a hydrogen sulfide (H2S) donor that has been shown to act in an anti-inflammatory manner in vitro and in vivo. Microglial cells are among the major players in immunoinflammatory, degenerative, and neoplastic disorders of the central nervous system, including multiple sclerosis, Parkinson’s disease, Alzheimer’s disease, and glioblastoma multiforme. So far, the effects of GYY4137 on microglial cells have not been thoroughly investigated. In this study, BV2 microglial cells were stimulated with interferon-gamma and lipopolysaccharide and treated with GYY4137. The agent did not influence the viability of BV2 cells in concentrations up to 200 μM. It inhibited tumor necrosis factor but not interleukin-6 production. Expression of CD40 and CD86 were reduced under the influence of the donor. The phagocytic ability of BV2 cells and nitric oxide production were also affected by the agent. Surprisingly, GYY4137 upregulated generation of reactive oxygen species (ROS) by BV2 cells. The effect was mimicked by another H2S donor, Na2S, and it was not reproduced in macrophages. Our results demonstrate that GYY4137 downregulates inflammatory properties of BV2 cells but increases their ability to generate ROS. Further investigation of this unexpected phenomenon is warranted. Full article
Figures

Graphical abstract

Open AccessArticle
A Centralized Smart Decision-Making Hierarchical Interactive Architecture for Multiple Home Microgrids in Retail Electricity Market
Energies 2018, 11(11), 3144; https://doi.org/10.3390/en11113144 (registering DOI) -
Abstract
The principal aim of this study is to devise a combined market operator and a distribution network operator structure for multiple home-microgrids (MH-MGs) connected to an upstream grid. Here, there are three distinct types of players with opposite intentions that can participate as
[...] Read more.
The principal aim of this study is to devise a combined market operator and a distribution network operator structure for multiple home-microgrids (MH-MGs) connected to an upstream grid. Here, there are three distinct types of players with opposite intentions that can participate as a consumer and/or prosumer (as a buyer or seller) in the market. All players that are price makers can compete with each other to obtain much more possible profitability while consumers aim to minimize the market-clearing price. For modeling the interactions among partakers and implementing this comprehensive structure, a multi-objective function problem is solved by using a static, non-cooperative game theory. The propounded structure is a hierarchical bi-level controller, and its accomplishment in the optimal control of MH-MGs with distributed energy resources has been evaluated. The outcome of this algorithm provides the best and most suitable power allocation among different players in the market while satisfying each player’s goals. Furthermore, the amount of profit gained by each player is ascertained. Simulation results demonstrate 169% increase in the total payoff compared to the imperialist competition algorithm. This percentage proves the effectiveness, extensibility and flexibility of the presented approach in encouraging participants to join the market and boost their profits. Full article
Figures

Figure 1

Open AccessFeature PaperArticle
Drug Release of Hybrid Materials Containing Fe(II)Citrate Synthesized by Sol-Gel Technique
Materials 2018, 11(11), 2270; https://doi.org/10.3390/ma11112270 (registering DOI) -
Abstract
The use of oral iron integration is commonly recommended for the treatment of iron deficiency, nevertheless the diagnosis and treatment of this disease could clearly be improved. The aim of this work was the synthesis of therapeutic systems, iron (II) based, by sol-gel
[...] Read more.
The use of oral iron integration is commonly recommended for the treatment of iron deficiency, nevertheless the diagnosis and treatment of this disease could clearly be improved. The aim of this work was the synthesis of therapeutic systems, iron (II) based, by sol-gel method. In an SiO2 matrix, we embedded different weight percentages of polyethylene glycol (PEG6, 12, 24 wt%) and ferrous citrate (Fe(II)C5, 10, 15 wt%) for drug delivery applications. Fourier Transform Infrared (FTIR) spectroscopy was used to study the interactions among different components in the hybrid materials. Release kinetics in a simulated body fluid (SBF) were investigated and the amount of Fe2+ released was detected by Ultraviolet–Visible spectroscopy (UV-VIS) after reaction with ortho-phenantroline. Furthermore, the biological characterization was carried out. The bioactivity of the synthesized hybrid materials was evaluated by the formation of a layer of hydroxyapatite on the surface of samples soaked in SBF using FTIR spectroscopy. Finally, also, the potential antibacterial properties of the different materials against two different bacteria, E. coli and P. aeruginosa, were investigated. Full article
Figures

Graphical abstract

Open AccessArticle
Chaotic Manifold Analysis of Four-Screw Extruders Based on Lagrangian Coherent Structures
Materials 2018, 11(11), 2272; https://doi.org/10.3390/ma11112272 (registering DOI) -
Abstract
The four-screw extruder (FSE) is a novel equipment for polymer processing. In this paper, from a new viewpoint of Lagrangian coherent structures (LCS), two-dimensional fluid transport and chaotic mixing characteristics within three kinds of novel industrial FSEs are explored based on LCS to
[...] Read more.
The four-screw extruder (FSE) is a novel equipment for polymer processing. In this paper, from a new viewpoint of Lagrangian coherent structures (LCS), two-dimensional fluid transport and chaotic mixing characteristics within three kinds of novel industrial FSEs are explored based on LCS to better understand the flow and mixing natures in the FSEs. Firstly, based on the finite-time invariant manifold theory, the finite-time Lyapunov exponent (FTLE) and LCS of FSEs are calculated by considering the different initial time. Hyperbolic LCSs from the FTLE maps are adopted to identify chaotic mixing manifolds in FSEs. Moreover, particle tracking and Poincaré sections are used to illustrate the different fluid motions in the above three isolated regions. Finally, the effects of relative rotating directions and layout of four screws on the chaotic manifolds in FESs are discussed in order to enhance local mixing performance. Furthermore, quantitative mixing measures, such as the segregation scale, logarithmic of stretching, and mean-time mixing efficiency are employed to compare the mixing efficiencies in three kinds of FSEs. The results show that the relative rotating directions and positions of four screws can change the chaotic manifolds and increase mixing performance in local poor mixing regions. FTLE and LCS analysis are helpful to better understand the chaotic mixing nature in the novel screw extruders. Full article
Figures

Graphical abstract

Open AccessArticle
The Role of the Anti-Aging Protein Klotho in IGF-1 Signaling and Reticular Calcium Leak: Impact on the Chemosensitivity of Dedifferentiated Liposarcomas
Cancers 2018, 10(11), 439; https://doi.org/10.3390/cancers10110439 (registering DOI) -
Abstract
By inhibiting Insulin-Like Growth Factor-1-Receptor (IGF-1R) signaling, Klotho (KL) acts like an aging- and tumor-suppressor. We investigated whether KL impacts the aggressiveness of liposarcomas, in which IGF-1R signaling is frequently upregulated. Indeed, we observed that a higher KL expression in liposarcomas is associated
[...] Read more.
By inhibiting Insulin-Like Growth Factor-1-Receptor (IGF-1R) signaling, Klotho (KL) acts like an aging- and tumor-suppressor. We investigated whether KL impacts the aggressiveness of liposarcomas, in which IGF-1R signaling is frequently upregulated. Indeed, we observed that a higher KL expression in liposarcomas is associated with a better outcome for patients. Moreover, KL is downregulated in dedifferentiated liposarcomas (DDLPS) compared to well-differentiated tumors and adipose tissue. Because DDLPS are high-grade tumors associated with poor prognosis, we examined the potential of KL as a tool for overcoming therapy resistance. First, we confirmed the attenuation of IGF-1-induced calcium (Ca2+)-response and Extracellular signal-Regulated Kinase 1/2 (ERK1/2) phosphorylation in KL-overexpressing human DDLPS cells. KL overexpression also reduced cell proliferation, clonogenicity, and increased apoptosis induced by gemcitabine, thapsigargin, and ABT-737, all of which are counteracted by IGF-1R-dependent signaling and activate Ca2+-dependent endoplasmic reticulum (ER) stress. Then, we monitored cell death and cytosolic Ca2+-responses and demonstrated that KL increases the reticular Ca2+-leakage by maintaining TRPC6 at the ER and opening the translocon. Only the latter is necessary for sensitizing DDLPS cells to reticular stressors. This was associated with ERK1/2 inhibition and could be mimicked with IGF-1R or MEK inhibitors. These observations provide a new therapeutic strategy in the management of DDLPS. Full article
Figures

Graphical abstract

Open AccessArticle
The Impact of Potassium Channel Gene Polymorphisms on Antiepileptic Drug Responsiveness in Arab Patients with Epilepsy
J. Pers. Med. 2018, 8(4), 37; https://doi.org/10.3390/jpm8040037 (registering DOI) -
Abstract
This study aims to investigate the effects of the three potassium channel genes KCNA1, KCNA2, and KCNV2 on increased susceptibility to epilepsy as well as on responsiveness to antiepileptic drugs (AEDs). The pharmacogenetic and case-control cohort (n = 595) consisted
[...] Read more.
This study aims to investigate the effects of the three potassium channel genes KCNA1, KCNA2, and KCNV2 on increased susceptibility to epilepsy as well as on responsiveness to antiepileptic drugs (AEDs). The pharmacogenetic and case-control cohort (n = 595) consisted of 296 epileptic patients and 299 healthy individuals. Epileptic patients were recruited from the Pediatric Neurology clinic at the Queen Rania Al Abdullah Hospital (QRAH) in Amman, Jordan. A custom platform array search for genetic association in Jordanian-Arab epileptic patients was undertaken. The MassARRAY system (iPLEX GOLD) was used to genotype seven single nucleotide polymorphisms (SNPs) within three candidate genes (KCNA1, KCNA2, and KCNV2). Only one SNP in KCNA2, rs3887820, showed significant association with increased risk of susceptibility to generalized myoclonic seizure (p-value < 0.001). Notably, the rs112561866 polymorphism of the KCNA1 gene was non-polymorphic, but no significant association was found between the KCNA1 (rs2227910, rs112561866, and rs7974459) and KCNV2 (rs7029012, rs10967705, and rs10967728) polymorphisms and disease susceptibility or drug responsiveness among Jordanian patients. This study suggests that a significant association exists between the KCNA2 SNP rs3887820 and increased susceptibility to generalized myoclonic seizure. However, the present findings indicate that the KCNA1 and KCNV2 SNPs do not influence disease susceptibility and drug responsiveness in epileptic patients. Pharmacogenetic and case-control studies involving a multicenter and multiethnic approach are needed to confirm our results. To improve the efficacy and safety of epilepsy treatment, further studies are required to identify other genetic factors that contribute to susceptibility and treatment outcome. Full article
Figures

Figure 1

Open AccessArticle
Considering Rain Gauge Uncertainty Using Kriging for Uncertain Data
Atmosphere 2018, 9(11), 446; https://doi.org/10.3390/atmos9110446 (registering DOI) -
Abstract
In urban hydrological models, rainfall is the main input and one of the main sources of uncertainty. To reach sufficient spatial coverage and resolution, the integration of several rainfall data sources, including rain gauges and weather radars, is often necessary. The uncertainty associated
[...] Read more.
In urban hydrological models, rainfall is the main input and one of the main sources of uncertainty. To reach sufficient spatial coverage and resolution, the integration of several rainfall data sources, including rain gauges and weather radars, is often necessary. The uncertainty associated with rain gauge measurements is dependent on rainfall intensity and on the characteristics of the devices. Common spatial interpolation methods do not account for rain gauge uncertainty variability. Kriging for Uncertain Data (KUD) allows the handling of the uncertainty of each rain gauge independently, modelling space- and time-variant errors. The applications of KUD to rain gauge interpolation and radar-gauge rainfall merging are studied and compared. First, the methodology is studied with synthetic experiments, to evaluate its performance varying rain gauge density, accuracy and rainfall field characteristics. Subsequently, the method is applied to a case study in the Dommel catchment, the Netherlands, where high-quality automatic gauges are complemented by lower-quality tipping-bucket gauges and radar composites. The case study and the synthetic experiments show that considering measurement uncertainty in rain gauge interpolation usually improves rainfall estimations, given a sufficient rain gauge density. Considering measurement uncertainty in radar-gauge merging consistently improved the estimates in the tested cases, thanks to the additional spatial information of radar rainfall data but should still be used cautiously for convective events and low-density rain gauge networks. Full article
Figures

Figure 1

Institutional Open Access Program (IOAP)

IOAP participants benefit from discounts and convenient payment options.

Feedback

We are keen to hear what you think about MDPI. To leave us your feedback, suggestions or questions please click here.

See what our authors and guest editors say about us.

About MDPI

MDPI.com is a platform for peer-reviewed, scientific open-access journals operated by MDPI, based in Basel, Switzerland. Additional offices are located in Beijing and Wuhan (China) as well as in Barcelona (Spain).

Back to Top