Advancing Open Science
for more than 25 years
MDPI is a pioneer in scholarly open access publishing
and has supported academic communities since 1996.
Article
Automatic Defect Identification Method for Magnetic Particle Inspection of Bearing Rings Based on Visual Characteristics and High-Level Features
Appl. Sci. 2022, 12(3), 1293; https://doi.org/10.3390/app12031293 - 26 Jan 2022
Abstract
Fluorescent magnetic particle inspection (MPI) is a conventional non-destructive testing process for railway bearing rings that still needs to be completed manually. Due to the complexity of bearing ring surfaces in inspection, automatic detection for bearing rings based on image processing is difficult [...] Read more.
Fluorescent magnetic particle inspection (MPI) is a conventional non-destructive testing process for railway bearing rings that still needs to be completed manually. Due to the complexity of bearing ring surfaces in inspection, automatic detection for bearing rings based on image processing is difficult to apply. Therefore, we proposed a bearing ring defect identification method based on visual characteristics and high-level features. Inspired by the mechanism of human visual perception, defects can be identified from the complex background conveniently by human eyes. According to the linear structure characteristics and greyscale distribution characteristics of cracks in the acquired images, we introduce the centerline extraction and Gaussian similarity measure to reduce background noise and obtain the crack candidate regions. Then, an improved MobileNetV3 is used to extract high-level features of the candidate regions and determine whether they are defective, which uses a new attention module, Coordinate Attention (CA), to substitute the Squeeze-and-Excitation (SE) attention to improve the performance. The experimental results show that the detection accuracy rate of the proposed method is 96.5%. Compared with traditional methods, the proposed method can efficiently extract crack defects in a complex textured background and shows high-quality performance in recall and precision. Full article
(This article belongs to the Special Issue Advanced Digital Non-destructive Testing Technology)
Show Figures

Figure 1

Article
Genetic Diversity Revealed by Microsatellites in Genus Carya
Forests 2022, 13(2), 188; https://doi.org/10.3390/f13020188 - 26 Jan 2022
Abstract
The genus Carya consists of 17 species divided into 3 sections: Carya or the true hickories, Apocarya or the pecan hickories, and Sinocarya or the Asian hickories. Interspecific hybrids exist and have been used in pecan cultivar development. Nuclear and plastid microsatellite or [...] Read more.
The genus Carya consists of 17 species divided into 3 sections: Carya or the true hickories, Apocarya or the pecan hickories, and Sinocarya or the Asian hickories. Interspecific hybrids exist and have been used in pecan cultivar development. Nuclear and plastid microsatellite or SSR markers have been useful in distinguishing species, sections, and populations. They provide evidence for hybridity between species and can confirm heredity within crosses. As more sophisticated methods of genomic evaluation are cooperatively developed for use in pecan breeding and selection, the use of these methods will be supplemented and informed by the lessons provided by microsatellite markers, as interpreted across broad germplasm collections. In this study, over 400 Carya accessions from diverse diploid and tetraploid taxa and their interspecific hybrids, maintained at the USDA National Collection of Genetic Resources for Carya (NCGR-Carya), were analyzed using 14 nuclear and 3 plastid microsatellite markers. Principal coordinate analysis showed clear taxonomic classifications at multiple taxonomic levels along with patterns of interspecific hybridity. Evidence was also found for genetic differences associated with geographic distribution. The results indicate that this group of markers is useful in examining and characterizing populations and hybrids in the genus Carya and may help delineate the composition of a core collection to help characterize the NCGR-Carya repository collection for use in its pecan breeding program. The SSR fingerprints of the inventories of the USDA NCGR-Carya repository can also be used as a reference for identifying unknown pecan trees for growers. Full article
(This article belongs to the Special Issue Current Applications of Genetics to Forestry)
Show Figures

Figure 1

Article
Catalase Activity in Hot-Air Dried Mango as an Indicator of Heat Exposure for Rapid Detection of Heat Stress
Appl. Sci. 2022, 12(3), 1305; https://doi.org/10.3390/app12031305 (registering DOI) - 26 Jan 2022
Abstract
The growing market for dried fruits requires more attention to quality parameters. Mango and other tropical fruits are commonly dried at temperatures ranging from 40 °C to 80 °C. Convincing evidence suggests that the nutritional quality of dried fruits is best preserved when [...] Read more.
The growing market for dried fruits requires more attention to quality parameters. Mango and other tropical fruits are commonly dried at temperatures ranging from 40 °C to 80 °C. Convincing evidence suggests that the nutritional quality of dried fruits is best preserved when dried at low temperatures ≤50 °C, whereas increasing drying temperatures lead to the degradation of the most valuable nutrients inside the fruit. Currently, there is no system or direct measurement method that can assist in identifying the quality deterioration of dried fruits caused by excessive heat exposure during drying. From this perspective, the activity of the heat-sensitive enzyme ‘catalase’ was used for the first time to evaluate and compare mango slices dried at 40 °C, 60 °C and 80 °C. Various methods, including direct and indirect flotation tests and spectrophotometric measurements, were explored to measure the residual catalase activity in the dried samples. Results showed that the spectrophotometry and indirect flotation test produced the best results, revealing a significant difference (p < 0.05) in the catalase activity of mango slices dried at 40 °C, 60 °C and 80 °C, which the direct-dried mango flotation test failed to predict. Furthermore, this study demonstrates the potential applicability of catalase activity to indicate heat stress in dried mango slices processed at different temperatures. Full article
Show Figures

Figure 1

Article
Olive Mill Waste-Based Anaerobic Digestion as a Source of Local Renewable Energy and Nutrients
Sustainability 2022, 14(3), 1402; https://doi.org/10.3390/su14031402 (registering DOI) - 26 Jan 2022
Abstract
This study focused on what combination of anaerobic digestion (AD) temperature (ambient, mesophilic, and thermophilic) and olive mill waste (OMW) to dairy manure (DM) ratio mixture delivers the desired renewable energy and digestate qualities when using AD as olive mill waste treatment. OMW [...] Read more.
This study focused on what combination of anaerobic digestion (AD) temperature (ambient, mesophilic, and thermophilic) and olive mill waste (OMW) to dairy manure (DM) ratio mixture delivers the desired renewable energy and digestate qualities when using AD as olive mill waste treatment. OMW is widespread in the local environment in the North Sinai region, Egypt, which causes many environmental hazards if left without proper treatment. Three different mixtures consisting of OMW, dairy manure (DM), and inoculum (IN) were incubated under ambient, mesophilic, and thermophilic conditions for 45 days. The results showed that mixture B (2:1:2, OMW:DM:IN) at 55 °C produced more methane than at 35 °C and ambient temperature by 40% and 252%, respectively. Another aim of this study was to investigate the effects of the different concentrations of the digestate taken from each mixture on faba bean growth. The results showed that the maximum fresh weight values of the shoot system were observed at 10% and 15% for mixture B at ambient temperature. The best concentration value for the highest root elongation rate is a 5% addition of digestate mixture A at 55 °C, compared with other treatments. Full article
(This article belongs to the Special Issue Innovation in Waste-to-Energy Technology)
Show Figures

Figure 1

Article
Quantitative Estimation of Protein in Sprouts of Vigna radiate (Mung Beans), Lens culinaris (Lentils), and Cicer arietinum (Chickpeas) by Kjeldahl and Lowry Methods
Molecules 2022, 27(3), 814; https://doi.org/10.3390/molecules27030814 (registering DOI) - 26 Jan 2022
Abstract
Protein scarcity is the most vital cause of long-lasting diseases and even untimely deaths in some developing nations. The application of protein in food is advantageous from the point of view of non-toxicity, biocompatibility, and dietary benefits. This study aimed to determine the [...] Read more.
Protein scarcity is the most vital cause of long-lasting diseases and even untimely deaths in some developing nations. The application of protein in food is advantageous from the point of view of non-toxicity, biocompatibility, and dietary benefits. This study aimed to determine the protein contents of the sprouts of Vigna radiates (mung beans), Lens culinaris (lentils), and Cicer arietinum (chickpeas) using the Kjeldahl and Lowry methods. The results obtained from the Kjeldahl method identified protein concentrations of 2.54, 2.63, and 2.19%, whereas the Lowry method results identified protein concentrations of 2.96%, 4.10%, and 1.6% in mung beans, lentils, and chickpeas, respectively. In both the methods, lentils were found to have the highest amount of protein followed by mung beans and chickpeas. Both the Kjeldahl and Lowry methods demonstrated good protein values and low variation in the protein amount in the analyzed samples. Furthermore, the methods had greater sensitivity and comparable experimental variability. The outcomes revealed that assays can be applied for protein analysis in legumes. In the context of a lack of suitable standard procedures for evaluating legumes’ compositions, the present study is suitable for food control laboratories. In addition, the studied samples represent a significant source of protein and can be used to fulfil the daily requirements for protein intake and other food applications. Full article
Show Figures

Graphical abstract

Review
Aptamers—Diagnostic and Therapeutic Solution in SARS-CoV-2
Int. J. Mol. Sci. 2022, 23(3), 1412; https://doi.org/10.3390/ijms23031412 - 26 Jan 2022
Abstract
The SARS-CoV-2 virus is currently the most serious challenge to global public health. Its emergence has severely disrupted the functioning of health services and the economic and social situation worldwide. Therefore, new diagnostic and therapeutic tools are urgently needed to allow for the [...] Read more.
The SARS-CoV-2 virus is currently the most serious challenge to global public health. Its emergence has severely disrupted the functioning of health services and the economic and social situation worldwide. Therefore, new diagnostic and therapeutic tools are urgently needed to allow for the early detection of the SARS-CoV-2 virus and appropriate treatment, which is crucial for the effective control of the COVID-19 disease. The ideal solution seems to be the use of aptamers—short fragments of nucleic acids, DNA or RNA—that can bind selected proteins with high specificity and affinity. They can be used in methods that base the reading of the test result on fluorescence phenomena, chemiluminescence, and electrochemical changes. Exploiting the properties of aptamers will enable the introduction of rapid, sensitive, specific, and low-cost tests for the routine diagnosis of SARS-CoV-2. Aptamers are excellent candidates for the development of point-of-care diagnostic devices and are potential therapeutic tools for the treatment of COVID-19. They can effectively block coronavirus activity in multiple fields by binding viral proteins and acting as carriers of therapeutic substances. In this review, we present recent developments in the design of various types of aptasensors to detect and treat the SARS-CoV-2 infection. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

Article
The Identification of Multidrug-Resistant Microorganisms including Bergeyella zoohelcum Acquired from the Skin/Prosthetic Interface of Amputees and Their Susceptibility to Medihoney™ and Garlic Extract (Allicin)
Microorganisms 2022, 10(2), 299; https://doi.org/10.3390/microorganisms10020299 (registering DOI) - 26 Jan 2022
Abstract
Users of prosthetic devices face the accumulation of potentially drug-resistant pathogenic bacteria on the skin/prosthesis interface. In this study, we took surface swabs of the skin/prosthesis interface of eleven disabled athletes to identify microorganisms present. In addition to determining their antimicrobial resistance profile, [...] Read more.
Users of prosthetic devices face the accumulation of potentially drug-resistant pathogenic bacteria on the skin/prosthesis interface. In this study, we took surface swabs of the skin/prosthesis interface of eleven disabled athletes to identify microorganisms present. In addition to determining their antimicrobial resistance profile, we assessed their sensitivity to Manuka honey and Garlic extract (allicin). Eleven volunteers were directed to swab the skin at the skin/prosthesis interface. After initial isolation of microorganisms, we employed the following general microbiological methods: Gram stain, Catalase test, Oxidase test, lactose fermenting capability, haemolytic capability, Staphaurex, mannitol fermenting capability, Streptex; API Staph, 20E, Candida, and BBL crystal identification system tests. Once identified, isolates were analysed for their sensitivity to penicillin, erythromycin, ampicillin, vancomycin, ceftazidime, ciprofloxacin, gentamicin, and colistin-sulphate. Isolates were also analysed for their sensitivity to allicin (Garlic Extract (GE)) and Manuka honey (Medihoney™) (MH). Eleven isolates were identified: Bacillus cereus, Staphylococcus haemolyticus, Staphylococcus aureus, Micrococcus luteus, Pseudomonas oryzihabitans, Micrococcus spp., Bacillus subtilis, Group D Streptococcus, Pantoea spp., Enterobacter cloacae, and Bergeyella zoohelcum. All isolates were resistant to 1 unit of penicillin and 10 μg of ampicillin. Bergeyella zoohelcum was observed to have the widest range of resistance with observed resistance against five of the eight antimicrobials employed in this study. This study highlights the prevalence of uncommon drug-resistant microorganisms on the skin within a vulnerable population, highlighting the potential for MH or GE intervention. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Article
Deformation and Failure Mechanism of Weakly Cemented Mudstone under Tri-Axial Compression: From Laboratory Tests to Numerical Simulation
Minerals 2022, 12(2), 153; https://doi.org/10.3390/min12020153 (registering DOI) - 26 Jan 2022
Abstract
The success of the water-preserved mining technology is closely related to the stability of the aquiclude and the aquifer, in particular, which is made of weakly cemented rock mas. This paper starts with the tri-axial compression tests on the mudstone specimens obtained from [...] Read more.
The success of the water-preserved mining technology is closely related to the stability of the aquiclude and the aquifer, in particular, which is made of weakly cemented rock mas. This paper starts with the tri-axial compression tests on the mudstone specimens obtained from the Ili mining area, followed by the systematic numerical simulation via the Particle Flow Code (PFC) program, aiming at obtaining an in-depth understanding of the response of weakly cemented mudstone under tri-axial compression loading state. The main outcomes obtained from this research indicated that: (1) the behavior of weakly cemented mudstone is closely sensitive to the confining pressure. As the confining pressure increases, both the peak strength and plastic deformation capacity of weakly cemented mudstone will be enhanced; (2) the main feature of weakly cemented mudstone after tests is its centrosymmetric “Z” shape, mainly attributed to the progressive separation of the particle element of mudstone; (3) the behavior of weakly cemented mudstone either in terms of the axial stress-axial strain or the failure mode is sensitive to the confining pressure. If the applied confining pressure is lower than 5 MPa, the micro-cracks are in the form of the single shear band, whereas the tested specimens will tend from brittle shear to plastic shear associated with the “X” shear when the confining pressure is higher than 5 MPa; and (4) The failure of weakly cemented mudstone is mainly attributed to the continuous expansion and penetration of internal microcracks under compression. The brittle failure mode of weakly cemented mudstone tends to ductile failure with the increase of confining pressure. The main contribution of this research is believed to be beneficial in deepening the understanding of the mechanics of weakly cemented mudstone under tri-axial compression and providing the meaningful reference to the practical application of water-preserved mining in the Ili mining area. Full article
(This article belongs to the Special Issue Green Mining of Coal Mine in China)
Article
The Phenolic Content, Antioxidative Properties and Extractable Substances in Silver Fir (Abies alba Mill.) Branches Decrease with Distance from the Trunk
Plants 2022, 11(3), 333; https://doi.org/10.3390/plants11030333 (registering DOI) - 26 Jan 2022
Abstract
Silver fir (Abies alba Mill.) is one of the most common and valuable conifer tree species in Central Europe, with well-established usage in the construction and furniture industries, as well as the food, health products, pharmaceuticals and cosmetics industries. Silver fir branch [...] Read more.
Silver fir (Abies alba Mill.) is one of the most common and valuable conifer tree species in Central Europe, with well-established usage in the construction and furniture industries, as well as the food, health products, pharmaceuticals and cosmetics industries. Silver fir branch extract, a mixture of antioxidative phenols, is produced industrially as a food supplement with a wide range of therapeutic properties. This study investigates optimization of the production of silver fir branch extract by researching its antioxidant activity (ABTS and DPPH assay), phenol content (Folin-Ciocalteu assay), lignan content (HPLC) and extractable content at various distances from the trunk (0–80 cm). The antioxidative activity, phenol content and extractable content decreased from the proximal to the distal part of the branch. The decrease in ABTS assay activity was 51%, and that of the DPPH assay was 52%; the decrease in total phenol content was 35–40%; and the decrease in lignan content was 91%. The extractable matter content was reduced by 40%. Data gained in the study herein justifies the importance of researching existing and industrially produced plant extracts for further optimization of the final product. Results shows that industry can also produce extracts with elevated content of lignans with the use of short proximal parts of the branches. Full article
(This article belongs to the Special Issue Polyphenols in Plants)
Article
Use of Preference Analysis to Identify Early Adopter Mind-Sets of Insect-Based Food Products
Sustainability 2022, 14(3), 1435; https://doi.org/10.3390/su14031435 (registering DOI) - 26 Jan 2022
Abstract
Insects may potentially provide an alternative protein source. However, consumers may not easily accept insects due to feelings of disgust. Therefore, identifying early adopters of insect-based food products may determine their future acceptance. This study was conducted to (1) identify early adopter Mind-Sets [...] Read more.
Insects may potentially provide an alternative protein source. However, consumers may not easily accept insects due to feelings of disgust. Therefore, identifying early adopters of insect-based food products may determine their future acceptance. This study was conducted to (1) identify early adopter Mind-Sets of insect-based food products, (2) determine product features early adopters would prefer in an insect-based food product, and (3) determine differences in Mind-Sets in different countries. Two studies were distributed online in the US and the Philippines. The first study included information about insects, while the second study had no information on insects. The experimental design included elements, or product features, regarding insect-based products that participants evaluated. Preference Analysis was used to segment the participants into Mind-Sets. Based on the results, participants neither liked nor disliked the elements used. Participants in the studies without insect information were found to have higher liking when comparing liking. Participants who were aware of the study being about insects may have had less interest when evaluating the elements, as the response times between the US studies were significantly different (p < 0.05). The role of information and segmentation of the participants demonstrates the importance of experimental design when using Preference Analysis. Full article
(This article belongs to the Special Issue Sustainability in Sensory Analysis and New Food Product Development)
Article
Analysis of Ensifer aridi Mutants Affecting Regulation of Methionine, Trehalose, and Inositol Metabolisms Suggests a Role in Stress Adaptation and Symbiosis Development
Microorganisms 2022, 10(2), 298; https://doi.org/10.3390/microorganisms10020298 (registering DOI) - 26 Jan 2022
Abstract
Isolated from desert, the nitrogen-fixing bacterium Ensifer aridi LMR001 is capable of survival under particularly harsh environmental conditions. To obtain insights in molecular mechanisms involved in stress adaptation, a recent study using RNAseq revealed that the RpoE2-mediated general stress response was activated under [...] Read more.
Isolated from desert, the nitrogen-fixing bacterium Ensifer aridi LMR001 is capable of survival under particularly harsh environmental conditions. To obtain insights in molecular mechanisms involved in stress adaptation, a recent study using RNAseq revealed that the RpoE2-mediated general stress response was activated under mild saline stress but appeared non-essential for the bacterium to thrive under stress and develop the symbiosis. Functions associated with the stress response included the metabolisms of trehalose, methionine, and inositol. To explore the roles of these metabolisms in stress adaptation and symbiosis development, and the possible regulatory mechanisms involved, mutants were generated notably in regulators and their transcriptions were studied in various mutant backgrounds. We found that mutations in regulatory genes nesR and sahR of the methionine cycle generating S-adenosylmethionine negatively impacted symbiosis, tolerance to salt, and motility in the presence of NaCl. When both regulators were mutated, an increased tolerance to detergent, oxidative, and acid stresses was found, suggesting a modification of the cell wall components which may explain these phenotypes and support a major role of the fine-tuning methylation for symbiosis and stress adaptation of the bacterium. In contrast, we also found that mutations in the predicted trehalose transport and utilization regulator ThuR and the trehalose phosphate phosphatase OtsB-encoding genes improved symbiosis and growth in liquid medium containing 0.4 M of NaCl of LMR001ΔotsB, suggesting that trehalose metabolism control and possibly trehalose-6 phosphate cellular status may be biotechnologically engineered for improved symbiosis under stress. Finally, transcriptional fusions of gfp to promoters of selected genes and expression studies in the various mutant backgrounds suggest complex regulatory interplay between inositol, methionine, and trehalose metabolic pathways. Full article
(This article belongs to the Special Issue Genetics, Genomics, Physiology and Biochemistry of Rhizobium)
Article
GPR18-Mediated Relaxation of Human Isolated Pulmonary Arteries
Int. J. Mol. Sci. 2022, 23(3), 1427; https://doi.org/10.3390/ijms23031427 (registering DOI) - 26 Jan 2022
Abstract
GPR18 receptor protein was detected in the heart and vasculature and appears to play a functional role in the cardiovascular system. We investigated the effects of the new GPR18 agonists PSB-MZ-1415 and PSB-MZ-1440 and the new GPR18 antagonist PSB-CB-27 on isolated human pulmonary [...] Read more.
GPR18 receptor protein was detected in the heart and vasculature and appears to play a functional role in the cardiovascular system. We investigated the effects of the new GPR18 agonists PSB-MZ-1415 and PSB-MZ-1440 and the new GPR18 antagonist PSB-CB-27 on isolated human pulmonary arteries (hPAs) and compared their effects with the previously proposed, but unconfirmed, GPR18 ligands NAGly, Abn-CBD (agonists) and O-1918 (antagonist). GPR18 expression in hPAs was shown at the mRNA level. PSB-MZ-1415, PSB-MZ-1440, NAGly and Abn-CBD fully relaxed endothelium-intact hPAs precontracted with the thromboxane A2 analog U46619. PSB-CB-27 shifted the concentration-response curves (CRCs) of PSB-MZ-1415, PSB-MZ-1440, NAGly and Abn-CBD to the right; O-1918 caused rightward shifts of the CRCs of PSB-MZ-1415 and NAGly. Endothelium removal diminished the potency and the maximum effect of PSB-MZ-1415. The potency of PSB-MZ-1415 or NAGly was reduced in male patients, smokers and patients with hypercholesterolemia. In conclusion, the novel GPR18 agonists, PSB-MZ-1415 and PSB-MZ-1440, relax hPAs and the effect is inhibited by the new GPR18 antagonist PSB-CB-27. GPR18, which appears to exhibit lower activity in hPAs from male, smoking or hypercholesterolemic patients, may become a new target for the treatment of pulmonary arterial hypertension. Full article
Article
Energy Potential and Sustainability of Straw Resources in Three Regions of Ghana
Sustainability 2022, 14(3), 1434; https://doi.org/10.3390/su14031434 (registering DOI) - 26 Jan 2022
Abstract
Anthropogenic global warming and the depletion of nonrenewable resources necessitate a transition towards bioenergy to accelerate sustainable development and carbon neutrality. This study quantified the availability and energy potential of crop (cereals, legumes, roots and tubers) straws based on data from the Northern, [...] Read more.
Anthropogenic global warming and the depletion of nonrenewable resources necessitate a transition towards bioenergy to accelerate sustainable development and carbon neutrality. This study quantified the availability and energy potential of crop (cereals, legumes, roots and tubers) straws based on data from the Northern, North East and Savannah regions in Ghana. The annual technical straw potential was 2,967,933 tonnes, whilst the crop straws with the highest technical potential were yam (935,927 tonnes), groundnut (485,236 tonnes), maize (438,926 tonnes) and soybean (374,564 tonnes). The technical energy potential of all the crop straws was 42,256 TJ, although the energy potential of yam, groundnut, maize and soybean was 13,922 TJ, 7611 TJ, 5704 TJ and 5409 TJ, respectively. There was a linear correlation between the straw produced and the energy potential per region. The Northern region (28,153 TJ) recorded the highest energy potential followed by the Savannah (8330 TJ) and North East (5773 TJ) regions. To serve as context, the research placed an emphasis on the sustainability of crop straws for bioenergy and added a brief analysis of the life cycle assessment (LCA) of bioenergy scenarios to explore the environmental sustainability of crop straw-based power generation. This study will serve as a reference in understanding LCA inference on practicable research of crop straw-based, power plant expansion in Ghana and Sub-Saharan Africa (SSA). Full article
Article
From Technocracy to Democracy: Ways to Promote Democratic Engagement for Just Climate Change Adaptation and Resilience Building
Sustainability 2022, 14(3), 1433; https://doi.org/10.3390/su14031433 (registering DOI) - 26 Jan 2022
Abstract
Climate change and the policy responses to it have implications in terms of (in)justice. Research in fields such as political ecology and environmental justice emphasizes the importance of policy-making addressing and responding to climate injustices. It, moreover, stresses that democratic engagement is imperative, [...] Read more.
Climate change and the policy responses to it have implications in terms of (in)justice. Research in fields such as political ecology and environmental justice emphasizes the importance of policy-making addressing and responding to climate injustices. It, moreover, stresses that democratic engagement is imperative, since no universal agreement on the meaning of “justice” exists. Democratic engagement on climate (in)justice is, however, hampered by the predominance of technocratic policy frames. Considering this, knowledge of ways to promote democratic engagement is called for. This study develops such knowledge related to policy-making for climate change adaptation and resilience at the local level, in developed country contexts. Specifically, it draws on the “what’s the problem represented to be?” approach to conceptualize different styles of democratic engagement and examine the possibilities and limitations of each. From the data, comprised of previous research, representations of three styles of democratic engagement are identified and analyzed: (1) closure-oriented engagement centered on changing behaviors, (2) closure-oriented engagement centered on changing the systemic production of unjust practices, and (3) disruptive engagement centered on changing the systemic production of unjust practices. The contributions of this study are relevant to researchers, policymakers, activists and others interested in how to promote a democratization of climate policy-making. Full article
Brief Report
Direct Chromosome Preparation Method in Avian Embryos for Cytogenetic Studies: Quick, Easy and Cheap
DNA 2022, 2(1), 22-29; https://doi.org/10.3390/dna2010002 (registering DOI) - 26 Jan 2022
Abstract
Avian cell culture is widely applied for cytogenetic studies, the improvement of which increasingly allows for the production of high-quality chromosomes, essential to perform both classical and molecular cytogenetic studies. Among these approaches, there are two main types: fibroblast and bone marrow culture. [...] Read more.
Avian cell culture is widely applied for cytogenetic studies, the improvement of which increasingly allows for the production of high-quality chromosomes, essential to perform both classical and molecular cytogenetic studies. Among these approaches, there are two main types: fibroblast and bone marrow culture. Despite its high cost and complexity, fibroblast culture is considered the superior approach due to the quality of the metaphases produced. Short-term bone marrow cultivation provides more condensed chromosomes but nonetheless is quicker and easier. In the search for a quicker, cheaper way to prepare metaphases without losing quality, the present work developed a novel, widely applicable protocol for avian chromosome preparation. Twenty-one bird embryos from distinct families were sampled: Icteridae, Columbidae, Furnariidae, Estrildidae, Thraupidae, Troglodytidae and Ardeidae. The protocol was based on a combination of modified fibroblast culture and bone marrow cultivation, taking the advantages of both. The results show that all species consistently presented good mitotic indexes and high-quality chromosomes. Overall, the application of this protocol for bird cytogenetics can optimize the time, considering that most fibroblast cultures take at least 3 days and often much longer. However, our protocol can be performed in 3 h with a much-reduced cost of reagents and equipment. Full article
Article
The Effect of Grain Size on the Diffusion Bonding Properties of SP700 Alloy
Metals 2022, 12(2), 237; https://doi.org/10.3390/met12020237 (registering DOI) - 26 Jan 2022
Abstract
Superplastic forming and diffusion bonding (SPF/DB) has been recognized as a viable manufacturing technology. However, the basic understanding of grain size and its effects on the quality of diffusion bonds is still limited. In this study, a certain type of SP700 alloy with [...] Read more.
Superplastic forming and diffusion bonding (SPF/DB) has been recognized as a viable manufacturing technology. However, the basic understanding of grain size and its effects on the quality of diffusion bonds is still limited. In this study, a certain type of SP700 alloy with different grain sizes is bonded at superplastic temperature. The experimental results indicate that the same materials, if coarse-grained, may not readily bond under identical conditions of pressure, temperature, and time. This type of bonding is possible because of the presence of many grain boundaries in fine-grained materials that act as short-circuit paths for diffusion. In addition, grain-boundary migration is also faster in fine-grained than in coarse-grained materials. Fractographic studies show that the dimples on the coarse-grained specimen have large dimensions compared with that in the fine-grained material, indicating that heterogeneous deformation develops in the coarse-grained specimen during tension. Full article
Article
Investigating Coherent Magnetization Control with Ultrashort THz Pulses
Appl. Sci. 2022, 12(3), 1323; https://doi.org/10.3390/app12031323 (registering DOI) - 26 Jan 2022
Abstract
Coherent terahertz control of magnetization dynamics is an area of current interest due to its great potential for the realization of magnetization control on ultrafast timescales in commercial devices. Here we report on an experiment realized at the THz beamline of the free [...] Read more.
Coherent terahertz control of magnetization dynamics is an area of current interest due to its great potential for the realization of magnetization control on ultrafast timescales in commercial devices. Here we report on an experiment realized at the THz beamline of the free electron laser FLASH at DESY which offers a tunable terahertz radiation source and spontaneously synchronized free-electron laser X-ray pulses to resonantly probe the magnetization state of a ferromagnetic film. In this proof-of-principle experiment, we have excited a thin Permalloy film at different THz wavelengths and recorded the induced magnetization dynamics with photons resonantly tuned to the Ni M2,3 absorption edge. For THz pump pulses including higher orders of the undulator source we observed demagnetization dynamics, which precise shape depended on the employed fundamental wavelength of the undulator source. Analyzing the shape in detail, we can reconstruct the temporal profile of the electric field of the THz pump pulse. This offers a new method for the realization of an in-situ terahertz beamline diagnostic which will help researchers to adjust the pulse characteristics as needed, for example, for future studies of THz induced coherent control of magnetization dynamics. Full article
(This article belongs to the Special Issue Latest Trends in Free Electron Lasers)
Show Figures

Figure 1

Article
Salinity and Salt-Priming Impact on Growth, Photosynthetic Performance, and Nutritional Quality of Edible Mesembryanthemum crystallinum L
Plants 2022, 11(3), 332; https://doi.org/10.3390/plants11030332 (registering DOI) - 26 Jan 2022
Abstract
Mesembryanthemum crystallinum L. is a nutritious edible facultative halophyte. This study aimed to investigate the physiology and quality of M. crystallinum L. grown under different salinities and salt-priming conditions. All plants were first grown in 10% artificial seawater (ASW) for 10 days. After [...] Read more.
Mesembryanthemum crystallinum L. is a nutritious edible facultative halophyte. This study aimed to investigate the physiology and quality of M. crystallinum L. grown under different salinities and salt-priming conditions. All plants were first grown in 10% artificial seawater (ASW) for 10 days. After that, some plants remained in 10% ASW while the others were transferred to 20%, 30%, 40%, or 50% ASW for another 10 days. Some plants also underwent a salt priming by transferring them gradually from 10% to 100% ASW over a span of 10 days (defined as salt primed). All plants were green and healthy. However, there were reductions in shoot and root productivity, leaf growth, and water content, but also an increase in leaf succulence after transferring plants to higher salinities. The salt-primed plants showed higher photosynthetic light use efficiency with higher chlorophyll concentration compared to other plants. The concentrations of proline, ascorbic acid (ASC), and total phenolic compounds (TPC) increased as percentages of ASW increased. The salt-primed plants switched from C3 to crassulacean acid metabolism photosynthesis and accumulated the greatest amounts of proline, ASC, and TPC. In conclusion, higher salinities and salt priming enhance the nutritional quality of M. crystallinum L. but compromises productivity. Full article
(This article belongs to the Special Issue Edible Plants)
Article
Performance Analysis of a Double Pass Solar Air Thermal Collector with Porous Media Using Lava Rock
Energies 2022, 15(3), 905; https://doi.org/10.3390/en15030905 (registering DOI) - 26 Jan 2022
Abstract
This paper investigates double-pass solar air thermal collectors with lava rock as the porous media. The addition of lava rock serves as short-term sensible thermal storage for a solar drying system. It also enhances the convective heat transfer rate to the airflow due [...] Read more.
This paper investigates double-pass solar air thermal collectors with lava rock as the porous media. The addition of lava rock serves as short-term sensible thermal storage for a solar drying system. It also enhances the convective heat transfer rate to the airflow due to an increased heat transfer area and increased turbulence in the air channel. A mathematical model was developed based on energy balance equations and was numerically solved in MATLAB. The collector’s thermal performance was studied at various levels of solar intensity and at different wind speeds for different design parameters: collector size, air mass flow rate, and lava rock volume. From the study, the optimum efficiencies that were obtained in the range between the intensities of 500 W/m2 and 800 W/m2 were 62% to 64%, respectively, with an optimum flow rate of 0.035 kg/s. The optimum porosity of about 89% was selected for the collector by considering the pressure drop and thermal efficiency. An optimal temperature output range between 41.7 °C and 48.3 °C could be achieved and was suitable for agricultural and food drying applications. Meanwhile, compared to conventional DPSAHs, the average percentage increase in the output temperature of the DPSAH with lava rock was found to be higher by 17.5%. Full article
(This article belongs to the Topic Solar Thermal Energy and Photovoltaic Systems)
Show Figures

Figure 1

Article
Generalized Extreme Value Statistics, Physical Scaling and Forecasts of Oil Production from All Vertical Wells in the Permian Basin
Energies 2022, 15(3), 904; https://doi.org/10.3390/en15030904 (registering DOI) - 26 Jan 2022
Abstract
We analyze nearly half a million vertical wells completed since the 1930s in the most prolific petroleum province in the U.S., the Permian Basin. We apply a physics-guided, data-driven forecasting approach to estimate the remaining hydrocarbons in these historical wells and the probabilities [...] Read more.
We analyze nearly half a million vertical wells completed since the 1930s in the most prolific petroleum province in the U.S., the Permian Basin. We apply a physics-guided, data-driven forecasting approach to estimate the remaining hydrocarbons in these historical wells and the probabilities of well survival. First, we cluster the production data set into 192 spatiotemporal well cohorts based on 4 reservoir ages, 6 sub-plays, and 8 completion date intervals. Second, for each cohort, we apply the Generalized Extreme Value (GEV) statistics to each year of oil production from every well in this cohort, obtaining historical well prototypes. Third, we derive a novel physical scaling that extends these well prototypes for several more decades. Fourth, we calculate the probabilities of well survival and observe that a vertical well in the Permian can operate for 10–100 years, depending on the sub-play and reservoir to which this well belongs. Fifth, we estimate the total field production of all existing vertical wells in the Permian by replacing historical production from each well with its prototype. We then time-shift and sum up these prototypes together, obtaining 34 billion barrels of oil as estimated ultimate recovery (EUR). Our most notable finding is that the rate of finding big reservoirs in the Permian has been declining drastically and irreversibly since the 1970s. Today, operators need to drill wells that are twice as deep as the 1930s’ wells, yet they produce 4–12 times less. Full article
(This article belongs to the Special Issue Data Science in Reservoir Modelling Workflows)
Show Figures

Figure 1

Article
Investigation of Twelve Significant Mycotoxin Contamination in Nut-Based Products by the LC–MS/MS Method
Metabolites 2022, 12(2), 120; https://doi.org/10.3390/metabo12020120 (registering DOI) - 26 Jan 2022
Abstract
In this study, a total of 80 peanut butter, hazelnut butter, and chocolate samples were obtained from local markets in Ankara, Turkey. These foods were analyzed for twelve toxicological important mycotoxins, such as aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), and [...] Read more.
In this study, a total of 80 peanut butter, hazelnut butter, and chocolate samples were obtained from local markets in Ankara, Turkey. These foods were analyzed for twelve toxicological important mycotoxins, such as aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin G1 (AFG1), and aflatoxin G2 (AFG2); fumonisin B1 (FB1) and fumonisin B2 (FB2); ochratoxin A (OTA); sterigmatocystin (STE); deoxynivalenol (DON); zearalenone (ZON); T-2 toxin (T2); and HT-2 toxin (HT2) by the LC–MS/MS multi-mycotoxin method. In addition to this analysis, the presence of total aerobic mesophilic bacteria was investigated in the samples. The samples were analyzed microbiologically using standard procedures. Finally, the minimum and maximum levels of AFB1, AFB2, AFG1, FB2, OTA, STE, DON, ZON, T2, and HT2 in the samples were found to be 0.04–27.37 µg/kg, 0.06–6.19 µg/kg, 0.14–0.40 µg/kg, 2.73–2.93 µg/kg, 0.01–37.26 µg/kg, 0.19–2.25 µg/kg, 11.81–42.09 µg/kg, 0.03–7.57 µg/kg, 1.41–2.54 µg/kg, and 6.94–7.43 µg/kg, respectively. AFG2 and FB1 were not detected in any of the samples. The most frequently detected mycotoxins in analyzed samples were OTA (78.75%) and AFB1 (75%). In addition, total aerobic mesophilic bacteria were isolated from 53.75% of samples. Some of the tested food samples contained mycotoxins above the Turkish Food Codex maximum limit. Full article
(This article belongs to the Section Food Science)
Article
Cadmium and Cadmium/BDE (47 or 209) Exposure Affect Mitochondrial Function, DNA Damage/Repair Mechanisms and Barrier Integrity in Airway Epithelial Cells
Atmosphere 2022, 13(2), 201; https://doi.org/10.3390/atmos13020201 (registering DOI) - 26 Jan 2022
Abstract
Heavy metals and Brominated diphenyl ether flame-retardants (BDEs) often coexist in the environment and are capable of inducing injury, cytotoxicity or genotoxicity in human epithelial cells of the lung. We studied the effects of single Cadmium chloride (CdCl2) or CdCl2 [...] Read more.
Heavy metals and Brominated diphenyl ether flame-retardants (BDEs) often coexist in the environment and are capable of inducing injury, cytotoxicity or genotoxicity in human epithelial cells of the lung. We studied the effects of single Cadmium chloride (CdCl2) or CdCl2/BDE (47 or 209) mixtures in airway epithelial cells, using A549 cell line cultured at submerged conditions and air–liquid interface (ALI) (an in vitro model described as physiologically relevant in vivo-like). We evaluated cell viability, oxidative stress, apoptosis, DNA damage/repair (Comet assay, γH2AX phosphorylation ser139), mitochondrial redox balance (NOX-4, Nrf2 and TFAM) and cell barrier integrity (TEER, ZO-1, Claudin-1, E-cadherin-1) in A549 cells exposed to CdCl2 (1 nM to 10 µM), or to CdCl2 (100 nM)/BDEs (47 or 209) (100 nM). CdCl2 (10 μM) reduced cell viability and increased apoptosis. CdCl2 (100 nM) significantly affected DNA-damage/repair (Olive Tail length production), γH2AX phosphorylation and oxidative stress (ROS/JC-1 production) in submerged cell cultures. CdCl2 (100 nM) decreased viability, TEER, ZO-1, Claudin-1 and E-cadherin-1 mRNA expression, and Nrf2 and TFAM while increased NOX-4, in ALI culture of cells. In both cell culture approaches, the cells stimulated with Cadmium/BDEs mixtures did not show a significant increase in the effects observed in the cells treated with CdCl2 alone. CdCl2 inhalation might exert cytotoxicity and genotoxicity, playing a pivotal role in the uncontrolled oxidative stress, damaging DNA and gene expression in airway epithelial cells. No additional or synergistic adverse effects of CdCl2/BDEs mixture were observed in comparison to CdCl2 alone in lung epithelium. Full article
(This article belongs to the Special Issue Outdoor Air Pollution and Human Health (2nd Volume))
Article
Design on Intelligent Feature Graphics Based on Convolution Operation
by and
Mathematics 2022, 10(3), 384; https://doi.org/10.3390/math10030384 (registering DOI) - 26 Jan 2022
Abstract
With the development and application of artificial intelligence, the technical methods of intelligent image processing and graphic design need to be explored to realize the intelligent graphic design based on traditional graphics such as pottery engraving graphics. An optimized method is aimed to [...] Read more.
With the development and application of artificial intelligence, the technical methods of intelligent image processing and graphic design need to be explored to realize the intelligent graphic design based on traditional graphics such as pottery engraving graphics. An optimized method is aimed to be explored to extract the image features from traditional engraving graphics on historical relics and apply them into intelligent graphic design. For this purpose, an image feature extracted model based on convolution operation is proposed. Parametric test and effectiveness research are conducted to evaluate the performance of the proposed model. Theoretical and practical research shows that the image-extracted model has a significant effect on the extraction of image features from traditional engraving graphics because the image brightness processing greatly simplifies the process of image feature extraction, and the convolution operation improves the accuracy. Based on the brightness feature map output from the proposed model, the design algorithm of intelligent feature graphic is presented to create the feature graphics, which can be directly applied to design the intelligent graphical interface. Taking some pottery engraving graphics from the Neolithic Age as an example, we conduct the practice on image feature extraction and feature graphic design, the results of which further verify the effectiveness of the proposed method. This paper provides a theoretical basis for the application of traditional engraving graphics in intelligent graphical interface design for AI products such as smart tourism products, smart museums, and so on. Full article
(This article belongs to the Special Issue Applied Computing and Artificial Intelligence)
Article
A New Design of MP-HDCCB Topology Based on Hybrid Switching Device
Energies 2022, 15(3), 903; https://doi.org/10.3390/en15030903 (registering DOI) - 26 Jan 2022
Abstract
Since each branch of the multiterminal DC circuit system relies on the DC circuit breaker for breaking and fault isolation, the prohibitive cost and huge volume of the Hybrid DC Circuit Breaker (HCB) limit its development and broad application in multiterminal flexible DC [...] Read more.
Since each branch of the multiterminal DC circuit system relies on the DC circuit breaker for breaking and fault isolation, the prohibitive cost and huge volume of the Hybrid DC Circuit Breaker (HCB) limit its development and broad application in multiterminal flexible DC systems. Multiport hybrid DC circuit breaker (MP-HDCCB) based on device and branch sharing reduces the configuration cost of the circuit breaker to a certain extent. In order to further reduce the cost of MP-HDCCB, a novel MP-HDCCB topology based on hybrid switching devices is proposed, adopting full controlled switching devices to achieve rapidity of breaking fault current, and using semi-controlled switching devices in series to withstand the transient interruption voltage (TIV), so as to reduce the construction cost and technical difficulty. In this paper, the working principle and fault breaking strategy of the topology are introduced in detail, then the parameters of the major circuit are analyzed theoretically, and the parameter design of each branch is given. In the end, the rationality and validity of the proposed topology is tested and verified by simulations and experimental tests. Full article
(This article belongs to the Topic Power System Modeling and Control)
Show Figures

Figure 1

Article
Research on Color Image Encryption Algorithm Based on Bit-Plane and Chen Chaotic System
Entropy 2022, 24(2), 186; https://doi.org/10.3390/e24020186 (registering DOI) - 26 Jan 2022
Abstract
In response to the problems of high complexity and the large amount of operations of existing color image encryption algorithms, a low-complexity, low-operation color image encryption algorithm based on a combination of bit-plane and chaotic systems is proposed that is interrelated with plaintext [...] Read more.
In response to the problems of high complexity and the large amount of operations of existing color image encryption algorithms, a low-complexity, low-operation color image encryption algorithm based on a combination of bit-plane and chaotic systems is proposed that is interrelated with plaintext information. Firstly, three channels of an RGB image are extracted, and the gray value of each pixel channel can be expressed by an eight-bit binary number. The higher- and lower-four bits of the binary gray value of each pixel are exchanged, and the position of each four-bit binary number is scrambled by a logistic chaotic sequence, and all the four-bit binary numbers are converted into hexadecimal numbers to reduce the computational complexity. Next, the position of the transformed image is scrambled by a logistic chaotic sequence. Then, the Chen chaos sequence is used to permute the gray pixel values of the permuted image. Finally, the gray value of the encrypted image is converted into a decimal number to form a single-channel encrypted image, and the three-channel encrypted image is synthesized into an encrypted color image. Through MATLAB simulation experiments, a security analysis of encryption effects in terms of a histogram, correlation, a differential attack, and information entropy is performed. The results show that the algorithm has a better encryption effect and is resistant to differential attacks. Full article
(This article belongs to the Special Issue Advances in Image Fusion)

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop