2021 Impact Factors
are now released!
98 MDPI journals have been ranked as the most
impactful journals within their fields. arrow_forward See all MDPI Impact Factors
Article
Association between Daily Physical Activity and Locomotive Syndrome in Community-Dwelling Japanese Older Adults: A Cross-Sectional Study
Int. J. Environ. Res. Public Health 2022, 19(13), 8164; https://doi.org/10.3390/ijerph19138164 (registering DOI) - 03 Jul 2022
Abstract
This study aimed to evaluate the association between locomotive syndrome (LS) and daily physical activity (PA) in community-dwelling older adults. This cross-sectional study included 80 healthy Japanese older adults (40 men and 40 women; age: 60–79 years). Habitual daily PA was evaluated using [...] Read more.
This study aimed to evaluate the association between locomotive syndrome (LS) and daily physical activity (PA) in community-dwelling older adults. This cross-sectional study included 80 healthy Japanese older adults (40 men and 40 women; age: 60–79 years). Habitual daily PA was evaluated using a triaxial wrist accelerometer. Participants were divided into two groups based on the results of the two-step test, stand-up test, and 25-question geriatric locomotive function scale. Binomial logistic regression analysis was conducted to examine the statistical relationships between daily PA and category of LS, adjusting for age from adjusted odds ratio (adjusted OR) with the 95 percent confidence intervals (95% CI) and bootstrap 95% CI. The mean step count and time spent on moderate to vigorous physical activity (MVPA) were significantly higher among non-LS participants than among LS participants in women, but not in men. Logistic regression analyses indicated that spending longer than 28 min/day on MVPA was significantly associated with a lower likelihood of LS relative to short time category under 28 min/day in women (adjusted OR = 0.12, 95% CI = 0.02–0.59, bootstrap 95%CI = 0.01–0.43), but not in men. This study suggests that in community-dwelling older women, those with higher MVPA had lower odds of LS, and daily MVPA was associated with LS, but not in men. Therefore, the associations between LS and daily physical activity were partly dependent on sex differences. Full article
(This article belongs to the Special Issue Physical Activity and Sedentary Behavior on Older Adults)
Review
Reproductive Consequences of Electrolyte Disturbances in Domestic Animals
Biology 2022, 11(7), 1006; https://doi.org/10.3390/biology11071006 (registering DOI) - 03 Jul 2022
Abstract
Electrolyte balance is essential to maintain homeostasis in the body. The most crucial electrolytes are sodium (Na+), potassium (K+), magnesium (Mg2+), chloride (Cl), and calcium (Ca2+). These ions maintain the volume of body [...] Read more.
Electrolyte balance is essential to maintain homeostasis in the body. The most crucial electrolytes are sodium (Na+), potassium (K+), magnesium (Mg2+), chloride (Cl), and calcium (Ca2+). These ions maintain the volume of body fluids, and blood pressure, participate in muscle contractions, and nerve conduction, and are important in enzymatic reactions. The balance is mainly ensured by the kidneys, which are an important organ that regulates the volume and composition of urine, together with which excess electrolytes are excreted. They are also important in the reproductive system, where they play a key role. In the male reproductive system, electrolytes are important in acrosomal reaction and sperm motility. Sodium, calcium, magnesium, and chloride are related to sperm capacitation. Moreover, Mg2+, Ca2+, and Na+ play a key role in spermatogenesis and the maintenance of morphologically normal spermatozoa. Infertility problems are becoming more common. It is known that disturbances in the electrolyte balance lead to reproductive dysfunction. In men, there is a decrease in sperm motility, loss of sperm capacitation, and male infertility. In the female reproductive system, sodium is associated with estrogen synthesis. In the contraction and relaxation of the uterus, there is sodium, potassium, and calcium. Calcium is associated with oocyte activation. In turn, in women, changes in the composition of the follicular fluid are observed, leading to a restriction of follicular growth. Imbalance of oocyte electrolytes, resulting in a lack of oocyte activation and, consequently, infertility. Full article
(This article belongs to the Section Reproductive Biology)
Article
Accuracy of a New Pulse Oximetry in Detection of Arterial Oxygen Saturation and Heart Rate Measurements: The SOMBRERO Study
Sensors 2022, 22(13), 5031; https://doi.org/10.3390/s22135031 (registering DOI) - 03 Jul 2022
Abstract
Early diagnosis and continuous monitoring of respiratory failure (RF) in the course of the most prevalent chronic cardio-vascular (CVD) and respiratory diseases (CRD) are a clinical, unresolved problem because wearable, non-invasive, and user-friendly medical devices, which could grant reliable measures of the oxygen [...] Read more.
Early diagnosis and continuous monitoring of respiratory failure (RF) in the course of the most prevalent chronic cardio-vascular (CVD) and respiratory diseases (CRD) are a clinical, unresolved problem because wearable, non-invasive, and user-friendly medical devices, which could grant reliable measures of the oxygen saturation (SpO2) and heart rate (HR) in real-life during daily activities are still lacking. In this study, we investigated the agreement between a new medical wrist-worn device (BrOxy M) and a reference, medical pulseoximeter (Nellcor PM 1000N). Twelve healthy volunteers (aged 20–51 years, 84% males, 33% with black skin, obtaining, during the controlled hypoxia test, the simultaneous registration of 219 data pairs, homogeneously deployed in the levels of Sat.O2 97%, 92%, 87%, 82% [ISO 80601-2-61:2017 standard (paragraph EE.3)]) were included. The paired T test 0 and the Bland-Altman plot were performed to assess bias and accuracy. SpO2 and HR readings by the two devices resulted significantly correlated (r = 0.91 and 0.96, p < 0.001, respectively). Analyses excluded the presence of proportional bias. For SpO2, the mean bias was −0.18% and the accuracy (ARMS) was 2.7%. For HR the mean bias was 0.25 bpm and the ARMS3.7 bpm. The sensitivity to detect SpO2 ≤ 94% was 94.4%. The agreement between BrOxy M and the reference pulse oximeter was “substantial” (for SpO2 cut-off 94% and 90%, k = 0.79 and k = 0.80, respectively). We conclude that BrOxy M demonstrated accuracy, reliability and consistency in measuring SpO2 and HR, being fully comparable with a reference medical pulseoxymeter, with no adverse effects. As a wearable device, Broxy M can measure continually SpO2 and HR in everyday life, helping in detecting and following up CVD and CRD subjects. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

Article
Effect of Paulownia Leaves Extract Levels on In Vitro Ruminal Fermentation, Microbial Population, Methane Production, and Fatty Acid Biohydrogenation
Molecules 2022, 27(13), 4288; https://doi.org/10.3390/molecules27134288 (registering DOI) - 03 Jul 2022
Abstract
Paulownia is a fast-growing tree that produces a huge mass of leaves as waste that can be used as a feed source for ruminants. The previous study showed that phenolic compounds were the most active biological substances in Paulownia leaves, which affected the [...] Read more.
Paulownia is a fast-growing tree that produces a huge mass of leaves as waste that can be used as a feed source for ruminants. The previous study showed that phenolic compounds were the most active biological substances in Paulownia leaves, which affected the ruminal parameters and methane concentration. However, there are no scientific reports on the Paulownia leaves extract (PLE) containing phenolic compounds for their mode of action in the rumen. Phenolics constituted the main group of bioactive compounds in PLE (84.4 mg/g dry matter). PLE lowered the concentration of ammonia, modulated the VFA profile in the ruminal fluid, and decreased methane production. The PLE caused a significant reduction of in vitro dry matter degradability, reduced the number of methanogens and protozoa, and affected selected bacteria populations. PLE had a promising effect on the fatty acid profile in the ruminal fluid. Paulownia as a new dietary component or its extract as a feed additive may be used to mitigate ruminal methanogenesis, resulting in environmental protection and reducing ruminal biohydrogenation, improving milk and meat quality. Full article
(This article belongs to the Special Issue Phytochemistry and Biological Properties of Medicinal Plants)
Article
Measuring the Modified Gravitational Wave Propagation Beyond General Relativity from CMB Observations
by
Universe 2022, 8(7), 367; https://doi.org/10.3390/universe8070367 (registering DOI) - 03 Jul 2022
Abstract
In modified gravity theories, gravitational wave propagations are presented in nonstandard ways. We consider a friction term different from GR and constrain the modified gravitational waves propagation from observations. The modified gravitational waves produce anisotropies and polarization, which generate measurable tensor power spectra. [...] Read more.
In modified gravity theories, gravitational wave propagations are presented in nonstandard ways. We consider a friction term different from GR and constrain the modified gravitational waves propagation from observations. The modified gravitational waves produce anisotropies and polarization, which generate measurable tensor power spectra. We explore the impact of the friction term on the power spectrum of B-modes and the impact on the constraints on the other parameters (e.g., r or At) when ν0 is allowed to vary in the Monte Carlo analyses from Planck+BK18 datasets. If we assume the result of the scalar perturbations is unchanged, the inflation consistency relation alters with the friction term. In the ΛCDM+r+ν0 model, the tensor-to-scalar ratio and the amplitude of the tensor spectrum are obviously influenced. Full article
(This article belongs to the Special Issue Cosmic Microwave Background)
Article
Electromyographic Response of the Abdominal Muscles and Stabilizers of the Trunk to Reflex Locomotion Therapy (RLT). A Preliminary Study
J. Clin. Med. 2022, 11(13), 3866; https://doi.org/10.3390/jcm11133866 (registering DOI) - 03 Jul 2022
Abstract
Reflex locomotion therapy (RLT) was developed by Vaclav Vojta in 1954 as a diagnostic and treatment tool. This therapy is mainly used to rehabilitate children with motor disorders and risk of cerebral palsy. It is also used for adults with neurological and motor [...] Read more.
Reflex locomotion therapy (RLT) was developed by Vaclav Vojta in 1954 as a diagnostic and treatment tool. This therapy is mainly used to rehabilitate children with motor disorders and risk of cerebral palsy. It is also used for adults with neurological and motor impairment. RLT is based on specific postures and regular stimulation points through which a series of reflex responses are triggered. The neurophysiological mechanisms of this therapy have recently been discovered. This study aims to objectively evaluate muscular responses at the abdominal level after stimulation in the first phase of reflex rolling by showing, with surface electromyography analysis (sEMG), the muscular activity in trunk stabilizing muscles (rectus abdominis, external oblique, internal oblique, and serratus anterior) before, during, and after the application of RLT. A total sample of 27 healthy subjects over 18 years of age was recruited. An experimental study on a cohort was conducted. Two experimental conditions were considered: stimuli according to the Vojta protocol, and a control non-STI condition. Regarding muscular electrical activity, statistically significant differences were determined in all muscles during right-sided stimulation in the VSTI condition (p < 0.001), but not in the non-STI condition. The mean increase in muscle activity in the VSTI condition during the first stimulation ranged from 7% to 20% in the different abdominal muscles. In conclusion, an sEMG response was observed in the abdominal muscles during stimulation of the pectoral area as described in RLT, compared to stimulation of non-described areas. Full article
(This article belongs to the Section Clinical Rehabilitation)
Article
A Longitudinal Study on Trajectories of Night Work and Sickness Absence among Hospital Employees
Int. J. Environ. Res. Public Health 2022, 19(13), 8168; https://doi.org/10.3390/ijerph19138168 (registering DOI) - 03 Jul 2022
Abstract
This study aimed to investigate trajectories of night shift work in irregular shift work across a 12-year follow-up among hospital employees with and without sickness absence (SA). The payroll-based register data of one hospital district in Finland included objective working hours and SA [...] Read more.
This study aimed to investigate trajectories of night shift work in irregular shift work across a 12-year follow-up among hospital employees with and without sickness absence (SA). The payroll-based register data of one hospital district in Finland included objective working hours and SA from 2008 to 2019. The number of night shifts per year was used in group-based trajectory modeling (GBTM). The results indicate that, among those who had any sickness absence episodes, the amount of night work decreased prior to the first SA. In general, trajectories of night shift work varied from stably high to low-but-increasing trajectories in terms of the number of shifts. However, a group with decreasing pattern of night work was identified only among those with sickness absence episodes but not among those without such episodes. To conclude, the identified trajectories of night work with or without sickness absences may indicate that, among those with sickness absence episodes, night work was reduced due to increasing health problems. Hence, the hospital employees working night shifts are likely a selected population because the employees who work at night are supposed to be healthier than those not opting for night work. Full article
Show Figures

Figure 1

Article
Research on the Simulation Model of Continuous Fiber-Reinforced Composites Printing Track
Polymers 2022, 14(13), 2730; https://doi.org/10.3390/polym14132730 (registering DOI) - 03 Jul 2022
Abstract
The rapid development of additive manufacturing technology (AM) is revolutionizing the traditional continuous fiber-reinforced polymer (CFRP) manufacturing process. The combination of FDM technology and CFRP technology gave birth to continuous fiber reinforced thermoplastic composites (CFRTPC) 3D printing technology. Parts with complex structure and [...] Read more.
The rapid development of additive manufacturing technology (AM) is revolutionizing the traditional continuous fiber-reinforced polymer (CFRP) manufacturing process. The combination of FDM technology and CFRP technology gave birth to continuous fiber reinforced thermoplastic composites (CFRTPC) 3D printing technology. Parts with complex structure and excellent performance can be fabricated by this technology. However, the current research on CFRTPC printing mainly focuses on printing equipment, materials, and the improvement of mechanical properties. In this paper, the CFRTPC 3D printing track errors are investigated during the printing process, and it is found that the polytetrafluoroetylene (PTFE) tube in the nozzle of the printer head is often blocked. Through detailed analysis, a line-following mathematical model reflecting the deviations of the CFRTPC printing track is established. According to the characteristics of the fiber and its track during actual laying, a modified line-following model, without the minimum curvature point, is further proposed. Based on this model, the actual printing track for the theoretical path is simulated, the process tests are carried out on the printing track at different corner angles, and the relevant rules between the parameters of the model and different corner angles are obtained. The mathematical model is verified by experiments, and the clogging problem of the printer head caused by the fiber track error is solved, which provides theoretical support for the rational design of the fiber track in CFRTPC printing. Full article
(This article belongs to the Special Issue New Advances in Polymer Composites and Structures)
Show Figures

Figure 1

Article
Effective Identification of Technological Opportunities for Radical Inventions Using International Patent Classification: Application of Patent Data Mining
Appl. Sci. 2022, 12(13), 6755; https://doi.org/10.3390/app12136755 (registering DOI) - 03 Jul 2022
Abstract
Identifying technological opportunities early on is critical for the development of radical inventions (RIs). Patents are recognized as one of the most reliable resources for identifying technological opportunities. In line with this, this study aimed to suggest a novel approach for the identification [...] Read more.
Identifying technological opportunities early on is critical for the development of radical inventions (RIs). Patents are recognized as one of the most reliable resources for identifying technological opportunities. In line with this, this study aimed to suggest a novel approach for the identification of technological opportunities for RIs, based on the International Patent Classification (IPC), whose design knowledge has not been fully utilized. In this approach, technological opportunities for RIs are identified by measuring the value of technological novelty (VON) of each technology manifested in a patent set, and the value of difficulty (VOD) of each R&D theme contained in the patent set. Specifically, VONs are calculated through a novel map of technological changes over time, based on structured data from the patent set; and VODs are determined using natural language processing, K-means cluster analysis, and complex network analysis of the unstructured data from the patent set. The feasibility and operability of the proposed approach are verified in a case study of unmanned aerial vehicles. The proposed approach can help designers maximize the use of designs and expert knowledge in patent libraries, to formulate technical strategies for RIs. Full article
Show Figures

Figure 1

Article
Remediation Capacity of Different Microalgae in Effluents Derived from the Cigarette Butt Cleaning Process
Plants 2022, 11(13), 1770; https://doi.org/10.3390/plants11131770 (registering DOI) - 03 Jul 2022
Abstract
Microalgal-based remediation is an ecofriendly and cost-effective system for wastewater treatment. This study evaluated the capacity of microalgae in the remediation of wastewater from cleaning process of smoked cigarette butts (CB). At laboratory scale, six strains (one from the family Scenedesmaceae, two Chlamydomonas [...] Read more.
Microalgal-based remediation is an ecofriendly and cost-effective system for wastewater treatment. This study evaluated the capacity of microalgae in the remediation of wastewater from cleaning process of smoked cigarette butts (CB). At laboratory scale, six strains (one from the family Scenedesmaceae, two Chlamydomonas debaryana and three Chlorella sorokiniana) were exposed to different CB wastewater dilutions to identify toxicity levels reflected in the alteration of microalgal physiological status and to determine the optimal conditions for an effective removal of contaminants. CB wastewater could impact on microalgal chlorophyll and carotenoid production in a concentration-dependent manner. Moreover, the resistance and remediation capacity did not only depend on the microalgal strain, but also on the chemical characteristics of the organic pollutants. In detail, nicotine was the most resistant pollutant to removal by the microalgae tested and its low removal correlated with the inhibition of photosynthetic pigments affecting microalgal growth. Concerning the optimal conditions for an effective bioremediation, this study demonstrated that the Chlamydomonas strain named F2 showed the best removal capacity to organic pollutants at 5% CB wastewater (corresponding to 25 butts L−1 or 5 g CB L−1) maintaining its growth and photosynthetic pigments at control levels. Full article
(This article belongs to the Special Issue Phytoremediation: New Approaches and Perspectives)
Show Figures

Figure 1

Article
Multi-Objective Crop Planting Structure Optimisation Based on Game Theory
Water 2022, 14(13), 2125; https://doi.org/10.3390/w14132125 (registering DOI) - 03 Jul 2022
Abstract
To realise the ecological protection and high-quality development of the Yellow River Basin and transition from extensive utilisation to intensive conservation of agricultural water, a multi-objective crop planting structure optimisation model was established. The model enabled highly efficient crop planting in terms of [...] Read more.
To realise the ecological protection and high-quality development of the Yellow River Basin and transition from extensive utilisation to intensive conservation of agricultural water, a multi-objective crop planting structure optimisation model was established. The model enabled highly efficient crop planting in terms of net income with high yield and low consumption of water. Thereafter, the game algorithm was used to balance different requirements of each objective function under each constraint, both competitively and cooperatively, to obtain an optimal crop planting structure. Finally, the proposed model and analysis method were demonstrated and verified using the Xiaolangdi south bank irrigation area as an example. The results indicated that using the competitive game algorithm produced a superior crop planting structure in terms of high net income, high yield, and low water usage, suggesting that the relationships between game players and objective functions should be considered in designing the optimisation model. Thus, the proposed approach provides a theoretical basis for the sustainable development of the agricultural industry by realising the intensive utilisation of water resources in a particular irrigation area. Full article
(This article belongs to the Special Issue Advance in Water Management and Water Policy Research)
Case Report
COVID-19 Vaccination Drive in a Low-Volume Primary Care Clinic: Challenges & Lessons Learned in Using Homegrown Self-Scheduling Web-Based Mobile Platforms
Vaccines 2022, 10(7), 1072; https://doi.org/10.3390/vaccines10071072 (registering DOI) - 03 Jul 2022
Abstract
Background: The whole of humanity has suffered dire consequences related to the novel coronavirus disease 2019 (COVID-19). Vaccination of the world base population is considered the most promising and challenging approach to achieving herd immunity. As healthcare organizations took on the extensive task [...] Read more.
Background: The whole of humanity has suffered dire consequences related to the novel coronavirus disease 2019 (COVID-19). Vaccination of the world base population is considered the most promising and challenging approach to achieving herd immunity. As healthcare organizations took on the extensive task of vaccinating the entire U.S. population, digital health companies expanded their automated health platforms in order to help ease the administrative burdens of mass inoculation. Although some software companies offer free applications to large organizations, there are prohibitive costs for small clinics such as the Good Health Associates Clinic (GHAC) for integrating and implementing new self-scheduling software into our e-Clinical Works (ECW) Electronic Health Record (EHR). These cost burdens resulted in a search that extended beyond existing technology, and in investing in new solutions to make it easier, more efficient, more cost-effective, and more scalable. Objective: In comparison to commercial entities, primary care clinics (PCCs) have the advantage of engaging the population for vaccination through personalized continuity of clinical care due to good rapport between their patients and the PCC team. In order to support the overall national campaign to prevent COVID-19 infections and restore public health, the GHAC wanted to make COVID-19 vaccination accessible to its patients and to the communities it serves. We aimed to achieve a coordinated COVID-19 vaccination drive in our community through our small primary care clinic by developing and using an easily implementable, cost-effective self-registration and scheduling web-based mobile platform, using the principle of “C.D.S. Five Rights.” Results: Overall, the Moderna vaccination drive using our developed self-registration and scheduling web portal and SMS messaging mobile platform improved vaccination uptake (51%) compared to overall vaccination uptake in our town, county (36%), and state (39%) during April–July 2021. Conclusions: Based on our experience during this COVID-19 vaccination drive, we conclude that PCCs have significant leverage as “invaluable warriors”, along with government and media education available, to engage patients for vaccination uptake; this leads to national preventive health spread in our population, and reduces expenses related to acute illness and hospitalization. In terms of cost-effectiveness, small PCCs are worthy of government-sponsored funding and incentives, including mandating EHR vendors to provide free (or minimal fee) software for patient self-registration and scheduling, in order to improve vaccination drive access. Hence, improved access to personalized informative continuity of clinical care in the PCC setting is a “critical link” in accelerating similar cost-effective campaigns in patient vaccine uptake. Full article
(This article belongs to the Special Issue People’s Perception on COVID-19 Vaccine and Its Accessibility)
Article
Multiple Quartz Crystals Connected in Parallel for High-Resolution Sensing of Capacitance Changes
Sensors 2022, 22(13), 5030; https://doi.org/10.3390/s22135030 (registering DOI) - 03 Jul 2022
Abstract
We present a new highly sensitive, low-value capacitance sensor method that uses multiple quartz crystals connected in parallel inside the oscillator. In the experimental setup, the measured (sensible) reactance (capacitance) is connected in parallel to the total shunt capacitance of the quartz crystals, [...] Read more.
We present a new highly sensitive, low-value capacitance sensor method that uses multiple quartz crystals connected in parallel inside the oscillator. In the experimental setup, the measured (sensible) reactance (capacitance) is connected in parallel to the total shunt capacitance of the quartz crystals, oscillating in the oscillator. Because AT-cut crystals have a certain nonlinear frequency–temperature dependence, we use the switching mode method, by which we achieve a temperature compensation of the AT-cut crystals’ frequency–temperature characteristics in the temperature range between 0–50 °C. The oscillator switching method also compensates for any other influences on the frequency of the oscillator, such as ageing of the crystals and oscillator elements, supply voltage fluctuations, and other parasitic impedances in the oscillating circuit. Subsequently using two 50-ms-delayed switches between the measuring and reference capacitors, the experimental error in measuring the capacitance is lowered for measurements under a dynamic temperature variation in the range of 0–50 °C. The experimental results show that the switching method, which includes a multiple quartz connection and high-temperature compensation improvement of the quartz crystals’ characteristics, enables a sub-aF resolution. It converts capacitance changes in the range 10 zF–200fF to frequencies in the range 4 kHz–100 kHz. Full article
(This article belongs to the Section Physical Sensors)
Article
ICT Usage for Cross-Curricular Connections in Music and Visual Arts during Emergency Remote Teaching in Slovenia
Electronics 2022, 11(13), 2090; https://doi.org/10.3390/electronics11132090 (registering DOI) - 03 Jul 2022
Abstract
Due to the COVID-19 pandemic, the entire process of teaching and learning moved online. This forced teachers and pupils to heavily rely on information and communications technology (ICT) and make adjustments to the new mode of teaching and learning in educational institutions. We [...] Read more.
Due to the COVID-19 pandemic, the entire process of teaching and learning moved online. This forced teachers and pupils to heavily rely on information and communications technology (ICT) and make adjustments to the new mode of teaching and learning in educational institutions. We conducted a qualitative case study by interviewing 24 teachers from Slovene primary schools focusing on the implementation of cross-curricular connections in music and visual arts content with the support of ICT during the period of emergency remote teaching. We found that when planning and implementing the cross-curricular learning process, teachers insufficiently took advantage of possibilities offered by modern ICT. The manner of implementing cross-curricular connections showed uncertainties in terms of understanding their specifics, resulting in the inefficient transfer of concepts taught, the results of which were seen in pupils’ work. This might additionally show the negative influence of parental supervision on the creative thinking and expression of pupils. The present study emphasizes the lack of ICT competences on the part of all participants in the educational process. Our findings show the need to educate teachers by eliminating the uncertainties related to the implementation of distant cross-curricular connections while meaningfully applying ICT adapted to pupils’ competences. Full article
Show Figures

Figure 1

Article
Insights into Variations and Potential Long-Range Transport of Atmospheric Aerosols from the Aral Sea Basin in Central Asia
Remote Sens. 2022, 14(13), 3201; https://doi.org/10.3390/rs14133201 (registering DOI) - 03 Jul 2022
Abstract
The dramatic shrinkage of the Aral Sea in the past decades has inevitably led to an environmental calamity. Existing knowledge on the variations and potential transport of atmospheric aerosols from the Aral Sea Basin (ASB) is limited. To bridge this knowledge gap, this [...] Read more.
The dramatic shrinkage of the Aral Sea in the past decades has inevitably led to an environmental calamity. Existing knowledge on the variations and potential transport of atmospheric aerosols from the Aral Sea Basin (ASB) is limited. To bridge this knowledge gap, this study tried to identify the variations and long-range transport of atmospheric aerosols from the ASB in recent years. The Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data were used to gain new insight into the types, variation and long-range transport of atmospheric aerosols from the ASB. The results showed five types of tropospheric aerosols and one type of stratospheric aerosol were observed over the ASB. Polluted dust and dust were the dominant subtypes through the year. Sulfate/other was the only stratospheric aerosol detected. The occurrence frequency of aerosols over the ASB showed obvious seasonal variation. Maximum occurrence frequency of dust appeared in spring (MAM) and that of polluted dust peaked in summer (JJA). The monthly occurrence frequency of dust and polluted dust exhibited unimodal distribution. Polluted dust and dust were distributed over wide ranges from 1 km to 5 km vertically. The multi-year average thickness of polluted dust and dust layers was around 1.3 km. Their potential long-range transport in different directions mainly impacts Uzbekistan, Turkmenistan, Kazakhstan and eastern Iran, and may reach as far as the Caucasus region, part of China, Mongolia and Russia. Combining aerosol lidar, atmospheric climate models and geochemical methods is strongly suggested to gain clarity on the variations and long-range transport of atmospheric aerosols from the Aral Sea Basin. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Article
Deformation Measurements of Helicopter Rotor Blades Using a Photogrammetric System
Photonics 2022, 9(7), 466; https://doi.org/10.3390/photonics9070466 (registering DOI) - 03 Jul 2022
Abstract
As an important part of the helicopter, the rotor directly affects flight safety and flight quality. Knowledge of the rotor dynamic behaviors is significant for validating and optimizing the performance of the helicopter rotor system. In this study, a photogrammetric system, based on [...] Read more.
As an important part of the helicopter, the rotor directly affects flight safety and flight quality. Knowledge of the rotor dynamic behaviors is significant for validating and optimizing the performance of the helicopter rotor system. In this study, a photogrammetric system, based on 3D point tracking and stereo photogrammetry technology, is presented to solve the full-field dynamic motion and deformation parameters of rotating blades by identifying the retro-reflective targets arranged on the rotor. The photogrammetric system is demonstrated in the wind tunnel tests of a 2 m-diameter model rotor, conducted at the 5.5 m × 4 m Aeroacoustic Wind Tunnel of the China Aerodynamics Research and Development Center (CARDC). With the targets attached on the special hat installed directly over the rotor hub, a unified rotor coordinate system, that was stationary with respect to the rotor, could be established at any measuring instant. Therefore, by transforming the 3D coordinates of all measured targets to the rotor coordinate system, the blade displacements and deformations at different test conditions could be calculated consistently. Experimental results from current study were compared to simulation results calculated by the comprehensive analytical model of rotorcraft aerodynamics and dynamics (CAMRAD), which shows quite good agreements. Full article
(This article belongs to the Special Issue Optical 3D Sensing Systems)
Show Figures

Figure 1

Article
Genetic Characterization of Puccinia striiformis f. sp. tritici Populations from Different Wheat Cultivars Using Simple Sequence Repeats
J. Fungi 2022, 8(7), 705; https://doi.org/10.3390/jof8070705 (registering DOI) - 03 Jul 2022
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important fungal diseases affecting wheat (Triticum aestivum L.) worldwide. In this study, the genetic diversity and population structure of Pst isolates were analyzed using [...] Read more.
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important fungal diseases affecting wheat (Triticum aestivum L.) worldwide. In this study, the genetic diversity and population structure of Pst isolates were analyzed using 15 microsatellite markers. Isolates were collected from five wheat cultivars with different levels of resistance from Yanting county and Fucheng district, Mianyang city, Sichuan province, China. The aim of this study was to investigate whether Pst populations are differentiated by wheat genotype or geographic origin. Seventy-six multilocus genotypes (MLGs) were identified from all 289 single uredinial isolates. In general, the genotypic diversity of Pst populations from five wheat cultivars in Fucheng was higher than that in Yanting. In addition, the genetic diversity was highest in the Pst populations from Mianmai 367, a cultivar considered to be highly resistant. The unweighted pair group method with arithmetic mean (UPGMA) phylogenetic tree, Bayesian clustering analysis, and minimum spanning network for the MLGs revealed two major genetic clusters based on geographical location. Greater differentiation was observed between the populations from the two sampling locations than between the populations from different hosts in the same location. The results suggest that geographic and environmental differences could partially explain the genetic differentiation of Pst more than wheat genotype. This study provides novel insight into the interactions between Pst populations and their hosts. The results could be helpful in designing more effective management strategies for stripe rust in wheat production. Full article
Review
Selective COX-2 Inhibitors: Road from Success to Controversy and the Quest for Repurposing
Pharmaceuticals 2022, 15(7), 827; https://doi.org/10.3390/ph15070827 (registering DOI) - 03 Jul 2022
Abstract
The introduction of selective COX-2 inhibitors (so-called ‘coxibs’) has demonstrated tremendous commercial success due to their claimed lower potential of serious gastrointestinal adverse effects than traditional NSAIDs. However, following the repeated questioning on safety concerns, the coxibs ‘controversial me-too’ saga increased substantially, inferring [...] Read more.
The introduction of selective COX-2 inhibitors (so-called ‘coxibs’) has demonstrated tremendous commercial success due to their claimed lower potential of serious gastrointestinal adverse effects than traditional NSAIDs. However, following the repeated questioning on safety concerns, the coxibs ‘controversial me-too’ saga increased substantially, inferring to the risk of cardiovascular complications, subsequently leading to the voluntary withdrawal of coxibs (e.g., rofecoxib and valdecoxib) from the market. For instance, the makers (Pfizer and Merck) had to allegedly settle individual claims of cardiovascular hazards from celecoxib and valdecoxib. Undoubtedly, the lessons drawn from this saga revealed the flaws in drug surveillance and regulation, and taught science to pursue a more integrated translational approach for data acquisition and interpretation, prompting science-based strategies of risk avoidance in order to sustain the value of such drugs, rather than their withdrawal. Looking forward, coxibs are now being studied for repurposing, given their possible implications in the management of a myriad of diseases, including cancer, epilepsy, psychiatric disorders, obesity, Alzheimer’s disease, and so on. This article briefly summarizes the development of COX-2 inhibitors to their market impression, followed by the controversy related to their toxicity. In addition, the events recollected in hindsight (the past lessons), the optimistic step towards drug repurposing (the present), and the potential for forthcoming success (the future) are also discussed. Full article
(This article belongs to the Section Medicinal Chemistry)
Article
Potential Sources, Pollution, and Ecological Risk Assessment of Potentially Toxic Elements in Surface Soils on the North-Eastern Margin of the Tibetan Plateau
Toxics 2022, 10(7), 368; https://doi.org/10.3390/toxics10070368 (registering DOI) - 03 Jul 2022
Abstract
Due to increased levels of human activity, various pollutants are frequently detected on the Tibetan Plateau, where the environment is extremely fragile and sensitive. Therefore, this study investigated the sources, pollution, and ecological risks of soil potentially toxic elements (PTEs) in different landscape [...] Read more.
Due to increased levels of human activity, various pollutants are frequently detected on the Tibetan Plateau, where the environment is extremely fragile and sensitive. Therefore, this study investigated the sources, pollution, and ecological risks of soil potentially toxic elements (PTEs) in different landscape areas within the Qaidam Basin in the northeastern part of the Qinghai–Tibet Plateau. The contents of seven PTEs (Cd, Cu, Pb, Zn, As, Cr, and Ni) in 32 topsoil samples (0–2 cm) were analyzed in different regions of the Qaidam Basin. The concentrations of As, Cd, Cr, Cu, Ni, Pb, and Zn were 10.4–29.9 mg/kg, 0.08–4.45 mg/kg, 19–66 mg/kg, 8.2–40 mg/kg, 11.7–30.8 mg/kg, 11.1–31.2 mg/kg, and 32–213 mg/kg, respectively. The correlation between Pb and Cd in unpopulated areas was 0.896 (p < 0.01). The correlations among Pb, Cd, and Zn in agricultural areas, among As, Cd, Cr, and Zn in saline lake areas, and among As, Cd, Cr, Cu, Ni, Pb, and Zn in residential areas were all greater than 0.65 (p < 0.05). The principal component analysis results showed that Pb and Cd in unpopulated areas, Pb, Cd, and Zn in agricultural areas, As, Cd, Cr, Zn, and Pb in saline lake areas, and As, Cd, Cr, Cu, Ni, Pb, and Zn in residential areas were affected by human activities (significant factor >0.70). Based on the geological accumulation index and single-factor pollution index results, the maximum Cd values were found to be 4.93 and 45.88, respectively; Cd was thus the most serious PTE pollutant. The comprehensive pollution index of Nemero showed that moderately and severely polluted areas accounted for 18.89% and 18.46% of the total area, respectively. The results of the potential risk index showed that very strong and strong ecological risk points together accounted for 18.8% of the total points. The spatial variations in PTE pollution and the potential ecological risk index had similar patterns; both increased from the unpopulated areas in the northeastern Qaidam Basin to Golmud city in the south-western Qaidam Basin. These results indicate that human activities negatively impacted the soil ecological environment in the Qaidam Basin during the rapid development of the economy and urbanization and that these negative impacts tended to spread to unpopulated areas. Therefore, it is necessary to emphasize the significant impacts of human activities on environmental quality and formulate preventive measures to reduce PTE pollution in the Qinghai–Tibet Plateau. Full article
(This article belongs to the Special Issue Analysis, Fate and Transformation of Emerging Contaminants in Soil)
Show Figures

Figure 1

Article
Energy-Aware Dynamic DU Selection and NF Relocation in O-RAN Using Actor–Critic Learning
Sensors 2022, 22(13), 5029; https://doi.org/10.3390/s22135029 (registering DOI) - 03 Jul 2022
Abstract
Open radio access network (O-RAN) is one of the promising candidates for fulfilling flexible and cost-effective goals by considering openness and intelligence in its architecture. In the O-RAN architecture, a central unit (O-CU) and a distributed unit (O-DU) are virtualized and executed on [...] Read more.
Open radio access network (O-RAN) is one of the promising candidates for fulfilling flexible and cost-effective goals by considering openness and intelligence in its architecture. In the O-RAN architecture, a central unit (O-CU) and a distributed unit (O-DU) are virtualized and executed on processing pools of general-purpose processors that can be placed at different locations. Therefore, it is challenging to choose a proper location for executing network functions (NFs) over these entities by considering propagation delay and computational capacity. In this paper, we propose a Soft Actor–Critic Energy-Aware Dynamic DU Selection algorithm (SA2C-EADDUS) by integrating two nested actor–critic agents in the O-RAN architecture. In addition, we formulate an optimization model that minimizes delay and energy consumption. Then, we solve that problem with an MILP solver and use that solution as a lower bound comparison for our SA2C-EADDUS algorithm. Moreover, we compare that algorithm with recent works, including RL- and DRL-based resource allocation algorithms and a heuristic method. We show that by collaborating A2C agents in different layers and by dynamic relocation of NFs, based on service requirements, our schemes improve the energy efficiency by 50% with respect to other schemes. Moreover, we reduce the mean delay by a significant amount with our novel SA2C-EADDUS approach. Full article
(This article belongs to the Special Issue Feature Papers in Communications Section 2022)
Article
High-Luminescence Electrospun Polymeric Microfibers In Situ Embedded with CdSe Quantum Dots with Excellent Environmental Stability for Heat and Humidity Wearable Sensors
Nanomaterials 2022, 12(13), 2288; https://doi.org/10.3390/nano12132288 (registering DOI) - 03 Jul 2022
Abstract
In this paper, hydrophobic luminescent CdSe quantum dots are successfully dispersed in a mixture of styrene and methyl methacrylate through the oleic to methacrylic acid ligand exchange. Further in situ solution polymerization of the quantum dots in a mixture of styrene and methyl [...] Read more.
In this paper, hydrophobic luminescent CdSe quantum dots are successfully dispersed in a mixture of styrene and methyl methacrylate through the oleic to methacrylic acid ligand exchange. Further in situ solution polymerization of the quantum dots in a mixture of styrene and methyl methacrylate followed by electrospinning allowed us to prepare luminescence hybrid styrene-co-methyl methacrylate fibers embedded with quantum dots. [email protected](S+MMA) hybrid fibers with 27% quantum yield showed excellent moisture, heat and salt resistance with a photoluminescence output below 120 °C. When dry heated, the hybrid fibers of the fluorescence signals decreased with temperature to 79%, 40%, 28%, 20% and 13% at 120 °C, 140 °C, 160 °C, 180 °C and 200 °C, respectively, due the to the chemical degradation of CdSe QDs. Such hybrid fibers show the potential to manufacture wearable moisture- and heat-sensing protective clothing in a 120–200 °C range due to the thermal-induced quenching of quantum dot photoluminescence. Full article
Show Figures

Figure 1

Article
Structural Characterization of Titanium–Silica Oxide Using Synchrotron Radiation X-ray Absorption Spectroscopy
Polymers 2022, 14(13), 2729; https://doi.org/10.3390/polym14132729 (registering DOI) - 03 Jul 2022
Abstract
In this study, titania–silica oxides (TixSiy oxides) were successfully prepared via the sol–gel technique. The Ti and Si precursors were titanium (IV), isopropoxide (TTIP), and tetraethylorthosilicate (TEOS), respectively. In this work, the effects of pH and the Ti/Si atomic ratio [...] Read more.
In this study, titania–silica oxides (TixSiy oxides) were successfully prepared via the sol–gel technique. The Ti and Si precursors were titanium (IV), isopropoxide (TTIP), and tetraethylorthosilicate (TEOS), respectively. In this work, the effects of pH and the Ti/Si atomic ratio of titanium–silicon binary oxide (TixSiy) on the structural characteristics of TixSiy oxide are reported. 29Si solid-state NMR and FTIR were used to validate the chemical structure of TixSiy oxide. The structural characteristics of TixSiy oxide were investigated using X-ray diffraction, XRF, Fe-SEM, diffraction particle size analysis, and nitrogen adsorption measurements. By applying X-ray absorption spectroscopy (XAS) obtained from synchrotron light sources, the qualitative characterization of the Ti-O-Si and Ti-O-Ti bonds in Ti-Si oxides was proposed.Some Si atoms in the SiO2 network were replaced by Ti atoms, suggesting that Si-O-Ti bonds were formed as a result of the synthesis accomplished using the sol–gel technique described in this article. Upon increasing the pH to alkaline conditions (pH 9.0 and 10.0), the nanoparticles acquired a more spherical shape, and their size distribution became more uniform, resulting in an acceptable nanostructure. TixSiy oxide nanoparticles were largely spherical in shape, and agglomeration was minimized. However, the Ti50Si50 oxide particles at pH 10.0 become nano-sized and agglomerated. The presence of a significant pre-edge feature in the spectra of Ti50Si50 oxide samples implied that a higher fraction of Ti atoms occupied tetrahedral symmetry locations, as predicted in samples where Ti directly substituted Si. The proportion of Ti atoms in a tetrahedral environment agreed with the value of 1.83 given for the Ti-O bond distance in TixSiy oxides produced at pH 9.0 using extended X-ray absorption fine structure (EXAFS) analysis. Photocatalysis was improved by adding 3% wt TiO2, SiO2, and TixSiy oxide to the PLA film matrix. TiO2 was more effective than Ti50Si50 pH 9.0, Ti50Si50 pH 10.0, Ti50Si50 pH 8.0, and SiO2 in degrading methylene blue (MB). The most effective method to degrade MB was TiO2> Ti70Si30 > Ti50Si50> Ti40Si60 > SiO2. Under these conditions, PLA/ Ti70Si30 improved the effectiveness of the photocatalytic activity of PLA. Full article
(This article belongs to the Special Issue Nanoparticles and Polymer: Preparations and Applications)
Article
Sing-Ant: RFID Indoor Positioning System Using Single Antenna with Multiple Beams Based on LANDMARC Algorithm
Appl. Sci. 2022, 12(13), 6751; https://doi.org/10.3390/app12136751 (registering DOI) - 03 Jul 2022
Abstract
RFID localization methods have been widely used in indoor positioning systems (IPS). Most localization techniques involve the use of multiple antennas and the placement of antennas and readers in order to ensure accurate positioning results. However, most localization techniques are complex and require [...] Read more.
RFID localization methods have been widely used in indoor positioning systems (IPS). Most localization techniques involve the use of multiple antennas and the placement of antennas and readers in order to ensure accurate positioning results. However, most localization techniques are complex and require high overhead costs in terms of needing multiple antennas and RFID readers. In this paper, we proposed a method to use a single antenna to perform all the reads and rely rather on the antenna beams to acquire multiple positioning data. A single array of antennas is configured to have multiple angles of operation and rely on different power levels as compared to regular antennas. By manipulating the beam pattern, direction and power, multiple sub-antennas can be conceived and the method utilizes antenna beams and relies mainly on one antenna to realize two-dimensional localization. Full article
(This article belongs to the Special Issue RFID(Radio Frequency Identification) Localization and Application)
Show Figures

Figure 1

Article
Experimental Research of the Structure Condition Using Geodetic Methods and Crackmeter
Appl. Sci. 2022, 12(13), 6754; https://doi.org/10.3390/app12136754 (registering DOI) - 03 Jul 2022
Abstract
The article presents an approach to monitoring the structure’s condition with two measurement methods: the SHM-X crackmeter and the classic geodetic method of determining displacements, supplemented with additional information on the condition of the external environment obtained from thermal images. The study aimed [...] Read more.
The article presents an approach to monitoring the structure’s condition with two measurement methods: the SHM-X crackmeter and the classic geodetic method of determining displacements, supplemented with additional information on the condition of the external environment obtained from thermal images. The study aimed to propose an approach combining geodetic and non-geodetic methods of assessing the condition of a structure and its effectiveness in practical application. The research facility is a public utility building of the Bydgoszcz University of Technology with a reinforced concrete structure. Objects of this type require periodic tests of their constancy. Interpreting the test results and identifying possible dangerous states that may indicate the risk of a construction failure is extremely important. The results presented in the article are an extension of the previous ones, in which several factors that could have a destructive effect on the structure were excluded. Observation of the object showed that only the reinforced construction plate is deformed. The only factor influencing the change in structure geometry is thermal changes. As part of the tests in places where cracks were noticed, the SHM-X crackmeter was used to measure the cracks’ opening. In the geodetic research, measurements of the measurement and control network displacement were carried out, in which the TDRA6000 laser station measurement technology was used. The control points were also placed in places where the width of the cracks was directly observed. The proposed approach, with the applied calculation scheme and supplementing the information with the temperature measurement with thermal images, showed the submillimeter accuracy of the determined 3D displacements of the controlled points. Additionally, the parallel application of these methods gives a complete picture of changes in the structure elements, in which signs of destruction appear under the influence of stress. Full article
Article
Content-Based Video Big Data Retrieval with Extensive Features and Deep Learning
Appl. Sci. 2022, 12(13), 6753; https://doi.org/10.3390/app12136753 (registering DOI) - 03 Jul 2022
Abstract
In the era of digital media, the rapidly increasing volume and complexity of multimedia data cause many problems in storing, processing, and querying information in a reasonable time. Feature extraction and processing time play an extremely important role in large-scale video retrieval systems [...] Read more.
In the era of digital media, the rapidly increasing volume and complexity of multimedia data cause many problems in storing, processing, and querying information in a reasonable time. Feature extraction and processing time play an extremely important role in large-scale video retrieval systems and currently receive much attention from researchers. We, therefore, propose an efficient approach to feature extraction on big video datasets using deep learning techniques. It focuses on the main features, including subtitles, speeches, and objects in video frames, by using a combination of three techniques: optical character recognition (OCR), automatic speech recognition (ASR), and object identification with deep learning techniques. We provide three network models developed from networks of Faster R-CNN ResNet, Faster R-CNN Inception ResNet V2, and Single Shot Detector MobileNet V2. The approach is implemented in Spark, the next-generation parallel and distributed computing environment, which reduces the time and space costs of the feature extraction process. Experimental results show that our proposal achieves an accuracy of 96% and a processing time reduction of 50%. This demonstrates the feasibility of the approach for content-based video retrieval systems in a big data context. Full article
(This article belongs to the Special Issue Recent Advances in Deep Learning for Image Analysis)

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop