Latest Articles

Open AccessProceedings
A Disposable Inkjet-Printed Humidity and Temperature Sensor Fabricated on Paper
Proceedings 2018, 2(13), 977; https://doi.org/10.3390/proceedings2130977 (registering DOI) -
Abstract
In this work we present the development of a low-cost humidity and temperature sensing platform on paper by inkjet printing, using a commercial AgNPs conductive ink. The humidity sensing module was capable of measuring relative humidity in the range of 0–90%rH, exhibiting linear
[...] Read more.
In this work we present the development of a low-cost humidity and temperature sensing platform on paper by inkjet printing, using a commercial AgNPs conductive ink. The humidity sensing module was capable of measuring relative humidity in the range of 0–90%rH, exhibiting linear response with minimal memory effect when returning to 0%rH baseline signal while the temperature sensor performed linearly as well in the range of 25–75°C. Process repeatability has been verified by electrical and optical characterization. Mechanical bending results highlight the platform’s capability to serve as an easy to install, flexible multi-parametric sensing platform. Full article
Open AccessCommentary
Sun Exposure Public Health Directives
Int. J. Environ. Res. Public Health 2018, 15(12), 2794; https://doi.org/10.3390/ijerph15122794 (registering DOI) -
Abstract
There have been many public health recommendations for avoiding UV radiation exposures. This is primarily due to concerns about skin cancer and especially melanoma, the most serious type of skin cancer. However, UV radiation is also known as the primary source of vitamin
[...] Read more.
There have been many public health recommendations for avoiding UV radiation exposures. This is primarily due to concerns about skin cancer and especially melanoma, the most serious type of skin cancer. However, UV radiation is also known as the primary source of vitamin D and other compounds needed for good health. This brief commentary lists several of the many important recent studies of adverse health effects associated with low sun exposure, including some specific cancers, multiple sclerosis, diabetes, cardiovascular disease, autism, Alzheimer’s disease, and age-related macular degeneration. Our conclusion is that non-burning UV exposure is a health benefit and—in moderation—should be recommended as such. Full article
Open AccessProceedings
Quartz Enhanced Photoacoustic Spectroscopy Based Gas Sensor with a Custom Quartz Tuning Fork
Proceedings 2018, 2(13), 735; https://doi.org/10.3390/proceedings2130735 (registering DOI) -
Abstract
We have fabricated a custom quartz tuning fork (QTF) with a reduced fundamental frequency, a larger gap between the prongs and the best quality factor in air at atmospheric conditions ever reported. Acoustic microresonators have been added to the QTF, these were optimized
[...] Read more.
We have fabricated a custom quartz tuning fork (QTF) with a reduced fundamental frequency, a larger gap between the prongs and the best quality factor in air at atmospheric conditions ever reported. Acoustic microresonators have been added to the QTF, these were optimized through experiments. We demonstrate a normalized noise equivalent absorption of 3.7 × 10−9 W·cm−1·Hz−1/2 for CO2 detection at atmospheric pressure. Influence of the inner diameter and length of the microresonators has been studied as well as the penetration depth between the QTF prongs. Full article
Open AccessProceedings
Electromagnetic Sensing for Non-Destructive Real-Time Fruit Ripeness Detection: Case-Study for Automated Strawberry Picking
Proceedings 2018, 2(13), 980; https://doi.org/10.3390/proceedings2130980 (registering DOI) -
Abstract
Rapid non-destructive measurement or prediction of ripeness, quality and fungal infection in various fruits is a challenge currently affecting automation of fruit harvesting and gathering. This is especially true for delicate and difficult to store fruit such as strawberries, which are traditionally delivered
[...] Read more.
Rapid non-destructive measurement or prediction of ripeness, quality and fungal infection in various fruits is a challenge currently affecting automation of fruit harvesting and gathering. This is especially true for delicate and difficult to store fruit such as strawberries, which are traditionally delivered directly to the customer from the farm. However, transportation of the product, often overseas, means that fruits’ condition at the time of gathering should be precisely planned. This paper reports on the initial trials of using non-invasive athermal microwave spectroscopy as a tool to assist in real-time fruit ripeness detection. The trials were conducted during June 2018 and have illustrated that the proposed method can distinguish between strawberries at different stages in ripening (R2 = 0.788, p = 0.0283). The findings support further development of the technique, which aims for integration with the Thorvald II agricultural robotic system. Full article
Open AccessArticle
Characterization of a Y-Coupler and Its Impact on the Performance of Plastic Optical Fiber Links
Fibers 2018, 6(4), 96; https://doi.org/10.3390/fib6040096 (registering DOI) -
Abstract
Couplers and splitters are common devices in single-mode and multi-mode glass fibers applications, where they perform a variety of functions. However, when switching to plastic optical fibers (POFs), there is a shortage of commercial devices, which are usually custom-made. The problem with these
[...] Read more.
Couplers and splitters are common devices in single-mode and multi-mode glass fibers applications, where they perform a variety of functions. However, when switching to plastic optical fibers (POFs), there is a shortage of commercial devices, which are usually custom-made. The problem with these devices is that modal power distribution in POFs is easily modified by spatial disturbances that produce a localized strong power transfer between modes, thus changing their transmission properties. In this work, a commercial Y-coupler designed for POFs is experimentally characterized. Measurements of its spectral, spatial and temporal characteristics have been performed, including insertion loss as a function of wavelength, angular power distribution, and frequency response. The obtained results show that this device has an equalizing effect over the power spatial distribution that reduces the fiber bandwidth, demonstrating the importance of considering the impact of this type of devices on the transmission properties of any POF system. Full article
Figures

Figure 1

Open AccessProceedings
An Intrinsically Pressure Insensitive Low Cost Particle Number Diluter Featuring Flow Monitoring
Proceedings 2018, 2(13), 981; https://doi.org/10.3390/proceedings2130981 (registering DOI) -
Abstract
We present a low cost Particle Number (PN) diluter including mass flow monitoring. The device consists of a commercial hypodermic needle, a High Efficiency Particulate Air (HEPA) filter. and a custom-made flow sensor. The flow sensor is used to monitor the diluter’s performance
[...] Read more.
We present a low cost Particle Number (PN) diluter including mass flow monitoring. The device consists of a commercial hypodermic needle, a High Efficiency Particulate Air (HEPA) filter. and a custom-made flow sensor. The flow sensor is used to monitor the diluter’s performance and enable in-time replacement of the low cost elements used. Neither the sampling flow rate nor the pressure drop drastically change the dilution factor introduced by the presented device. This makes the presented device especially useful for particle number measurements at positions close to the tailpipe of internal combustion engine powered vehicles, where aggravating, fast pressure pulsations complicate correct sampling. Full article
Open AccessProceedings
Ammonia Detection at Low Temperature by Tungsten Oxide Nanowires
Proceedings 2018, 2(13), 983; https://doi.org/10.3390/proceedings2130983 (registering DOI) -
Abstract
Ammonia detection at low temperatures below 150 °C is attractive to be well suited for flexible substrates in terms of thermal strain and to specific environment not allowing high temperature such as explosive one. In commercial gas sensors, tungsten trioxide is the mostly
[...] Read more.
Ammonia detection at low temperatures below 150 °C is attractive to be well suited for flexible substrates in terms of thermal strain and to specific environment not allowing high temperature such as explosive one. In commercial gas sensors, tungsten trioxide is the mostly used semiconducting metal oxide after tin dioxide. We report herein the efficiency of tungsten trioxide nanowires deposited on rigid substrate by drop coating from colloidal solution. This study provides an interesting approach to fabricate ammonia sensors on conformable substrate with significant properties for applications in environmental monitoring devices. Full article
Open AccessFeature PaperReview
From Synapse to Function: A Perspective on the Role of Neuroproteomics in Elucidating Mechanisms of Drug Addiction
Proteomes 2018, 6(4), 50; https://doi.org/10.3390/proteomes6040050 (registering DOI) -
Abstract
Drug addiction is a complex disorder driven by dysregulation in molecular signaling across several different brain regions. Limited therapeutic options currently exist for treating drug addiction and related psychiatric disorders in clinical populations, largely due to our incomplete understanding of the molecular pathways
[...] Read more.
Drug addiction is a complex disorder driven by dysregulation in molecular signaling across several different brain regions. Limited therapeutic options currently exist for treating drug addiction and related psychiatric disorders in clinical populations, largely due to our incomplete understanding of the molecular pathways that influence addiction pathology. Recent work provides strong evidence that addiction-related behaviors emerge from the convergence of many subtle changes in molecular signaling networks that include neuropeptides (neuropeptidome), protein-protein interactions (interactome) and post-translational modifications such as protein phosphorylation (phosphoproteome). Advancements in mass spectrometry methodology are well positioned to identify these novel molecular underpinnings of addiction and further translate these findings into druggable targets for therapeutic development. In this review, we provide a general perspective of the utility of novel mass spectrometry-based approaches for addressing critical questions in addiction neuroscience, highlighting recent innovative studies that exemplify how functional assessments of the neuroproteome can provide insight into the mechanisms of drug addiction. Full article
Figures

Figure 1

Open AccessArticle
FPGA-based Chaotic Cryptosystem by Using Voice Recognition as Access Key
Electronics 2018, 7(12), 414; https://doi.org/10.3390/electronics7120414 (registering DOI) -
Abstract
A new embedded chaotic cryptosystem is introduced herein with the aim to encrypt digital images and performing speech recognition as an external access key. The proposed cryptosystem consists of three technologies: (i) a Spartan 3E-1600 FPGA from Xilinx; (ii) a 64-bit Raspberry Pi
[...] Read more.
A new embedded chaotic cryptosystem is introduced herein with the aim to encrypt digital images and performing speech recognition as an external access key. The proposed cryptosystem consists of three technologies: (i) a Spartan 3E-1600 FPGA from Xilinx; (ii) a 64-bit Raspberry Pi 3 single board computer; and (iii) a voice recognition chip manufactured by Sunplus. The cryptosystem operates with four embedded algorithms: (1) a graphical user interface developed in Python language for the Raspberry Pi platform, which allows friendly management of the system; (2) an internal control entity that entails the start-up of the embedded system based on the identification of the key access, the pixels-entry of the image to the FPGA to be encrypted or unraveled from the Raspberry Pi, and the self-execution of the encryption/decryption of the information; (3) a chaotic pseudo-random binary generator whose decimal numerical values are converted to an 8-bit binary scale under the VHDL description of mod(255); and (4) two UART communication algorithms by using the RS-232 protocol, all of them described in VHDL for the FPGA implementation. We provide a security analysis to demonstrate that the proposed cryptosystem is highly secure and robust against known attacks. Full article
Open AccessArticle
Spatiotemporal and Kinetic Determinants of Sprint Acceleration Performance in Soccer Players
Sports 2018, 6(4), 169; https://doi.org/10.3390/sports6040169 (registering DOI) -
Abstract
We aimed to elucidate spatiotemporal and kinetic determinants of sprint acceleration performance in soccer players. Thirty-seven male soccer players performed 60-m sprints. The spatiotemporal variables and ground reaction impulses were calculated over a 50-m distance. When controlling the influence of stature and body
[...] Read more.
We aimed to elucidate spatiotemporal and kinetic determinants of sprint acceleration performance in soccer players. Thirty-seven male soccer players performed 60-m sprints. The spatiotemporal variables and ground reaction impulses were calculated over a 50-m distance. When controlling the influence of stature and body mass, change in running speed was correlated with the step length at the 1st–4th step section (r = 0.695), step frequency from the 9th to 20th step sections (r = 0.428 to 0.484), braking impulse during the 17th–20th step section (r = 0.328), propulsive impulse from the 1st to 8th step sections (r = 0.738 and 0.379), net anteroposterior impulse for all step sections (r = 0.384 to 0.678), and vertical impulse from the 9th–12th step section and thereafter (r = −0.355 to −0.428). These results confirmed that an effective acceleration is probably accomplished by a greater step length originated in greater propulsive impulse during the initial acceleration phase (to the 8th step), a higher step frequency through smaller vertical impulse and smaller braking impulse during the middle and later acceleration phases (from the 9th step), as well as greater net anteroposterior impulse during the entire acceleration phase. Full article
Figures

Figure 1

Institutional Open Access Program (IOAP)

IOAP participants benefit from discounts and convenient payment options.

Feedback

We are keen to hear what you think about MDPI. To leave us your feedback, suggestions or questions please click here.

See what our authors and guest editors say about us.

About MDPI

MDPI.com is a platform for peer-reviewed, scientific open-access journals operated by MDPI, based in Basel, Switzerland. Additional offices are located in Beijing and Wuhan (China) as well as in Barcelona (Spain).

Back to Top