Annual Achievements Report
Available Now
 
28 pages, 10262 KiB  
Article
Driving Forces and Future Scenario Simulation of Urban Agglomeration Expansion in China: A Case Study of the Pearl River Delta Urban Agglomeration
by Zeduo Zou, Xiuyan Zhao, Shuyuan Liu and Chunshan Zhou
Remote Sens. 2025, 17(14), 2455; https://doi.org/10.3390/rs17142455 (registering DOI) - 15 Jul 2025
Abstract
The remote sensing monitoring of land use changes and future scenario simulation hold crucial significance for accurately characterizing urban expansion patterns, optimizing urban land use configurations, and thereby promoting coordinated regional development. Through the integration of multi-source data, this study systematically analyzes the [...] Read more.
The remote sensing monitoring of land use changes and future scenario simulation hold crucial significance for accurately characterizing urban expansion patterns, optimizing urban land use configurations, and thereby promoting coordinated regional development. Through the integration of multi-source data, this study systematically analyzes the spatiotemporal trajectories and driving forces of land use changes in the Pearl River Delta urban agglomeration (PRD) from 1990 to 2020 and further simulates the spatial patterns of urban land use under diverse development scenarios from 2025 to 2035. The results indicate the following: (1) During 1990–2020, urban expansion in the Pearl River Delta urban agglomeration exhibited a “stepwise growth” pattern, with an annual expansion rate of 3.7%. Regional land use remained dominated by forest (accounting for over 50%), while construction land surged from 6.5% to 21.8% of total land cover. The gravity center trajectory shifted southeastward. Concurrently, cropland fragmentation has intensified, accompanied by deteriorating connectivity of ecological lands. (2) Urban expansion in the PRD arises from synergistic interactions between natural and socioeconomic drivers. The Geographically and Temporally Weighted Regression (GTWR) model revealed that natural constraints—elevation (regression coefficients ranging −0.35 to −0.05) and river network density (−0.47 to −0.15)—exhibited significant spatial heterogeneity. Socioeconomic drivers dominated by year-end paved road area (0.26–0.28) and foreign direct investment (0.03–0.11) emerged as core expansion catalysts. Geographic detector analysis demonstrated pronounced interaction effects: all factor pairs exhibited either two-factor enhancement or nonlinear enhancement effects, with interaction explanatory power surpassing individual factors. (3) Validation of the Patch-generating Land Use Simulation (PLUS) model showed high reliability (Kappa coefficient = 0.9205, overall accuracy = 95.9%). Under the Natural Development Scenario, construction land would exceed the ecological security baseline, causing 408.60 km2 of ecological space loss; Under the Ecological Protection Scenario, mandatory control boundaries could reduce cropland and forest loss by 3.04%, albeit with unused land development intensity rising to 24.09%; Under the Economic Development Scenario, cross-city contiguous development zones along the Pearl River Estuary would emerge, with land development intensity peaking in Guangzhou–Foshan and Shenzhen–Dongguan border areas. This study deciphers the spatiotemporal dynamics, driving mechanisms, and scenario outcomes of urban agglomeration expansion, providing critical insights for formulating regionally differentiated policies. Full article
Show Figures

Figure 1

18 pages, 324 KiB  
Review
Recovery of Tungsten from Raw and Secondary Materials Using Hydrometallurgical Processing
by Francisco Jose Alguacil and Manuel Alonso
Metals 2025, 15(7), 799; https://doi.org/10.3390/met15070799 (registering DOI) - 15 Jul 2025
Abstract
As in the case with other metals, tungsten is an element with a number of uses in different fields, which is why its recovery from both primary and secondary materials continues to be of great interest. Various hydrometallurgical processes, considered as unit operations, [...] Read more.
As in the case with other metals, tungsten is an element with a number of uses in different fields, which is why its recovery from both primary and secondary materials continues to be of great interest. Various hydrometallurgical processes, considered as unit operations, can be used for the recovery, separation and concentration of tungsten from any source, with ease of scaling-up a potential factor when considering the best process for practical use. The present work reviewed investigations into the use of such unit operations for the recovery of tungsten which were published during 2024 and the first half of 2025. Because most if not all of these investigations were conducted on a laboratory scale, there is still much room for improvement before deciding on the best option for tungsten recovery. In all cases, however, this recovery is based on a series of steps from leaching to separation technologies (ion exchange resins, liquid–liquid extraction, etc.) to the tungsten end-product. Full article
(This article belongs to the Special Issue Tungsten and Tungsten Alloys)
26 pages, 12616 KiB  
Article
The Effect of Yttrium Addition on the Solidification Microstructure and Sigma Phase Precipitation Behavior of S32654 Super Austenitic Stainless Steel
by Jun Xiao, Geng Tian, Di Wang, Shaoguang Yang, Kuo Cao, Jianhua Wei and Aimin Zhao
Metals 2025, 15(7), 798; https://doi.org/10.3390/met15070798 (registering DOI) - 15 Jul 2025
Abstract
This study focuses on S32654 super austenitic stainless steel (SASS) and systematically characterizes the morphology of the sigma (σ) phase and the segregation behavior of alloying elements in its as-cast microstructure. High-temperature confocal scanning laser microscopy (HT-CSLM) was employed to investigate the effect [...] Read more.
This study focuses on S32654 super austenitic stainless steel (SASS) and systematically characterizes the morphology of the sigma (σ) phase and the segregation behavior of alloying elements in its as-cast microstructure. High-temperature confocal scanning laser microscopy (HT-CSLM) was employed to investigate the effect of the rare earth element yttrium (Y) on the solidification microstructure and σ phase precipitation behavior of SASS. The results show that the microstructure of SASS consists of austenite dendrites and interdendritic eutectoid structures. The eutectoid structures mainly comprise the σ phase and the γ2 phase, exhibiting lamellar or honeycomb-like morphologies. Regarding elemental distribution, molybdenum displays a “concave” distribution pattern within the dendrites, with lower concentrations at the center and higher concentrations at the sides; when Mo locally exceeds beyond a certain threshold, it easily induces the formation of eutectoid structures. Mo is the most significant segregating element, with a segregation ratio as high as 1.69. The formation mechanism of the σ phase is attributed to the solid-state phase transformation of austenite (γ → γ2 + σ). In the late stages of solidification, the concentration of chromium and Mo in the residual liquid phase increases, and due to insufficient diffusion, there are significant compositional differences between the interdendritic regions and the matrix. The enriched Cr and Mo cause the interdendritic austenite to become supersaturated, leading to solid-state phase transformation during subsequent cooling, thereby promoting σ phase precipitation. The overall phase transformation process can be summarized as L → L + γ → γ → γ + γ2 + σ. Y microalloying has a significant influence on the solidification process. The addition of Y increases the nucleation temperature of austenite, raises nucleation density, and refines the solidification microstructure. However, Y addition also leads to an increased amount of eutectoid structures. This is primarily because Y broadens the solidification temperature range of the alloy and prolongs grain growth perio, which aggravates the microsegregation of elements such as Cr and Mo. Moreover, Y raises the initial precipitation temperature of the σ phase and enhances atomic diffusion during solidification, further promoting σ phase precipitation during the subsequent eutectoid transformation. Full article
(This article belongs to the Special Issue Synthesis, Processing and Applications of New Forms of Metals)
43 pages, 532 KiB  
Article
The Study of Practice in the Vehicles of Men and Gods and the Bodhisattva Vehicle: Perspectives from Master Taixu to Master Hsing Yun
by Chienhuang Chen
Religions 2025, 16(7), 910; https://doi.org/10.3390/rel16070910 (registering DOI) - 15 Jul 2025
Abstract
This paper explores the perspectives of Master Taixu (太虛, 1890–1947) and Master Hsing Yun (星雲, 1927–2023) on the practice of the Buddhist Five Vehicles (五乘), particularly focusing on the relationship between the Vehicles of Men and Gods (人天乘) and the Bodhisattva Vehicle (菩薩乘). [...] Read more.
This paper explores the perspectives of Master Taixu (太虛, 1890–1947) and Master Hsing Yun (星雲, 1927–2023) on the practice of the Buddhist Five Vehicles (五乘), particularly focusing on the relationship between the Vehicles of Men and Gods (人天乘) and the Bodhisattva Vehicle (菩薩乘). Master Taixu advocated “Buddhism for Human Life” (人生佛教), emphasizing the improvement of real life as the foundation for Buddhist practice in daily life. He proposed the principle of “following the practice and fruition of the Human Vehicle to cultivate the Mahāyāna path” (依人乘行果,趣修大乘行), suggesting a gradual progression from the human vehicle to the Mahāyāna Bodhisattva path. He introduced the concept of “The perfection of human character leads to Buddhahood” (人圓佛即成) and “Present Bodhisattva Practice” (今菩薩行), highlighting the importance of adapting Buddhist practice to contemporary society and actively engaging in social service. Master Hsing Yun’s advocacy of “Humanistic Buddhism” (人間佛教) emphasizes the diversity of practice, asserting that any action aligned with Buddhist teachings, beneficial to human well-being, and conducive to the welfare of all beings constitutes a form of practice, thereby expanding its definition. He elaborated on the Five Vehicles, viewing the Vehicle of Men and Gods as a preliminary stage, advocating a gradual progression towards the Bodhisattva Vehicle, ultimately culminating in Buddhahood. He proposed the principle of “undertaking worldly affairs with an otherworldly mindset” (以出世的思想,做入世的事業), highlighting the importance of practicing the Bodhisattva path in everyday life. With “Buddha Light Pure Land” (佛光淨土) as the ultimate goal, he sought to integrate the essence of various Pure Lands traditions to achieve earthly peace and purification. Both masters highlight the importance of practicing Humanistic Buddhism, advocating for the application of the Bodhisattva practice in daily life, guiding all beings with compassion and wisdom, and actively engaging in society to address real-world issues, ultimately realizing a Humanistic Pure Land. However, their perspectives also differ: Master Taixu focused more on the theoretical construction and an exposition on the order of practice, whereas Master Hsing Yun placed greater emphasis on the diversity and flexibility of practice and the integration of Buddhist teachings into modern life. Full article
14 pages, 859 KiB  
Article
In Situ Electrochemical Atomic Force Microscopy Study of Interfacial Reactions on a Graphite Negative Electrode for Magnesium-Ion Batteries
by Sungjae Yoon, Paul Maldonado Nogales, Sangyup Lee, Seunga Yang and Soon-Ki Jeong
Int. J. Mol. Sci. 2025, 26(14), 6793; https://doi.org/10.3390/ijms26146793 (registering DOI) - 15 Jul 2025
Abstract
The cointercalation of solvated Mg2+ ions into graphite has typically been considered challenging because of concerns regarding the instability of the electrolyte and the potential for structural degradation. However, recent developments in electrolyte design suggest that this process may be reversible under [...] Read more.
The cointercalation of solvated Mg2+ ions into graphite has typically been considered challenging because of concerns regarding the instability of the electrolyte and the potential for structural degradation. However, recent developments in electrolyte design suggest that this process may be reversible under appropriate conditions. In this study, the interfacial behavior of graphite in a magnesium-ion system was investigated using in situ electrochemical atomic force microscopy. Electrochemical tests in a triglyme-based electrolyte revealed a reversible capacity of 158 mAh g−1, attributed to the insertion of triglyme-solvated Mg2+ ions. Real-time surface imaging of highly oriented pyrolytic graphite revealed the formation of a passivating surface film during the initial cycle, along with nanoscale hill-like (~1 nm) and blister-like (~5 nm) structures, which were partially reversible and showed good correlation with the redox peaks observed in the cyclic voltammetry experiments, suggesting that the surface film enables Mg2+ transport while mitigating electrolyte decomposition. These findings demonstrate that stable co-intercalation of solvated Mg2+ ions is achievable in the early cycles in graphite and highlight the importance of interfacial engineering and solvation structures in the development of magnesium-ion batteries. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
11 pages, 681 KiB  
Article
Foot Strike Pattern Detection Using a Loadsol® Sensor Insole
by Keiichiro Hata, Yohei Yamazaki, Misato Ishikawa and Toshio Yanagiya
Sensors 2025, 25(14), 4417; https://doi.org/10.3390/s25144417 (registering DOI) - 15 Jul 2025
Abstract
Understanding the foot strike pattern (FSP) and impact force of running-related injuries is crucial for athletes and researchers. This study investigated a novel method for detecting FSP using the loadsol® sensor insole during treadmill running. Twelve collegiate athletes ran at three different [...] Read more.
Understanding the foot strike pattern (FSP) and impact force of running-related injuries is crucial for athletes and researchers. This study investigated a novel method for detecting FSP using the loadsol® sensor insole during treadmill running. Twelve collegiate athletes ran at three different speeds (12, 15, and 20 km/h), with their FSP determined using both the kinematic method based on the foot strike angle and the loadsol® method based on the plantar force applied to the rear-, mid-, and forefoot sensor areas. This study provides significant insights into FSP detection. Comparing the kinematic method to the loadsol® method, the rearfoot, midfoot, and forefoot strike detection rates were 94.7%, 37.1%, and 81.8%, respectively. Moreover, the FSP was not uniform, even during treadmill running at a constant speed, with most participants exhibiting mixed patterns across different speeds. The loadsol® sensor insole could offer a promising device for in-field measurement of FSP and impact forces, potentially helping researchers and athletes better understand and predict the potential running-related injury risks by monitoring step-to-step variations in running biomechanics. Full article
(This article belongs to the Section Wearables)
21 pages, 7058 KiB  
Article
Harnessing Hazara Virus as a Surrogate for Crimean–Congo Hemorrhagic Fever Virus Enables Inactivation Studies at a Low Biosafety Level
by Judith Olejnik, Kristina Meier, Jarod N. Herrera, Daniel J. DeStasio, Dylan J. Deeney, Elizabeth Y. Flores, Mitchell R. White, Adam J. Hume and Elke Mühlberger
Pathogens 2025, 14(7), 700; https://doi.org/10.3390/pathogens14070700 (registering DOI) - 15 Jul 2025
Abstract
Research on highly pathogenic biosafety level 4 (BSL-4) viruses that are classified as Select Agents involves transferring inactivated materials to lower containment levels for further analysis. Compliance with Select Agent and BSL-4 safety regulations necessitates the validation and verification of inactivation procedures. To [...] Read more.
Research on highly pathogenic biosafety level 4 (BSL-4) viruses that are classified as Select Agents involves transferring inactivated materials to lower containment levels for further analysis. Compliance with Select Agent and BSL-4 safety regulations necessitates the validation and verification of inactivation procedures. To streamline this process, it would be beneficial to use surrogate BSL-2 viruses for inactivation studies. This not only simplifies BSL-4 work but also enables the testing and validation of inactivation procedures in research facilities that lack access to high-containment laboratories yet may receive samples containing highly pathogenic viruses that require efficient and complete inactivation. In this study, we used Hazara virus (HAZV) as a surrogate virus for Crimean–Congo hemorrhagic fever virus to show the efficacy of various inactivation methods. We demonstrate the successful inactivation of HAZV using TRIzol/TRIzol LS and aldehyde fixation. Importantly, the parameters of the aldehyde inactivation of cell pellets differed from those of the monolayers, highlighting the importance of inactivation validation. As part of this study, we also defined specific criteria that must be met by a BSL-2 virus to be used as a surrogate for a closely related BSL-4 virus. Defining these criteria helps identify suitable nonpathogenic surrogates for developing inactivation procedures for highly pathogenic viruses. Full article
30 pages, 1089 KiB  
Review
Communication Abilities, Assessment Procedures, and Intervention Approaches in Rett Syndrome: A Narrative Review
by Louiza Voniati, Angelos Papadopoulos, Nafsika Ziavra and Dionysios Tafiadis
Brain Sci. 2025, 15(7), 753; https://doi.org/10.3390/brainsci15070753 (registering DOI) - 15 Jul 2025
Abstract
Background/Objectives: Rett syndrome (RTT) is a rare neurodevelopmental disorder that affects movement and communication skills primarily in females. This study aimed to synthesize the research from the last two decades regarding the verbal and nonverbal communication abilities, assessment procedures, and intervention approaches for [...] Read more.
Background/Objectives: Rett syndrome (RTT) is a rare neurodevelopmental disorder that affects movement and communication skills primarily in females. This study aimed to synthesize the research from the last two decades regarding the verbal and nonverbal communication abilities, assessment procedures, and intervention approaches for individuals with RTT. Methods: A structured literature search was conducted using the Embase, Scopus, and PubMed databases. Fifty-seven studies were selected and analyzed based on inclusion criteria. The data were categorized into four domains (verbal communication skills, nonverbal communication skills, assessment procedures, and intervention approaches). Results: The findings indicated a wide variety of communicative behaviors across the RTT population, including prelinguistic signals, regression in verbal output, and preserved nonverbal communicative intent. Moreover, the results highlighted the importance of tailored assessments (Inventory of Potential Communicative Acts, eye tracking tools, and Augmentative and Alternative Communication) to facilitate functional communication. The individualized intervention approaches were found to be the most effective in improving communicative participation. Conclusions: The current review provides an overview of the current evidence with an emphasis on the need for personalized and evidence-based clinical practices. Additionally, it provided guidance for professionals, clinicians, and researchers seeking to improve the quality of life for individuals with RTT. Full article
23 pages, 1900 KiB  
Article
Polyaniline/Ti3C2 MXene Composites with Artificial 3D Biomimetic Surface Structure of Natural Macaw Feather Applied for Anticorrosion Coatings
by Chen-Cheng Chien, Yu-Hsuan Liu, Kun-Hao Luo, Ting-Yun Liu, Yi-Ting Kao, Shih-Harn Yang and Jui-Ming Yeh
Biomimetics 2025, 10(7), 465; https://doi.org/10.3390/biomimetics10070465 (registering DOI) - 15 Jul 2025
Abstract
In this paper, a series of polyaniline (PANI)/Ti3C2 MXene composites (PMCs) with a biomimetic structure were prepared and employed as an anticorrosion coating application. First, the PANI was synthesized by oxidative polymerization with ammonium persulfate as the oxidant. Then, 2D [...] Read more.
In this paper, a series of polyaniline (PANI)/Ti3C2 MXene composites (PMCs) with a biomimetic structure were prepared and employed as an anticorrosion coating application. First, the PANI was synthesized by oxidative polymerization with ammonium persulfate as the oxidant. Then, 2D Ti3C2 MXene nanosheets were prepared by treating the Ti3AlC2 using the optimized minimally intensive layer delamination (MILD) method, followed by characterization via XRD and SEM. Subsequently, the PMC was prepared by the oxidative polymerization of aniline monomers in the presence of Ti3C2 MXene nanosheets, followed by characterization via FTIR, XRD, SEM, TEM, CV, and UV–Visible. Eventually, the PMC coatings with the artificial biomimetic surface structure of a macaw feather were prepared by the nano-casting technique. The corrosion resistance of the PMC coatings, evaluated via Tafel polarization and Nyquist impedance measurements, shows that increasing the MXene loading up to 5 wt % shifts the corrosion potential (Ecorr) on steel from −588 mV to −356 mV vs. SCE, reduces the corrosion current density (Icorr) from 1.09 µA/cm2 to 0.035 µA/cm2, and raises the impedance modulus at 0.01 Hz from 67 kΩ to 3794 kΩ. When structured with the hierarchical feather topography, the PMC coating (Bio-PA-MX-5) further advances the Ecorr to +103.6 mV, lowers the Icorr to 7.22 × 10−4 µA/cm2, and boosts the impedance to 96,875 kΩ. Compared to neat coatings without biomimetic structuring, those with engineered biomimetic surfaces showed significantly improved corrosion protection performance. These enhancements arise from three synergistic mechanisms: (i) polyaniline’s redox catalysis accelerates the formation of a dense passive oxide layer; (ii) MXene nanosheets create a tortuous gas barrier that cuts the oxygen permeability from 11.3 Barrer to 0.9 Barrer; and (iii) the biomimetic surface traps air pockets, raising the water contact angle from 87° to 135°. This integrated approach delivers one of the highest combined corrosion potentials and impedance values reported for thin-film coatings, pointing to a general strategy for durable steel protection. Full article
17 pages, 2405 KiB  
Article
Development of Soy-Based Meat Analogues via Wet Twin-Screw Extrusion: Enhancing Textural and Structural Properties Through Whole Yeast Powder Supplementation
by Shikang Tang, Yidian Li, Xuejiao Wang, Linyan Zhou, Zhijia Liu, Lianzhou Jiang, Chaofan Guo and Junjie Yi
Foods 2025, 14(14), 2479; https://doi.org/10.3390/foods14142479 (registering DOI) - 15 Jul 2025
Abstract
Amid growing global concerns about environmental sustainability and food security, plant-based meat substitutes have emerged as a promising alternative to conventional meat. However, current formulations, especially those based on soy protein isolate (SPI) often fail to replicate the desired texture and structural integrity. [...] Read more.
Amid growing global concerns about environmental sustainability and food security, plant-based meat substitutes have emerged as a promising alternative to conventional meat. However, current formulations, especially those based on soy protein isolate (SPI) often fail to replicate the desired texture and structural integrity. To address this limitation, this study aimed to evaluate the use of whole yeast powder (WYP) combined with SPI for producing plant-based meat analogues via high-moisture extrusion. Seven groups were designed: a control group with 0% WYP, five treatment groups with 5%, 10%, 20%, 30%, and 40% WYP, and one reference group containing 20% yeast protein powder (YPP). Although lower in protein content than yeast protein powder (YPP), whole yeast powder exhibits superior water-binding capacity and network-forming ability owing to its complex matrix and fiber content. At a 20% inclusion level, whole yeast powder demonstrated a higher fibrous degree (1.84 ± 0.02 vs. 1.81 ± 0.04), greater hardness (574.93 ± 5.84 N vs. 531.18 ± 17.34 N), and increased disulfide bonding (95.33 ± 0.92 mg/mL vs. 78.41 ± 0.78 mg/mL) compared to 20% YPP. Scanning electron microscopy (SEM) and low-field nuclear magnetic resonance (LF-NMR) revealed that whole yeast powder facilitated the formation of aligned fibrous networks and enhanced water binding. Fourier transform infrared spectroscopy (FTIR) confirmed an increase in β-sheet content (0.267 ± 0.003 vs. 0.260 ± 0.003), which contributed to improved protein aggregation. Increasing the WYP content to 30–40% led to a decline in these parameters, including a reduced fibrous degree (1.69 ± 0.06 at 40% WYP) and weakened molecular interactions (p < 0.05). The findings highlight 20% WYP as the optimal substitution level, offering superior textural enhancement and fibrous structure formation compared to YPP. These results suggest that WYP is not only a cost-effective and processing-friendly alternative to YPP but also holds great promise for scalable industrial application in the plant-based meat sector. Its compatibility with extrusion processes and ability to improve sensory and structural attributes supports its relevance for sustainable meat analogue production. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

24 pages, 1179 KiB  
Review
Antimicrobial Compounds from Anaerobic Microorganisms: A Review of an Untapped Reservoir
by Mamta Mishra, Upasana Sharma, Manisha Rawat, Harshvardhan, Shelley Sardul Singh and Suresh Korpole
Appl. Microbiol. 2025, 5(3), 68; https://doi.org/10.3390/applmicrobiol5030068 (registering DOI) - 15 Jul 2025
Abstract
Anaerobes, the oldest evolutionary life forms, have been unexplored for their potential to produce secondary metabolites due to the difficulties observed in their cultivation. Antimicrobials derived from anaerobic bacteria are an emerging and valuable source of novel therapeutic agents. The urgent need for [...] Read more.
Anaerobes, the oldest evolutionary life forms, have been unexplored for their potential to produce secondary metabolites due to the difficulties observed in their cultivation. Antimicrobials derived from anaerobic bacteria are an emerging and valuable source of novel therapeutic agents. The urgent need for new antimicrobial agents due to rising antibiotic resistance has prompted an investigation into anaerobic bacteria. The conventional method of antimicrobial discovery is based on cultivation and extraction methods. Antibacterial and antifungal substances are produced by anaerobic bacteria, but reports are limited due to oxygen-deficient growth requirements. The genome mining approach revealed the presence of biosynthetic gene clusters involved in various antimicrobial compound synthesis. Thus, the current review is focused on antimicrobials derived from anaerobes to unravel the potential of anaerobic bacteria as an emerging valuable source of therapeutic agents. These substances frequently consist of peptides, lipopeptides, and other secondary metabolites. Many of these antimicrobials have distinct modes of action that may be able to go around established resistance pathways. To this effect, we discuss diverse antimicrobial compounds produced by anaerobic bacteria, their biosynthesis, heterologous production, and activity. The findings suggest that anaerobic bacteria harbor significant biosynthetic potential, warranting further exploration through recombinant production for developing new antibiotics. Full article
Show Figures

Graphical abstract

19 pages, 1907 KiB  
Article
Enhancing Aluminum Alloy Properties Through Low Pressure Forging: A Comprehensive Study on Heat Treatments
by Silvia Cecchel and Giovanna Cornacchia
Metals 2025, 15(7), 797; https://doi.org/10.3390/met15070797 (registering DOI) - 15 Jul 2025
Abstract
The weight reduction is a key objective in modern engineering, particularly in the automotive industry, to enhance vehicle performance and reduce the carbon footprint. In this context aluminum alloys are widely used in structural automotive applications, often through forging processes that enhance mechanical [...] Read more.
The weight reduction is a key objective in modern engineering, particularly in the automotive industry, to enhance vehicle performance and reduce the carbon footprint. In this context aluminum alloys are widely used in structural automotive applications, often through forging processes that enhance mechanical properties compared to the results for casting. However, the high cost of forging can limit its economic feasibility. Low pressure forging (LPF) combines the benefits of casting and forging, employing controlled pressure to fill the mold cavity and improve metal purity. This study investigates the effectiveness of the LPF process in optimizing the mechanical properties of AlSi7Mg aluminum alloy by evaluating the influence of three different magnesium content levels. The specimens underwent T6 heat treatment (solubilization treatment followed by artificial aging), with varying aging times and temperatures. Microstructural analysis and tensile tests were conducted to determine the optimal conditions for achieving superior mechanical strength, contributing to the design of lightweight, high-performance components for advanced automotive applications. The most promising properties were achieved with a T6 treatment consisting of solubilization at 540 °C for 6 h followed by aging at 180 °C for 4 h, resulting in mechanical properties of σy 280 MPa, σm 317 MPa, and A% 3.5%. Full article
(This article belongs to the Special Issue Advances in Lightweight Alloys, 2nd Edition)
18 pages, 593 KiB  
Article
Instructors’ Views on and Experiences with Last Aid Courses as a Means for Public Palliative Care Education—A Longitudinal Mixed-Methods Study
by Georg Bollig, Sindy Müller-Koch and Erika Zelko
Int. J. Environ. Res. Public Health 2025, 22(7), 1117; https://doi.org/10.3390/ijerph22071117 (registering DOI) - 15 Jul 2025
Abstract
Background and aims: The Last Aid Course (LAC) has been established to enhance the discussion about dying, death and grief and to raise the public’s awareness of palliative care. The aim of this study was to explore the views and experiences of German [...] Read more.
Background and aims: The Last Aid Course (LAC) has been established to enhance the discussion about dying, death and grief and to raise the public’s awareness of palliative care. The aim of this study was to explore the views and experiences of German Last Aid Course instructors with the LAC as means for Public Palliative Care Education (PPCE), including their opinion about the course content and format and practical aspects of teaching in different settings. Methods: A longitudinal mixed-methods approach was used to explore the views and experiences of the Last Aid Course instructors over a period of five years. Social space orientation was used as the framework for the data analysis. Results: The LAC participants felt empowered after the LACs. Continuing development was a characteristic of the LAC project. The positive effects of the LACs included empowerment and positive interactions between the instructors and participants. In addition, the LACs had a positive impact on all five principles of social space orientation. Conclusion: LACs can contribute to raising public awareness about dying, death, grief and palliative care and empower people to participate in caring for those who are serious ill, dying and grieving. Full article
(This article belongs to the Special Issue End-of-Life Care and Nursing)
24 pages, 2413 KiB  
Article
Agricultural Land Market Dynamics and Their Economic Implications for Sustainable Development in Poland
by Marcin Gospodarowicz, Bożena Karwat-Woźniak, Emil Ślązak, Adam Wasilewski and Anna Wasilewska
Sustainability 2025, 17(14), 6484; https://doi.org/10.3390/su17146484 (registering DOI) - 15 Jul 2025
Abstract
This study examines Poland’s agricultural land market between 2009 and 2023 through fixed effects and spatial econometric models, highlighting economic and spatial determinants of land prices. Key results show that GDP per capita strongly increases land values (β = +0.699, p < 0.001), [...] Read more.
This study examines Poland’s agricultural land market between 2009 and 2023 through fixed effects and spatial econometric models, highlighting economic and spatial determinants of land prices. Key results show that GDP per capita strongly increases land values (β = +0.699, p < 0.001), while agricultural gross value added (–2.698, p = 0.009), soil quality (–6.241, p < 0.001), and land turnover (–0.395, p < 0.001) are associated with lower prices. Spatial dependence is confirmed (λ = 0.74), revealing strong regional spillovers. The volume of state-owned WRSP land sales declined from 37.4 thousand hectares in 2015 to 3.1 thousand hectares in 2023, while non-market transfers, such as donations, exceeded 49,000 annually. Although these trends support farmland protection and family farms, they also reduce market mobility and hinder generational renewal. The findings call for more flexible, sustainability-oriented land governance that combines ecological performance, regional equity, and improved access for young farmers. Full article
Show Figures

Figure 1

22 pages, 3866 KiB  
Article
Harnessing YOLOv11 for Enhanced Detection of Typical Autism Spectrum Disorder Behaviors Through Body Movements
by Ayman Noor, Hanan Almukhalfi, Arthur Souza and Talal H. Noor
Diagnostics 2025, 15(14), 1786; https://doi.org/10.3390/diagnostics15141786 (registering DOI) - 15 Jul 2025
Abstract
Background/Objectives: Repetitive behaviors such as hand flapping, body rocking, and head shaking characterize Autism Spectrum Disorder (ASD) while functioning as early signs of neurodevelopmental variations. Traditional diagnostic procedures require extensive manual observation, which takes significant time, produces subjective results, and remains unavailable [...] Read more.
Background/Objectives: Repetitive behaviors such as hand flapping, body rocking, and head shaking characterize Autism Spectrum Disorder (ASD) while functioning as early signs of neurodevelopmental variations. Traditional diagnostic procedures require extensive manual observation, which takes significant time, produces subjective results, and remains unavailable to many regions. The research introduces a real-time system for the detection of ASD-typical behaviors by analyzing body movements through the You Only Look Once (YOLOv11) deep learning model. Methods: The system’s multi-layered design integrates monitoring, network, cloud, and typical ASD behavior detection layers to facilitate real-time video acquisition, wireless data transfer, and cloud analysis along with ASD-typical behavior classification. We gathered and annotated our own dataset comprising 72 videos, yielding a total of 13,640 images representing four behavior classes that include hand flapping, body rocking, head shaking, and non_autistic. Results: YOLOv11 demonstrates superior performance compared to baseline models like the sub-sampling (CNN) (MobileNet-SSD) and Long Short-Term Memory (LSTM) by achieving 99% accuracy along with 96% precision and 97% in recall and the F1-score. Conclusions: The results indicate that our system provides a scalable solution for real-time ASD screening, which might help clinicians, educators, and caregivers with early intervention, as well as ongoing behavioral monitoring. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
28 pages, 987 KiB  
Article
From Ritual to Renewal: Templestays as a Cross-Cultural Model of Sustainable Wellness Tourism in South Korea
by Bradley S. Brennan and Daniel Kessler
Sustainability 2025, 17(14), 6483; https://doi.org/10.3390/su17146483 (registering DOI) - 15 Jul 2025
Abstract
Templestay programs in South Korea represent a unique convergence of Buddhist ritual, cultural immersion, and wellness tourism. While often treated as niche cultural experiences, their broader significance within sustainable wellness tourism remains underexplored. This study examines participant reflections from the Beomeosa Templestay program [...] Read more.
Templestay programs in South Korea represent a unique convergence of Buddhist ritual, cultural immersion, and wellness tourism. While often treated as niche cultural experiences, their broader significance within sustainable wellness tourism remains underexplored. This study examines participant reflections from the Beomeosa Templestay program through thematic analysis of over 600 reviews sourced from TripAdvisor, Google Reviews, and handwritten guestbooks. Using a triangulated framework combining Grounded Theory, Symbolic Interactionism, and the Wellness Tourism Model, the research identifies four recurring experiential themes: spiritual development, emotional healing, cultural immersion, and conscious consumption. Findings reveal cross-cultural variations: non-Korean participants emphasized spiritual exploration and cultural learning, while Korean participants prioritized emotional renewal and reconnection with heritage. Yet, across all groups, participants reported transformative outcomes, including heightened clarity, inner calm, and enhanced self-awareness. These results suggest that Templestays serve as accessible, culturally grounded wellness retreats that align with rising global demand for intentional, mindful travel. This study contributes to sustainable tourism scholarship by framing Templestays as low-impact, spiritually resonant alternatives to commercialized wellness retreats. Practical recommendations are offered to expand participation while maintaining program authenticity and safeguarding the spiritual and cultural integrity of monastic hosts in an increasingly globalized wellness landscape. Full article
Show Figures

Figure 1

19 pages, 827 KiB  
Article
New Derivatives of Caracasine Acid with Anti-Leukemic Activity and Limited Effectiveness in Spheroid Cultures
by Alírica Isabel Suárez, Katiuska Chávez, Jenny Valentina Garmendia, Claudia Valentina De Sanctis, Soňa Gurská, Petr Džubák, Marian Hajduch and Juan Bautista De Sanctis
Pharmaceuticals 2025, 18(7), 1043; https://doi.org/10.3390/ph18071043 (registering DOI) - 15 Jul 2025
Abstract
Background: The natural compounds caracasine acid (1) and its methyl ester, caracasine (2), isolated from the flowers of Croton micans, are effective against several tumor cell lines. Five semi-synthetic derivatives (37) were synthesized based [...] Read more.
Background: The natural compounds caracasine acid (1) and its methyl ester, caracasine (2), isolated from the flowers of Croton micans, are effective against several tumor cell lines. Five semi-synthetic derivatives (37) were synthesized based on these structures. The study aimed to evaluate the cytotoxic activity of these compounds in 2D and spheroid cultures. Methods: The assays were performed in a panel of 12 human cell lines, 8 cancer and 4 normal cell lines. The compounds were evaluated on spheroids derived from the HCT116, HCT116 p53 knockout (p53KO), A549, and U2OS cell lines, as well as mixed spheroids comprising tumor cells and normal fibroblasts. Results: The parent compound (1), the natural ester (2), and two novel derivatives, the anhydride (7) and the cyclohexanol ester (3), demonstrated cytotoxicity against different leukemic cells and HCT116, HCT116 p53 knockout (p53KO), A549, and U2OS cell lines in conventional two-dimensional cultures. Peroxide formation, however, was significantly higher in leukemic cell lines (p < 0.01) in 2D culture as compared with the other tumor cell lines. The compounds did not induce cell death in spheroid cultures; caspases 8, 9, and 3 were not activated upon treatment. Conclusions: These findings indicate potential applications in leukemia treatment, albeit with limited efficacy against solid tumors. Full article
Show Figures

Figure 1

70 pages, 1600 KiB  
Review
An Overview of Biodiesel Production via Heterogeneous Catalysts: Synthesis, Current Advances, and Challenges
by Maya Yaghi, Sandra Chidiac, Sary Awad, Youssef El Rayess and Nancy Zgheib
Clean Technol. 2025, 7(3), 62; https://doi.org/10.3390/cleantechnol7030062 (registering DOI) - 15 Jul 2025
Abstract
Biodiesel, a renewable and environmentally friendly alternative to fossil fuels, has attracted significant attention due to its potential to reduce greenhouse gas emissions. However, high production costs and complex processing remain challenges. Heterogeneous catalysts have shown promise in overcoming these barriers by offering [...] Read more.
Biodiesel, a renewable and environmentally friendly alternative to fossil fuels, has attracted significant attention due to its potential to reduce greenhouse gas emissions. However, high production costs and complex processing remain challenges. Heterogeneous catalysts have shown promise in overcoming these barriers by offering benefits, such as easy separation, reusability, low-cost raw materials, and the ability to reduce reaction times and energy consumption. This review evaluates key classes of heterogeneous catalysts, such as metal oxides, ion exchange resins, and zeolites, and their performance in transesterification and esterification processes. It highlights the importance of catalyst preparation methods, textural properties, including surface area, pore volume, and pore size, activation techniques, and critical operational parameters, like the methanol-to-oil ratio, temperature, time, catalyst loading, and reusability. The analysis reveals that catalysts supported on high surface area materials often achieve higher biodiesel yields, while metal oxides derived from natural sources provide cost-effective and sustainable options. Challenges, such as catalyst deactivation, sensitivity to feedstock composition, and variability in performance, are discussed. Overall, the findings underscore the potential of heterogeneous catalysts to enhance biodiesel production efficiency, although further optimization and standardized evaluation protocols are necessary for their broader industrial application. Full article
9 pages, 837 KiB  
Communication
First Record of Lyconus brachycolus (Gadiformes: Lyconidae) in Spanish Waters: An Update on Taxonomic Knowledge
by Rafael Bañón, Alejandro de Carlos and Juan Carlos Arronte
Fishes 2025, 10(7), 351; https://doi.org/10.3390/fishes10070351 (registering DOI) - 15 Jul 2025
Abstract
This study reports the first record of Lyconus brachycolus in Spanish waters. A single specimen measuring 216 mm in total length was captured on 13 October 2024 in the Cantabrian Sea (north of Spain, 43.8467 N, −6.2109 W) by bottom trawl at a [...] Read more.
This study reports the first record of Lyconus brachycolus in Spanish waters. A single specimen measuring 216 mm in total length was captured on 13 October 2024 in the Cantabrian Sea (north of Spain, 43.8467 N, −6.2109 W) by bottom trawl at a depth of 412 m. A detailed morphological description, updated characteristics, and illustrations are provided. For comparative purposes, an update of the species’ morphological characteristics was carried out. In an integrative taxonomic approach, the DNA barcode was obtained, which confirmed the morphological identification of the specimen as Lyconus brachycolus. A molecular taxonomic analysis using this marker showed the existence of two clades separated by 5.1%, corresponding to Lyconus brachycolus and Lyconus pinnatus, the two currently valid species of the genus. Full article
(This article belongs to the Section Taxonomy, Evolution, and Biogeography)
Show Figures

Figure 1

39 pages, 4034 KiB  
Article
Three-Dimensional Modeling and AI-Assisted Contextual Narratives in Digital Heritage Education: Course for Enhancing Design Skill, Cultural Awareness, and User Experience
by Yaojiong Yu and Weifeng Hu
Heritage 2025, 8(7), 280; https://doi.org/10.3390/heritage8070280 (registering DOI) - 15 Jul 2025
Abstract
This study introduces an educational framework that merges 3D modeling with AI-assisted narrative interaction to apply digital technology in cultural heritage education, exemplified by an ancient carriage culture. Through immersive tasks and contextual narratives, the course notably improved learners’ professional skills and cultural [...] Read more.
This study introduces an educational framework that merges 3D modeling with AI-assisted narrative interaction to apply digital technology in cultural heritage education, exemplified by an ancient carriage culture. Through immersive tasks and contextual narratives, the course notably improved learners’ professional skills and cultural awareness. Experimental results revealed significant knowledge acquisition among participants post-engagement. Additionally, the user experience improved, with increased satisfaction in the narrative interaction design course. These enhancements led to heightened interest in cultural heritage and deeper knowledge acquisition. Utilizing Norman’s three-layer interaction model, Ryan’s contextual narrative theory, and Falk and Dierking’s museum learning experience model, the study developed a systematic course for multi-sensory design and contextual interaction, confirming the positive impact of multimodal interaction on learning outcomes. This research provides theoretical support for the digital transformation of cultural education and practical examples for educational practitioners and cultural institutions to implement in virtual presentations and online learning. Full article
(This article belongs to the Special Issue Progress in Heritage Education: Evolving Techniques and Methods)
20 pages, 489 KiB  
Review
Beyond Cognition: Cognitive Re-Education’s Impact on Quality of Life and Psychological Well-Being in People with Multiple Sclerosis—A Narrative Review
by Nicola Manocchio, Chiara Moriano, Anna D’Amato, Michela Bossa, Calogero Foti and Ugo Nocentini
NeuroSci 2025, 6(3), 64; https://doi.org/10.3390/neurosci6030064 (registering DOI) - 15 Jul 2025
Abstract
Cognitive impairment is a prevalent and disabling feature of multiple sclerosis (MS), significantly impacting patients’ quality of life (QoL) and psychological well-being. Despite its clinical relevance, there are currently no approved pharmacological treatments for cognitive deficits in MS, highlighting the need for effective [...] Read more.
Cognitive impairment is a prevalent and disabling feature of multiple sclerosis (MS), significantly impacting patients’ quality of life (QoL) and psychological well-being. Despite its clinical relevance, there are currently no approved pharmacological treatments for cognitive deficits in MS, highlighting the need for effective non-pharmacological interventions. This narrative review explores evidence from studies evaluating the efficacy of cognitive re-education (CR) approaches (including traditional, group-based, computer-assisted, virtual reality, and innovative methods such as music therapy) on cognitive and QoL outcomes in people with MS. The findings demonstrate that while CR consistently influences cognitive domains such as memory, attention, and executive function, its effects on QoL are more variable and often depend on intervention type, duration, and individual patient characteristics. Notably, integrative approaches like virtual reality and music therapy show promising results in enhancing both cognitive performance and psychosocial well-being. Several studies report that cognitive gains are accompanied by improvements in mental health and functional QoL, particularly when interventions are tailored to individual needs and delivered within multidisciplinary frameworks. However, some interventions yield only limited or transient QoL benefits, underlining the importance of personalized, goal-oriented strategies that address both cognitive and psychosocial dimensions. Further research is needed to optimize intervention strategies and clarify the mechanisms linking cognitive and QoL outcomes. Full article
23 pages, 3791 KiB  
Article
Mapping Soil Available Nitrogen Using Crop-Specific Growth Information and Remote Sensing
by Xinle Zhang, Yihan Ma, Shinai Ma, Chuan Qin, Yiang Wang, Huanjun Liu, Lu Chen and Xiaomeng Zhu
Agriculture 2025, 15(14), 1531; https://doi.org/10.3390/agriculture15141531 (registering DOI) - 15 Jul 2025
Abstract
Soil available nitrogen (AN) is a critical nutrient for plant absorption and utilization. Accurately mapping its spatial distribution is essential for improving crop yields and advancing precision agriculture. In this study, 188 AN soil samples (0–20 cm) were collected at Heshan Farm, Nenjiang [...] Read more.
Soil available nitrogen (AN) is a critical nutrient for plant absorption and utilization. Accurately mapping its spatial distribution is essential for improving crop yields and advancing precision agriculture. In this study, 188 AN soil samples (0–20 cm) were collected at Heshan Farm, Nenjiang County, Heihe City, Heilongjiang Province, in 2023. The soil available nitrogen content ranged from 65.81 to 387.10 mg kg−1, with a mean value of 213.85 ± 61.16 mg kg−1. Sentinel-2 images and normalized vegetation index (NDVI) and enhanced vegetation index (EVI) time series data were acquired on the Google Earth Engine (GEE) platform in the study area during the bare soil period (April, May, and October) and the growth period (June–September). These remote sensing variables were combined with soil sample data, crop type information, and crop growth period data as predictive factors and input into a Random Forest (RF) model optimized using the Optuna hyperparameter tuning algorithm. The accuracy of different strategies was evaluated using 5-fold cross-validation. The research results indicate that (1) the introduction of growth information at different growth periods of soybean and maize has different effects on the accuracy of soil AN mapping. In soybean plantations, the introduction of EVI data during the pod setting period increased the mapping accuracy R2 by 0.024–0.088 compared to other growth periods. In maize plantations, the introduction of EVI data during the grouting period increased R2 by 0.004–0.033 compared to other growth periods, which is closely related to the nitrogen absorption intensity and spectral response characteristics during the reproductive growth period of crops. (2) Combining the crop types and their optimal period growth information could improve the mapping accuracy, compared with only using the bare soil period image (R2 = 0.597)—the R2 increased by 0.035, the root mean square error (RMSE) decreased by 0.504%, and the mapping accuracy of R2 could be up to 0.632. (3) The mapping accuracy of the bare soil period image differed significantly among different months, with a higher mapping accuracy for the spring data than the fall, the R2 value improved by 0.106 and 0.100 compared with that of the fall, and the month of April was the optimal window period of the bare soil period in the present study area. The study shows that when mapping the soil AN content in arable land, different crop types, data collection time, and crop growth differences should be considered comprehensively, and the combination of specific crop types and their optimal period growth information has a greater potential to improve the accuracy of mapping soil AN content. This method not only opens up a new technological path to improve the accuracy of remote sensing mapping of soil attributes but also lays a solid foundation for the research and development of precision agriculture and sustainability. Full article
23 pages, 4418 KiB  
Article
Optimization of Electric Transformer Operation Through Load Estimation Based on the K-Means Algorithm
by Pedro Torres-Bermeo, José Varela-Aldás, Kevin López-Eugenio, Nancy Velasco and Guillermo Palacios-Navarro
Energies 2025, 18(14), 3755; https://doi.org/10.3390/en18143755 (registering DOI) - 15 Jul 2025
Abstract
This study presents an innovative methodology to optimize the operation of distribution transformers through the estimation of hourly load curves, aimed at minimizing technical losses due to oversizing, particularly in systems lacking advanced metering infrastructure. The proposed approach combines clustering techniques, K-Means with [...] Read more.
This study presents an innovative methodology to optimize the operation of distribution transformers through the estimation of hourly load curves, aimed at minimizing technical losses due to oversizing, particularly in systems lacking advanced metering infrastructure. The proposed approach combines clustering techniques, K-Means with DTW, to identify representative daily consumption patterns and a supervised model based on LightGBM to estimate hourly load curves for unmetered transformers, using customer characteristics as input. These estimated curves are integrated into a process that calculates technical losses, both no-load and load losses, for different transformer sizes, selecting the optimal rating that minimizes losses without compromising demand. Empirical validation showed accuracy levels of 95.6%, 95.29%, and 98.14% at an individual transformer, feeder, and a complete electrical system with 16,864 transformers, respectively. The application of the methodology to a real distribution system revealed a potential annual energy savings of 3004 MWh, equivalent to an estimated economic reduction of 150,238 USD. Full article
Show Figures

Figure 1

18 pages, 2182 KiB  
Article
Associations Between Daily Heart Rate Variability and Self-Reported Wellness: A 14-Day Observational Study in Healthy Adults
by James Hannon, Adrian O’Hagan, Rory Lambe, Ben O’Grady and Cailbhe Doherty
Sensors 2025, 25(14), 4415; https://doi.org/10.3390/s25144415 (registering DOI) - 15 Jul 2025
Abstract
Heart rate variability (HRV), particularly the root mean square of successive differences (RMSSD), is widely used as a non-invasive indicator of autonomic nervous system activity and physiological recovery. This study examined whether daily short-term HRV, measured under standardised morning conditions, was associated with [...] Read more.
Heart rate variability (HRV), particularly the root mean square of successive differences (RMSSD), is widely used as a non-invasive indicator of autonomic nervous system activity and physiological recovery. This study examined whether daily short-term HRV, measured under standardised morning conditions, was associated with self-reported wellness in a non-clinical adult population. Over a 14-day period, 41 participants completed daily five-minute HRV recordings using a Polar H10 chest sensor and the Kubios mobile app, followed by ratings of sleep quality, fatigue, stress, and physical recovery. Bayesian ordinal mixed-effects models revealed that higher RMSSD values were associated with better self-reported sleep (β = 0.510, 95% HDI: 0.239 to 0.779), lower fatigue (β = 0.281, 95% HDI: 0.020 to 0.562), and reduced stress (β = 0.353, 95% HDI: 0.059 to 0.606), even after adjusting for covariates. No association was found between RMSSD and perceived muscle soreness. These findings support the interpretability of RMSSD as a physiological marker of daily recovery and stress in real-world settings. While the effect sizes were modest and individual variability remained substantial, results suggest that consistent HRV monitoring may offer meaningful insight into subjective wellness—particularly when contextualised and tracked over time. Full article
17 pages, 1884 KiB  
Article
Inhibition of FOXM1 Leads to Suppression of Cell Proliferation, Migration, and Invasion Through AXL/eEF2 Kinase Signaling and Induces Apoptosis and Ferroptosis in GBM Cells
by Ezgi Biltekin, Nermin Kahraman, Ogun Ali Gul, Yasemin M. Akay, Metin Akay and Bulent Ozpolat
Int. J. Mol. Sci. 2025, 26(14), 6792; https://doi.org/10.3390/ijms26146792 (registering DOI) - 15 Jul 2025
Abstract
Glioblastoma multiforme (GBM) is an aggressive and molecularly heterogeneous brain cancer with a poor prognosis. Despite advancements in standard-of-care therapies, including surgery, radiotherapy, and temozolomide (TMZ), the median survival remains approximately 15 months, with a 5-year survival rate of less than 10%. We [...] Read more.
Glioblastoma multiforme (GBM) is an aggressive and molecularly heterogeneous brain cancer with a poor prognosis. Despite advancements in standard-of-care therapies, including surgery, radiotherapy, and temozolomide (TMZ), the median survival remains approximately 15 months, with a 5-year survival rate of less than 10%. We and others have demonstrated that FOXM1 is a critical oncogenic driver of GBM cell proliferation. However, the role of FOXM1 and its interaction with other oncogenic signaling pathways in GBM remains incompletely understood. In this study, we identified FOXM1, AXL, and eEF2K as highly upregulated oncogenes in GBM patient tumors. We demonstrated, for the first time, that FOXM1 directly interacts with AXL and eEF2K, regulating their expression and promoting GBM cell proliferation, migration, and invasion. Knockdown of these genes disrupted cell proliferation, spheroid formation, migration, and invasion, and induced apoptosis and ferroptosis. Additionally, inhibiting the FOXM1–AXL/eEF2K signaling axis sensitized GBM cells to TMZ, further enhancing apoptotic and ferroptotic responses. These findings highlight the critical role of the FOXM1–AXL/eEF2K signaling pathway in GBM progression and suggest that targeting this axis may offer a novel multitargeted therapeutic strategy in GBM. Full article
11 pages, 1218 KiB  
Article
Predictive Ability of an Objective and Time-Saving Blastocyst Scoring Model on Live Birth
by Bing-Xin Ma, Feng Zhou, Guang-Nian Zhao, Lei Jin and Bo Huang
Biomedicines 2025, 13(7), 1734; https://doi.org/10.3390/biomedicines13071734 (registering DOI) - 15 Jul 2025
Abstract
Objectives: With the development of artificial intelligence technology in medicine, an intelligent deep learning-based embryo scoring system (iDAScore) has been developed on full-time lapse sequences of embryos. It automatically ranks embryos according to the likelihood of achieving a fetal heartbeat with no manual [...] Read more.
Objectives: With the development of artificial intelligence technology in medicine, an intelligent deep learning-based embryo scoring system (iDAScore) has been developed on full-time lapse sequences of embryos. It automatically ranks embryos according to the likelihood of achieving a fetal heartbeat with no manual input from embryologists. To ensure its performance, external validation studies should be performed at multiple clinics. Methods: A total of 6291 single vitrified–thawed blastocyst transfer cycles from 2018 to 2021 at the Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology were retrospectively analyzed by the iDAScore model. Patients with two or more blastocysts transferred and blastocysts that were not cultured in a time-lapse incubator were excluded. Blastocysts were divided into four comparably sized groups by first sorting their iDAScore values in ascending order and then compared with the clinical, perinatal, and neonatal outcomes. Results: Our results showed that clinical pregnancy, miscarriage, and live birth significantly correlated with iDAScore (p < 0.001). For perinatal and neonatal outcomes, no significant difference was shown in four iDAScore groups, except sex ratio. Uni- and multivariable logistic regressions showed that iDAScore was significantly positively correlated with live birth rate (p < 0.05). Conclusions: In conclusion, the objective ranking can prioritize embryos reliably and rapidly for transfer, which could allow embryologists more time for processes requiring hands-on procedures. Full article
(This article belongs to the Special Issue The Art of ART (Assisted Reproductive Technologies))
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop