-
Effects of Metformin in Heart Failure: From Pathophysiological Rationale to Clinical Evidence
-
Mechanistic Link between Vitamin B12 and Alzheimer’s Disease
-
Hyperbaric Oxygen Treatment: Effects on Mitochondrial Function and Oxidative Stress
-
Transgenic Mouse Overexpressing Spermine Oxidase in Cerebrocortical Neurons: Astrocyte Dysfunction and Susceptibility to Epileptic Seizures
Journal Description
Biomolecules
Biomolecules
is a peer-reviewed, open access journal on structures and functions of bioactive and biogenic substances, molecular mechanisms with biological and medical implications as well as biomaterials and their applications. Biomolecules is published monthly online by MDPI. The Spanish Society for Biochemistry and Molecular Biology (SEBBM) is affiliated with Biomolecules and their members receive discounts on the article processing charges.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, MEDLINE, PMC, Embase, CAPlus / SciFinder, and many other databases.
- Journal Rank: JCR - Q2 (Biochemistry & Molecular Biology)
- Rapid Publication: manuscripts are peer-reviewed and a first decision provided to authors approximately 16.4 days after submission; acceptance to publication is undertaken in 2.9 days (median values for papers published in this journal in the second half of 2021).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
- Testimonials: See what our authors say about Biomolecules.
- Sections: published in 19 topical sections.
- Companion journal: Receptors
Impact Factor:
4.879 (2020)
;
5-Year Impact Factor:
5.362 (2020)
Latest Articles
Innate Immunity: A Balance between Disease and Adaption to Stress
Biomolecules 2022, 12(5), 737; https://doi.org/10.3390/biom12050737 (registering DOI) - 23 May 2022
Abstract
Since first being documented in ancient times, the relation of inflammation with injury and disease has evolved in complexity and causality. Early observations supported a cause (injury) and effect (inflammation) relationship, but the number of pathologies linked to chronic inflammation suggests that inflammation
[...] Read more.
Since first being documented in ancient times, the relation of inflammation with injury and disease has evolved in complexity and causality. Early observations supported a cause (injury) and effect (inflammation) relationship, but the number of pathologies linked to chronic inflammation suggests that inflammation itself acts as a potent promoter of injury and disease. Additionally, results from studies over the last 25 years point to chronic inflammation and innate immune signaling as a critical link between stress (exogenous and endogenous) and adaptation. This brief review looks to highlight the role of the innate immune response in disease pathology, and recent findings indicating the innate immune response to chronic stresses as an influence in driving adaptation.
Full article
(This article belongs to the Special Issue Inflammatory Pathways in Neuro-Muscular Degeneration, Metabolic Syndromes, Cancer and Infection)
Open AccessArticle
Reduced Platelet MAO-B Activity Is Associated with Psychotic, Positive, and Depressive Symptoms in PTSD
by
, , , , , , , , , and
Biomolecules 2022, 12(5), 736; https://doi.org/10.3390/biom12050736 (registering DOI) - 23 May 2022
Abstract
Post-traumatic stress disorder (PTSD) is a trauma-related disorder. Platelet monoamine oxidase (MAO-B) is a peripheral biomarker associated with various symptoms in different psychopathologies, but its role in PTSD or different symptoms in PTSD is not clear. This study elucidated the association between platelet
[...] Read more.
Post-traumatic stress disorder (PTSD) is a trauma-related disorder. Platelet monoamine oxidase (MAO-B) is a peripheral biomarker associated with various symptoms in different psychopathologies, but its role in PTSD or different symptoms in PTSD is not clear. This study elucidated the association between platelet MAO-B activity and clinical symptoms occurring in PTSD. Platelet MAO-B activity was determined in 1053 male Caucasian subjects: 559 war veterans with PTSD (DSM-5 criteria), 62 combat exposed veterans who did not develop PTSD, and 432 non-combat exposed healthy controls. Clinical symptoms in PTSD were determined using CAPS and PANSS. Platelet MAO-B activity, controlled for the effect of smoking, was significantly increased in PTSD with severe versus mild and moderate traumatic symptoms, and was significantly decreased in PTSD subjects with severe versus mild positive, psychotic, and depressive symptoms. This finding was further confirmed with reduced platelet MAO-B activity in PTSD veterans with severe versus mild individual items of the PANSS-depressed, PANSS-psychotic, and PANSS-positive subscales. Altered platelet MAO-B activity, controlled for the possible confounders, was associated with the development and severity of different symptoms occurring in PTSD. These findings confirmed the role of platelet MAO-B activity as a peripheral marker of various psychopathological symptoms.
Full article
(This article belongs to the Collection Feature Papers in Section Molecular Medicine)
Open AccessArticle
Hyperhomocysteinemia Increases Cortical Excitability and Aggravates Mechanical Hyperalgesia and Anxiety in a Nitroglycerine-Induced Migraine Model in Rats
by
, , , , , and
Biomolecules 2022, 12(5), 735; https://doi.org/10.3390/biom12050735 (registering DOI) - 23 May 2022
Abstract
Homocysteine is a sulfur-containing endogenous amino acid leading to neurotoxic effects at high concentrations. Population studies suggest an association between plasma homocysteine levels and the risk of migraine headaches. The aim of this study was to analyze the sensitivity of rats with prenatal
[...] Read more.
Homocysteine is a sulfur-containing endogenous amino acid leading to neurotoxic effects at high concentrations. Population studies suggest an association between plasma homocysteine levels and the risk of migraine headaches. The aim of this study was to analyze the sensitivity of rats with prenatal hyperhomocysteinemia (hHCY) in respect of the development of behavioral correlates of headache and spreading cortical depolarization (CSD) in a migraine model induced by the administration of the nitric oxide (NO) donor nitroglycerin. Animals with hHCY were characterized by migraine-related symptoms such as mechanical hyperalgesia, high-level anxiety, photophobia, as well as an enhanced level of neuronal activity in the somatosensory cortex along with a lower threshold of CSD generation. Likewise, acute or chronic intermittent administration of nitroglycerin also induced the development of mechanical allodynia, photophobia and anxiety in control groups. However, these symptoms were more pronounced in rats with hHCY. Unlike hHCY, nitroglycerin administration did not affect the threshold of CSD generation, but like hHCY, increased the background neuronal activity in layers 2/3 and 4 of the cerebral cortex. The latter was more pronounced in animals with hHCY. Thus, the migraine profile associated with hHCY can be further exaggerated in conditions with enhanced levels of migraine triggering the gaseous transmitter NO. Our data are consistent with the view that high levels of plasma homocysteine can act as a risk factor for the development of migraine.
Full article
(This article belongs to the Special Issue Homocysteine: Biochemistry, Molecular Biology, and Role in Disease 2021)
►▼
Show Figures

Figure 1
Open AccessArticle
Impairment of the Retinal Endothelial Cell Barrier Induced by Long-Term Treatment with VEGF-A165 No Longer Depends on the Growth Factor’s Presence
Biomolecules 2022, 12(5), 734; https://doi.org/10.3390/biom12050734 (registering DOI) - 23 May 2022
Abstract
As responses of immortalized endothelial cells of the bovine retina (iBREC) to VEGF-A165 depend on exposure time to the growth factor, we investigated changes evident after long-term treatment for nine days. The cell index of iBREC cultivated on gold electrodes—determined as a
[...] Read more.
As responses of immortalized endothelial cells of the bovine retina (iBREC) to VEGF-A165 depend on exposure time to the growth factor, we investigated changes evident after long-term treatment for nine days. The cell index of iBREC cultivated on gold electrodes—determined as a measure of permeability—was persistently reduced by exposure to the growth factor. Late after addition of VEGF-A165 protein levels of claudin-1 and CD49e were significantly lower, those of CD29 significantly higher, and the plasmalemma vesicle associated protein was no longer detected. Nuclear levels of β-catenin were only elevated on day two. Extracellular levels of VEGF-A—measured by ELISA—were very low. Similar to the binding of the growth factor by brolucizumab, inhibition of VEGFR2 by tyrosine kinase inhibitors tivozanib or nintedanib led to complete, although transient, recovery of the low cell index when added early, though was inefficient when added three or six days later. Additional inhibition of other receptor tyrosine kinases by nintedanib was similarly unsuccessful, but additional blocking of c-kit by tivozanib led to sustained recovery of the low cell index, an effect observed only when the inhibitor was added early. From these data, we conclude that several days after the addition of VEGF-A165 to iBREC, barrier dysfunction is mainly sustained by increased paracellular flow and impaired adhesion. Even more important, these changes are most likely no longer VEGF-A-controlled.
Full article
(This article belongs to the Special Issue Cell and Organ Cultures for Studying Retinal Diseases)
►▼
Show Figures

Figure 1
Open AccessArticle
Relationship between Liver Stiffness and Steatosis in Obesity Conditions: In Vivo and In Vitro Studies
by
, , , , , and
Biomolecules 2022, 12(5), 733; https://doi.org/10.3390/biom12050733 (registering DOI) - 23 May 2022
Abstract
Obesity is a major risk factor for metabolic dysfunction such as non-alcoholic fatty liver disease (NAFLD). The NAFLD spectrum ranges from simple steatosis, to steatohepatitis, fibrosis, and cirrhosis. The aim of this study is to characterize the grade of steatosis being associated with
[...] Read more.
Obesity is a major risk factor for metabolic dysfunction such as non-alcoholic fatty liver disease (NAFLD). The NAFLD spectrum ranges from simple steatosis, to steatohepatitis, fibrosis, and cirrhosis. The aim of this study is to characterize the grade of steatosis being associated with overnutrition and obesity, both at the level of single hepatocyte and whole liver, and to correlate it with the hepatocyte/liver stiffness and dysfunction. For the in vivo study, 60 subjects were enrolled and grouped based on the stage of liver steatosis/fibrosis according to biochemical analyses, liver ultrasonography (USG) and acoustic radiation force impulse shear wave elastography (ARFI-SWE). For single hepatocyte analyses we employed in vitro models of moderate and severe steatosis on which to assess the single cell biomechanics by Single Cell Force Spectroscopy (SCFS) and Quantitative Phase Microscopy (QPM). Results show that in vivo liver stiffness depends mainly on the extent of fat accumulation and not on fibrosis. These results parallel the in vitro observations showing that hepatocyte stiffness and dysfunction increase with increasing fat accumulation and lipid droplet enlargement. Our findings indicate that the extent of steatosis markedly affects the biomechanical properties of both liver and single hepatocytes thus proving insights about the role of modulation of liver/hepatocyte elasticity as a physical mechanism transducing the obesity-dependent excess of plasmatic lipids towards liver steatosis and dysfunction.
Full article
(This article belongs to the Special Issue Molecular Mechanisms Underlying Eating Disorders and Obesity)
►▼
Show Figures

Figure 1
Open AccessArticle
Effects of Risperidone and Prenatal Poly I:C Exposure on GABAA Receptors and AKT-GSK3β Pathway in the Ventral Tegmental Area of Female Juvenile Rats
Biomolecules 2022, 12(5), 732; https://doi.org/10.3390/biom12050732 (registering DOI) - 23 May 2022
Abstract
The ventral tegmental area (VTA) in the ventral midbrain is the origin of the dopaminergic neurotransmission pathways. Although GABAA receptors and AKT-GSK3β signaling are involved in the pathophysiology of mental disorders and are modulated by antipsychotics, an unmet task is to reveal
[...] Read more.
The ventral tegmental area (VTA) in the ventral midbrain is the origin of the dopaminergic neurotransmission pathways. Although GABAA receptors and AKT-GSK3β signaling are involved in the pathophysiology of mental disorders and are modulated by antipsychotics, an unmet task is to reveal the pathological changes in these biomarkers and antipsychotic modulations in the VTA. Using a juvenile polyriboinosinic-polyribocytidylic acid (Poly I:C) psychiatric rat model, this study investigated the effects of adolescent risperidone treatment on GABAA receptors and AKT/GSK3β in the VTA. Pregnant female Sprague–Dawley rats were administered Poly I:C (5mg/kg; i.p) or saline at gestational day 15. Juvenile female offspring received risperidone (0.9 mg/kg, twice per day) or a vehicle from postnatal day 35 for 25 days. Poly I:C offspring had significantly decreased mRNA expression of GABAA receptor β3 subunits and glutamic acid decarboxylase (GAD2) in the VTA, while risperidone partially reversed the decreased GAD2 expression. Prenatal Poly I:C exposure led to increased expression of AKT2 and GSK3β. Risperidone decreased GABAA receptor β2/3, but increased AKT2 mRNA expression in the VTA of healthy rats. This study suggests that Poly I:C-elicited maternal immune activation and risperidone differentially modulate GABAergic neurotransmission and AKT-GSK3β signaling in the VTA of adolescent rats.
Full article
(This article belongs to the Special Issue GABA Receptors in Pharmacology and Neurobiology)
►▼
Show Figures

Figure 1
Open AccessArticle
Transcriptomal Insights of Heart Failure from Normality to Recovery
by
, , , , , , , , , and
Biomolecules 2022, 12(5), 731; https://doi.org/10.3390/biom12050731 (registering DOI) - 23 May 2022
Abstract
Current management of heart failure (HF) is centred on modulating the progression of symptoms and severity of left ventricular dysfunction. However, specific understandings of genetic and molecular targets are needed for more precise treatments. To attain a clearer picture of this, we studied
[...] Read more.
Current management of heart failure (HF) is centred on modulating the progression of symptoms and severity of left ventricular dysfunction. However, specific understandings of genetic and molecular targets are needed for more precise treatments. To attain a clearer picture of this, we studied transcriptome changes in a chronic progressive HF model. Fifteen sheep (Ovis aries) underwent supracoronary aortic banding using an inflatable cuff. Controlled and progressive induction of pressure overload in the LV was monitored by echocardiography. Endomyocardial biopsies were collected throughout the development of LV failure (LVF) and during the stage of recovery. RNA-seq data were analysed using the PANTHER database, Metascape, and DisGeNET to annotate the gene expression for functional ontologies. Echocardiography revealed distinct clinical differences between the progressive stages of hypertrophy, dilatation, and failure. A unique set of transcript expressions in each stage was identified, despite an overlap of gene expression. The removal of pressure overload allowed the LV to recover functionally. Compared to the control stage, there were a total of 256 genes significantly changed in their expression in failure, 210 genes in hypertrophy, and 73 genes in dilatation. Gene expression in the recovery stage was comparable with the control stage with a well-noted improvement in LV function. RNA-seq revealed the expression of genes in each stage that are not reported in cardiovascular pathology. We identified genes that may be potentially involved in the aetiology of progressive stages of HF, and that may provide future targets for its management.
Full article
(This article belongs to the Special Issue Genetics and Genomics of Heart Failure)
►▼
Show Figures

Figure 1
Open AccessArticle
A Comparative Study of Milk Fat Extracted from the Milk of Different Goat Breeds in China: Fatty Acids, Triacylglycerols and Thermal and Spectroscopic Characterization
by
, , , , , , , , , , , and
Biomolecules 2022, 12(5), 730; https://doi.org/10.3390/biom12050730 - 22 May 2022
Abstract
Goat milk (GM) is an excellent alternative to cow milk and has recently been used in commercial infant formula preparation due to its superior fat composition. Here, the fatty acid (FA) composition, triacylglycerol (TAG) molecular species, thermal behavior and infrared spectra of extracted
[...] Read more.
Goat milk (GM) is an excellent alternative to cow milk and has recently been used in commercial infant formula preparation due to its superior fat composition. Here, the fatty acid (FA) composition, triacylglycerol (TAG) molecular species, thermal behavior and infrared spectra of extracted milk fat from the milk of the two main breeds of dairy goat bred in China (Guanzhong GM (GZG) and Xinong Saanen GM (XSG)) are investigated. Gas chromatography, Fourier-transform infrared spectroscopy, differential scanning calorimetry and ultra-performance convergence chromatography with quadrupole time-of-flight mass spectrometry are applied. The obtained results evidence significant fat compositional differences based on the breed that produced the considered GM. The major FAs in both GM fats were capric (C10:0), myristic (C14:0), palmitic (C16:0), stearic (C18:0) and oleic (C18:1 n-9c). GZG presented a higher content of medium-chain saturated FAs, while XSG had higher unsaturated FAs with higher ratios of L/Ln and n-6/n-3. A total of 339 and 359 TAGs were detected and quantified in GZG and XSG, and the major TAGs were those of m/z 740.6712 (14.10 ± 0.27%) and m/z 684.6094 (10.94 ± 0.02%), respectively. Milk TAGs of GZG and XSG showed 24–54 and 26–54 total acyl carbon numbers with a 0–4 and 0–5 double bond number at 68 and 72 various retention times, respectively. Thermal analysis showed that all GM fat samples melted below normal body temperature. Infrared spectra revealed higher absorption values of GZG milk fat. This study provides valuable information to the dairy industry sector about GM fat produced in China, assessing the appropriateness of Chinese GM fat to be applied in Chinese infant formula.
Full article
(This article belongs to the Special Issue Lipids, Proteins and Bioactive Peptides in Food: A Themed Issue Dedicated to Dr. José M. Lorenzo)
►▼
Show Figures

Graphical abstract
Open AccessReview
Targeting Nrf2 with Probiotics and Postbiotics in the Treatment of Periodontitis
Biomolecules 2022, 12(5), 729; https://doi.org/10.3390/biom12050729 - 22 May 2022
Abstract
Periodontitis is a destructive disease of the tooth-surrounding tissues. Infection is the etiological cause of the disease, but its extent and severity depend on the immune–inflammatory response of the host. Immune cells use reactive oxygen species to suppress infections, and there is homeostasis
[...] Read more.
Periodontitis is a destructive disease of the tooth-surrounding tissues. Infection is the etiological cause of the disease, but its extent and severity depend on the immune–inflammatory response of the host. Immune cells use reactive oxygen species to suppress infections, and there is homeostasis between oxidative and antioxidant mechanisms during periodontal health. During periodontitis, however, increased oxidative stress triggers tissue damage, either directly by activating apoptosis and DNA damage or indirectly by activating proteolytic cascades. Periodontal treatment aims to maintain an infection and inflammation-free zone and, in some cases, regenerate lost tissues. Although mechanical disruption of the oral biofilm is an indispensable part of periodontal treatment, adjunctive measures, such as antibiotics or anti-inflammatory medications, are also frequently used, especially in patients with suppressed immune responses. Recent studies have shown that probiotics activate antioxidant mechanisms and can suppress extensive oxidative stress via their ability to activate nuclear factor erythroid 2-related factor 2 (Nrf2). The aim of this narrative review is to describe the essential role of Nrf2 in the maintenance of periodontal health and to propose possible mechanisms to restore the impaired Nrf2 response in periodontitis, with the aid of probiotic and postbiotics.
Full article
(This article belongs to the Special Issue Role of Nrf2 in Disease: Novel Molecular Mechanisms and Therapeutic Approaches II)
Open AccessArticle
Glutamine Metabolism Is Required for Alveolar Regeneration during Lung Injury
by
, , , , , , , , , , , and
Biomolecules 2022, 12(5), 728; https://doi.org/10.3390/biom12050728 - 22 May 2022
Abstract
(1) Background: Abnormal repair after alveolar epithelial injury drives the progression of idiopathic pulmonary fibrosis (IPF). The maintenance of epithelial integrity is based on the self-renewal and differentiation of alveolar type 2 (AT2) cells, which require sufficient energy. However, the role of glutamine
[...] Read more.
(1) Background: Abnormal repair after alveolar epithelial injury drives the progression of idiopathic pulmonary fibrosis (IPF). The maintenance of epithelial integrity is based on the self-renewal and differentiation of alveolar type 2 (AT2) cells, which require sufficient energy. However, the role of glutamine metabolism in the maintenance of the alveolar epithelium remains unclear. In this study, we investigated the role of glutamine metabolism in AT2 cells of patients with IPF and in mice with bleomycin-induced fibrosis. (2) Methods: Single-cell RNA sequencing (scRNA-seq), transcriptome, and metabolomics analyses were conducted to investigate the changes in the glutamine metabolic pathway during pulmonary fibrosis. Metabolic inhibitors were used to stimulate AT2 cells to block glutamine metabolism. Regeneration of AT2 cells was detected using bleomycin-induced mouse lung fibrosis and organoid models. (3) Results: Single-cell analysis showed that the expression levels of catalytic enzymes responsible for glutamine catabolism were downregulated (p < 0.001) in AT2 cells of patients with IPF, suggesting the accumulation of unusable glutamine. Combined analysis of the transcriptome (p < 0.05) and metabolome (p < 0.001) revealed similar changes in glutamine metabolism in bleomycin-induced pulmonary fibrosis in mice. Mechanistically, inhibition of the key enzymes involved in glucose metabolism, glutaminase-1 (GLS1) and glutamic-pyruvate transaminase-2 (GPT2) leads to reduced proliferation (p < 0.01) and differentiation (p < 0.01) of AT2 cells. (4) Conclusions: Glutamine metabolism is required for alveolar epithelial regeneration during lung injury.
Full article
(This article belongs to the Collection State-of-the-Art Biophysics, Biochemistry and Molecular Biology in China)
Open AccessArticle
Anti-Inflammatory Effects of GM1 Ganglioside on Endotoxin-Induced Uveitis in Rats
Biomolecules 2022, 12(5), 727; https://doi.org/10.3390/biom12050727 - 21 May 2022
Abstract
Exogenous ganglioside GM1 has been reported to exert an immunomodulatory effect. We investigated the anti-inflammatory effect of GM1 ganglioside on endotoxin-induced uveitis (EIU) in rats and RAW 264.7 macrophages. Methods: EIU was induced in Lewis rats by administering a subcutaneous injection of lipopolysaccharide
[...] Read more.
Exogenous ganglioside GM1 has been reported to exert an immunomodulatory effect. We investigated the anti-inflammatory effect of GM1 ganglioside on endotoxin-induced uveitis (EIU) in rats and RAW 264.7 macrophages. Methods: EIU was induced in Lewis rats by administering a subcutaneous injection of lipopolysaccharide (LPS). GM1 was injected intraperitoneally for three consecutive days prior to the LPS injection. Twenty-four hours after the LPS injection, the integrity of the blood-aqueous barrier was evaluated by determining the protein concentration and number of infiltrating cells in the aqueous humor (AqH). Immunohistochemical and Western blot analyses of the iris-ciliary body (ICB) were performed to evaluate the effect of GM1 on the LPS-induced expression of cyclooxygenase-2 (COX-2) and intercellular adhesion molecule-1 (ICAM-1). The effect of GM1 on proinflammatory mediators and signaling cascades was examined in LPS-stimulated RAW 264.7 cells using Western blotting and immunofluorescence staining to further clarify the underlying anti-inflammatory mechanism. Results: GM1 significantly reduced the protein concentration and number of infiltrating cells in the AqH of rats with EIU. GM1 also decreased the LPS-induced expression of the ICAM-1 and COX-2 proteins in the ICB. In RAW 264.7 cells, GM1 inhibited the proinflammatory mediators induced by LPS, including inducible nitric oxide synthase (iNOS), COX-2, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6), and this inhibitory effect was potentially mediated by suppressing transforming growth factor-β-activated kinase 1 (TAK1) and reactive oxygen species (ROS)-mediated activation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs). Conclusions: Based on this study, GM1 may be a potential anti-inflammatory agent for ocular inflammatory diseases.
Full article
(This article belongs to the Topic Compounds with Medicinal Value)
►▼
Show Figures

Figure 1
Open AccessArticle
Heterologous Expression of Full-Length and Truncated Human ZIP4 Zinc Transporter in Saccharomyces cerevisiae
Biomolecules 2022, 12(5), 726; https://doi.org/10.3390/biom12050726 - 21 May 2022
Abstract
The human (h) transporter hZIP4 is the primary Zn2+ importer in the intestine. hZIP4 is also expressed in a variety of organs such as the pancreas and brain. Dysfunction of hZIP4 can result in the Zn2+ deficiency disease acrodermatitis enteropathica (AE).
[...] Read more.
The human (h) transporter hZIP4 is the primary Zn2+ importer in the intestine. hZIP4 is also expressed in a variety of organs such as the pancreas and brain. Dysfunction of hZIP4 can result in the Zn2+ deficiency disease acrodermatitis enteropathica (AE). AE can disrupt digestive and immune system homeostasis. A limited number of hZIP4 expression strategies have hindered increasing knowledge about this essential transmembrane protein. Here, we report the heterologous expression of hZIP4 in Saccharomyces cerevisiae. Both a wild-type and a mutant S. cerevisiae strain, in which the endogenous Zn2+ transporters were deleted, were used to test the expression and localization of an hZIP4–GFP fusion protein. A full-length hZIP4–GFP and a truncated membrane-domain-only (mhZIP4–GFP) protein were observed to be present in the plasma membrane in yeast.
Full article
(This article belongs to the Special Issue Metal Binding Proteins 2022)
►▼
Show Figures

Figure 1
Open AccessArticle
Effect of Trimethine Cyanine Dye- and Folate-Conjugation on the In Vitro Biological Activity of Proapoptotic Peptides
Biomolecules 2022, 12(5), 725; https://doi.org/10.3390/biom12050725 - 20 May 2022
Abstract
Despite continuous advances, anticancer therapy still faces several technical hurdles, such as selectivity on cellular and subcellular targets of therapeutics. Toward addressing these limitations, we have combined the use of proapoptotic peptides, trimethine cyanine dye, and folate to target the mitochondria of tumor
[...] Read more.
Despite continuous advances, anticancer therapy still faces several technical hurdles, such as selectivity on cellular and subcellular targets of therapeutics. Toward addressing these limitations, we have combined the use of proapoptotic peptides, trimethine cyanine dye, and folate to target the mitochondria of tumor cells. A series of proapoptotic peptides and their conjugates with a cyanine dye and/or folate were synthesized in the solid phase, and their toxicity in different human cell lines was assessed. Cyanine-bearing conjugates were found to be up to 100-fold more cytotoxic than the parent peptides and to localize in mitochondria. However, the addition of a folate motif did not enhance the potency or selectivity of the resulting conjugates toward tumor cells that overexpress folate receptor α. Furthermore, while dual-labeled constructs were also found to localize within the target organelle, they were not generally selective towards folate receptor α-positive cell lines in vitro.
Full article
(This article belongs to the Special Issue Recent Advances in Chemical Biology of Mitochondria Targeting)
►▼
Show Figures

Figure 1
Open AccessFeature PaperArticle
Preferential Expression of Ca2+-Stimulable Adenylyl Cyclase III in the Supraventricular Area, including Arrhythmogenic Pulmonary Vein of the Rat Heart
by
, , , , , , , and
Biomolecules 2022, 12(5), 724; https://doi.org/10.3390/biom12050724 (registering DOI) - 20 May 2022
Abstract
Ectopic excitability in pulmonary veins (PVs) is the major cause of atrial fibrillation. We previously reported that the inositol trisphosphate receptor in rat PV cardiomyocytes cooperates with the Na+-Ca2+ exchanger to provoke ectopic automaticity in response to norepinephrine. Here, we
[...] Read more.
Ectopic excitability in pulmonary veins (PVs) is the major cause of atrial fibrillation. We previously reported that the inositol trisphosphate receptor in rat PV cardiomyocytes cooperates with the Na+-Ca2+ exchanger to provoke ectopic automaticity in response to norepinephrine. Here, we focused on adenylyl cyclase (AC) as another effector of norepinephrine stimulation. RT-PCR, immunohistochemistry, and Western blotting revealed that the abundant expression of Ca2+-stimulable AC3 was restricted to the supraventricular area, including the PVs. All the other AC isotypes hardly displayed any region-specific expressions. Immunostaining of isolated cardiomyocytes showed an enriched expression of AC3 along the t-tubules in PV myocytes. The cAMP-dependent response of L-type Ca2+ currents in the PV and LA cells is strengthened by the 0.1 mM intracellular Ca2+ condition, unlike in the ventricular cells. The norepinephrine-induced automaticity of PV cardiomyocytes was reversibly suppressed by 100 µM SQ22536, an adenine-like AC inhibitor. These findings suggest that the specific expression of AC3 along t-tubules may contribute to arrhythmogenic automaticity in rat PV cardiomyocytes.
Full article
(This article belongs to the Special Issue Molecular Pathogenesis of Cardiac Arrhythmia)
►▼
Show Figures

Figure 1
Open AccessFeature PaperReview
PPARα Signaling: A Candidate Target in Psychiatric Disorder Management
Biomolecules 2022, 12(5), 723; https://doi.org/10.3390/biom12050723 (registering DOI) - 20 May 2022
Abstract
Peroxisome proliferator-activator receptors (PPARs) regulate lipid and glucose metabolism, control inflammatory processes, and modulate several brain functions. Three PPAR isoforms have been identified, PPARα, PPARb/d, and PPARg, which are expressed in different tissues and cell types. Hereinafter, we focus on PPARα involvement in
[...] Read more.
Peroxisome proliferator-activator receptors (PPARs) regulate lipid and glucose metabolism, control inflammatory processes, and modulate several brain functions. Three PPAR isoforms have been identified, PPARα, PPARb/d, and PPARg, which are expressed in different tissues and cell types. Hereinafter, we focus on PPARα involvement in the pathophysiology of neuropsychiatric and neurodegenerative disorders, which is underscored by PPARα localization in neuronal circuits involved in emotion modulation and stress response, and its role in neurodevelopment and neuroinflammation. A multiplicity of downstream pathways modulated by PPARα activation, including glutamatergic neurotransmission, upregulation of brain-derived neurotrophic factor, and neurosteroidogenic effects, encompass mechanisms underlying behavioral regulation. Modulation of dopamine neuronal firing in the ventral tegmental area likely contributes to PPAR effects in depression, anhedonia, and autism spectrum disorder (ASD). Based on robust preclinical evidence and the initial results of clinical studies, future clinical trials should assess the efficacy of PPARα agonists in the treatment of mood and neurodevelopmental disorders, such as depression, schizophrenia, and ASD.
Full article
(This article belongs to the Special Issue Role of PPARs in Neurological and Psychiatric Disorders)
Open AccessArticle
Effects of Systemic or Local Administration of Mesenchymal Stem Cells from Patients with Osteoporosis or Osteoarthritis on Femoral Fracture Healing in a Mouse Model
by
, , , , , , , , , , and
Biomolecules 2022, 12(5), 722; https://doi.org/10.3390/biom12050722 - 19 May 2022
Abstract
The purpose of this study was to analyze the regenerative capacity of mesenchymal stem cells (MSCs) in the treatment of fractures. MSCs extracted from patients with osteoporotic hip fractures or hip osteoarthritis undergoing hip replacement surgeries were cultured and injected into mice with
[...] Read more.
The purpose of this study was to analyze the regenerative capacity of mesenchymal stem cells (MSCs) in the treatment of fractures. MSCs extracted from patients with osteoporotic hip fractures or hip osteoarthritis undergoing hip replacement surgeries were cultured and injected into mice with femoral fracture. Two experimental models were established, one for the systemic administration of MSCs (n = 29) and another one for local administration (n = 30). Fracture consolidation was assessed by micro-CT and histology. The degree of radiological consolidation and corticalization was better with MSCs from osteoporosis than from osteoarthritis, being significant after systemic administration (p = 0.0302 consolidation; p = 0.0243 corticalization). The histological degree of consolidation was also better with MSCs from osteoporosis than from osteoarthritis. Differences in histological scores after systemic infusion were as follows: Allen, p = 0.0278; Huo, p = 0.3471; and Bone Bridge, p = 0.0935. After local administration at the fracture site, differences in histological scores were as follows: Allen, p = 0.0764; Huo, p = 0.0256; and Bone Bridge, p = 0.0012. As osteoporosis and control groups were similar, those differences depended on an inhibitory influence by MSCs from patients with osteoarthritis. In conclusion, we found an unexpected impairment of consolidation induced by MSCs from patients with osteoarthritis. However, MSCs from patients with osteoporosis compared favorably with cells from patients with osteoarthritis. In other words, based on this study and previous studies, MSCs from patients with osteoporosis do not appear to have worse bone-regenerating capabilities than MSCs from non-osteoporotic individuals of similar age.
Full article
(This article belongs to the Special Issue Advances in Mesenchymal Stem Cells)
►▼
Show Figures

Figure 1
Open AccessReview
Construction of Multiscale Genome-Scale Metabolic Models: Frameworks and Challenges
Biomolecules 2022, 12(5), 721; https://doi.org/10.3390/biom12050721 - 19 May 2022
Abstract
Genome-scale metabolic models (GEMs) are effective tools for metabolic engineering and have been widely used to guide cell metabolic regulation. However, the single gene–protein-reaction data type in GEMs limits the understanding of biological complexity. As a result, multiscale models that add constraints or
[...] Read more.
Genome-scale metabolic models (GEMs) are effective tools for metabolic engineering and have been widely used to guide cell metabolic regulation. However, the single gene–protein-reaction data type in GEMs limits the understanding of biological complexity. As a result, multiscale models that add constraints or integrate omics data based on GEMs have been developed to more accurately predict phenotype from genotype. This review summarized the recent advances in the development of multiscale GEMs, including multiconstraint, multiomic, and whole-cell models, and outlined machine learning applications in GEM construction. This review focused on the frameworks, toolkits, and algorithms for constructing multiscale GEMs. The challenges and perspectives of multiscale GEM development are also discussed.
Full article
(This article belongs to the Special Issue Computational Biology for Metabolic Modelling and Pathway Design)
►▼
Show Figures

Figure 1
Open AccessFeature PaperReview
Evidence of Failed Resolution Mechanisms in Arrhythmogenic Inflammation, Fibrosis and Right Heart Disease
Biomolecules 2022, 12(5), 720; https://doi.org/10.3390/biom12050720 - 19 May 2022
Abstract
Inflammation is a complex program of active processes characterized by the well-orchestrated succession of an initiation and a resolution phase aiming to promote homeostasis. When the resolution of inflammation fails, the tissue undergoes an unresolved inflammatory status which, if it remains uncontrolled, can
[...] Read more.
Inflammation is a complex program of active processes characterized by the well-orchestrated succession of an initiation and a resolution phase aiming to promote homeostasis. When the resolution of inflammation fails, the tissue undergoes an unresolved inflammatory status which, if it remains uncontrolled, can lead to chronic inflammatory disorders due to aggravation of structural damages, development of a fibrous area, and loss of function. Various human conditions show a typical unresolved inflammatory profile. Inflammatory diseases include cancer, neurodegenerative disease, asthma, right heart disease, atherosclerosis, myocardial infarction, or atrial fibrillation. New evidence has started to emerge on the role, including pro-resolution involvement of chemical mediators in the acute phase of inflammation. Although flourishing knowledge is available about the role of specialized pro-resolving mediators in neurodegenerative diseases, atherosclerosis, obesity, or hepatic fibrosis, little is known about their efficacy to combat inflammation-associated arrhythmogenic cardiac disorders. It has been shown that resolvins, including RvD1, RvE1, or Mar1, are bioactive mediators of resolution. Resolvins can stop neutrophil activation and infiltration, stimulate monocytes polarization into anti-inflammatory-M2-macrophages, and activate macrophage phagocytosis of inflammation-debris and neutrophils to promote efferocytosis and clearance. This review aims to discuss the paradigm of failed-resolution mechanisms (FRM) potentially promoting arrhythmogenicity in right heart disease-induced inflammatory status.
Full article
(This article belongs to the Special Issue Recent Advances in Cellular and Molecular Mechanisms of Cardiovascular and Metabolic Diseases)
►▼
Show Figures

Figure 1
Open AccessArticle
Effect of Locally Delivered Minocycline on the Profile of Subgingival Bacterial Genera in Patients with Periodontitis: A Prospective Pilot Study
by
, , , , , , , , , , , , and
Biomolecules 2022, 12(5), 719; https://doi.org/10.3390/biom12050719 - 18 May 2022
Abstract
This prospective pilot study aimed to evaluate the effect of minocycline-HCl ointment (MO), locally delivered as an adjunct to scaling and root planing (SRP), on subgingival microflora. A total of 59 periodontitis patients received SRP as an initial periodontal therapy. In the selected
[...] Read more.
This prospective pilot study aimed to evaluate the effect of minocycline-HCl ointment (MO), locally delivered as an adjunct to scaling and root planing (SRP), on subgingival microflora. A total of 59 periodontitis patients received SRP as an initial periodontal therapy. In the selected periodontal pockets with probing depths (PD) of 6–9 mm, the sites that exhibited a positive reaction following a bacterial test using an immunochromatographic device were subsequently treated with MO (SRP + MO group, n = 25). No additional treatment was performed at sites showing a negative reaction (SRP group, n = 34). In addition to subgingival plaque sampling, measurement of clinical parameters including PD, clinical attachment level (CAL), bleeding on probing (BOP), plaque index and gingival index (GI) were performed at baseline and 4 weeks after the initial periodontal therapy. The subgingival microflora were assessed by terminal restriction fragment-length polymorphism analysis. Relative to baseline values, the mean scores for PD-, CAL-, BOP-, and GI-sampled sites were significantly decreased post treatment in both groups (p < 0.01). The intra-comparisons showed a significant decrease in the counts of the genera Eubacterium, Parvimonas, Filifactor, Veillonella, Fusobacterium, Porphyromonas, Prevotella, and unknown species in the SRP + MO group (p < 0.05). Inter-comparisons indicated a significant decrease in the genera Veillonella in the SRP + MO group (p = 0.01). Combination therapy of SRP and local MO induced a change in the subgingival microbial community: particularly, the number of Veillonella spp. was markedly reduced.
Full article
(This article belongs to the Special Issue Advances in Basic and Clinical Periodontal Research)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Conformational Entropy as a Potential Liability of Computationally Designed Antibodies
Biomolecules 2022, 12(5), 718; https://doi.org/10.3390/biom12050718 - 18 May 2022
Abstract
In silico antibody discovery is emerging as a viable alternative to traditional in vivo and in vitro approaches. Many challenges, however, remain open to enabling the properties of designed antibodies to match those produced by the immune system. A major question concerns the
[...] Read more.
In silico antibody discovery is emerging as a viable alternative to traditional in vivo and in vitro approaches. Many challenges, however, remain open to enabling the properties of designed antibodies to match those produced by the immune system. A major question concerns the structural features of computer-designed complementarity determining regions (CDRs), including the role of conformational entropy in determining the stability and binding affinity of the designed antibodies. To address this problem, we used enhanced-sampling molecular dynamics simulations to compare the free energy landscapes of single-domain antibodies (sdAbs) designed using structure-based (DesAb-HSA-D3) and sequence-based approaches (DesAbO), with that of a nanobody derived from llama immunization (Nb10). Our results indicate that the CDR3 of DesAbO is more conformationally heterogeneous than those of both DesAb-HSA-D3 and Nb10, and the CDR3 of DesAb-HSA-D3 is slightly more dynamic than that of Nb10, which is the original scaffold used for the design of DesAb-HSA-D3. These differences underline the challenges in the rational design of antibodies by revealing the presence of conformational substates likely to have different binding properties and to generate a high entropic cost upon binding.
Full article
(This article belongs to the Special Issue Protein Folding Stability and Dynamics: Commemorative Issue in Honor of Professor Sir Christopher Dobson (1949–2019))
►▼
Show Figures

Figure 1

Journal Menu
► ▼ Journal Menu-
- Biomolecules Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor's Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Biomolecules, Cancers, Cells, Current Oncology
Advances in Ovarian Cancer Research: From Biology to Therapeutics
Topic Editors: Christina M. Annunziata, Adam R. KarpfDeadline: 31 May 2022
Topic in
Biomolecules, Pathogens, ncRNA
Novel Biomolecules Modulating Innate Immune Responses against Virus Infection
Topic Editors: Renate König, Carsten MünkDeadline: 30 June 2022
Topic in
Biomolecules, BioTech, Genes, ncRNA, Proteomes
Intelligent Computing Unlocks the Molecular Code of Complex Diseases
Topic Editors: Zhu-Hong You, Yangming Li, Haicheng YiDeadline: 30 July 2022
Topic in
Biomolecules, Cancers, Current Oncology, IJMS, Onco
Novel Approaches in Bladder Cancer Treatment
Topic Editors: Roman Blaheta, Beatrice E. BachmeierDeadline: 31 July 2022

Conferences
Special Issues
Special Issue in
Biomolecules
Gaseous Transmitters and Cardiovascular System
Guest Editors: Sona Cacanyiova, Satomi Kagota, Andrea BerenyiovaDeadline: 31 May 2022
Special Issue in
Biomolecules
Intracerebral Hemorrhage: Advances in Preclinical Studies
Guest Editor: Sangeetha Sukumari-RameshDeadline: 15 June 2022
Special Issue in
Biomolecules
Extracellular DNA: More than Just a Biomarker
Guest Editor: Peter CelecDeadline: 30 June 2022
Special Issue in
Biomolecules
Biomolecular Investigations of Alzheimer's Diseases
Guest Editors: Cheil Moon, Keun-A ChangDeadline: 15 July 2022
Topical Collections
Topical Collection in
Biomolecules
Feature Papers in Molecular Genetics
Collection Editor: Jürg Bähler
Topical Collection in
Biomolecules
Feature Papers in Bioinformatics and Systems Biology Section
Collection Editor: Lukasz Kurgan
Topical Collection in
Biomolecules
Molecular Mechanisms of Obesity, Diabetes, Inflammation and Aging
Collection Editors: Yuxiang Sun, Susanne Talcott