- Review
Long-Term PM2.5 Exposure and Clinical Skin Aging: A Systematic Review and Meta-Analysis of Pigmentary and Wrinkle Outcomes
- Jeng-Wei Tjiu and
- Chia-Fang Lu
Background: Fine particulate matter (PM2.5) is an established systemic toxicant, yet its association with clinical skin aging remains incompletely characterized. Although pigmentary changes and wrinkles are commonly attributed to ultraviolet exposure, experimental and epidemiologic evidence suggests that long-term PM2.5 exposure may contribute to extrinsic skin aging through oxidative, inflammatory, and aryl hydrocarbon receptor-mediated pathways. However, human studies specifically quantifying PM2.5 exposure in relation to validated skin aging outcomes are sparse, and no prior meta-analysis has systematically synthesized this evidence. Objective: To conduct a systematic review and meta-analysis of epidemiologic studies reporting measured or modeled long-term PM2.5 exposure and extractable quantitative associations with clinical skin aging outcomes. Methods: We performed a comprehensive PRISMA 2020-guided search of PubMed, Embase, Web of Science, and Scopus (inception to 18 November 2025). Eligible studies included human participants, quantified long-term PM2.5 exposure, validated clinical or imaging-based skin aging outcomes, and extractable effect estimates. Ratio-type effect measures (arithmetic mean ratios, geometric mean ratios, and odds ratios) were transformed to the natural-log scale, standardized to a common exposure contrast of per 10 µg/m3 PM2.5, and synthesized as generic relative association metrics. Random-effects models with DerSimonian–Laird estimation and Hartung–Knapp adjustment were applied for pigmentary outcomes. VISIA imaging β-coefficients were synthesized narratively. Results: Four epidemiologic cohorts met predefined eligibility criteria. From these, we extracted seven PM2.5-specific pigmentary effect estimates, one clinically assessed wrinkle estimate, and two VISIA imaging outcomes. The pooled relative association for pigmentary aging corresponded to a ratio of 1.11 per 10 µg/m3 PM2.5 (95% CI, 0.82–1.50), indicating a directionally positive but statistically imprecise association compatible with both increased and unchanged pigmentary aging. All individual pigmentary estimates were directionally positive. A single cohort reported a 3.2% increase in wrinkle severity per 10 µg/m3 PM2.5 (ratio 1.032). VISIA imaging showed significant worsening of brown spot severity (+9.5 percentile per 10 µg/m3), while wrinkle percentiles showed a non-significant change. Conclusions: Based on a comprehensive PRISMA-guided search, the available epidemiologic evidence suggests a consistent directionally positive association between long-term PM2.5 exposure and pigmentary skin aging outcomes, with limited and uncertain evidence for wrinkle-related phenotypes. The current evidence base remains small, heterogeneous, and of low certainty. Accordingly, these findings should be interpreted as hypothesis-generating and underscore the need for larger, longitudinal, and methodologically harmonized studies. (Registration: PROSPERO CRD420251231462)
30 December 2025








