You are currently viewing a new version of our website. To view the old version click .

Biology

Biology is an international, peer-reviewed, open access journal of biological sciences published semimonthly online by MDPI.
The Spanish Society for Nitrogen Fixation (SEFIN) and Federation of European Laboratory Animal Science Associations (FELASA) are affiliated with Biology and their members receive discounts on the article processing charges.
Indexed in PubMed | Quartile Ranking JCR - Q1 (Biology)

All Articles (8,692)

Manganese (Mn) is a crucial micronutrient for plants. The impaired function of the oxygen-evolving complex in Photosystem II (PSII) due to Mn deficiency is believed to result in the overproduction of reactive oxygen species and the induction of an enzymatic antioxidant system. In our study, we investigated the effects of progressive Mn deficiency (the difference in Mn content between the needles of control and Mn-deficient plants increased from 17-fold at the beginning of the experiment to 59-fold at the end) on the activities of superoxide dismutase (SOD), catalase, ascorbate peroxidase, and guaiacol peroxidase in the roots and needles of Scots pine seedlings. We found that the soluble protein content in plant organs under Mn deficiency was maintained at a level comparable to that of the control. Regardless of the severity of Mn deficiency, the needles of the Mn-deficient plants presented twofold lower SOD activity than the needles of the control plants. These differences were observed even when Mn deficiency did not negatively affect plant growth. Additionally, the total SOD activity in the needles of both plant groups was determined solely by the activity of the Cu/Zn-containing SOD isozymes. Compared with the control plants, Mn deficiency did not result in an increase in any of the studied H2O2-degrading enzymes in the needles of the seedlings. In contrast, the needles of the Mn-deficient plants presented a lower level of guaiacol peroxidase activity. Despite the inhibition of root growth, Mn deficiency led to changes in the balance of the enzymatic antioxidant system in plant roots. The data obtained suggest that the lack of activation of SOD and other antioxidant enzymes in Scots pine seedlings against the background of progressive Mn deficiency is due to the reduced ability of PSII to generate ROS under these conditions.

4 January 2026

Dry weight (A,B) and dry matter content (C,D) of the organs of Scots pine seedlings: needles (A,C) and roots (B,D). The mean values ± SEs are given (n = 6–12). Different letters (capital for the control and lowercase for Mn-deficient) indicate significant differences between time points (p < 0.05) according to ANOVA followed by Duncan’s post hoc test (regular letters) or by Student–Newman–Keuls post hoc test (italic letters). Pairwise comparisons of the means with controls at corresponding time points were performed using Student’s t-test for normally distributed data (significant differences at p < 0.05 denoted by asterisks (*)) or the Mann–Whitney rank sum test when the t-test was not applicable (significant differences at p < 0.05 denoted by multiplication symbols (×)).

Wildlife conservation and the management of biological resources face unprecedented challenges in the Anthropocene [...]

5 January 2026

Niclosamide has been the primary molluscicide for schistosomiasis control for over 50 years, but its chronic effects on inter-organ interactions in non-target mollusks remain poorly understood. Cipangopaludina cathayensis, a dominant species in East Asian schistosomiasis-endemic regions, was chronically exposed to environmentally relevant concentrations of niclosamide to assess its toxic effects. Digestive glands accumulated more niclosamide than the foot tissues. Prolonged exposure was associated with metabolic impairment of the digestive glands, characterized by tubular atrophy, inflammatory reactions, and depletion of nutrient components. Foot tissues exhibited epithelial lesions and muscle fiber atrophy. Alterations in foot structure were associated with changes in digestive gland nutrient status. Niclosamide exposure may weaken the metabolic coupling between these organs, thereby impairing locomotor function. At the population level, persistent niclosamide exposure may destabilize mollusk trophic-level populations, ultimately leading to ecological consequences. Our findings demonstrate the toxicological risks of niclosamide to freshwater mollusks.

4 January 2026

The Kazakh horse is an outstanding dual-purpose dairy and meat breed in China, characterized by early maturity, tolerance to coarse feed, and strong stress resistance. Previous studies have examined gene expression patterns in the testicular tissues of Kazakh horses at different age stages, but the molecular mechanisms regulating testicular sexual maturation remain unclear. To address this gap, this study conducted HE staining and in-depth transcriptome sequencing analysis of Kazakh horse testicular tissue before and after sexual maturity. HE staining showed that the G3 group had well-formed seminiferous tubule lumens, dense interstitial cells, and visible early spermatocytes and spermatozoa, indicating structural maturation. (G1 group: pre-sexual maturity; G3 group: post-sexual maturity), with four biological replicates per group (n = 4). Differentially expressed genes (DEGs) were called using the criteria of |log2(fold change)| ≥ 1.5 and adjusted p-value ≤ 0.05. A total of 3054 differentially expressed genes (DEGs), including CABS1, RPL10, PGAM2, TMSB4X, and CYP17A1, were identified in the G1 and G3 groups. Among these, 402 genes showed upregulation and 2652 genes showed downregulation. GO annotation and KEGG enrichment analysis of DEGs revealed their predominant enrichment in the following categories: signaling pathways such as Focal adhesion, Pathways in cancer, and the PI3K-Akt signaling pathway. RT-qPCR validation confirmed the accuracy of the transcriptomic sequencing data. This study further elucidates the differentially expressed genes and associated signaling pathways in Kazakh stallion testes tissue before and after sexual maturity, providing a theoretical foundation and data reference for enhancing reproductive efficiency in equids and promoting biological processes such as testes development and spermatogenesis.

4 January 2026

News & Conferences

Issues

Open for Submission

Editor's Choice

Reprints of Collections

Editorial Board Members' Collection Series
Reprint

Editorial Board Members' Collection Series

“Biodiversity and Ecosystem Function under Global Change”
Editors: Shucun Sun, Panayiotis G. Dimitrakopoulos
Biology, Ecology and Management of Aquatic Macrophytes and Algae
Reprint

Biology, Ecology and Management of Aquatic Macrophytes and Algae

Editors: Jinlin Liu, Shuang Zhao, Wei Liu

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Biology - ISSN 2079-7737