-
Multiple Alternatives of Offset Boosting in a Symmetric Hyperchaotic Map -
Jacobi and Lyapunov Stability Analysis of Circular Geodesics around a Spherically Symmetric Dilaton Black Hole -
Classification of Blood Rheological Models through an Idealized Symmetrical Bifurcation -
Metamaterial with Tunable Positive and Negative Hygrothermal Expansion Inspired by a Four-Fold Symmetrical Islamic Motif -
Potentials from the Polynomial Solutions of the Confluent Heun Equation
Journal Description
Symmetry
Symmetry
is an international, peer-reviewed, open access journal covering research on symmetry/asymmetry phenomena wherever they occur in all aspects of natural sciences. Symmetry is published monthly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), CAPlus / SciFinder, Inspec, Astrophysics Data System, and other databases.
- Journal Rank: JCR - Q2 (Multidisciplinary Sciences) / CiteScore - Q1 (General Mathematics)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 14.2 days after submission; acceptance to publication is undertaken in 4.7 days (median values for papers published in this journal in the second half of 2022).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
- Sections: published in 6 topical sections.
- Testimonials: See what our editors and authors say about Symmetry.
Impact Factor:
2.940 (2021);
5-Year Impact Factor:
2.834 (2021)
Latest Articles
Classical Solutions for the Generalized Kawahara–KdV System
Symmetry 2023, 15(6), 1159; https://doi.org/10.3390/sym15061159 (registering DOI) - 26 May 2023
Abstract
In this article, we investigate the generalized Kawahara–KdV system. A new topological approach is applied to prove the existence of at least one classical solution and at least two non-negative classical solutions. The arguments are based upon recent theoretical results.
Full article
(This article belongs to the Special Issue Advanced Symmetry Methods for Dynamics, Control, Optimization and Applications in 2023)
Open AccessArticle
Variable Step Size Methods of the Hybrid Affine Projection Adaptive Filtering Algorithm under Symmetrical Non-Gaussian Noise
Symmetry 2023, 15(6), 1158; https://doi.org/10.3390/sym15061158 (registering DOI) - 26 May 2023
Abstract
The idea of variable step-size was introduced into the Hybrid Affine Projection Algorithm (H-APA) and we propose two variable step size algorithms based on H-APA, which are called the Variable Step-Size Hybrid Affine Projection Algorithm (VSS-H-APA) and the Modified Variable Step-Size Hybrid Affine
[...] Read more.
The idea of variable step-size was introduced into the Hybrid Affine Projection Algorithm (H-APA) and we propose two variable step size algorithms based on H-APA, which are called the Variable Step-Size Hybrid Affine Projection Algorithm (VSS-H-APA) and the Modified Variable Step-Size Hybrid Affine Projection Algorithm (MVSS-H-APA). These are two variable-step algorithms aim to further improve the robust performance and convergence speed of H-APA under non-Gaussian noise. This allows for faster convergence while maintaining stability. The MVSS-H-APA goes further than VSS-H-APA to estimate the noise in order to achieve better convergence performance. The proposed algorithm performs better than the existing algorithms in system identification under symmetric non-Gaussian noise.
Full article
(This article belongs to the Special Issue Advanced Technologies in Electrical and Electronic Engineering III)
►▼
Show Figures

Figure 1
Open AccessArticle
Calibration Estimation of Cumulative Distribution Function Using Robust Measures
by
, , , , , and
Symmetry 2023, 15(6), 1157; https://doi.org/10.3390/sym15061157 (registering DOI) - 26 May 2023
Abstract
Outliers are observations that are significantly different from the other observations in a dataset. These types of observations are asymmetric in nature due to a lack of symmetry. The estimation of the cumulative distribution function (CDF) is an important statistical measure commonly discussed
[...] Read more.
Outliers are observations that are significantly different from the other observations in a dataset. These types of observations are asymmetric in nature due to a lack of symmetry. The estimation of the cumulative distribution function (CDF) is an important statistical measure commonly discussed for symmetric datasets. However, the estimation of the CDF in the case of the asymmetric nature of the dataset is not a much-explored topic. In this article, we use calibration methodology with auxiliary information for modifying the traditional stratification weight, and hence, we obtain efficient estimates of the CDF using robust measures, i.e., mid-range and tri-mean, under the different distance functions. A simulation study is carried out to see the performance of proposed and existing estimators using asymmetric real-life datasets.
Full article
(This article belongs to the Section Mathematics and Symmetry/Asymmetry)
►▼
Show Figures

Figure 1
Open AccessArticle
Estimation of Ricci Curvature for Hemi-Slant Warped Product Submanifolds of Generalized Complex Space Forms and Their Applications
Symmetry 2023, 15(6), 1156; https://doi.org/10.3390/sym15061156 (registering DOI) - 26 May 2023
Abstract
In this paper, we estimate Ricci curvature inequalities for a hemi-slant warped product submanifold immersed isometrically in a generalized complex space form with a nearly Kaehler structure, and the equality cases are also discussed. Moreover, we also gave the equivalent version of these
[...] Read more.
In this paper, we estimate Ricci curvature inequalities for a hemi-slant warped product submanifold immersed isometrically in a generalized complex space form with a nearly Kaehler structure, and the equality cases are also discussed. Moreover, we also gave the equivalent version of these inequalities. In a later study, we will exhibit the application of differential equations to the acquired results. In fact, we prove that the base manifold is isometric to Euclidean space under a specific condition.
Full article
(This article belongs to the Special Issue Symmetry and Its Application in Differential Geometry and Topology II)
Open AccessArticle
An Asymmetric Collision-Free Optimal Trajectory Planning Method for Three DOF Industrial Robotic Arms
Symmetry 2023, 15(6), 1155; https://doi.org/10.3390/sym15061155 (registering DOI) - 26 May 2023
Abstract
To improve the speed and dynamic adaptability of robotic arm trajectory planning, a collision-free optimal trajectory planning method combining non-uniform adaptive time meshing and bounding box collision detection was proposed. First, the dynamics and objective function of the asymmetric industrial robotic arm with
[...] Read more.
To improve the speed and dynamic adaptability of robotic arm trajectory planning, a collision-free optimal trajectory planning method combining non-uniform adaptive time meshing and bounding box collision detection was proposed. First, the dynamics and objective function of the asymmetric industrial robotic arm with three degrees of freedom (DOF) was formulated in the form of the dynamic optimization problem. Second, the control vector parameterization (CVP) was improved to enhance the computational performance of the problem. The discrete grid was adaptively adjusted according the trend of control variables. Then, a quick and effective collision detection strategy was used to avoid obstacles and to speed up calculation efficiency. The non-collision constraint is built by transforming the collision detection into the distance between two points, and then is combined into the dynamic optimization problem. The solution of the new optimization problem with the improved CVP leads to the higher calculation performance and the avoidance of obstacles. Lastly, the Siemens Manutec R3 robotic arm is taken as an example to verify the effectiveness of the planning method. The approach not only reduces computation time but also maintains accurate calculations, so that optimal trajectory can be selected from symmetric paths near the obstacles. When weights were set as λ1 = λ2 = 0.5, the solution efficiency was improved by 33%, and the minimum distance between the robotic arm and obstacle could be 0.08 m, which ensured that there was no collision.
Full article
(This article belongs to the Section Engineering Science and Symmetry/Asymmetry)
►▼
Show Figures

Figure 1
Open AccessReview
Symmetries and Asymmetries in Branching Processes
by
Symmetry 2023, 15(6), 1154; https://doi.org/10.3390/sym15061154 (registering DOI) - 26 May 2023
Abstract
As is known in stochastic particle theory, the same random process can be described by two different master equations for the evolution of the probability density, namely, by a forward or a backward master equation. These are the generalised analogues of the direct
[...] Read more.
As is known in stochastic particle theory, the same random process can be described by two different master equations for the evolution of the probability density, namely, by a forward or a backward master equation. These are the generalised analogues of the direct and adjoint equations of traditional transport theory. At the level of the first moment, these two equations show considerable resemblance to each other, but they become increasingly different with increasing moment order. The purpose of this paper is to demonstrate this increasing asymmetry and to discuss the underlying reasons. It is argued that since the reason of the different forms of the forward and the backward equations lies in the lack of invariance of the process to time reversal, the reason for the increasing asymmetry between the two forms for higher-order moments or processes with several variables (particle types) can be related to the increasing level of the violation of the invariance to time reversal, as is illustrated with some examples.
Full article
(This article belongs to the Special Issue Symmetry in Statistical Mechanics and Complex Dynamical Systems)
Open AccessArticle
The Solitary Solutions for the Stochastic Jimbo–Miwa Equation Perturbed by White Noise
Symmetry 2023, 15(6), 1153; https://doi.org/10.3390/sym15061153 - 26 May 2023
Abstract
We study the (3+1)-dimensional stochastic Jimbo–Miwa (SJM) equation induced by multiplicative white noise in the Itô sense. We employ the Riccati equation mapping and He’s semi-inverse techniques to provide trigonometric, hyperbolic, and rational function solutions of SJME. Due to the applications of the
[...] Read more.
We study the (3+1)-dimensional stochastic Jimbo–Miwa (SJM) equation induced by multiplicative white noise in the Itô sense. We employ the Riccati equation mapping and He’s semi-inverse techniques to provide trigonometric, hyperbolic, and rational function solutions of SJME. Due to the applications of the Jimbo–Miwa equation in ocean studies and other disciplines, the acquired solutions may explain numerous fascinating physical phenomena. Using a variety of 2D and 3D diagrams, we illustrate how white noise influences the analytical solutions of SJM equation. We deduce that the noise destroys the symmetry of the solutions of SJM equation and stabilizes them at zero.
Full article
(This article belongs to the Special Issue Partial Differential Equations and Their Applications in Nonlinear Optics)
►▼
Show Figures

Figure 1
Open AccessArticle
Performance Analysis of Coherent Source SAC OCDMA in Free Space Optical Communication Systems
by
, , , , , and
Symmetry 2023, 15(6), 1152; https://doi.org/10.3390/sym15061152 - 26 May 2023
Abstract
In this paper, we investigate the performance of spectral amplitude coding optical code division multiple access (SAC OCDMA) systems under the effect of beat noise and turbulence. Three different multi-laser source configurations are considered in this analysis: shared multi-laser, separate multi-laser, and carefully
[...] Read more.
In this paper, we investigate the performance of spectral amplitude coding optical code division multiple access (SAC OCDMA) systems under the effect of beat noise and turbulence. Three different multi-laser source configurations are considered in this analysis: shared multi-laser, separate multi-laser, and carefully controlled center frequency separate multi-laser. We demonstrate through Monte Carlo simulation that the gamma–gamma probability density function (pdf) cannot adequately approximate the measured intensity of overlapping lasers and that an empirical pdf is required. Results also show it is possible to achieve error-free transmission at a symmetrical data rate of 10 Gbps for all active users when only beat noise is taken into account by precisely controlling the center frequencies. However, only 30% of the active users can be supported when both beat noise and turbulence are considered.
Full article
(This article belongs to the Special Issue Asymmetric and Symmetric Study in Optics, Photonics and Optoelectronics)
►▼
Show Figures

Figure 1
Open AccessArticle
A Symmetry Chaotic Model with Fractional Derivative Order via Two Different Methods
Symmetry 2023, 15(6), 1151; https://doi.org/10.3390/sym15061151 - 25 May 2023
Abstract
In this article, we have investigated solutions to a symmetry chaotic system with fractional derivative order using two different methods—the numerical scheme for the ABC fractional derivative, and the Laplace decomposition method, with help from the MATLAB and Mathematica platforms. We have explored
[...] Read more.
In this article, we have investigated solutions to a symmetry chaotic system with fractional derivative order using two different methods—the numerical scheme for the ABC fractional derivative, and the Laplace decomposition method, with help from the MATLAB and Mathematica platforms. We have explored progressive and efficient solutions to the chaotic model through the successful implementation of two mathematical methods. For the phase portrait of the model, the profiles of chaos are plotted by assigning values to the attached parameters. Hence, the offered techniques are relevant for advanced studies on other models. We believe that the unique techniques that have been proposed in this study will be applied in the future to build and simulate a wide range of fractional models, which can be used to address more challenging physics and engineering problems.
Full article
(This article belongs to the Special Issue Symmetry in Computational and Mathematical Methods of Fractional Calculus)
►▼
Show Figures

Figure 1
Open AccessArticle
Quark Matter at High Baryon Density, Conformality and Quarkyonic Matter
Symmetry 2023, 15(6), 1150; https://doi.org/10.3390/sym15061150 - 25 May 2023
Abstract
This paper discusses high-baryon-density quarkyonic matter in the context of recent observations concerning neutron stars and the qualitative reasons why quarkyonic matter explains certain features of the equation of state that arises from these observations. The paper then provides a qualitative discussion of
[...] Read more.
This paper discusses high-baryon-density quarkyonic matter in the context of recent observations concerning neutron stars and the qualitative reasons why quarkyonic matter explains certain features of the equation of state that arises from these observations. The paper then provides a qualitative discussion of the quarkyonic hypotheses, and the essential features of quarkyonic matter that explain the outstanding features of the equation of state.
Full article
(This article belongs to the Special Issue Heavy-Ion Collisions and Multiparticle Production)
►▼
Show Figures

Figure 1
Open AccessArticle
Phenotypic Selection on Flower Traits in Food-Deceptive Plant Iris pumila L.: The Role of Pollinators
Symmetry 2023, 15(6), 1149; https://doi.org/10.3390/sym15061149 - 25 May 2023
Abstract
To gain insight into the evolution of flower traits in the generalized food-deceptive plant Iris pumila, we assessed the color, size, shape, and fluctuating asymmetry (FA) of three functionally distinct floral organs—outer perianths (‘falls’), inner perianths (‘standards’), and style branches—and estimated pollinator-mediated
[...] Read more.
To gain insight into the evolution of flower traits in the generalized food-deceptive plant Iris pumila, we assessed the color, size, shape, and fluctuating asymmetry (FA) of three functionally distinct floral organs—outer perianths (‘falls’), inner perianths (‘standards’), and style branches—and estimated pollinator-mediated selection on these traits. We evaluated the perianth color as the achromatic brightness of the fall, measured the flower stem height, and analyzed the floral organ size, shape, and FA using geometric morphometrics. Pollinated flowers had significantly higher brightness, longer flower stems, and larger floral organs compared to non-pollinated flowers. The shape and FA of the floral organs did not differ, except for the fall FA, where higher values were found for falls of pollinated flowers. Pollinator-mediated selection was confirmed for flower stem height and for subtle changes in the shape of the fall and style branch—organs that form the pollination tunnel. This study provides evidence that, although all analyzed flower traits play significant roles in pollinator attraction, flower stem height and pollination tunnel shape evolved under the pollinator-mediated selection, whereas achromatic brightness, size, and symmetry of floral organs did not directly affect pollination success.
Full article
(This article belongs to the Special Issue Fluctuating Asymmetry in Evolutionary Biology)
►▼
Show Figures

Figure 1
Open AccessArticle
Magnetohydrodynamic and Thermal Performance of Electrically Conducting Fluid along the Symmetrical and Vertical Magnetic Plate with Thermal Slip and Velocity Slip Effects
Symmetry 2023, 15(6), 1148; https://doi.org/10.3390/sym15061148 - 25 May 2023
Abstract
Numerical and physical simulations of the magnetohydrodynamic mixed convective flow of electrically conducting fluid along avertical magnetized and symmetrically heated plate with slip velocity and thermal slip effects have been performed. The novelty of the present work is to evaluate heat transfer and
[...] Read more.
Numerical and physical simulations of the magnetohydrodynamic mixed convective flow of electrically conducting fluid along avertical magnetized and symmetrically heated plate with slip velocity and thermal slip effects have been performed. The novelty of the present work is to evaluate heat transfer and magnetic flux along the symmetrically magnetized plate with thermal and velocity slip effects. For a smooth algorithm and integration, the linked partial differential equations of the existing fluid flow system are converted into coupled nonlinear ordinary differential equations with specified streaming features and similarity components. By employing the Keller Box strategy, the modified ordinary differential equations (ODEs) are again translated in a suitable format for numerical results. The MATLAB software is used to compute the numerical results, which are then displayed in graphical and tabular form. The influence of several governing parameters on velocity, temperature distribution and magnetic fields in addition to the friction quantity, magnetic flux and heat transfer quantity has been explored. Computational evaluation is performed along the symmetrically heated plate to evaluate the velocity, magnetic field, and temperature together with their gradients. The selection of the magnetic force element, the buoyancy factor , and the Prandtl parameter range were used to set the impacts of magnetic energy and diffusion, respectively. In the domains of magnetic resonance imaging (MRI), artificial heart wolves, interior heart cavities, and nanoburning systems, the present thermodynamic and magnetohydrodynamic issuesare significant.
Full article
(This article belongs to the Special Issue Magnetohydrodynamics and Symmetry: Theory, Methods, and Applications)
►▼
Show Figures

Figure 1
Open AccessReview
Security Concepts in Emerging 6G Communication: Threats, Countermeasures, Authentication Techniques and Research Directions
Symmetry 2023, 15(6), 1147; https://doi.org/10.3390/sym15061147 - 25 May 2023
Abstract
Challenges faced in network security have significantly steered the deployment timeline of Fifth Generation (5G) communication at a global level; therefore, research in Sixth Generation (6G) security analysis is profoundly necessitated. The prerogative of this paper is to present a survey on the
[...] Read more.
Challenges faced in network security have significantly steered the deployment timeline of Fifth Generation (5G) communication at a global level; therefore, research in Sixth Generation (6G) security analysis is profoundly necessitated. The prerogative of this paper is to present a survey on the emerging 6G cellular communication paradigm to highlight symmetry with legacy security concepts along with asymmetric innovative aspects such Artificial Intelligence (AI), Quantum Computing, Federated Learning, etc. We present a taxonomy of the threat model in 6G communication in five security legacy concepts, including Confidentiality, Integrity, Availability, Authentication and Access control (CIA3). We also suggest categorization of threat-countering techniques specific to 6G communication into three types: cryptographic methods, entity attributes and Intrusion Detection System (IDS). Thus, with this premise, we distributed the authentication techniques in eight types, including handover authentication, mutual authentication, physical layer authentication, deniable authentication, token-based authentication, certificate-based authentication, key agreement-based authentication and multi-factor authentication. We specifically suggested a series of future research directions at the conclusive edge of this survey.
Full article
(This article belongs to the Special Issue The Study of Network Security and Symmetry)
►▼
Show Figures

Figure 1
Open AccessArticle
Explicit K-Symplectic and Symplectic-like Methods for Charged Particle System in General Magnetic Field
Symmetry 2023, 15(6), 1146; https://doi.org/10.3390/sym15061146 - 25 May 2023
Abstract
►▼
Show Figures
We propose explicit K-symplectic and explicit symplectic-like methods for the charged particle system in a general strong magnetic field. The K-symplectic methods are also symmetric. The charged particle system can be expressed both in a canonical and a non-canonical Hamiltonian system. If the
[...] Read more.
We propose explicit K-symplectic and explicit symplectic-like methods for the charged particle system in a general strong magnetic field. The K-symplectic methods are also symmetric. The charged particle system can be expressed both in a canonical and a non-canonical Hamiltonian system. If the three components of the magnetic field can be integrated in closed forms, we construct explicit K-symplectic methods for the non-canonical charged particle system; otherwise, explicit symplectic-like methods can be constructed for the canonical charged particle system. The symplectic-like methods are constructed by extending the original phase space and obtaining the augmented separable Hamiltonian, and then by using the splitting method and the midpoint permutation. The numerical experiments have shown that compared with the higher order implicit Runge-Kutta method, the explicit K-symplectic and explicit symplectic-like methods have obvious advantages in long-term energy conservation and higher computational efficiency. It is also shown that the influence of the parameter in the general strong magnetic field on the Runge-Kutta method is bigger than the two kinds of symplectic methods.
Full article

Figure 1
Open AccessArticle
Cubic Chemical Autocatalysis and Oblique Magneto Dipole Effectiveness on Cross Nanofluid Flow via a Symmetric Stretchable Wedge
by
, , , , and
Symmetry 2023, 15(6), 1145; https://doi.org/10.3390/sym15061145 - 24 May 2023
Abstract
Exploration related to chemical processes in nanomaterial flows contains astonishing features. Nanoparticles have unique physical and chemical properties, so they are continuously used in almost every field of nanotechnology and nanoscience. The motive behind this article is to investigate the Cross nanofluid model
[...] Read more.
Exploration related to chemical processes in nanomaterial flows contains astonishing features. Nanoparticles have unique physical and chemical properties, so they are continuously used in almost every field of nanotechnology and nanoscience. The motive behind this article is to investigate the Cross nanofluid model along with its chemical processes via auto catalysts, inclined magnetic field phenomena, heat generation, Brownian movement, and thermophoresis phenomena over a symmetric shrinking (stretching) wedge. The transport of heat via nonuniform heat sources/sinks, the impact of thermophoretic diffusion, and Brownian motion are considered. The Buongiorno nanofluid model is used to investigate the impact of nanofluids on fluid flow. Modeled PDEs are transformed into ODEs by utilizing similarity variables and handling dimensionless ODEs numerically with the adoption of MATLAB’s developed bvp4c technique. This software performs a finite difference method that uses the collocation method with a three-stage LobattoIIIA strategy. Obtained outcomes are strictly for the case of a symmetric wedge. The velocity field lessens due to amplification in the magneto field variable. Fluid temperature is amplified through the enhancement of Brownian diffusion and the concentration field improves under magnification in a homogeneous reaction effect.
Full article
(This article belongs to the Special Issue Advances in Heat and Mass Transfer with Symmetry)
►▼
Show Figures

Figure 1
Open AccessArticle
New Numerical Results on Existence of Volterra–Fredholm Integral Equation of Nonlinear Boundary Integro-Differential Type
by
, , , , and
Symmetry 2023, 15(6), 1144; https://doi.org/10.3390/sym15061144 - 24 May 2023
Abstract
Symmetry is presented in many works involving differential and integral equations. Whenever a human is involved in the design of an integral equation, they naturally tend to opt for symmetric features. The most common examples are the Green functions and linguistic kernels that
[...] Read more.
Symmetry is presented in many works involving differential and integral equations. Whenever a human is involved in the design of an integral equation, they naturally tend to opt for symmetric features. The most common examples are the Green functions and linguistic kernels that are often designed symmetrically and regularly distributed over the universe of discourse. In the current study, the authors report a study on boundary value problem (BVP) for a nonlinear integro Volterra–Fredholm integral equation with variable coefficients and show the existence of solution by applying some fixed-point theorems. The authors employ various numerical common approaches as the homotopy analysis methodology established by Liao and the modified Adomain decomposition technique to produce a numerical approximate solution, then graphical depiction reveals that both methods are most effective and convenient. In this regard, the authors address the requirements that ensure the existence and uniqueness of the solution for various variations of nonlinearity power. The authors also show numerical examples of how to apply our primary theorems and test the convergence and validity of our suggested approach.
Full article
(This article belongs to the Special Issue Asymmetric and Symmetric Study on Number Theory and Cryptography)
►▼
Show Figures

Figure 1
Open AccessArticle
General Time-Symmetric Mean-Field Forward-Backward Doubly Stochastic Differential Equations
Symmetry 2023, 15(6), 1143; https://doi.org/10.3390/sym15061143 - 24 May 2023
Abstract
In this paper, a general class of time-symmetric mean-field stochastic systems, namely the so-called mean-field forward-backward doubly stochastic differential equations (mean-field FBDSDEs, in short) are studied, where coefficients depend not only on the solution processes but also on their law. We first verify
[...] Read more.
In this paper, a general class of time-symmetric mean-field stochastic systems, namely the so-called mean-field forward-backward doubly stochastic differential equations (mean-field FBDSDEs, in short) are studied, where coefficients depend not only on the solution processes but also on their law. We first verify the existence and uniqueness of solutions for the forward equation of general mean-field FBDSDEs under Lipschitz conditions, and we obtain the associated comparison theorem; similarly, we also verify those results about the backward equation. As the above two comparison theorems’ application, we prove the existence of the maximal solution for general mean-field FBDSDEs under some much weaker monotone continuity conditions. Furthermore, under appropriate assumptions we prove the uniqueness of the solution for the equations. Finally, we also obtain a comparison theorem for coupled general mean-field FBDSDEs.
Full article
(This article belongs to the Special Issue Stochastic Differential Equations: Theory, Methods, and Applications)
►▼
Show Figures

Figure 1
Open AccessArticle
Contralateral Asymmetry in Cycling Power Is Reproducible and Independent of Exercise Intensity at Submaximal Power Outputs
Symmetry 2023, 15(6), 1142; https://doi.org/10.3390/sym15061142 - 24 May 2023
Abstract
The purpose of the current investigation was to examine the effects of exercise intensity on asymmetry in pedal forces when the accumulation of fatigue is controlled for, and to assess the reliability of asymmetry outcomes during cycling. Participants completed an incremental cycling test
[...] Read more.
The purpose of the current investigation was to examine the effects of exercise intensity on asymmetry in pedal forces when the accumulation of fatigue is controlled for, and to assess the reliability of asymmetry outcomes during cycling. Participants completed an incremental cycling test to determine maximal oxygen consumption and the power that elicited maximal oxygen consumption (pVO2max). Participants were allotted 30 min of recovery before then cycling at 60%, 70%, 80%, and 90% of pVO2max for 3 min each, with 5 min of active recovery between each intensity. Participants returned to the laboratory on separate days to repeat all measures. A two-way repeated measures analysis of variance (ANOVA) was utilized to detect differences in power production AI at each of the submaximal exercise intensities and between Trials 1 and 2. Intraclass correlations were utilized to assess the test–retest reliability for the power production asymmetry index (AI). An ANOVA revealed no significant intensity–visit interactions for the power production AI (f = 0.835, p = 0.485, η2 = 0.077), with no significant main effects present. ICC indicated excellent reliability in the power production AI at all intensities. Exercise intensity did not appear to affect asymmetry in pedal forces, while excellent reliability was observed in asymmetry outcomes.
Full article
(This article belongs to the Special Issue Symmetry and Asymmetry in Sport Sciences)
►▼
Show Figures

Figure 1
Open AccessArticle
Chandrasekhar Mass Limit of White Dwarfs in Modified Gravity
Symmetry 2023, 15(6), 1141; https://doi.org/10.3390/sym15061141 - 24 May 2023
Abstract
We investigate the Chandrasekhar mass limit of white dwarfs in various models of gravity. Two equations of state for stellar matter are used: the simple relativistic polytropic equation with polytropic index and the realistic Chandrasekhar equation
[...] Read more.
We investigate the Chandrasekhar mass limit of white dwarfs in various models of gravity. Two equations of state for stellar matter are used: the simple relativistic polytropic equation with polytropic index and the realistic Chandrasekhar equation of state. For calculations, it is convenient to use the equivalent scalar–tensor theory in the Einstein frame and then to return to the Jordan frame picture. For white dwarfs, we can neglect terms containing relativistic effects from General Relativity and we consider the reduced system of equations. Its solution for any model of ( , ) gravity leads to the conclusion that the stellar mass decreases in comparison with standard General Relativity. For realistic equations of state, we find that there is a value of the central density for which the mass of a white dwarf peaks. Therefore, in frames of modified gravity, there is a lower limit on the radius of stable white dwarfs, and this minimal radius is greater than in General Relativity. We also investigate the behavior of the Chandrasekhar mass limit in gravity.
Full article
(This article belongs to the Special Issue Physics and Symmetry Section: Feature Papers 2022)
►▼
Show Figures

Figure 1
Open AccessArticle
On Disks Enclosed by Smooth Jordan Curves
by
and
Symmetry 2023, 15(6), 1140; https://doi.org/10.3390/sym15061140 - 24 May 2023
Abstract
Given a smooth-plane Jordan curve with bounded absolute curvature , we determine equivalence classes of distinctive disks of radius included in both plane regions separated by the curve. The bound on absolute curvature leads to a completely
[...] Read more.
Given a smooth-plane Jordan curve with bounded absolute curvature , we determine equivalence classes of distinctive disks of radius included in both plane regions separated by the curve. The bound on absolute curvature leads to a completely symmetric trajectory behaviour with respect to the curve turning. These lead to a decomposition of the plane into a finite number of maximal regions with respect to set inclusion leading to natural lower bounds for the length an area enclosed by the curve. We present a “half version” of the Pestov–Ionin theorem, and subsequently a generalisation of the classical Blaschke rolling disk theorem. An interesting consequence is that we describe geometric conditions relying exclusively on curvature and independent of any kind of convexity that allows us to give necessary and sufficient conditions for the existence of families of rolling disks for planar domains that are not necessarily convex. We expect this approach would lead to further generalisations as, for example, characterising volumetric objects in closed surfaces as first studied by Lagunov. Although this is a classical problem in differential geometry, recent developments in industrial manufacturing when cutting along some prescribed shapes on prescribed materials have revived the necessity of a deeper understanding on disks enclosed by sufficiently smooth Jordan curves.
Full article
(This article belongs to the Special Issue Symmetry/Asymmetry: Differential Geometry and Its Applications)
►▼
Show Figures

Figure 1
Journal Menu
► ▼ Journal Menu-
- Symmetry Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Entropy, Fractal Fract, Dynamics, Symmetry, Algorithms
Recent Trends in Nonlinear, Chaotic and Complex Systems
Topic Editors: Christos Volos, Karthikeyan Rajagopal, Sajad Jafari, Jacques Kengne, Jesus M. Munoz-PachecoDeadline: 31 May 2023
Topic in
Entropy, Fractal Fract, Dynamics, Symmetry
Complexity Descriptors from Different Disciplines: Links and Applications
Topic Editors: Jean-Marc Girault, Tuan D. PhamDeadline: 30 June 2023
Topic in
Antioxidants, Cells, IJMS, JMP, Magnetism, Microorganisms, Symmetry
Magnetobiology and Magnetomedicine
Topic Editors: Xin Zhang, Vitalii ZablotskiiDeadline: 3 August 2023
Topic in
Mathematics, Applied Sciences, Electronics, Healthcare, Symmetry
Recent Advances in Computational Optimization Techniques and Their Modern Applications for Smart HealthCare
Topic Editors: Mohd Dilshad Ansari, Mohd Fauzi Bin Othman, Jawad Rasheed, Mazdak ZamaniDeadline: 20 August 2023
Conferences
27 October–10 November 2023
The 4th International Electronic Conference on Applied Sciences (ASEC2023)

Special Issues
Special Issue in
Symmetry
Symmetry in Biophysics
Guest Editor: Vsevolod A. TverdislovDeadline: 31 May 2023
Special Issue in
Symmetry
Iterative Numerical Functional Analysis with Applications II
Guest Editor: Ioannis K. ArgyrosDeadline: 15 June 2023
Special Issue in
Symmetry
Cosmoparticle Physics - dedicated to A.D.Sakharov's 100 Anniversary
Guest Editor: Maxim Y. KhlopovDeadline: 30 June 2023
Special Issue in
Symmetry
Physics and Symmetries of Commutative and Noncommutative Quantum Field Theory
Guest Editor: Tajron JurićDeadline: 14 July 2023
Topical Collections
Topical Collection in
Symmetry
Symmetry in Ordinary and Partial Differential Equations and Applications
Collection Editor: Calogero Vetro


