- Article
PS-InSAR Monitoring Integrated with a Bayesian-Optimized CNN–LSTM for Predicting Surface Subsidence in Complex Mining Goafs Under a Symmetry Perspective
- Tianlong Su,
- Linxin Zhang and
- Xuzhao Yuan
- + 5 authors
Mine-induced surface subsidence threatens infrastructure and can trigger cascading geohazards, so accurate and computationally efficient monitoring and forecasting are essential for early warning. We integrate Persistent Scatterer InSAR (PS-InSAR) time series with a Bayesian-optimized CNN–LSTM designed for spatiotemporal prediction. The CNN extracts spatial deformation patterns, the LSTM models temporal dependence, and Bayesian optimization selects the architecture, training hyperparameters, and the most informative exogenous drivers. Groundwater level and backfilling intensity are encoded as multichannel inputs. Endpoint anchoring with affine calibration aligns the historical series and the forward projections. PS-InSAR indicates a maximum subsidence rate of 85.6 mm yr−1, and the estimates are corroborated against nearby leveling benchmarks and FLAC3D simulations. Cross-site comparisons show acceleration followed by deceleration after backfilling and groundwater recovery, which is consistent with geological engineering conditions. A symmetry-aware preprocessing step exploits axial regularities of the deformation field through mirroring augmentation and documents symmetry-breaking hotspots linked to geological heterogeneity. These choices improve generalization to shifted and oscillatory patterns in both the spatial CNN and the temporal LSTM branches. Short-term forecasts from the BO–CNN–LSTM indicate subsequent stabilization with localized rebound, highlighting its practical value for operational planning and risk mitigation. The framework combines automated hyperparameter search with physically consistent objectives, reduces manual tuning, enhances reproducibility and generalizability, and provides a transferable quantitative workflow for forecasting mine-induced deformation in complex goaf systems.
14 December 2025




