- Review
Mathematical Modeling Techniques in Virtual Reality Technologies: An Integrated Review of Physical Simulation, Spatial Analysis, and Interface Implementation
- Junhyeok Lee,
- Yong-Hyuk Kim and
- Kang Hoon Lee
Virtual reality (VR) has emerged as a complex technological domain that demands high levels of realism and interactivity. At the core of this immersive experience lies a broad spectrum of mathematical modeling techniques. This survey explores how mathematical foundations support and enhance key VR components, including physical simulations, 3D spatial analysis, rendering pipelines, and user interactions. We review differential equations and numerical integration methods (e.g., Euler, Verlet, Runge–Kutta (RK4)) used to simulate dynamic environments, as well as geometric transformations and coordinate systems that enable seamless motion and viewpoint control. The paper also examines the mathematical underpinnings of real-time rendering processes and interaction models involving collision detection and feedback prediction. In addition, recent developments such as physics-informed neural networks, differentiable rendering, and neural scene representations are presented as emerging trends bridging classical mathematics and data-driven approaches. By organizing these elements into a coherent mathematical framework, this work aims to provide researchers and developers with a comprehensive reference for applying mathematical techniques in VR systems. The paper concludes by outlining the open challenges in balancing accuracy and performance and proposes future directions for integrating advanced mathematics into next-generation VR experiences.
30 January 2026




