- Article
Regional Disparities in Artificial Intelligence Development and Green Economic Efficiency Performance Under Its Embedding: Empirical Evidence from China
- Ziyang Li,
- Ziqing Huang and
- Shiyi Zhang
This study analyzes artificial intelligence development and green economic efficiency across 31 Chinese provinces using 2019–2021 panel data. We apply the entropy weight TOPSIS method to measure AI development levels. The entropy weight TOPSIS method measures AI development levels, the DEA-BCC model assesses green economic efficiency, and their coordination types are identified. Findings reveal a significant negative correlation between AI development and green economic efficiency. We explain this complex relationship through three mechanisms: short-term polarization effects, technology conversion lags, and spatial spillovers. Spatial analysis shows AI development forms high-high agglomerations in the Yangtze River Delta and Shandong. Green economic efficiency shows high-high clustering in the Beijing-Tianjin-Hebei region and selected western provinces. Using a “two-system” coupling framework, we identify four provincial categories. The “double-high” type should function as growth poles. The “high-low” type requires improved technology conversion efficiency. The “low-high” type can leverage ecological advantages. The “double-low” type needs enhanced factor inputs. We propose three targeted policy recommendations: establishing digital-green synergy platforms, implementing inter-provincial AI resource collaboration mechanisms, and developing locally adapted action plans.
15 January 2026









