- Article
Temperature-Dependent and Semi-Quantitative Enzyme Profiles of Malacosoma disstria (Lepidoptera: Lasiocampidae) Hemocytic Cell Lines
- Paschalis Giannoulis and
- Helen Kalorizou
Insect hemocytic cell lines offer substantial advantages over primary, in vivo hemocyte cultures, fundamentally transforming experimental approaches in cellular immunology and related fields. Selected Malacosoma disstria cell lines were characterized for optimal growth temperatures, morphogenesis, blebbing, extracellular enzyme profiles, and their interactions with material (polystyrene) and microbial (Bacillus subtilis) surfaces. The adhesive hemocyte lines UA-Md221 and Md108 showed optimal growth at 28 °C, whereas UA-Md203 and Md66 grew best at 21 °C, with Md66 tolerating 21–28 °C. Md108 demonstrated a broader temperature tolerance than other adherent cultures. Both Md108 and UA-Md221 adhered to polystyrene within 24 h post-subculturing, although protease-induced morphological changes in modified Grace’s medium continued through 48 h and 72 h, respectively. Culture quality was monitored by assessing the release of multiple enzymes, including alkaline and acid phosphatases, esterases and lipases, aminopeptidases, proteases, glycosidases, and hydrolases from the cell lines at 50% confluency in modified Grace’s medium. Fetal bovine serum showed elevated esterase lipase (C8) and phosphoamidase activities when diluted in Grace’s medium and phosphate buffered saline (PBS). Exposure to dead B. subtilis suspended in PBS induced quantitative and qualitative alterations in the enzyme secretion profiles of Md66 and Md108 cultures. We conclude that semi-quantitative assessments of hemocytic cell lines can provide valuable insights for the time window of each enzyme release, revealing immune and metabolic signaling patterns.
5 February 2026










