Journal Description
Cells
Cells
is an international, peer-reviewed, open access journal of cell biology, molecular biology, and biophysics, published semimonthly online by MDPI. The Spanish Society for Biochemistry and Molecular Biology (SEBBM), Signal Transduction Society (STS), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH) and Society for Regenerative Medicine (Russian Federation) (RPO) are affiliated with Cells and their members receive discounts on the article processing charges.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, MEDLINE, PMC, CAPlus / SciFinder, and other databases.
- Journal Rank: JCR - Q2 (Cell Biology) / CiteScore - Q1 (General Biochemistry, Genetics and Molecular Biology)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 16.4 days after submission; acceptance to publication is undertaken in 2.9 days (median values for papers published in this journal in the second half of 2022).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
- Sections: published in 22 topical sections.
- Companion journal: Organoids.
Impact Factor:
7.666 (2021);
5-Year Impact Factor:
7.677 (2021)
Latest Articles
The Activation of PPARγ by (2Z,4E,6E)-2-methoxyocta-2,4,6-trienoic Acid Counteracts the Epithelial–Mesenchymal Transition Process in Skin Carcinogenesis
Cells 2023, 12(7), 1007; https://doi.org/10.3390/cells12071007 (registering DOI) - 24 Mar 2023
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the most common UV-induced keratinocyte-derived cancer, and its progression is characterized by the epithelial–mesenchymal transition (EMT) process. We previously demonstrated that PPARγ activation by 2,4,6-octatrienoic acid (Octa) prevents cutaneous UV damage. We investigated the possible role of
[...] Read more.
Cutaneous squamous cell carcinoma (cSCC) is the most common UV-induced keratinocyte-derived cancer, and its progression is characterized by the epithelial–mesenchymal transition (EMT) process. We previously demonstrated that PPARγ activation by 2,4,6-octatrienoic acid (Octa) prevents cutaneous UV damage. We investigated the possible role of the PPARγ activators Octa and the new compound (2Z,4E,6E)-2-methoxyocta-2,4,6-trienoic acid (A02) in targeting keratinocyte-derived skin cancer. Like Octa, A02 exerted a protective effect against UVB-induced oxidative stress and DNA damage in NHKs. In the squamous cell carcinoma A431 cells, A02 inhibited cell proliferation and increased differentiation markers’ expression. Moreover, Octa and even more A02 counteracted the TGF-β1-dependent increase in mesenchymal markers, intracellular ROS, the activation of EMT-related signal transduction pathways, and cells’ migratory capacity. Both compounds, especially A02, counterbalanced the TGF-β1-induced cell membrane lipid remodeling and the release of bioactive lipids involved in EMT. In vivo experiments on a murine model useful to study cell proliferation in adult animals showed the reduction of areas characterized by active cell proliferation in response to A02 topical treatment. In conclusion, targeting PPARγ may be useful for the prevention and treatment of keratinocyte-derived skin cancer.
Full article
(This article belongs to the Special Issue Skin Cancer: From Cellular and Molecular Mechanisms to Therapeutic Opportunities)
Open AccessArticle
The Beneficial Effect of Mitochondrial Transfer Therapy in 5XFAD Mice via Liver–Serum–Brain Response
by
, , , , , , , , , , , , , and
Cells 2023, 12(7), 1006; https://doi.org/10.3390/cells12071006 (registering DOI) - 24 Mar 2023
Abstract
We recently reported the benefit of the IV transferring of active exogenous mitochondria in a short-term pharmacological AD (Alzheimer’s disease) model. We have now explored the efficacy of mitochondrial transfer in 5XFAD transgenic mice, aiming to explore the underlying mechanism by which the
[...] Read more.
We recently reported the benefit of the IV transferring of active exogenous mitochondria in a short-term pharmacological AD (Alzheimer’s disease) model. We have now explored the efficacy of mitochondrial transfer in 5XFAD transgenic mice, aiming to explore the underlying mechanism by which the IV-injected mitochondria affect the diseased brain. Mitochondrial transfer in 5XFAD ameliorated cognitive impairment, amyloid burden, and mitochondrial dysfunction. Exogenously injected mitochondria were detected in the liver but not in the brain. We detected alterations in brain proteome, implicating synapse-related processes, ubiquitination/proteasome-related processes, phagocytosis, and mitochondria-related factors, which may lead to the amelioration of disease. These changes were accompanied by proteome/metabolome alterations in the liver, including pathways of glucose, glutathione, amino acids, biogenic amines, and sphingolipids. Altered liver metabolites were also detected in the serum of the treated mice, particularly metabolites that are known to affect neurodegenerative processes, such as carnosine, putrescine, C24:1-OH sphingomyelin, and amino acids, which serve as neurotransmitters or their precursors. Our results suggest that the beneficial effect of mitochondrial transfer in the 5XFAD mice is mediated by metabolic signaling from the liver via the serum to the brain, where it induces protective effects. The high efficacy of the mitochondrial transfer may offer a novel AD therapy.
Full article
(This article belongs to the Special Issue Mitochondrial Dysfunction in Neurological Disorders: Molecular Mechanisms and Potential Points for Intervention)
Open AccessArticle
Targeted Demethylation of the TGFβ1 mRNA Promotes Myoblast Proliferation via Activating the SMAD2 Signaling Pathway
by
, , , , , , and
Cells 2023, 12(7), 1005; https://doi.org/10.3390/cells12071005 (registering DOI) - 24 Mar 2023
Abstract
Recent evidence suggested that N6-methyladenosine (m6A) methylation can determine m6A-modified mRNA fate and play an important role in skeletal muscle development. It was well known that transforming growth factor beta 1 (TGFβ1) is involved in a variety of cellular
[...] Read more.
Recent evidence suggested that N6-methyladenosine (m6A) methylation can determine m6A-modified mRNA fate and play an important role in skeletal muscle development. It was well known that transforming growth factor beta 1 (TGFβ1) is involved in a variety of cellular processes, such as proliferation, differentiation, and apoptosis. However, little is known about the m6A-mediated TGFβ1 regulation in myogenesis. Here, we observed an increase in endogenous TGFβ1 expression and activity during myotube differentiation. However, the knockdown of TGFβ1 inhibits the proliferation and induces cell apoptosis of myoblast. Moreover, we found that m6A in 5′-untranslated regions (5′UTR) of TGFβ1 promote its decay and inhibit its expression, leading to the blockage of the TGFβ1/SMAD2 signaling pathway. Furthermore, the targeted specific demethylation of TGFβ1 m6A using dCas13b-FTO significantly increased the TGFβ1-mediated activity of the SMAD2 signaling pathway, promoting myoblast proliferation. These findings suggest that TGFβ1 is an essential regulator of myoblast growth that is negatively regulated by m6A. Overall, these results highlight the critical role of m6A-mediated post-transcriptional regulation in myogenesis.
Full article
(This article belongs to the Section Cell Proliferation and Division)
►▼
Show Figures

Figure 1
Open AccessArticle
Effect of the Metabotropic Glutamate Receptor Type 5 Negative Allosteric Modulator Dipraglurant on Motor and Non-Motor Symptoms of Parkinson’s Disease
by
, , , , , , , , , , , , and
Cells 2023, 12(7), 1004; https://doi.org/10.3390/cells12071004 (registering DOI) - 24 Mar 2023
Abstract
Parkinson’s disease (PD) patients suffer not only from the primary motor symptoms of the disease but also from a range of non-motor symptoms (NMS) that cause disability and low quality of life. Excessive glutamate activity in the basal ganglia resulting from degeneration of
[...] Read more.
Parkinson’s disease (PD) patients suffer not only from the primary motor symptoms of the disease but also from a range of non-motor symptoms (NMS) that cause disability and low quality of life. Excessive glutamate activity in the basal ganglia resulting from degeneration of the nigrostriatal dopamine pathway has been implicated in the motor symptoms, NMS and dyskinesias in PD patients. In this study, we investigated the effects of a selective mGlu5 negative allosteric modulator (NAM), dipraglurant, in a rodent motor symptoms model of PD, but also in models of anxiety, depression and obsessive-compulsive disorder, all of which are among the most prevalent NMS symptoms. Dipraglurant is rapidly absorbed after oral administration, readily crosses the blood-brain barrier, and exhibits a high correlation between plasma concentration and efficacy in behavioral models. In vivo, dipraglurant dose-dependently reduced haloperidol-induced catalepsy, increased punished licks in the Vogel conflict-drinking model, decreased immobility time in the forced swim test, decreased the number of buried marbles in the marble-burying test, but had no effect on rotarod performance or locomotor activity. These findings suggest that dipraglurant may have benefits to address some of the highly problematic comorbid non-motor symptoms of PD, in addition to its antidyskinetic effect demonstrated in PD-LID patients.
Full article
(This article belongs to the Special Issue The Role of Metabotropic Glutamate Receptors in Health and Disease)
Open AccessReview
The Regulation of Neutrophil Migration in Patients with Sepsis: The Complexity of the Molecular Mechanisms and Their Modulation in Sepsis and the Heterogeneity of Sepsis Patients
Cells 2023, 12(7), 1003; https://doi.org/10.3390/cells12071003 (registering DOI) - 24 Mar 2023
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Common causes include gram-negative and gram-positive bacteria as well as fungi. Neutrophils are among the first cells to arrive at an infection site where they function as important
[...] Read more.
Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Common causes include gram-negative and gram-positive bacteria as well as fungi. Neutrophils are among the first cells to arrive at an infection site where they function as important effector cells of the innate immune system and as regulators of the host immune response. The regulation of neutrophil migration is therefore important both for the infection-directed host response and for the development of organ dysfunctions in sepsis. Downregulation of CXCR4/CXCL12 stimulates neutrophil migration from the bone marrow. This is followed by transmigration/extravasation across the endothelial cell barrier at the infection site; this process is directed by adhesion molecules and various chemotactic gradients created by chemotactic cytokines, lipid mediators, bacterial peptides, and peptides from damaged cells. These mechanisms of neutrophil migration are modulated by sepsis, leading to reduced neutrophil migration and even reversed migration that contributes to distant organ failure. The sepsis-induced modulation seems to differ between neutrophil subsets. Furthermore, sepsis patients should be regarded as heterogeneous because neutrophil migration will possibly be further modulated by the infecting microorganisms, antimicrobial treatment, patient age/frailty/sex, other diseases (e.g., hematological malignancies and stem cell transplantation), and the metabolic status. The present review describes molecular mechanisms involved in the regulation of neutrophil migration; how these mechanisms are altered during sepsis; and how bacteria/fungi, antimicrobial treatment, and aging/frailty/comorbidity influence the regulation of neutrophil migration.
Full article
(This article belongs to the Special Issue Sepsis: Genetics, Pathogenesis, Diagnostics and Therapeutics)
Open AccessFeature PaperReview
Role of Basic Fibroblast Growth Factor in Cancer: Biological Activity, Targeted Therapies, and Prognostic Value
by
, , , , , , , , , and
Cells 2023, 12(7), 1002; https://doi.org/10.3390/cells12071002 (registering DOI) - 24 Mar 2023
Abstract
Cancer is the leading cause of death worldwide; thus, it is necessary to find successful strategies. Several growth factors, such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF, FGF2), and transforming growth factor beta (TGF-β), are involved in the main
[...] Read more.
Cancer is the leading cause of death worldwide; thus, it is necessary to find successful strategies. Several growth factors, such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF, FGF2), and transforming growth factor beta (TGF-β), are involved in the main processes that fuel tumor growth, i.e., cell proliferation, angiogenesis, and metastasis, by activating important signaling pathways, including PLC-γ/PI3/Ca2+ signaling, leading to PKC activation. Here, we focused on bFGF, which, when secreted by tumor cells, mediates several signal transductions and plays an influential role in tumor cells and in the development of chemoresistance. The biological mechanism of bFGF is shown by its interaction with its four receptor subtypes: fibroblast growth factor receptor (FGFR) 1, FGFR2, FGFR3, and FGFR4. The bFGF–FGFR interaction stimulates tumor cell proliferation and invasion, resulting in an upregulation of pro-inflammatory and anti-apoptotic tumor cell proteins. Considering the involvement of the bFGF/FGFR axis in oncogenesis, preclinical and clinical studies have been conducted to develop new therapeutic strategies, alone and/or in combination, aimed at intervening on the bFGF/FGFR axis. Therefore, this review aimed to comprehensively examine the biological mechanisms underlying bFGF in the tumor microenvironment, the different anticancer therapies currently available that target the FGFRs, and the prognostic value of bFGF.
Full article
(This article belongs to the Special Issue Biological Functions of Fibroblast Growth Factors (FGFs))
►▼
Show Figures

Figure 1
Open AccessFeature PaperReview
Cancer Spheroids and Organoids as Novel Tools for Research and Therapy: State of the Art and Challenges to Guide Precision Medicine
by
, , , , and
Cells 2023, 12(7), 1001; https://doi.org/10.3390/cells12071001 - 24 Mar 2023
Abstract
Spheroids and organoids are important novel players in medical and life science research. They are gradually replacing two-dimensional (2D) cell cultures. Indeed, three-dimensional (3D) cultures are closer to the in vivo reality and open promising perspectives for academic research, drug screening, and personalized
[...] Read more.
Spheroids and organoids are important novel players in medical and life science research. They are gradually replacing two-dimensional (2D) cell cultures. Indeed, three-dimensional (3D) cultures are closer to the in vivo reality and open promising perspectives for academic research, drug screening, and personalized medicine. A large variety of cells and tissues, including tumor cells, can be the starting material for the generation of 3D cultures, including primary tissues, stem cells, or cell lines. A panoply of methods has been developed to generate 3D structures, including spontaneous or forced cell aggregation, air–liquid interface conditions, low cell attachment supports, magnetic levitation, and scaffold-based technologies. The choice of the most appropriate method depends on (i) the origin of the tissue, (ii) the presence or absence of a disease, and (iii) the intended application. This review summarizes methods and approaches for the generation of cancer spheroids and organoids, including their advantages and limitations. We also highlight some of the challenges and unresolved issues in the field of cancer spheroids and organoids, and discuss possible therapeutic applications.
Full article
(This article belongs to the Collection Advances in 3D Cell Culture)
►▼
Show Figures

Figure 1
Open AccessArticle
Activin and BMP Signalling in Human Testicular Cancer Cell Lines, and a Role for the Nucleocytoplasmic Transport Protein Importin-5 in their Crosstalk
by
, , , , , and
Cells 2023, 12(7), 1000; https://doi.org/10.3390/cells12071000 (registering DOI) - 24 Mar 2023
Abstract
Testicular germ cell tumours (TGCTs) are the most common malignancy in young men. Originating from foetal testicular germ cells that fail to differentiate correctly, TGCTs appear after puberty as germ cell neoplasia in situ cells that transform through unknown mechanisms into distinct seminoma
[...] Read more.
Testicular germ cell tumours (TGCTs) are the most common malignancy in young men. Originating from foetal testicular germ cells that fail to differentiate correctly, TGCTs appear after puberty as germ cell neoplasia in situ cells that transform through unknown mechanisms into distinct seminoma and non-seminoma tumour types. A balance between activin and BMP signalling may influence TGCT emergence and progression, and we investigated this using human cell line models of seminoma (TCam-2) and non-seminoma (NT2/D1). Activin A- and BMP4-regulated transcripts measured at 6 h post-treatment by RNA-sequencing revealed fewer altered transcripts in TCam-2 cells but a greater responsiveness to activin A, while BMP4 altered more transcripts in NT2/D1 cells. Activin significantly elevated transcripts linked to pluripotency, cancer, TGF-β, Notch, p53, and Hippo signalling in both lines, whereas BMP4 altered TGF-β, pluripotency, Hippo and Wnt signalling components. Dose-dependent antagonism of BMP4 signalling by activin A in TCam-2 cells demonstrated signalling crosstalk between these two TGF-β superfamily arms. Levels of the nuclear transport protein, IPO5, implicated in BMP4 and WNT signalling, are highly regulated in the foetal mouse germline. IPO5 knockdown in TCam-2 cells using siRNA blunted BMP4-induced transcript changes, indicating that IPO5 levels could determine TGF-β signalling pathway outcomes in TGCTs.
Full article
(This article belongs to the Special Issue Mechanisms of TGF-β Signaling in Disease Progression)
►▼
Show Figures

Figure 1
Open AccessArticle
Resistin Contribution to Cardiovascular Risk in Chronic Kidney Disease Male Patients
by
, , , , and
Cells 2023, 12(7), 999; https://doi.org/10.3390/cells12070999 - 24 Mar 2023
Abstract
Background: Resistin is a molecule that belongs to the Resistin-Like Molecules family (RELMs), the group of proteins taking part in inflammatory processes. Increased resistin concentrations are observed in cardiovascular complications. Resistin contributes to the onset of atherosclerosis and intensifies the atherosclerotic processes. The
[...] Read more.
Background: Resistin is a molecule that belongs to the Resistin-Like Molecules family (RELMs), the group of proteins taking part in inflammatory processes. Increased resistin concentrations are observed in cardiovascular complications. Resistin contributes to the onset of atherosclerosis and intensifies the atherosclerotic processes. The aim of this study was to investigate the relationship between resistin and cardiovascular (CV) risk in men with chronic kidney disease (CKD) not treated with dialysis. Materials and Methods: One hundred and forty-two men were included in the study: 99 men with eGFR lower than 60 mL/min/1.73 m2 and 43 men with eGFR ≥ 60 mL/min/1.73 m2. CV risk was assessed. Serum resistin, tumor necrosis factor-alpha (TNF-alpha) and plasminogen activator inhibitor-1 (PAI-1) were measured among other biochemical parameters. Results: We observed that resistin concentrations were significantly higher in patients with CKD compared to individuals with eGFR ≥ 60 mL/min/1.73 m2 (p = 0.003). In CKD, after estimating the general linear model (GLM), we found that resistin is associated with CV risk (p = 0.026) and PAI-1 serum concentrations (0.012). The relationship of PAI-1 with resistin depends on the level of CV risk in CKD (p = 0.048). Conclusions: Resistin concentrations rise with the increase of CV risk in CKD patients and thus resistin may contribute to the progression of cardiovascular risk in this group of patients. The relationship between resistin and CV risk is modified by PAI-1 concentrations.
Full article
(This article belongs to the Special Issue Metabolic Dysfunction and Kidney Diseases: Breakthroughs in Disease Management)
►▼
Show Figures

Figure 1
Open AccessReview
Rejuvenation of Mesenchymal Stem Cells to Ameliorate Skeletal Aging
Cells 2023, 12(7), 998; https://doi.org/10.3390/cells12070998 - 24 Mar 2023
Abstract
Advanced age is a shared risk factor for many chronic and debilitating skeletal diseases including osteoporosis and periodontitis. Mesenchymal stem cells develop various aging phenotypes including the onset of senescence, intrinsic loss of regenerative potential and exacerbation of inflammatory microenvironment via secretory factors.
[...] Read more.
Advanced age is a shared risk factor for many chronic and debilitating skeletal diseases including osteoporosis and periodontitis. Mesenchymal stem cells develop various aging phenotypes including the onset of senescence, intrinsic loss of regenerative potential and exacerbation of inflammatory microenvironment via secretory factors. This review elaborates on the emerging concepts on the molecular and epigenetic mechanisms of MSC senescence, such as the accumulation of oxidative stress, DNA damage and mitochondrial dysfunction. Senescent MSCs aggravate local inflammation, disrupt bone remodeling and bone-fat balance, thereby contributing to the progression of age-related bone diseases. Various rejuvenation strategies to target senescent MSCs could present a promising paradigm to restore skeletal aging.
Full article
(This article belongs to the Special Issue Importance of Primary Cell Culture in Biomedical Research)
►▼
Show Figures

Figure 1
Open AccessArticle
Passaging Primary Human Bronchial Epithelia Reduces CFTR-Mediated Fluid Transport and Alters mRNA Expression
Cells 2023, 12(7), 997; https://doi.org/10.3390/cells12070997 - 24 Mar 2023
Abstract
Primary human bronchial epithelial cultures (HBECs) are used to study airway physiology, disease, and drug development. HBECs often replicate human airway physiology/pathophysiology. Indeed, in the search for cystic fibrosis (CF) transmembrane conductance regulator (CFTR) therapies, HBECs were seen as the “gold standard” in
[...] Read more.
Primary human bronchial epithelial cultures (HBECs) are used to study airway physiology, disease, and drug development. HBECs often replicate human airway physiology/pathophysiology. Indeed, in the search for cystic fibrosis (CF) transmembrane conductance regulator (CFTR) therapies, HBECs were seen as the “gold standard” in preclinical studies. However, HBECs are not without their limitations: they are non-immortalized and the requirement for human donors, especially those with rare genetic mutations, can make HBECs expensive and/or difficult to source. For these reasons, researchers may opt to expand HBECs by passaging. This practice is common, but to date, there has not been a robust analysis of the impact of expanding HBECs on their phenotype. Here, we used functional studies of airway surface liquid (ASL) homeostasis, epithelial barrier properties, and RNA-seq and Western blotting to investigate HBEC changes over two passage cycles. We found that passaging impaired CFTR-mediated ASL secretion and led to a reduction in the plasma membrane expression of the epithelial sodium channel (ENaC) and CFTR. Passaging also resulted in an increase in transepithelial resistance and a decrease in epithelial water permeability. We then looked for changes at the mRNA level and found that passaging significantly affected 323 genes, including genes involved in inflammation, cell growth, and extracellular matrix remodeling. Collectively, these data highlight the potential for HBEC expansion to impact research findings.
Full article
(This article belongs to the Section Cellular Immunology)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Derivation and Preclinical Characterization of CYT-303, a Novel NKp46-NK Cell Engager Targeting GPC3
by
, , , , , , , , , , and
Cells 2023, 12(7), 996; https://doi.org/10.3390/cells12070996 - 24 Mar 2023
Abstract
Glypican-3 (GPC3) is an oncofetal antigen that is highly expressed in multiple solid tumors, including hepatocellular carcinoma, and is barely expressed in adult normal tissues except the placenta. NKp46 activation receptor is expressed in all-natural killer (NK) cells, including tumor-infiltrating NK cells. FLEX-NK
[...] Read more.
Glypican-3 (GPC3) is an oncofetal antigen that is highly expressed in multiple solid tumors, including hepatocellular carcinoma, and is barely expressed in adult normal tissues except the placenta. NKp46 activation receptor is expressed in all-natural killer (NK) cells, including tumor-infiltrating NK cells. FLEX-NKTM is a platform for the production of tetravalent multifunctional antibody NK cell engagers (NKE). CYT-303 was designed using the FLEX-NK scaffold, incorporating a novel humanized NKp46 binder that does not induce NKp46 internalization and a humanized GPC3 binder that targets the membrane-proximal lobe to mediate NK cell-redirected killing of HCC tumors. CYT-303 shows sub-nanomolar binding affinities to both GPC3 and NKp46. CYT-303 was highly potent and effective in mediating NK cell-redirected cytotoxicity against multiple HCC tumor cell lines and tumor spheroids. More interestingly, it can reverse the dysfunction induced in NK cells following repeated rounds of serial killing of tumors. It also mediated antibody-dependent cellular phagocytosis (ADCP) and complement-dependent cytotoxicity against GPC3-expressing HCC tumors. In vivo, CYT-303 showed no toxicity or cytokine release in cynomolgus monkeys up to the highest dose (60 mg/kg), administered weekly by intravenous infusion for 28 days. These results demonstrate the potential of CYT-303 to be a safe and effective therapy against HCC.
Full article
(This article belongs to the Special Issue Antibody Production for Biotherapeutics Discovery and Development)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Development of a Triple-Negative Breast Cancer Leptomeningeal Disease Model in Zebrafish
by
, , , , , , , and
Cells 2023, 12(7), 995; https://doi.org/10.3390/cells12070995 - 24 Mar 2023
Abstract
Leptomeningeal disease occurs when cancer cells migrate into the ventricles of the brain and spinal cord and then colonize the meninges of the central nervous system. The triple-negative subtype of breast cancer often progresses toward leptomeningeal disease and has a poor prognosis because
[...] Read more.
Leptomeningeal disease occurs when cancer cells migrate into the ventricles of the brain and spinal cord and then colonize the meninges of the central nervous system. The triple-negative subtype of breast cancer often progresses toward leptomeningeal disease and has a poor prognosis because of limited treatment options. This is due, in part, to a lack of animal models with which to study leptomeningeal disease. Here, we developed a translucent zebrafish casper (roy-/-; nacre-/-) xenograft model of leptomeningeal disease in which fluorescent labeled MDA-MB-231 human triple-negative breast cancer cells are microinjected into the ventricles of zebrafish embryos and then tracked and measured using fluorescent microscopy and multimodal plate reader technology. We then used these techniques to measure tumor area, cell proliferation, and cell death in samples treated with the breast cancer drug doxorubicin and a vehicle control. We monitored MDA-MB-231 cell localization and tumor area, and showed that samples treated with doxorubicin exhibited decreased tumor area and proliferation and increased apoptosis compared to control samples.
Full article
(This article belongs to the Special Issue Modeling Developmental Dynamics and Disorders in Zebrafish)
►▼
Show Figures

Figure 1
Open AccessArticle
Modeling the Effects of Cypermethrin Toxicity on Ovalbumin-Induced Allergic Pneumonitis Rats: Macrophage Phenotype Differentiation and p38/STAT6 Signaling Are Candidate Targets of Pirfenidone Treatment
by
, , , , , , , , and
Cells 2023, 12(7), 994; https://doi.org/10.3390/cells12070994 - 24 Mar 2023
Abstract
►▼
Show Figures
Although the classic form of asthma is characterized by chronic pneumonitis with eosinophil infiltration and steroid responsivity, asthma has multifactorial pathogenesis and various clinical phenotypes. Previous studies strongly suggested that chemical exposure could influence the severity and course of asthma and reduce its
[...] Read more.
Although the classic form of asthma is characterized by chronic pneumonitis with eosinophil infiltration and steroid responsivity, asthma has multifactorial pathogenesis and various clinical phenotypes. Previous studies strongly suggested that chemical exposure could influence the severity and course of asthma and reduce its steroid responsiveness. Cypermethrin (CYP), a common pesticide used in agriculture, was investigated for the possible aggravation of the ovalbumin (OVA)-induced allergic pneumonitis and the possible induction of steroid resistance in rats. Additionally, it was investigated whether pirfenidone (PFD) could substitute dexamethasone, as an alternative treatment option, for the induced steroid resistance. Fifty-six male Wistar albino rats were randomly divided into seven groups: control, PFD alone, allergic pneumonitis, CYP alone, allergic pneumonitis/CYP-exposed, allergic pneumonitis/CYP/dexamethasone (Dex), and allergic pneumonitis/CYP/PFD-treated groups. Allergic pneumonitis was induced by three intraperitoneal OVA injections administered once a week, followed by an intranasal OVA instillation challenge. CYP (25 mg/kg/d), Dex (1 mg/kg/d), and PFD (100 mg/kg/d) were administered orally from day 15 to the end of the experiment. Bronchoalveolar lavage fluid (BALF) was analyzed for cytokine levels. Hematoxylin and eosin (H&E) and periodic acid Schiff (PAS)-stained lung sections were prepared. Immunohistochemical identification of p38 MAPK and lung macrophages was performed. The inflammatory/oxidative status of the lung and PCR-quantification of the STAT6, p38 MAPK, MUC5AC, and IL-13 genes were carried out. The allergic pneumonitis-only group showed eosinophil-mediated inflammation (p < 0.05). Further CYP exposure aggravated lung inflammation and showed steroid-resistant changes, p38 activation, neutrophil-mediated, M1 macrophage-related inflammation (p < 0.05). All changes were reversed (p < 0.05) by PFD, meanwhile not by dexamethasone treatment. Pirfenidone could replace dexamethasone treatment in the current rat model of CYP-induced severe steroid-resistant asthma via inhibiting the M1 macrophage differentiation through modulation of the STAT6/p38 MAPK pathway.
Full article

Figure 1
Open AccessArticle
Rapamycin Alleviates Protein Aggregates, Reduces Neuroinflammation, and Rescues Demyelination in Globoid Cell Leukodystrophy
by
, , , , , , and
Cells 2023, 12(7), 993; https://doi.org/10.3390/cells12070993 - 24 Mar 2023
Abstract
We have shown in vivo and in vitro previously that psychosine causes dysfunction of autophagy and the ubiquitin-proteasome system underlying the pathogenesis of globoid cell leukodystrophy (GLD), a devastating lysosomal storage disease complicated by global demyelination. Here, we investigated the therapeutic efficacy of
[...] Read more.
We have shown in vivo and in vitro previously that psychosine causes dysfunction of autophagy and the ubiquitin-proteasome system underlying the pathogenesis of globoid cell leukodystrophy (GLD), a devastating lysosomal storage disease complicated by global demyelination. Here, we investigated the therapeutic efficacy of the mTOR inhibitor rapamycin in twitcher mice, a murine model of infantile GLD, in biochemical, histochemical, and clinical aspects. Administration of rapamycin to twitcher mice inhibited mTOR signaling in the brains, and significantly reduced the accumulation of insoluble ubiquitinated protein and the formation of ubiquitin aggregates. The astrocytes and microglia reactivity were attenuated in that reactive astrocytes, ameboid microglia, and globoid cells were reduced in the brains of rapamycin-treated twitcher mice. Furthermore, rapamycin improved the cortical myelination, neurite density, and rescued the network complexity in the cortex of twitcher mice. The therapeutic action of rapamycin on the pathology of the twitcher mice’s brains prolonged the longevity of treated twitcher mice. Overall, these findings validate the therapeutic efficacy of rapamycin and highlight enhancing degradation of aggregates as a therapeutic strategy to modulate neuroinflammation, demyelination, and disease progression of GLD and other leukodystrophies associated with intracellular aggregates.
Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Lysosomal Storage Disorders)
►▼
Show Figures

Figure 1
Open AccessArticle
Costunolide and Parthenolide Ameliorate MPP+ Induced Apoptosis in the Cellular Parkinson’s Disease Model
by
, , , , , and
Cells 2023, 12(7), 992; https://doi.org/10.3390/cells12070992 - 24 Mar 2023
Abstract
►▼
Show Figures
Monoamine oxidase B (MAO-B) is an enzyme that metabolizes several chemicals, including dopamine. MAO-B inhibitors are used in the treatment of Parkinson’s Disease (PD), and the inhibition of this enzyme reduces dopamine turnover and oxidative stress. The absence of dopamine results in PD
[...] Read more.
Monoamine oxidase B (MAO-B) is an enzyme that metabolizes several chemicals, including dopamine. MAO-B inhibitors are used in the treatment of Parkinson’s Disease (PD), and the inhibition of this enzyme reduces dopamine turnover and oxidative stress. The absence of dopamine results in PD pathogenesis originating from decreased Acetylcholinesterase (AChE) activity and elevated oxidative stress. Here, we performed a molecular docking analysis for the potential use of costunolide and parthenolide terpenoids as potential MAO-B inhibitors in the treatment of PD. Neuroprotective properties of plant-originated costunolide and parthenolide terpenoids were investigated in a cellular PD model that was developed by using MPP+ toxicity. We investigated neuroprotection mechanisms through the analysis of oxidative stress parameters, acetylcholinesterase activity and apoptotic cell death ratios. Our results showed that 100 µg/mL and 50 µg/mL of costunolide, and 50 µg/mL of parthenolide applied to the cellular disease model ameliorated the cytotoxicity caused by MPP+ exposure. We found that acetylcholinesterase activity assays exhibited that terpenoids could ameliorate and restore the enzyme activity as in negative control levels. The oxidative stress parameter analyses revealed that terpenoid application could enhance antioxidant levels and decrease oxidative stress in the cultures. In conclusion, we reported that these two terpenoid molecules could be used in the development of efficient treatment strategies for PD patients.
Full article

Figure 1
Open AccessArticle
Methemoglobinemia, Increased Deformability and Reduced Membrane Stability of Red Blood Cells in a Cat with a CYB5R3 Splice Defect
by
, , , , , , , , , and
Cells 2023, 12(7), 991; https://doi.org/10.3390/cells12070991 - 24 Mar 2023
Abstract
Methemoglobinemia is an acquired or inherited condition resulting from oxidative stress or dysfunction of the NADH-cytochrome b5 reductase or associated pathways. This study describes the clinical, pathophysiological, and molecular genetic features of a cat with hereditary methemoglobinemia. Whole genome sequencing and mRNA transcript
[...] Read more.
Methemoglobinemia is an acquired or inherited condition resulting from oxidative stress or dysfunction of the NADH-cytochrome b5 reductase or associated pathways. This study describes the clinical, pathophysiological, and molecular genetic features of a cat with hereditary methemoglobinemia. Whole genome sequencing and mRNA transcript analyses were performed in affected and control cats. Co-oximetry, ektacytometry, Ellman’s assay for reduced glutathione concentrations, and CYB5R activity were assessed. A young adult European domestic shorthair cat decompensated at induction of anesthesia and was found to have persistent methemoglobinemia of 39 ± 8% (reference range < 3%) of total hemoglobin which could be reversed upon intravenous methylene blue injection. The erythrocytic CYB5R activity was 20 ± 6% of normal. Genetic analyses revealed a single homozygous base exchange at the beginning of intron 3 of the CYB5R3 gene, c.226+5G>A. Subsequent mRNA studies confirmed a splice defect and demonstrated expression of two mutant CYB5R3 transcripts. Erythrocytic glutathione levels were twice that of controls. Mild microcytosis, echinocytes, and multiple Ca2+-filled vesicles were found in the affected cat. Erythrocytes were unstable at high osmolarities although highly deformable as follows from the changes in elongation index and maximal-tolerated osmolarity. Clinicopathological presentation of this cat was similar to other cats with CYB5R3 deficiency. We found that methemoglobinemia is associated with an increase in red blood cell fragility and deformability, glutathione overload, and morphological alterations typical for stress erythropoiesis.
Full article
(This article belongs to the Collection Advances in Red Blood Cells Research)
►▼
Show Figures

Figure 1
Open AccessReview
The Role of WNT Pathway Mutations in Cancer Development and an Overview of Therapeutic Options
Cells 2023, 12(7), 990; https://doi.org/10.3390/cells12070990 - 24 Mar 2023
Abstract
It is well established that mutations in the canonical WNT-signalling pathway play a major role in various cancers. Critical to developing new therapeutic strategies is understanding which cancers are driven by WNT pathway activation and at what level these mutations occur within the
[...] Read more.
It is well established that mutations in the canonical WNT-signalling pathway play a major role in various cancers. Critical to developing new therapeutic strategies is understanding which cancers are driven by WNT pathway activation and at what level these mutations occur within the pathway. Some cancers harbour mutations in genes whose protein products operate at the receptor level of the WNT pathway. For instance, tumours with RNF43 or RSPO mutations, still require exogenous WNT ligands to drive WNT signalling (ligand-dependent mutations). Conversely, mutations within the cytoplasmic segment of the Wnt pathway, such as in APC and CTNNB1, lead to constitutive WNT pathway activation even in the absence of WNT ligands (ligand-independent). Here, we review the predominant driving mutations found in cancer that lead to WNT pathway activation, as well as explore some of the therapeutic interventions currently available against tumours harbouring either ligand-dependent or ligand-independent mutations. Finally, we discuss a potentially new therapeutic avenue by targeting the translational apparatus downstream from WNT signalling.
Full article
(This article belongs to the Special Issue From Mechanisms to Therapeutics: Wnt Signaling in Cancer)
►▼
Show Figures

Figure 1
Open AccessArticle
Retinal Development in a Precocial Bird Species, the Quail (Coturnix coturnix, Linnaeus 1758)
by
, , , , and
Cells 2023, 12(7), 989; https://doi.org/10.3390/cells12070989 - 23 Mar 2023
Abstract
The quail (Coturnix coturnix, Linnaeus 1758), a notable model used in developmental biology, is a precocial bird species in which the processes of retinal cell differentiation and retinal histogenesis have been poorly studied. The purpose of the present research is to
[...] Read more.
The quail (Coturnix coturnix, Linnaeus 1758), a notable model used in developmental biology, is a precocial bird species in which the processes of retinal cell differentiation and retinal histogenesis have been poorly studied. The purpose of the present research is to examine the retinogenesis in this bird species immunohistochemically and compare the results with those from previous studies in precocial and altricial birds. We found that the first PCNA-negative nuclei are detected at Stage (St) 21 in the vitreal region of the neuroblastic layer, coinciding topographically with the first αTubAc-/Tuj1-/Isl1-immunoreactive differentiating ganglion cells. At St28, the first Prox1-immunoreactive nuclei can be distinguished in the vitreal side of the neuroblastic layer (NbL), but also the first visinin-immunoreactive photoreceptors in the scleral surface. The inner plexiform layer (IPL) emerges at St32, and the outer plexiform layer (OPL) becomes visible at St35—the stage in which the first GS-immunoreactive Müller cells are distinguishable. Newly hatched animals show a well-developed stratified retina in which the PCNA-and pHisH3-immunoreactivies are absent. Therefore, retinal cell differentiation in the quail progresses in the stereotyped order conserved among vertebrates, in which ganglion cells initially appear and are followed by amacrine cells, horizontal cells, and photoreceptors. Müller glia are one of the last cell types to be born. Plexiform layers emerge following a vitreal-to-scleral gradient. Finally, our results suggest that there are no significant differences in the timing of different events involved in retinal maturation between the quail and the chicken, but the same events are delayed in an altricial bird species.
Full article
(This article belongs to the Special Issue Cell Biology: State-of-the-Art and Perspectives in Spain II)
►▼
Show Figures

Figure 1
Open AccessReview
Application of Human Stem Cells to Model Genetic Sensorineural Hearing Loss and Meniere Disease
Cells 2023, 12(7), 988; https://doi.org/10.3390/cells12070988 - 23 Mar 2023
Abstract
Genetic sensorineural hearing loss and Meniere disease have been associated with rare variations in the coding and non-coding region of the human genome. Most of these variants were classified as likely pathogenic or variants of unknown significance and require functional validation in cellular
[...] Read more.
Genetic sensorineural hearing loss and Meniere disease have been associated with rare variations in the coding and non-coding region of the human genome. Most of these variants were classified as likely pathogenic or variants of unknown significance and require functional validation in cellular or animal models. Given the difficulties to obtain human samples and the raising concerns about animal experimentation, human-induced pluripotent stem cells emerged as cellular models to investigate the interaction of genetic and environmental factors in the pathogenesis of inner ear disorders. The generation of human sensory epithelia and neuron-like cells carrying the variants of interest may facilitate a better understanding of their role during differentiation. These cellular models will allow us to explore new strategies for restoring hearing and vestibular sensory epithelia as well as neurons. This review summarized the use of human-induced pluripotent stem cells in sensorineural hearing loss and Meniere disease and proposed some strategies for its application in clinical practice.
Full article
(This article belongs to the Special Issue Stem Cells and Hearing Loss)

Journal Menu
► ▼ Journal Menu-
- Cells Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor's Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Antioxidants, Cells, IJMS, Kidney and Dialysis, Oxygen
Nitrative and Oxidative Stress in Cell Death and Human Diseases
Topic Editors: Serge P. Bottari, Maria Elena GiordanoDeadline: 31 March 2023
Topic in
Biomedicines, Brain Sciences, Cells, IJMS, JCM
Applications of Biomedical Technology and Molecular Biological Approach in Brain Diseases
Topic Editors: Andrew Chih Wei Huang, Seong Soo A. An, Bai Chuang Shyu, Muh-Shi Lin, Anna KozłowskaDeadline: 30 April 2023
Topic in
Biology, Cancers, Cells, Current Oncology, Immuno, Vaccines
Research Progress of Gynecological Tumor Immunotherapy
Topic Editors: Takashi Iwata, Simon Chu, Guanliang ChenDeadline: 15 May 2023
Topic in
Cells, Diseases, IJMS, JCM, Nutrients
Proteins in Health and Diseases: New Knowledge and Practical Applications
Topic Editors: José Joaquín Cerón, Alberto Muñoz-Prieto, Vladimir Mrljak, Lorena Franco-MartinezDeadline: 31 May 2023

Conferences
Special Issues
Special Issue in
Cells
Crossroads between Gene Regulatory Networks and Evolution
Guest Editors: Maria Ina Arnone, Paola Oliveri, Roberto FeudaDeadline: 25 March 2023
Special Issue in
Cells
Novel Insights into Cannabinoid Receptors, Molecular Targets, and Therapeutic Potentials
Guest Editor: Zhao-Hui SongDeadline: 5 April 2023
Special Issue in
Cells
Biomarkers of Alzheimer’s Disease: New Insights
Guest Editor: Ivana DelalleDeadline: 10 April 2023
Special Issue in
Cells
B Lymphocytes in Auto-Inflammatory Diseases
Guest Editor: Moncef M. ZoualiDeadline: 30 April 2023
Topical Collections
Topical Collection in
Cells
Role of Autophagy in Viral Infection
Collection Editor: Grant R. Campbell
Topical Collection in
Cells
Tumor Metabolism and Therapy
Collection Editors: Guohui Sun, Jianhua Wang
Topical Collection in
Cells
Molecular signaling, Circuit Neuroplasticity and the Cognitive Function
Collection Editor: Francisco Monje