-
Current Nutritional and Pharmacological Approaches for Attenuating Sarcopenia
-
Pathophysiology of Disseminated Intravascular Coagulation in Sepsis: A Clinically Focused Overview
-
Biochemical and Molecular Pathways in Neurodegenerative Diseases: An Integrated View
-
Mitochondrial Properties in Skeletal Muscle Fiber
Journal Description
Cells
Cells
is an international, peer-reviewed, open access journal on cell biology, molecular biology, and biophysics, published semimonthly online by MDPI. The Spanish Society for Biochemistry and Molecular Biology (SEBBM), Nordic Autophagy Society (NAS), Spanish Society of Hematology and Hemotherapy (SEHH) and Society for Regenerative Medicine (Russian Federation) (RPO) are affiliated with Cells and their members receive discounts on the article processing charges.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, MEDLINE, PMC, CAPlus / SciFinder, and other databases.
- Journal Rank: JCR - Q2 (Cell Biology) / CiteScore - Q1 (General Biochemistry, Genetics and Molecular Biology)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 18.8 days after submission; acceptance to publication is undertaken in 2.9 days (median values for papers published in this journal in the first half of 2023).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
- Sections: published in 22 topical sections.
- Companion journal: Organoids.
Impact Factor:
6.0 (2022);
5-Year Impact Factor:
6.7 (2022)
Latest Articles
Human Probiotic Lactobacillus paracasei-Derived Extracellular Vesicles Improve Tumor Necrosis Factor-α-Induced Inflammatory Phenotypes in Human Skin
Cells 2023, 12(24), 2789; https://doi.org/10.3390/cells12242789 - 07 Dec 2023
Abstract
Lactic acid bacteria (LAB), a probiotic, provide various health benefits. We recently isolated a new Lactobacillus paracasei strain with strong anti-inflammatory effects under lipopolysaccharide-induced conditions and proposed a new mode of action—augmenting the endoplasmic reticulum stress pathway for anti-inflammatory functions in host cells.
[...] Read more.
Lactic acid bacteria (LAB), a probiotic, provide various health benefits. We recently isolated a new Lactobacillus paracasei strain with strong anti-inflammatory effects under lipopolysaccharide-induced conditions and proposed a new mode of action—augmenting the endoplasmic reticulum stress pathway for anti-inflammatory functions in host cells. The beneficial effects of the L. paracasei strains on the skin have been described; however, the effects of L. paracasei-derived extracellular vesicles (LpEVs) on the skin are poorly understood. Herein, we investigated whether LpEVs can improve inflammation-mediated skin phenotypes by determining their effects on primary human skin cells and a three-dimensional (3D) full-thickness human skin equivalent under tumor necrosis factor (TNF)-α-challenged inflammatory conditions. LpEVs were efficiently taken up by the human skin cells and were much less cytotoxic to host cells than bacterial lysates. Furthermore, low LpEV concentrations efficiently restored TNF-α-induced cellular phenotypes, resulting in increased cell proliferation and collagen synthesis, but decreased inflammatory factor levels (matrix metalloproteinase 1, interleukin 6, and interleukin 8) in the human dermal fibroblasts, which was comparable to that of retinoic acid, a representative antiaging compound. The beneficial effects of LpEVs were validated in a 3D full-thickness human skin equivalent model. LpEV treatment remarkably restored the TNF-α-induced epidermal malformation, abnormal proliferation of keratinocytes in the basal layer, and reduction in dermal collagen synthesis. Additionally, LpEVs penetrated and reached the deepest dermal layer within 24 h when overlaid on top of a 3D full-thickness human skin equivalent. Furthermore, they possessed superior antioxidant capacity compared with the human cell-derived EVs. Taken together, the anti-inflammatory probiotic LpEVs can be attractive antiaging and antioxidant substances for improving inflammation-induced skin phenotypes and disorders.
Full article
(This article belongs to the Section Cellular Aging)
Open AccessArticle
The Human Placental Amniotic Membrane Mesenchymal-Stromal-Cell-Derived Conditioned Medium Inhibits Growth and Promotes Apoptosis of Human Cholangiocarcinoma Cells In Vitro and In Vivo by Suppressing IL-6/JAK2/STAT3 Signaling
by
, , , , , , , and
Cells 2023, 12(24), 2788; https://doi.org/10.3390/cells12242788 - 07 Dec 2023
Abstract
Mesenchymal stromal cells (MSCs) have recently been shown to play an important role in the growth and progression of many solid tumors, including cholangiocarcinoma (CCA). The human placental amniotic membrane (hPAM) is one of the most favorable sources of MSCs due to its
[...] Read more.
Mesenchymal stromal cells (MSCs) have recently been shown to play an important role in the growth and progression of many solid tumors, including cholangiocarcinoma (CCA). The human placental amniotic membrane (hPAM) is one of the most favorable sources of MSCs due to its availability and non-invasive harvesting procedure. However, the role of human placental amniotic membrane mesenchymal stromal cells (hPAMSCs) in the growth and progression of human CCA has not yet been determined. This study investigates the effects of conditioned medium derived from hPAMSCs (PA-CM) on the properties of three human CCA cell lines and explores possible mechanisms of action. Varying concentrations of PA-CM were used to treat CCA cells to determine their effects on the proliferation and apoptosis of CCA cells. The results showed that PA-CM inhibited the proliferation and colony-forming capacity of KKU100, KKU213A, and KKU213B cells. PA-CM also promoted the apoptosis of these CCA cells by causing the loss of mitochondrial membrane potential. Western Blotting confirmed that PA-CM induced CCA cell apoptosis by increasing the levels of the Bax/Bcl-2 ratio, cleaved caspase 3, and cleaved PARP, possibly by inhibiting the IL-6/JAK2/STAT3 signaling pathway. Moreover, our in vivo study also confirmed the suppressive effect of hPAMSCs on CCA cells by showing that PA-CM reduced tumor volume in nude mice transplanted with human CCA cells. Taken together, our results demonstrate that PA-CM has potent tumor-suppressive effects on human CCA cells and could potentially be used in combination with chemotherapy to develop a more effective treatment for CCA patients.
Full article
(This article belongs to the Collection Stem Cell-Based Therapy, Disease Modeling and Drug Discovery)
►▼
Show Figures

Figure 1
Open AccessReview
Therapeutic Consequences of Targeting the IGF-1/PI3K/AKT/FOXO3 Axis in Sarcopenia: A Narrative Review
Cells 2023, 12(24), 2787; https://doi.org/10.3390/cells12242787 - 07 Dec 2023
Abstract
►▼
Show Figures
The high prevalence of sarcopenia in an aging population has an underestimated impact on quality of life by increasing the risk of falls and subsequent hospitalization. Unfortunately, the application of the major established key therapeutic—physical activity—is challenging in the immobile and injured sarcopenic
[...] Read more.
The high prevalence of sarcopenia in an aging population has an underestimated impact on quality of life by increasing the risk of falls and subsequent hospitalization. Unfortunately, the application of the major established key therapeutic—physical activity—is challenging in the immobile and injured sarcopenic patient. Consequently, novel therapeutic directions are needed. The transcription factor Forkhead-Box-Protein O3 (FOXO3) may be an option, as it and its targets have been observed to be more highly expressed in sarcopenic muscle. In such catabolic situations, Foxo3 induces the expression of two muscle specific ubiquitin ligases (Atrogin-1 and Murf-1) via the PI3K/AKT pathway. In this review, we particularly evaluate the potential of Foxo3-targeted gene therapy. Foxo3 knockdown has been shown to lead to increased muscle cross sectional area, through both the AKT-dependent and -independent pathways and the reduced impact on the two major downstream targets Atrogin-1 and Murf-1. Moreover, a Foxo3 reduction suppresses apoptosis, activates satellite cells, and initiates their differentiation into muscle cells. While this indicates a critical role in muscle regeneration, this mechanism might exhaust the stem cell pool, limiting its clinical applicability. As systemic Foxo3 knockdown has also been associated with risks of inflammation and cancer progression, a muscle-specific approach would be necessary. In this review, we summarize the current knowledge on Foxo3 and conceptualize a specific and targeted therapy that may circumvent the drawbacks of systemic Foxo3 knockdown. This approach presumably would limit the side effects and enable an activity-independent positive impact on skeletal muscle.
Full article

Figure 1
Open AccessArticle
Modeling and Phenotyping Acute and Chronic Type 2 Diabetes Mellitus In Vitro in Rodent Heart and Skeletal Muscle Cells
by
, , , , , and
Cells 2023, 12(24), 2786; https://doi.org/10.3390/cells12242786 - 07 Dec 2023
Abstract
Type 2 diabetes (T2D) has a complex pathophysiology which makes modeling the disease difficult. We aimed to develop a novel model for simulating T2D in vitro, including hyperglycemia, hyperlipidemia, and variably elevated insulin levels targeting muscle cells. We investigated insulin resistance (IR), cellular
[...] Read more.
Type 2 diabetes (T2D) has a complex pathophysiology which makes modeling the disease difficult. We aimed to develop a novel model for simulating T2D in vitro, including hyperglycemia, hyperlipidemia, and variably elevated insulin levels targeting muscle cells. We investigated insulin resistance (IR), cellular respiration, mitochondrial morphometry, and the associated function in different T2D-mimicking conditions in rodent skeletal (C2C12) and cardiac (H9C2) myotubes. The physiological controls included 5 mM of glucose with 20 mM of mannitol as osmotic controls. To mimic hyperglycemia, cells were exposed to 25 mM of glucose. Further treatments included insulin, palmitate, or both. After short-term (24 h) or long-term (96 h) exposure, we performed radioactive glucose uptake and mitochondrial function assays. The mitochondrial size and relative frequencies were assessed with morphometric analyses using electron micrographs. C2C12 and H9C2 cells that were treated short- or long-term with insulin and/or palmitate and HG showed IR. C2C12 myotubes exposed to T2D-mimicking conditions showed significantly decreased ATP-linked respiration and spare respiratory capacity and less cytoplasmic area occupied by mitochondria, implying mitochondrial dysfunction. In contrast, the H9C2 myotubes showed elevated ATP-linked and maximal respiration and increased cytoplasmic area occupied by mitochondria, indicating a better adaptation to stress and compensatory lipid oxidation in a T2D environment. Both cell lines displayed elevated fractions of swollen/vacuolated mitochondria after T2D-mimicking treatments. Our stable and reproducible in vitro model of T2D rapidly induced IR, changes in the ATP-linked respiration, shifts in energetic phenotypes, and mitochondrial morphology, which are comparable to the muscles of patients suffering from T2D. Thus, our model should allow for the study of disease mechanisms and potential new targets and allow for the screening of candidate therapeutic compounds.
Full article
(This article belongs to the Section Cellular Metabolism)
►▼
Show Figures

Figure 1
Open AccessReview
Aging and Metabolic Reprogramming of Adipose-Derived Stem Cells Affect Molecular Mechanisms Related to Cardiovascular Diseases
by
Cells 2023, 12(24), 2785; https://doi.org/10.3390/cells12242785 - 07 Dec 2023
Abstract
We performed a systematic search of the PubMed database for English-language articles related to the function of adipose-derived stem cells in the pathogenesis of cardiovascular diseases. In preclinical models, adipose-derived stem cells protected arteries and the heart from oxidative stress and inflammation and
[...] Read more.
We performed a systematic search of the PubMed database for English-language articles related to the function of adipose-derived stem cells in the pathogenesis of cardiovascular diseases. In preclinical models, adipose-derived stem cells protected arteries and the heart from oxidative stress and inflammation and preserved angiogenesis. However, clinical trials did not reiterate successful treatments with these cells in preclinical models. The low success in patients may be due to aging and metabolic reprogramming associated with the loss of proliferation capacity and increased senescence of stem cells, loss of mitochondrial function, increased oxidative stress and inflammation, and adipogenesis with increased lipid deposition associated with the low potential to induce endothelial cell function and angiogenesis, cardiomyocyte survival, and restore heart function. Then, we identify noncoding RNAs that may be mechanistically related to these dysfunctions of human adipose-derived stem cells. In particular, a decrease in let-7, miR-17-92, miR-21, miR-145, and miR-221 led to the loss of their function with obesity, type 2 diabetes, oxidative stress, and inflammation. An increase in miR-34a, miR-486-5p, and mir-24-3p contributed to the loss of function, with a noteworthy increase in miR-34a with age. In contrast, miR-146a and miR-210 may protect stem cells. However, a systematic analysis of other noncoding RNAs in human adipose-derived stem cells is warranted. Overall, this review gives insight into modes to improve the functionality of human adipose-derived stem cells.
Full article
(This article belongs to the Special Issue Adipose-Derived Mesenchymal Stem Cells: Current Uses and Future Perspectives for Vascular Applications)
►▼
Show Figures

Figure 1
Open AccessArticle
Piezo1 Is Required for Myoblast Migration and InvolvesPolarized Clustering in Association with Cholesterol and GM1 Ganglioside
by
, , , , , , and
Cells 2023, 12(24), 2784; https://doi.org/10.3390/cells12242784 - 07 Dec 2023
Abstract
A specific plasma membrane distribution of the mechanosensitive ion channel Piezo1 is required for cell migration, but the mechanism remains elusive. Here, we addressed this question using WT and Piezo1-silenced C2C12 mouse myoblasts and WT and Piezo1-KO human kidney HEK293T cells.
[...] Read more.
A specific plasma membrane distribution of the mechanosensitive ion channel Piezo1 is required for cell migration, but the mechanism remains elusive. Here, we addressed this question using WT and Piezo1-silenced C2C12 mouse myoblasts and WT and Piezo1-KO human kidney HEK293T cells. We showed that cell migration in a cell-free area and through a porous membrane decreased upon Piezo1 silencing or deletion, but increased upon Piezo1 activation by Yoda1, whereas migration towards a chemoattractant gradient was reduced by Yoda1. Piezo1 organized into clusters, which were preferentially enriched at the front. This polarization was stimulated by Yoda1, accompanied by Ca2+ polarization, and abrogated by partial cholesterol depletion. Piezo1 clusters partially colocalized with cholesterol- and GM1 ganglioside- enriched domains, the proportion of which was increased by Yoda1. Mechanistically, Piezo1 activation induced a differential mobile fraction of GM1, associated with domains and the bulk membrane. Conversely, cholesterol depletion abrogated the differential mobile fraction of Piezo1 associated with clusters and the bulk membrane. In conclusion, we revealed, for the first time, the differential implication of Piezo1 depending on the migration mode and the interplay between GM1/cholesterol-enriched domains at the front during migration in a cell-free area. These domains could provide the optimal biophysical properties for Piezo1 activity and/or spatial dissociation from the PMCA calcium efflux pump.
Full article
(This article belongs to the Special Issue Advances in Dissecting Calcium Signaling Pathways in Health and Diseases)
►▼
Show Figures

Figure 1
Open AccessArticle
Abstinence Restores Cardiac Function in Mice with Established Alcohol-Induced Cardiomyopathy
by
, , , , and
Cells 2023, 12(24), 2783; https://doi.org/10.3390/cells12242783 - 07 Dec 2023
Abstract
Alcohol-induced cardiomyopathy (ACM) has a poor prognosis with up to a 50% chance of death within four years of diagnosis. There are limited studies investigating the potential of abstinence for promoting repair after alcohol-induced cardiac damage, particularly in a controlled preclinical study design.
[...] Read more.
Alcohol-induced cardiomyopathy (ACM) has a poor prognosis with up to a 50% chance of death within four years of diagnosis. There are limited studies investigating the potential of abstinence for promoting repair after alcohol-induced cardiac damage, particularly in a controlled preclinical study design. Here, we developed an exposure protocol that led to significant decreases in cardiac function in C57BL6/J mice within 30 days; dP/dt max decreased in the mice fed alcohol for 30 days (8054 ± 664.5 mmHg/s compared to control mice: 11,188 ± 724.2 mmHg/s, p < 0.01), and the dP/dt min decreased, as well (−7711 ± 561 mmHg/s compared to control mice: −10,147 ± 448.2 mmHg/s, p < 0.01). Quantitative PCR was used to investigate inflammatory and fibrotic biomarkers, while histology was used to depict overt changes in cardiac fibrosis. We observed a complete recovery of function after abstinence (dP/dt max increased from 8054 ± 664 mmHg/s at 30 days to 11,967 ± 449 mmHg/s after abstinence, p < 0.01); further, both inflammatory and fibrotic biomarkers decreased after abstinence. These results lay the groundwork for future investigation of the molecular mechanisms underlying recovery from alcohol-induced damage in the heart.
Full article
(This article belongs to the Special Issue Alcohol-Induced Tissue and Organ Damage: Mechanisms and Therapeutic Approaches)
►▼
Show Figures

Figure 1
Open AccessArticle
Single-Cell Radiation Response Scoring with the Deep Learning Algorithm CeCILE 2.0
by
and
Cells 2023, 12(24), 2782; https://doi.org/10.3390/cells12242782 - 07 Dec 2023
Abstract
External stressors, such as ionizing radiation, have massive effects on life, survival, and the ability of mammalian cells to divide. Different types of radiation have different effects. In order to understand these in detail and the underlying mechanisms, it is essential to study
[...] Read more.
External stressors, such as ionizing radiation, have massive effects on life, survival, and the ability of mammalian cells to divide. Different types of radiation have different effects. In order to understand these in detail and the underlying mechanisms, it is essential to study the radiation response of each cell. This allows abnormalities to be characterized and laws to be derived. Tracking individual cells over several generations of division generates large amounts of data that can no longer be meaningfully analyzed by hand. In this study, we present a deep-learning-based algorithm, CeCILE (Cell classification and in vitro lifecycle evaluation) 2.0, that can localize, classify, and track cells in live cell phase-contrast videos. This allows conclusions to be drawn about the viability of the cells, the cell cycle, cell survival, and the influence of X-ray radiation on these. Furthermore, radiation-specific abnormalities during division could be characterized. In summary, CeCILE 2.0 is a powerful tool to characterize and quantify the cellular response to external stressors such as radiation and to put individual responses into a larger context. To the authors knowledge, this is the first algorithm with a fully integrated workflow that is able to do comprehensive single-cell and cell composite analysis, allowing them to draw conclusions on cellular radiation response.
Full article
(This article belongs to the Special Issue Mechanism of Radiation Carcinogenesis)
►▼
Show Figures

Figure 1
Open AccessArticle
Disruption of Mitophagy Flux through the PARL-PINK1 Pathway by CHCHD10 Mutations or CHCHD10 Depletion
by
, , , , , , , , , , and
Cells 2023, 12(24), 2781; https://doi.org/10.3390/cells12242781 - 07 Dec 2023
Abstract
Coiled-coil-helix-coiled-coil-helix domain-containing 10 (CHCHD10) is a nuclear-encoded mitochondrial protein which is primarily mutated in the spectrum of familial and sporadic amyotrophic lateral sclerosis (ALS)–frontotemporal dementia (FTD). Endogenous CHCHD10 levels decline in the brains of ALS–FTD patients, and the CHCHD10S59L mutation in Drosophila
[...] Read more.
Coiled-coil-helix-coiled-coil-helix domain-containing 10 (CHCHD10) is a nuclear-encoded mitochondrial protein which is primarily mutated in the spectrum of familial and sporadic amyotrophic lateral sclerosis (ALS)–frontotemporal dementia (FTD). Endogenous CHCHD10 levels decline in the brains of ALS–FTD patients, and the CHCHD10S59L mutation in Drosophila induces dominant toxicity together with PTEN-induced kinase 1 (PINK1), a protein critical for the induction of mitophagy. However, whether and how CHCHD10 variants regulate mitophagy flux in the mammalian brain is unknown. Here, we demonstrate through in vivo and in vitro models, as well as human FTD brain tissue, that ALS/FTD-linked CHCHD10 mutations (R15L and S59L) impair mitophagy flux and mitochondrial Parkin recruitment, whereas wild-type CHCHD10 (CHCHD10WT) normally enhances these measures. Specifically, we show that CHCHD10R15L and CHCHD10S59L mutations reduce PINK1 levels by increasing PARL activity, whereas CHCHD10WT produces the opposite results through its stronger interaction with PARL, suppressing its activity. Importantly, we also demonstrate that FTD brains with TAR DNA-binding protein-43 (TDP-43) pathology demonstrate disruption of the PARL–PINK1 pathway and that experimentally impairing mitophagy promotes TDP-43 aggregation. Thus, we provide herein new insights into the regulation of mitophagy and TDP-43 aggregation in the mammalian brain through the CHCHD10–PARL–PINK1 pathway.
Full article
(This article belongs to the Special Issue Mitochondria and Other Organelles in Neurodegenerative Diseases)
►▼
Show Figures

Figure 1
Open AccessArticle
A Mouse Model to Study the Pathogenesis of γ-herpesviral Infections in Germinal Center B Cells
by
, , , , , , , and
Cells 2023, 12(24), 2780; https://doi.org/10.3390/cells12242780 - 06 Dec 2023
Abstract
►▼
Show Figures
CD30-positive germinal center (GC)-derived B cell lymphomas are frequently linked to Epstein–Barr Virus (EBV) infection. However, a suitable animal model for the investigation of the interplay between γ-herpesvirus and host cells in B cell pathogenesis is currently lacking. Here, we present a novel
[...] Read more.
CD30-positive germinal center (GC)-derived B cell lymphomas are frequently linked to Epstein–Barr Virus (EBV) infection. However, a suitable animal model for the investigation of the interplay between γ-herpesvirus and host cells in B cell pathogenesis is currently lacking. Here, we present a novel in vivo model enabling the analysis of genetically modified viruses in combination with genetically modified GC B cells. As a murine γ-herpesvirus, we used MHV-68 closely mirroring the biology of EBV. Our key finding was that Cre-mediated recombination can be successfully induced by an MHV-68 infection in GC B cells from Cγ1-Cre mice allowing for deletion or activation of loxP-flanked cellular genes. The implementation of PrimeFlow RNA assay for MHV-68 demonstrated the enrichment of MHV-68 in GC and isotype-switched B cells. As illustrations of virus and cellular modifications, we inserted the EBV gene LMP2A into the MHV-68 genome and induced constitutively active CD30-signaling in GC B cells through MHV-68 infections, respectively. While the LMP2A-expressing MHV-68 behaved similarly to wildtype MHV-68, virally induced constitutively active CD30-signaling in GC B cells led to the expansion of a pre-plasmablastic population. The findings underscore the potential of our novel tools to address crucial questions about the interaction between herpesviral infections and deregulated cellular gene-expression in future studies.
Full article

Figure 1
Open AccessArticle
RL2 Enhances the Elimination of Breast Cancer Cells by Doxorubicin
by
, , , , , , and
Cells 2023, 12(24), 2779; https://doi.org/10.3390/cells12242779 - 06 Dec 2023
Abstract
RL2 (recombinant lactaptin 2), a recombinant analogon of the human milk protein Κ-Casein, induces mitophagy and cell death in breast carcinoma cells. Furthermore, RL2 was shown to enhance extrinsic apoptosis upon long-term treatment while inhibiting it upon short-term stimulation. However, the effects of
[...] Read more.
RL2 (recombinant lactaptin 2), a recombinant analogon of the human milk protein Κ-Casein, induces mitophagy and cell death in breast carcinoma cells. Furthermore, RL2 was shown to enhance extrinsic apoptosis upon long-term treatment while inhibiting it upon short-term stimulation. However, the effects of RL2 on the action of chemotherapeutic drugs that induce the intrinsic apoptotic pathway have not been investigated to date. Here, we examined the effects of RL2 on the doxorubicin (DXR)-induced cell death in breast cancer cells with three different backgrounds. In particular, we used BT549 and MDA-MB-231 triple-negative breast cancer (TNBC) cells, T47D estrogen receptor alpha (ERα) positive cells, and SKBR3 human epidermal growth factor receptor 2 (HER2) positive cells. BT549, MDA-MB-231, and T47D cells showed a severe loss of cell viability upon RL2 treatment, accompanied by the induction of mitophagy. Furthermore, BT549, MDA-MB-231, and T47D cells could be sensitized towards DXR treatment with RL2, as evidenced by loss of cell viability. In contrast, SKBR3 cells showed almost no RL2-induced loss of cell viability when treated with RL2 alone, and RL2 did not sensitize SKBR3 cells towards DXR-mediated loss of cell viability. Bioinformatic analysis of gene expression showed an enrichment of genes controlling metabolism in SKBR3 cells compared to the other cell lines. This suggests that the metabolic status of the cells is important for their sensitivity to RL2. Taken together, we have shown that RL2 can enhance the intrinsic apoptotic pathway in TNBC and ERα-positive breast cancer cells, paving the way for the development of novel therapeutic strategies.
Full article
(This article belongs to the Special Issue Systems Biology of Apoptotic and Non-apoptotic Signaling)
►▼
Show Figures

Figure 1
Open AccessReview
Scanning Probe Microscopy Techniques for Studying the Cell Glycocalyx
by
, , , , , , and
Cells 2023, 12(24), 2778; https://doi.org/10.3390/cells12242778 - 06 Dec 2023
Abstract
The glycocalyx is a brush-like layer that covers the surfaces of the membranes of most cell types. It consists of a mixture of carbohydrates, mainly glycoproteins and proteoglycans. Due to its structure and sensitivity to environmental conditions, it represents a complicated object to
[...] Read more.
The glycocalyx is a brush-like layer that covers the surfaces of the membranes of most cell types. It consists of a mixture of carbohydrates, mainly glycoproteins and proteoglycans. Due to its structure and sensitivity to environmental conditions, it represents a complicated object to investigate. Here, we review studies of the glycocalyx conducted using scanning probe microscopy approaches. This includes imaging techniques as well as the measurement of nanomechanical properties. The nanomechanics of the glycocalyx is particularly important since it is widely present on the surfaces of mechanosensitive cells such as endothelial cells. An overview of problems with the interpretation of indirect data via the use of analytical models is presented. Special insight is given into changes in glycocalyx properties during pathological processes. The biological background and alternative research methods are briefly covered.
Full article
(This article belongs to the Special Issue Advances in Scanning Probe Microscopy in Cell Biology)
►▼
Show Figures

Figure 1
Open AccessArticle
FoxO3a Drives the Metabolic Reprogramming in Tamoxifen-Resistant Breast Cancer Cells Restoring Tamoxifen Sensitivity
by
, , , , , , , , , , , , , and
Cells 2023, 12(24), 2777; https://doi.org/10.3390/cells12242777 - 06 Dec 2023
Abstract
Tamoxifen-resistant breast cancer cells (TamR-BCCs) are characterized by an enhanced metabolic phenotype compared to tamoxifen-sensitive cells. FoxO3a is an important modulator of cell metabolism, and its deregulation has been involved in the acquisition of tamoxifen resistance. Therefore, tetracycline-inducible FoxO3a was overexpressed in TamR-BCCs
[...] Read more.
Tamoxifen-resistant breast cancer cells (TamR-BCCs) are characterized by an enhanced metabolic phenotype compared to tamoxifen-sensitive cells. FoxO3a is an important modulator of cell metabolism, and its deregulation has been involved in the acquisition of tamoxifen resistance. Therefore, tetracycline-inducible FoxO3a was overexpressed in TamR-BCCs (TamR/TetOn-AAA), which, together with their control cell line (TamR/TetOn-V), were subjected to seahorse metabolic assays and proteomic analysis. FoxO3a was able to counteract the increased oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) observed in TamR by reducing their energetic activity and glycolytic rate. FoxO3a caused glucose accumulation, very likely by reducing LDH activity and mitigated TamR biosynthetic needs by reducing G6PDH activity and hindering NADPH production via the pentose phosphate pathway (PPP). Proteomic analysis revealed a FoxO3a-dependent marked decrease in the expression of LDH as well as of several enzymes involved in carbohydrate metabolism (e.g., Aldolase A, LDHA and phosphofructokinase) and the analysis of cBioPortal datasets of BC patients evidenced a significant inverse correlation of these proteins and FoxO3a. Interestingly, FoxO3a also increased mitochondrial biogenesis despite reducing mitochondrial functionality by triggering ROS production. Based on these findings, FoxO3a inducing/activating drugs could represent promising tools to be exploited in the management of patients who are refractory to antiestrogen therapy.
Full article
(This article belongs to the Special Issue Forkhead-Box (Fox)O Family Transcription Factors in Cancer)
►▼
Show Figures

Graphical abstract
Open AccessReview
New Perspectives in Radiological and Radiopharmaceutical Hybrid Imaging in Progressive Supranuclear Palsy: A Systematic Review
by
, , , , and
Cells 2023, 12(24), 2776; https://doi.org/10.3390/cells12242776 - 06 Dec 2023
Abstract
Progressive supranuclear palsy (PSP) is a neurodegenerative disease characterized by four-repeat tau deposition in various cell types and anatomical regions, and can manifest as several clinical phenotypes, including the most common phenotype, Richardson’s syndrome. The limited availability of biomarkers for PSP relates to
[...] Read more.
Progressive supranuclear palsy (PSP) is a neurodegenerative disease characterized by four-repeat tau deposition in various cell types and anatomical regions, and can manifest as several clinical phenotypes, including the most common phenotype, Richardson’s syndrome. The limited availability of biomarkers for PSP relates to the overlap of clinical features with other neurodegenerative disorders, but identification of a growing number of biomarkers from imaging is underway. One way to increase the reliability of imaging biomarkers is to combine different modalities for multimodal imaging. This review aimed to provide an overview of the current state of PSP hybrid imaging by combinations of positron emission tomography (PET) and magnetic resonance imaging (MRI). Specifically, combined PET and MRI studies in PSP highlight the potential of [18F]AV-1451 to detect tau, but also the challenge in differentiating PSP from other neurodegenerative diseases. Studies over the last years showed a reduced synaptic density in [11C]UCB-J PET, linked [11C]PK11195 and [18F]AV-1451 markers to disease progression, and suggested the potential role of [18F]RO948 PET for identifying tau pathology in subcortical regions. The integration of quantitative global and regional gray matter analysis by MRI may further guide the assessment of reduced cortical thickness or volume alterations, and diffusion MRI could provide insight into microstructural changes and structural connectivity in PSP. Challenges in radiopharmaceutical biomarkers and hybrid imaging require further research targeting markers for comprehensive PSP diagnosis.
Full article
(This article belongs to the Section Cellular Biophysics)
►▼
Show Figures

Figure 1
Open AccessArticle
Reprogramming Megakaryocytes for Controlled Release of Platelet-like Particles Carrying a Single-Chain Thromboxane A2 Receptor-G-Protein Complex with Therapeutic Potential
Cells 2023, 12(24), 2775; https://doi.org/10.3390/cells12242775 - 06 Dec 2023
Abstract
In this study, we reported that novel single-chain fusion proteins linking thromboxane A2 (TXA2) receptor (TP) to a selected G-protein α-subunit q (SC-TP-Gαq) or to α-subunit s (SC-TP-Gαs) could be stably expressed in megakaryocytes (MKs). We tested the MK-released platelet-linked
[...] Read more.
In this study, we reported that novel single-chain fusion proteins linking thromboxane A2 (TXA2) receptor (TP) to a selected G-protein α-subunit q (SC-TP-Gαq) or to α-subunit s (SC-TP-Gαs) could be stably expressed in megakaryocytes (MKs). We tested the MK-released platelet-linked particles (PLPs) to be used as a vehicle to deliver the overexpressed SC-TP-Gαq or the SC-TP-Gαs to regulate human platelet function. To understand how the single-chain TP-Gα fusion proteins could regulate opposite platelet activities by an identical ligand TXA2, we tested their dual functions—binding to ligands and directly linking to different signaling pathways within a single polypeptide chain—using a 3D structural model. The immature MKs were cultured and transfected with cDNAs constructed from structural models of the individual SC-TP-Gαq and SC-TP-Gαs, respectively. After transient expression was identified, the immature MKs stably expressing SC-TP-Gαq or SC-TP-Gαs (stable cell lines) were selected. The stable cell lines were induced into mature MKs which released PLPs. Western blot analysis confirmed that the released PLPs were carrying the recombinant SC-TP-Gαq or SC-TP-Gαs. Flow cytometry analysis showed that the PLPs carrying SC-TP-Gαq were able to perform the activity by promoting platelet aggregation. In contrast, PLPs carrying SC-TP-Gαs reversed Gq to Gs signaling to inhibit platelet aggregation. This is the first time demonstrating that SC-TP-Gαq and SC-TP-Gαs were successfully overexpressed in MK cells and released as PLPs with proper folding and programmed biological activities. This bio-engineering led to the formation of two sets of biologically active PLP forms mediating calcium and cAMP signaling, respectively. As a result, these PLPs are able to bind to identical endogenous TXA2 with opposite activities, inhibiting and promoting platelet aggregation as reprogrammed for therapeutic process. Results also demonstrated that the nucleus-free PLPs could be used to deliver recombinant membrane-bound GPCRs to regulate cellular activity in general.
Full article
(This article belongs to the Collection Applications of Stem Cells in Cardiovascular Functional Genomics 2022)
►▼
Show Figures

Figure 1
Open AccessArticle
Levels of Cell-Free DNA in Kidney Failure Patients before and after Renal Transplantation
by
, , , , , , , , and
Cells 2023, 12(24), 2774; https://doi.org/10.3390/cells12242774 - 06 Dec 2023
Abstract
►▼
Show Figures
Circulating cell-free DNA (cfDNA) has diverse applications in oncological, prenatal, toxicological, cardiovascular, and autoimmune diseases, diagnostics, and organ transplantation. In particular, mitochondrial cfDNA (mt-cfDNA) is associated with inflammation and linked to early vascular ageing (EVA) in end-stage kidney failure (ESKF), which could be
[...] Read more.
Circulating cell-free DNA (cfDNA) has diverse applications in oncological, prenatal, toxicological, cardiovascular, and autoimmune diseases, diagnostics, and organ transplantation. In particular, mitochondrial cfDNA (mt-cfDNA) is associated with inflammation and linked to early vascular ageing (EVA) in end-stage kidney failure (ESKF), which could be a noninvasive marker for graft rejection and organ damage. Plasma samples from 44 ESKF patients, of whom half (n = 22) underwent either conservative therapy (non-HD) or hemodialysis (HD) before kidney transplantation (KT). These samples were analyzed at baseline and two years after KT. cfDNA was extracted from plasma and quantified using the fluorometric method. qPCR was used to quantify and differentiate the fractions of mt-cfDNA and nuclear cfDNA (nc-cfDNA). mt-cfDNA levels in KT patients decreased significantly from baseline to two years post-KT (p < 0.0268), while levels of total cfDNA and nc-cfDNA did not differ. Depending on therapy modality (HD vs. non-HD) before KT, total cfDNA levels were higher in HD patients at both baseline (p = 0.0133) and two years post-KT (p = 0.0421), while nc-cfDNA levels were higher in HD only at baseline (p = 0.0079). Males showed a nonsignificant trend of higher cfDNA levels. Patients with assessed vascular fibrosis (p = 0.0068), either alone or in combination with calcification plus fibrosis, showed reduced mt-cfDNA post-KT (p = 0.0195). Changes in mt-cfDNA levels suggests the impact of KT on the inflammatory state of ESKF, as evidenced via its correlation with high sensitivity C-reactive protein after KT. Further studies are warranted to assess if cfDNA could serve as a noninvasive method for monitoring the response to organ transplantation and even for amelioration of EVA status per se.
Full article

Figure 1
Open AccessArticle
Open-Label Sulforaphane Trial in FMR1 Premutation Carriers with Fragile-X-Associated Tremor and Ataxia Syndrome (FXTAS)
by
, , , , , , , , , , , , , , , , , and
Cells 2023, 12(24), 2773; https://doi.org/10.3390/cells12242773 - 05 Dec 2023
Abstract
Fragile X (FMR1) premutation is a common mutation that affects about 1 in 200 females and 1 in 450 males and can lead to the development of fragile-X-associated tremor/ataxia syndrome (FXTAS). Although there is no targeted, proven treatment for FXTAS, research suggests that
[...] Read more.
Fragile X (FMR1) premutation is a common mutation that affects about 1 in 200 females and 1 in 450 males and can lead to the development of fragile-X-associated tremor/ataxia syndrome (FXTAS). Although there is no targeted, proven treatment for FXTAS, research suggests that sulforaphane, an antioxidant present in cruciferous vegetables, can enhance mitochondrial function and maintain redox balance in the dermal fibroblasts of individuals with FXTAS, potentially leading to improved cognitive function. In a 24-week open-label trial involving 15 adults aged 60–88 with FXTAS, 11 participants successfully completed the study, demonstrating the safety and tolerability of sulforaphane. Clinical outcomes and biomarkers were measured to elucidate the effects of sulforaphane. While there were nominal improvements in multiple clinical measures, they were not significantly different after correction for multiple comparisons. PBMC energetic measures showed that the level of citrate synthase was higher after sulforaphane treatment, resulting in lower ATP production. The ratio of complex I to complex II showed positive correlations with the MoCA and BDS scores. Several mitochondrial biomarkers showed increased activity and quantity and were correlated with clinical improvements.
Full article
(This article belongs to the Special Issue The Molecular Basis of Fragile X Syndrome and Other FMR1-Associated Conditions)
►▼
Show Figures

Figure 1
Open AccessArticle
Imidacloprid Induces Lysosomal Dysfunction and Cell Death in Human Astrocytes and Fibroblasts—Environmental Implication of a Clinical Case Report
by
, , , , , , and
Cells 2023, 12(24), 2772; https://doi.org/10.3390/cells12242772 - 05 Dec 2023
Abstract
Imidacloprid (IMI), a neonicotinoid insecticide, has potential cytotoxic and genotoxic effects on human and experimental models, respectively. While being an emerging environmental contaminant, occupational exposure and related cellular mechanisms are unknown. Herein, we were motivated by a specific patient case where occupational exposure
[...] Read more.
Imidacloprid (IMI), a neonicotinoid insecticide, has potential cytotoxic and genotoxic effects on human and experimental models, respectively. While being an emerging environmental contaminant, occupational exposure and related cellular mechanisms are unknown. Herein, we were motivated by a specific patient case where occupational exposure to an IMI-containing plant protection product was associated with the diagnosis of Bell’s palsy. The aim was to investigate the toxic effects and cellular mechanisms of IMI exposure on glial cells (D384 human astrocytes) and on human fibroblasts (AG01518). IMI-treated astrocytes showed a reduction in cell number and dose-dependent cytotoxicity at 24 h. Lower doses of IMI induced reactive oxygen species (ROS) and lysosomal membrane permeabilisation (LMP), causing apoptosis and autophagic dysfunction, while high doses caused significant necrotic cell death. Using normal fibroblasts, we found that IMI-induced autophagic dysfunction and lysosomal damage, activated lysophagy, and resulted in a compensatory increase in lysosomes. In conclusion, the observed IMI-induced effects on human glial cells and fibroblasts provide a possible link between IMI cytotoxicity and neurological complications observed clinically in the patient exposed to this neonicotinoid insecticide.
Full article
(This article belongs to the Collection Feature Papers in 'Cells of the Nervous System' Section)
►▼
Show Figures

Figure 1
Open AccessArticle
Single-Cell Sequencing of Lung Macrophages and Monocytes Reveals Novel Therapeutic Targets in COPD
by
, , , , , , and
Cells 2023, 12(24), 2771; https://doi.org/10.3390/cells12242771 - 05 Dec 2023
Abstract
Background: Macrophages and monocytes orchestrate inflammatory processes in the lungs. However, their role in the pathogenesis of chronic obstructive pulmonary disease (COPD), an inflammatory condition, is not well known. Here, we determined the characteristics of these cells in lungs of COPD patients and
[...] Read more.
Background: Macrophages and monocytes orchestrate inflammatory processes in the lungs. However, their role in the pathogenesis of chronic obstructive pulmonary disease (COPD), an inflammatory condition, is not well known. Here, we determined the characteristics of these cells in lungs of COPD patients and identified novel therapeutic targets. Methods: We analyzed the RNA sequencing (scRNA-seq) data of explanted human lung tissue from COPD (n = 18) and control (n = 28) lungs and found 16 transcriptionally distinct groups of macrophages and monocytes. We performed pathway and gene enrichment analyses to determine the characteristics of macrophages and monocytes from COPD (versus control) lungs and to identify the therapeutic targets, which were then validated using data from a randomized controlled trial of COPD patients (DISARM). Results: In the alveolar macrophages, 176 genes were differentially expressed (83 up- and 93 downregulated; Padj < 0.05, |log2FC| > 0.5) and were enriched in downstream biological processes predicted to cause poor lipid uptake and impaired cell activation, movement, and angiogenesis in COPD versus control lungs. Classical monocytes from COPD lungs harbored a differential gene set predicted to cause the activation, mobilization, and recruitment of cells and a hyperinflammatory response to influenza. In silico, the corticosteroid fluticasone propionate was one of the top compounds predicted to modulate the abnormal transcriptional profiles of these cells. In vivo, a fluticasone–salmeterol combination significantly modulated the gene expression profiles of bronchoalveolar lavage cells of COPD patients (p < 0.05). Conclusions: COPD lungs harbor transcriptionally distinct lung macrophages and monocytes, reflective of a dysfunctional and hyperinflammatory state. Inhaled corticosteroids and other compounds can modulate the transcriptomic profile of these cells in patients with COPD.
Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Chronic Obstructive Pulmonary Disease (COPD))
►▼
Show Figures

Figure 1
Open AccessArticle
Corticotropin-Releasing Hormone: A Novel Stimulator of Somatolactin in Teleost Pituitary Cells
Cells 2023, 12(24), 2770; https://doi.org/10.3390/cells12242770 - 05 Dec 2023
Abstract
Corticotropin-releasing hormone (CRH) is known for its crucial role in the stress response system, which could induce pituitary adrenocorticotropic hormone (ACTH) secretion to promote glucocorticoid release in the adrenal gland. However, little is known about other pituitary actions of CRH in teleosts. Somatolactin
[...] Read more.
Corticotropin-releasing hormone (CRH) is known for its crucial role in the stress response system, which could induce pituitary adrenocorticotropic hormone (ACTH) secretion to promote glucocorticoid release in the adrenal gland. However, little is known about other pituitary actions of CRH in teleosts. Somatolactin is a fish-specific hormone released from the neurointermediate lobe (NIL) of the posterior pituitary. A previous study has reported that ACTH was also located in the pituitary NIL region. Interestingly, our present study found that CRH could significantly induce two somatolactin isoforms’ (SLα and SLβ) secretion and synthesis in primary cultured grass carp pituitary cells. Pharmacological analysis further demonstrated that CRH-induced pituitary somatolactin expression was mediated by the AC/cAMP/PKA, PLC/IP3/PKC, and Ca2+/CaM/CaMK-II pathways. Finally, transcriptomic analysis showed that both SLα and SLβ should play an important role in the regulation of lipid metabolism in primary cultured hepatocytes. These results indicate that CRH is a novel stimulator of somatolactins in teleost pituitary cells, and somatolactins may participate in the stress response by regulating energy metabolism.
Full article
(This article belongs to the Section Cell Signaling)
►▼
Show Figures

Figure 1

Journal Menu
► ▼ Journal Menu-
- Cells Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
BioMedInformatics, Cancers, Cells, Diagnostics, Immuno, IJMS
Inflammatory Tumor Immune Microenvironment
Topic Editors: William Cho, Anquan ShangDeadline: 7 December 2023
Topic in
Biomolecules, Cells, IJMS, JCM, JMP
Molecular and Cellular Mechanisms of Diseases: Liver Diseases
Topic Editors: Alessandra Mangia, Maria GuidoDeadline: 19 December 2023
Topic in
Biomedicines, Cells, Diseases, Healthcare, JCM
Clinical, Translational and Basic Research on Brain and Spinal Injury and Disease
Topic Editors: Brandon Lucke-Wold, William DoddDeadline: 31 December 2023
Topic in
Biomolecules, Cells, JMP, Pathogens, Viruses
Molecular and Cellular Mechanisms of Diseases: HIV
Topic Editors: Mara Biasin, Daria Lucia TrabattoniDeadline: 1 February 2024

Conferences
Special Issues
Special Issue in
Cells
Immunotherapy: A New Challenge in Treating Cancer
Guest Editor: Catia GiovanniniDeadline: 15 December 2023
Special Issue in
Cells
Glycative Stress and Anti-glycative Mechanisms in Aging and Age-Related Diseases
Guest Editors: Eloy Bejarano, Allen TaylorDeadline: 20 December 2023
Special Issue in
Cells
Molecular and Cell Basis of Skin Diseases and Aging
Guest Editors: Ángele Juarranz, Elisa CarrascoDeadline: 31 December 2023
Special Issue in
Cells
Extracellular Vesicles in Tissue Repair and Regeneration
Guest Editor: Mujib UllahDeadline: 1 January 2024
Topical Collections
Topical Collection in
Cells
Hedgehog Signal Transduction in Physiology and Disease
Collection Editor: Natalia Riobo-Del Galdo
Topical Collection in
Cells
Cilia and Flagella: Structure, Function and Beyond
Collection Editors: William Tsang, Gang Dong