Journal Description
Cells
Cells
is an international, peer-reviewed, open access journal on cell biology, molecular biology, and biophysics, published semimonthly online by MDPI. The Nordic Autophagy Society (NAS) and the Spanish Society of Hematology and Hemotherapy (SEHH) are affiliated with Cells and their members receive discounts on the article processing charges.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, MEDLINE, PMC, CAPlus / SciFinder, and other databases.
- Journal Rank: JCR - Q2 (Cell Biology) / CiteScore - Q1 (General Biochemistry, Genetics and Molecular Biology)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 15.5 days after submission; acceptance to publication is undertaken in 2.8 days (median values for papers published in this journal in the second half of 2025).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
- Sections: published in 21 topical sections.
- Companion journal: Organoids.
Impact Factor:
5.2 (2024);
5-Year Impact Factor:
6.1 (2024)
Latest Articles
Unraveling the Epigenetic Regulation of Regulatory T Cells in Cancer Immunity
Cells 2026, 15(3), 228; https://doi.org/10.3390/cells15030228 (registering DOI) - 25 Jan 2026
Abstract
Regulatory T cells (Tregs) are central mediators of immune tolerance, yet within tumors they adopt specialized phenotypes that confer the potent suppression of anti-tumor immune responses. Emerging evidence indicates that this functional plasticity is not driven by genetic alterations but instead arises from
[...] Read more.
Regulatory T cells (Tregs) are central mediators of immune tolerance, yet within tumors they adopt specialized phenotypes that confer the potent suppression of anti-tumor immune responses. Emerging evidence indicates that this functional plasticity is not driven by genetic alterations but instead arises from dynamic and context-dependent epigenetic reprogramming. While individual epigenetic mechanisms controlling Treg development and stability have been described, how tumor-derived cues reshape Treg epigenetic states, how these programs differ across cancer types, and which features distinguish tumor-infiltrating Tregs from their peripheral counterparts remain incompletely understood. In this review, we synthesize recent advances in DNA methylation, histone modifications, chromatin accessibility, and non-coding RNA regulation that govern Treg identity and function with a particular emphasis on tumor-specific epigenetic adaptations. We highlight emerging epigenetic hallmarks of intratumoral Tregs, discuss unresolved mechanistic questions, and evaluate the therapeutic potential and limitations of targeting epigenetic pathways to selectively modulate Tregs in cancer. By integrating mechanistic, cancer-specific, and translational perspectives, this review aims to provide a conceptual framework for understanding how epigenetic regulation shapes Treg behavior in the tumor microenvironment and how it may be exploited for cancer immunotherapy.
Full article
(This article belongs to the Special Issue Decoding the Tumor-Immune Intersection: Opportunities for Breakthroughs in Cancer Therapies)
►
Show Figures
Open AccessArticle
Phenylketonuria Alters the Prefrontal Cortex Genome-Wide Expression Profile Regardless of the Mouse Genetic Background
by
Elena Fiori, Serafina Manila Guzzo, Luisa Lo Iacono, Cristina Orsini, Simona Cabib, Diego Andolina, Luigia Rossi, Francesca Nardecchia, Vincenzo Leuzzi and Tiziana Pascucci
Cells 2026, 15(3), 227; https://doi.org/10.3390/cells15030227 (registering DOI) - 24 Jan 2026
Abstract
Mouse models of genetic diseases are important research tools. However, the genetic background of the mouse strain can significantly influence how a genetic mutation is expressed. Studies on preclinical models of phenylketonuria (PKU), an inherited metabolic disorder, have used two strains, BTBR and
[...] Read more.
Mouse models of genetic diseases are important research tools. However, the genetic background of the mouse strain can significantly influence how a genetic mutation is expressed. Studies on preclinical models of phenylketonuria (PKU), an inherited metabolic disorder, have used two strains, BTBR and C57Bl/6, created via a chemically induced point mutation in the gene encoding the enzyme phenylalanine hydroxylase (BTBRenu2 and C57enu2, respectively). Despite having the same levels of hyperphenylalaninemia (HPA), published results indicate differences in neural and behavioral phenotypes between the two backgrounds. To explore this difference further, the current study examines the genome-wide transcriptome of the prefrontal cortex (pFC), the brain region which is the most vulnerable to the negative effects of HPA. Regardless of the strain, the enu2 mutation upregulated the expression of several aminoacyl-tRNA synthetases and eukaryotic translation initiation factors, suggesting an essential modification in the protein translation process and supporting the downregulation of gene programs related to myelination. Accordingly, we deepened the exploration of cognitive dysfunctions in C57enu2− mice, showing a previously unreported working memory impairment under increasing information load. These findings identify convergent pFC molecular and cognitive alterations induced by HPA across distinct genetic backgrounds, providing clinically relevant insights into mechanisms that may contribute to executive dysfunctions in PKU.
Full article
(This article belongs to the Special Issue Synaptic Plasticity and the Neurobiology of Learning and Memory)
►▼
Show Figures

Figure 1
Open AccessArticle
Lactic Acid Bacteria Postbiotics as Adjunctives to Glioblastoma Therapy to Fight Treatment Escape and Protect Non-Neoplastic Cells from Side Effects
by
Pola Głowacka, Agnieszka Pudlarz, Joanna Wasiak, Magdalena Peszyńska-Piorun, Michał Biegała, Karol Wiśniewski, Dariusz J. Jaskólski, Adam Marek Pieczonka, Tomasz Płoszaj, Janusz Szemraj and Monika Witusik-Perkowska
Cells 2026, 15(3), 226; https://doi.org/10.3390/cells15030226 (registering DOI) - 24 Jan 2026
Abstract
Despite tremendous scientific efforts aimed at glioblastoma’s (GB) ability to escape therapeutic attempts, the concern remains unsolved. Postbiotics, metabolites, and macromolecules of probiotic bacteria could become adjuvant therapeutics both dealing with cellular events constituting tumor therapy escape mechanisms and protecting normal cells from
[...] Read more.
Despite tremendous scientific efforts aimed at glioblastoma’s (GB) ability to escape therapeutic attempts, the concern remains unsolved. Postbiotics, metabolites, and macromolecules of probiotic bacteria could become adjuvant therapeutics both dealing with cellular events constituting tumor therapy escape mechanisms and protecting normal cells from therapy-induced damage. The study aims to evaluate the dual potential of postbiotics obtained from lactic acid bacteria, L. plantarum and L. rhamnosus, on patient-derived and commercially available GB and normal cells alone and in combination with chemotherapeutic and irradiation oncotreatment regimens. Postbiotic mixtures (PMs) show cytoprotective potential against a new anti-cancer agent—ARA12—on astrocytes and cytoprotective action to irradiated normal fibroblast cells. Although GB cells’ apoptotic response varied between patient-derived cells, both PMs exert cytotoxic or cytostatic effects alone and, in most of the studied therapeutic combinations, on all tested GB cell lines. In particular, L. plantarum PM alleviates treatment escape, possibly shifting the tumor drug response from senescence to apoptosis. The results suggest that postbiotic-based adjunctive treatment could potentiate the therapeutic effect toward neoplastic cells, while alleviating chemotherapy’s adverse effects, helping clinicians to tackle the issue of therapy resistance and improve patients’ comfort.
Full article
(This article belongs to the Special Issue Cell Death Mechanisms and Therapeutic Opportunities in Glioblastoma)
►▼
Show Figures

Figure 1
Open AccessReview
Interleukin-6 in Natural and Pathophysiological Kidney Aging
by
Kerim Mutig, Prim B. Singh and Svetlana Lebedeva
Cells 2026, 15(3), 225; https://doi.org/10.3390/cells15030225 (registering DOI) - 24 Jan 2026
Abstract
Kidney aging is receiving growing attention in middle- to high-income societies due to increasing longevity in general population. Chronic Kidney Disease (CKD) has been widely accepted as a major non-communicable human disease affecting over 10% of the adult population in industrialized countries. CKD
[...] Read more.
Kidney aging is receiving growing attention in middle- to high-income societies due to increasing longevity in general population. Chronic Kidney Disease (CKD) has been widely accepted as a major non-communicable human disease affecting over 10% of the adult population in industrialized countries. CKD is mainly caused by metabolic and cardiovascular disorders such as diabetes mellitus and hypertension, disproportionally affecting older people, whereas natural kidney aging is driven by age-dependent systemic and renal low-grade inflammation. Interleukin-6 (IL-6) is the key cytokine mediating age-related inflammation. At the same time, IL-6 has been implicated in the pathophysiology of cardiovascular and renal disorders as a major pro-inflammatory cytokine. Thereby, IL-6 is placed at the intersection between natural and pathophysiological kidney aging, and the latter accelerates systemic aging and substantially limits life quality and expectancy. Growing clinical availability of IL-6 inhibitors for treatment of autoimmune and autoinflammatory disorders demands clarification of potential renal consequences as well. Available data suggests that IL-6 inhibition may be renoprotective in some kidney disorders, but the setting of kidney aging has received only minor attention. The present review focuses on the known effects of IL-6 associated with natural or pathophysiological renal aging.
Full article
(This article belongs to the Special Issue Inflammation and Aging in Acute and Chronic Kidney Injury)
►▼
Show Figures

Figure 1
Open AccessArticle
Myosin-X Acts Upstream of L-Plastin to Drive Stress-Induced Tunneling Nanotubes
by
Ana Ramirez Perez, Joey Tovar and Karine Gousset
Cells 2026, 15(3), 224; https://doi.org/10.3390/cells15030224 (registering DOI) - 24 Jan 2026
Abstract
►▼
Show Figures
Tunneling nanotubes (TNTs) are thin, actin-based intercellular bridges that enable long-range communication during cellular stress; yet the molecular pathway controlling their formation remains unclear. Here, using gain- and loss-of-function approaches in Cath. a-differentiated (CAD) neuronal cells, we identified a unidirectional regulatory pathway in
[...] Read more.
Tunneling nanotubes (TNTs) are thin, actin-based intercellular bridges that enable long-range communication during cellular stress; yet the molecular pathway controlling their formation remains unclear. Here, using gain- and loss-of-function approaches in Cath. a-differentiated (CAD) neuronal cells, we identified a unidirectional regulatory pathway in which myosin-X (Myo10) functions upstream of the actin-bundling protein L-(LCP1) to drive TNT formation. Using Western blotting and fluorescence microscopy, we determined that overexpression of L-plastin significantly increased the proportion of TNT-connected cells, whereas L-plastin downregulation reduced TNT formation, demonstrating that L-plastin is both sufficient and necessary for maintaining normal TNT abundance. Having previously shown that Myo10 is required for TNT formation in CAD cells, we asked whether the relationship is reciprocal. Overexpression/downregulation of L-plastin had no effect on Myo10 protein levels. Conversely, Myo10 downregulation decreased endogenous L-plastin by ~30%, and Myo10 overexpression elevated L-plastin expression and TNT number, demonstrating that Myo10 acts as an upstream regulator of L-plastin. Dual-color 3D imaging revealed co-localization of Myo10 and L-plastin along TNT shafts and filopodia-like precursors (Proto-TNTs). Together, these findings demonstrate that Myo10-dependent TNT formation requires the bundling protein L-plastin, providing a framework for how stress-induced signaling cascades couple TNT initiation to actin-core stabilization during stress and disease.
Full article

Figure 1
Open AccessArticle
Human DRG Glucocorticoid Receptor Profiling Reveals Targets for Regionally Delivered Steroid Analgesia
by
Shaaban A. Mousa, Elsayed Y. Metwally, Xiongjuan Li, Sascha Tafelski, Oscar Andrés Retana Romero, Jörg Piontek, Sascha Treskatsch, Michael Schäfer and Mohammed Shaqura
Cells 2026, 15(3), 223; https://doi.org/10.3390/cells15030223 (registering DOI) - 24 Jan 2026
Abstract
Corticosteroid receptor signaling in primary afferent neurons of the dorsal root ganglion (DRG) has emerged as a potential target to modulate nociception via genomic and nongenomic mechanisms shown in animal pain models. However, the expression landscape of glucocorticoid receptors (GRs) relative to mineralocorticoid
[...] Read more.
Corticosteroid receptor signaling in primary afferent neurons of the dorsal root ganglion (DRG) has emerged as a potential target to modulate nociception via genomic and nongenomic mechanisms shown in animal pain models. However, the expression landscape of glucocorticoid receptors (GRs) relative to mineralocorticoid receptors (MRs) in human DRG, their association with pain-related markers, and their functional relevance remain incompletely defined. We analyzed human and rat DRG by mRNA profiling and immunofluorescence confocal microscopy to assess GR/MR expression and complemented these studies with a clinical evaluation of neuraxial corticosteroid delivery. Here, GR transcripts in human DRG were the most abundant among corticosteroid receptor-related genes examined (including MR) and were observed alongside transcripts of pain-signaling molecules. Human DRG immunofluorescence analysis revealed substantial colocalization of GR with calcitonin gene-related peptide (CGRP), a marker of nociceptive unmyelinated C-fibers and thinly myelinated Aδ-fibers, as well as with gial fibrillary acidic protein (GFAP), a marker of satellite glial cells (SGCs), but minimal expression in myelinated neurofilament 200 (RT-200) immunoreactive (IR) human DRG neurons. In addition, GR immunoreactivity was primarily distributed to medium-diameter neurons (40–65 µm). Functionally, preclinical experiments showed that GR activation and MR blockade attenuate inflammatory pain via rapid, nongenomic neuronal mechanisms that counter an intrinsic mineralocorticoid receptor-mediated pronociceptive drive. Consistently, clinical analgesia over at least 3 months after transforaminal plus caudal epidural delivery of GR agonists in chronic radicular pain supports a functional role for neuronal GR signaling within spinal cord and DRG circuits. Together, these molecular, functional, and clinical findings identify GR as a key modulator of sensory neuron excitability and pain, highlight MR as a pronociceptive counterpart, and suggest that selectively enhancing GR signaling or inhibiting MR signaling may offer a potential strategy for improving corticosteroid-based analgesic therapies.
Full article
Open AccessReview
Impact of Early-Life Environmental Exposures and Potential Transgenerational Influence on the Risk of Coronary Artery Disease and Heart Failure
by
Patrycja Obrycka, Julia Soczyńska, Kamila Butyńska, Agnieszka Frątczak, Jędrzej Hałaburdo, Wiktor Gawełczyk and Sławomir Woźniak
Cells 2026, 15(3), 222; https://doi.org/10.3390/cells15030222 (registering DOI) - 24 Jan 2026
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of mortality worldwide and constitute a substantial economic burden. Despite population aging, recent years have witnessed an increasing prevalence of conditions such as heart failure (HF), including among young adults. In this context, coronary artery disease
[...] Read more.
Cardiovascular diseases (CVDs) remain the leading cause of mortality worldwide and constitute a substantial economic burden. Despite population aging, recent years have witnessed an increasing prevalence of conditions such as heart failure (HF), including among young adults. In this context, coronary artery disease (CAD) has also become an increasingly discussed issue. It has long been recognized that control of risk factors is crucial for prevention. Researchers stress the need to monitor these factors from the earliest stages of life, and detailed analyses indicate an influence of the prenatal period on the development of chronic diseases, including cardiovascular disorders. Transgenerational and intergenerational epigenetic mechanisms are also taken into account. This review aims to systematically evaluate the existing literature and summarize the mechanisms that may link these factors. We consider epigenetic, metabolic, immunological, and inflammatory influences. We describe examples of environmental exposures, such as air pollution, maternal diet, toxins, and infections, and analyze data derived from clinical studies. We discuss gaps in the literature and identify limitations, outlining directions for future research and emphasizing the need for CVD prevention initiated at the earliest stages of life.
Full article
(This article belongs to the Section Cells of the Cardiovascular System)
►▼
Show Figures

Figure 1
Open AccessArticle
Manipulation of Alternative Splicing of IKZF1 Elicits Distinct Gene Regulatory Responses in T Cells
by
Lucia Pastor, Jeremy R. B. Newman, Colin M. Callahan, Rebecca R. Pickin, Mark A. Atkinson, Suna Onengut-Gumuscu and Patrick Concannon
Cells 2026, 15(3), 221; https://doi.org/10.3390/cells15030221 (registering DOI) - 24 Jan 2026
Abstract
►▼
Show Figures
Genome-wide studies have identified significant allelic associations between genetic variants in or near the IKZF1 gene and multiple autoimmune disorders. IKZF1, encoding the transcription factor IKAROS, produces at least 10 distinct transcripts. To explore the impact of alternative splicing of IKZF1 on
[...] Read more.
Genome-wide studies have identified significant allelic associations between genetic variants in or near the IKZF1 gene and multiple autoimmune disorders. IKZF1, encoding the transcription factor IKAROS, produces at least 10 distinct transcripts. To explore the impact of alternative splicing of IKZF1 on the function of mature T cells and the risk of autoimmunity, we generated a panel of human T-cell clones with truncating mutations in IKZF1 exons 4, 6, or both. Differences in gene expression, chromatin accessibility, and protein abundance among clones were assessed by RNA-seq, ATAC-seq, and immunoblotting. Clones with single targeting events clustered separately from double-targeted clones on multiple parameters, but overall, clone responses were highly heterogeneous. Perturbation of IKZF1 splicing resulted in significant differences in expression and chromatin accessibility of other autoimmunity-associated genes and elicited compensatory expression changes in other IKAROS family members. Our results suggest that even modest alterations of IKZF1 splicing can have significant effects on gene expression and function in mature T cells, potentially contributing to autoimmunity in susceptible individuals.
Full article

Figure 1
Open AccessReview
Lower-Limb Muscle Impairments in Patients with COPD: An Overview of the Past Decade
by
Bente Brauwers, Martijn A. Spruit, Frits M. E. Franssen, Anouk W. Vaes and Felipe V. C. Machado
Cells 2026, 15(3), 220; https://doi.org/10.3390/cells15030220 - 23 Jan 2026
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease characterized by airflow limitation. Apart from airflow limitation, patients with COPD may also suffer from extra-pulmonary features such as lower limb muscle dysfunction that contribute to an impaired health status. Since the latest
[...] Read more.
Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease characterized by airflow limitation. Apart from airflow limitation, patients with COPD may also suffer from extra-pulmonary features such as lower limb muscle dysfunction that contribute to an impaired health status. Since the latest statement on lower-limb muscle dysfunction in COPD in 2014, substantial new evidence has emerged with regard to molecular, cellular, and functional mechanisms underlying muscle plasticity. Therefore, this review aims to provide an updated overview of molecular, cellular, and functional mechanisms of lower-limb muscle plasticity in COPD, integrating evidence that has emerged since the 2014 statement on lower limb muscle dysfunction. Additionally, the effects of exercise training on mechanisms of limb muscle dysfunction are explained. From the evidence of the last decade, it can be concluded that limb muscle dysfunction is a multifactorial process driven by both intrinsic alterations and impairments to the muscle as well as extra-pulmonary influences, thereby reinforcing the need for integrated therapeutic strategies.
Full article
(This article belongs to the Special Issue Plasticity of Skeletal, Cardiac and Smooth Muscles in COPD: Repair and Remodeling)
►▼
Show Figures

Figure 1
Open AccessArticle
Reduced LOXL3 Expression Disrupts Microtubule Acetylation and Drives TP53-Dependent Cell Fate in Glioblastoma
by
Talita de Sousa Laurentino, Roseli da Silva Soares, Antônio Marcondes Lerario, Ricardo Cesar Cintra, Suely Kazue Nagahashi Marie and Sueli Mieko Oba-Shinjo
Cells 2026, 15(3), 219; https://doi.org/10.3390/cells15030219 - 23 Jan 2026
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor, marked by molecular heterogeneity and poor clinical prognosis. Lysyl oxidase-like 3 (LOXL3) is frequently upregulated in GBM, but its mechanistic contribution remains insufficiently defined. Here, we investigated the functional role of LOXL3 in GBM
[...] Read more.
Glioblastoma (GBM) is the most aggressive primary brain tumor, marked by molecular heterogeneity and poor clinical prognosis. Lysyl oxidase-like 3 (LOXL3) is frequently upregulated in GBM, but its mechanistic contribution remains insufficiently defined. Here, we investigated the functional role of LOXL3 in GBM using CRISPR-Cas9-mediated LOXL3 knockdown in two genetically distinct GBM cell lines: U87MG (wild-type TP53) and U251 (mutant TP53). Reduced LOXL3 expression markedly reduced α-tubulin acetylation, particularly in U87MG cells, and downregulated genes involved in cell cycle progression and proliferation. Both cell lines exhibited mitotic defects, including delayed cell cycle progression and spindle abnormalities; however, cell fate diverged according to TP53 status. U87MG cells, sustained spindle checkpoint activation triggered a p53-dependent spindle checkpoint response culminating in apoptosis, while U251 cells underwent mitotic slippage and senescence. Transcriptomic analyses confirmed differential regulation of apoptosis versus senescence pathways in accordance with TP53 functionality. Additionally, reduced LOXL3 expression markedly impaired adhesion and migration in U87MG cells, whereas U251 cells were minimally affected, consistent with more pronounced microtubule destabilization. Collectively, these findings identify that LOXL3 is a key regulator of microtubule homeostasis, mitotic fidelity, adhesion, and invasive behavior in GBM. Targeting LOXL3 may therefore provide a therapeutic opportunity for genotype-informed intervention in GBM.
Full article
(This article belongs to the Special Issue Mechanisms and Dynamics in Cellular Adhesion in Development and Disease)
►▼
Show Figures

Figure 1
Open AccessArticle
Early IKKβ-Dependent Anabolic Signature Governs Vascular Smooth Muscle Cells Fate and Abdominal Aortic Aneurysm Development
by
Priscilla Doyon, Ozge Kizilay Mancini, Florence Dô, David Huynh, Gaétan Mayer, Stephanie Lehoux, Huy Ong, Maelle Batardière, Vincent Quoc-Huy Trinh, Ying Wen, Waiho Tang, Sylvie Marleau, Simon-Pierre Gravel and Marc J. Servant
Cells 2026, 15(3), 218; https://doi.org/10.3390/cells15030218 - 23 Jan 2026
Abstract
Abdominal aortic aneurysm (AAA) is a serious disease with no effective pharmacological therapy. Although inflammation is recognized as a key regulator of AAA, targeting inflammatory pathways once the disease is established does not improve outcomes. Understanding the earliest molecular indicators could clarify precise
[...] Read more.
Abdominal aortic aneurysm (AAA) is a serious disease with no effective pharmacological therapy. Although inflammation is recognized as a key regulator of AAA, targeting inflammatory pathways once the disease is established does not improve outcomes. Understanding the earliest molecular indicators could clarify precise biological targets and prognostic markers for AAA. Using ApoE-deficient mice, we performed RNA-Seq on suprarenal abdominal aortas (SRAs) from Ang II- and saline-treated mice 24 h after infusion. We further developed a unique model of hyperlipidemic mice in which the expression of the inhibitor of nuclear factor kappa B kinase subunit beta (IKKβ) can be conditionally suppressed in vascular smooth muscle cells (VSMCs). RNA-Seq data revealed early IKKβ-dependent cellular anabolic processes in SRAs, including activation of the mammalian target of rapamycin complex 1 (mTORC1) pathway. Furthermore, deletion of the Ikbkb gene in VSMCs significantly reduced the rate of aneurysm rupture in mice exposed to Ang II. In situ analysis further confirmed that the absence of IKKβ in VSMCs is associated with a reduced inflammatory response and the preservation of their contractile phenotypes. Our results reinforce the crucial role of VSMCs in rapid adaptation, leading to deleterious inflammation-dependent remodeling of the vascular wall, and define a previously unrecognized anabolic role of IKKβ in AAA pathogenesis.
Full article
(This article belongs to the Section Cells of the Cardiovascular System)
►▼
Show Figures

Figure 1
Open AccessArticle
PCB 153 Modulates Genes Involved in Proteasome and Neurodegeneration-Related Pathways in Differentiated SH-SY5Y Cells: A Transcriptomic Study
by
Aurelio Minuti, Serena Silvestro, Claudia Muscarà, Michele Scuruchi and Simone D’Angiolini
Cells 2026, 15(3), 217; https://doi.org/10.3390/cells15030217 - 23 Jan 2026
Abstract
Polychlorinated biphenyls (PCBs) are persistent environmental contaminants associated with neurotoxicity and increased risk of neurodegenerative diseases. PCB 153, a highly abundant non-coplanar congener, bioaccumulates in human tissues and impairs homeostasis. This study investigated the transcriptomic effects of PCB 153 (2,2′,4,4′,5,5′-Hexachlorobiphenyl) in retinoic acid
[...] Read more.
Polychlorinated biphenyls (PCBs) are persistent environmental contaminants associated with neurotoxicity and increased risk of neurodegenerative diseases. PCB 153, a highly abundant non-coplanar congener, bioaccumulates in human tissues and impairs homeostasis. This study investigated the transcriptomic effects of PCB 153 (2,2′,4,4′,5,5′-Hexachlorobiphenyl) in retinoic acid (RA)-differentiated SH-SY5Y neuronal cells to identify early, sub-cytotoxic molecular alterations. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay after 24 h exposure to increasing PCB 153 concentrations. RNA-Seq was performed on cells treated with 5 μM PCB 153, the highest non-cytotoxic dose. Sequencing reads were quality-filtered, aligned to the human genome, and analyzed with DESeq2. Functional enrichment was conducted using Gene Ontologies and KEGG pathways. Western blot analyses were performed to assess protein level changes in selected targets. RNA-Seq identified 1882 significantly altered genes (q-value < 0.05). Gene Ontology analysis revealed strong enrichment of proteasome-related terms, with most proteasomal subunits displaying coordinated upregulation. KEGG analysis further showed significant enrichment of Alzheimer’s (AD), Parkinson’s (PD), amyotrophic lateral sclerosis (ALS), and other neurodegenerative disease pathways. These findings indicate that PCB 153 triggers a pronounced proteostatic response in neuron-like cells, suggesting early disruption of protein homeostasis that may contribute to mechanisms associated with neurodegeneration.
Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Neurotoxicity)
►▼
Show Figures

Figure 1
Open AccessArticle
Human Liver Organoids as an Experimental Tool to Investigate Lipocalin-2 in Hepatic Inflammation
by
Katharina S. Hardt, Robert F. Pohlberger, Diandra T. Keller, Eva M. Buhl, Florian W. R. Vondran, Anjali A. Roeth, Ralf Weiskirchen and Sarah K. Schröder-Lange
Cells 2026, 15(3), 216; https://doi.org/10.3390/cells15030216 - 23 Jan 2026
Abstract
The 25 kDa glycoprotein lipocalin-2 (LCN2) is widely expressed and has diverse functions, ranging from physiological to pathophysiological processes. In the liver, LCN2 is primarily associated with inflammatory processes and is considered a potential biomarker in metabolic disorders. However, a significant challenge is
[...] Read more.
The 25 kDa glycoprotein lipocalin-2 (LCN2) is widely expressed and has diverse functions, ranging from physiological to pathophysiological processes. In the liver, LCN2 is primarily associated with inflammatory processes and is considered a potential biomarker in metabolic disorders. However, a significant challenge is the absence of a suitable human in vitro model for studying LCN2 and its associated signaling pathways. Therefore, we have successfully generated patient-derived liver organoids of both male and female origin, providing a novel in vitro model for LCN2 research. Our data show that the self-renewing organoids mimic essential architectural features of hepatocytes, as demonstrated by electron microscopy and F-actin staining. Consistent with the expression profile observed in liver tissue, the isolated 3D organoids exhibit minimal endogenous LCN2 levels. Next, the LCN2 expression was studied at the protein and mRNA levels under inflammatory conditions by treating the organoids with various cytokines and lipopolysaccharides (LPS). Our results show that LCN2 expression is significantly upregulated by IL-1β and TNF-α in an NF-κB-dependent manner, but remains unchanged with IL-6 or LPS. In conclusion, we have established human patient-derived liver organoids as a valuable model for investigating LCN2 signaling mechanisms. This study lays the foundation for future research on the role of LCN2 in liver pathologies, aiding in disease progression understanding and facilitating patient-specific treatment predictions.
Full article
(This article belongs to the Special Issue Organoids as an Experimental Tool)
►▼
Show Figures

Figure 1
Open AccessArticle
Cell Supported Single Membrane Technique for the Treatment of Large Bone Defects: Depletion of CD8+ Cells Enhances Bone Healing Mechanisms During the Early Bone Healing Phase
by
Marissa Penna-Martinez, Lia Klausner, Andreas Kammerer, Minhong Wang, Alexander Schaible, René Danilo Verboket, Christoph Nau, Ingo Marzi and Dirk Henrich
Cells 2026, 15(3), 215; https://doi.org/10.3390/cells15030215 - 23 Jan 2026
Abstract
Introduction: The one-step membrane technique, derived from the Masquelet induced membrane technique, uses human acellular dermal matrix (hADM) that is wrapped around the bone defect to bypass membrane induction, reducing treatment time. Pre-colonization of hADM with bone marrow cells (BMC), particularly after CD8
[...] Read more.
Introduction: The one-step membrane technique, derived from the Masquelet induced membrane technique, uses human acellular dermal matrix (hADM) that is wrapped around the bone defect to bypass membrane induction, reducing treatment time. Pre-colonization of hADM with bone marrow cells (BMC), particularly after CD8+ T cell depletion, enhances bone regeneration. This study examined how CD8+ T cell depletion alters the proteins accumulated in the hADM during early healing. Materials and Methods: Eighteen male Sprague-Dawley rats received 5 mm femoral defects filled with autologous bone chips and wrapped with hADM, hADM + BMC, or hADM + BMC-CD8. hADMs were recovered on days 3 and 7 (n = 3/group/timepoint), incubated ex vivo, and conditioned medium analyzed with a proteome profiler detecting 79 proteins. Results: The protein content of the hADM evolved dynamically. At day three, 41 proteins were detected, rising to 47 by day seven, with RGM-A, osteoprotegerin, LIF, IL-6, CCL20, and CCL17 emerging late, consistent with increased regenerative activity. CD8+ T cell depletion suppressed early inflammatory and pro-osteogenic mediators (e.g., CCL2, IGF-I, IL-1RA) while upregulating LIX. By day seven, regenerative mediators (CCL20, GDF-15, RGM-A) were enriched, whereas inflammatory factors (CCL21, IL-1a, WISP-1) declined. MMP-9, Galectin-1, and GDF-15 increased exclusively in the CD8-depleted group. Conclusions: The hADM protein content transitions from pro-inflammatory to pro-regenerative within one week after surgery. CD8+ T cell depletion accelerates this shift, highlighting hADM as a dynamic scaffold that contributes to the immune–regenerative crosstalk in bone healing.
Full article
(This article belongs to the Special Issue New Advances in Tissue Engineering and Regeneration)
Open AccessArticle
Quantitative Analysis of Arsenic- and Sucrose-Induced Liver Collagen Remodeling Using Machine Learning on Second-Harmonic Generation Microscopy Images
by
Mónica Maldonado-Terrón, Julio César Guerrero-Lara, Rodrigo Felipe-Elizarraras, C. Mateo Frausto-Avila, Jose Pablo Manriquez-Amavizca, Myrian Velasco, Zeferino Ibarra Borja, Héctor Cruz-Ramírez, Ana Leonor Rivera, Marcia Hiriart, Mario Alan Quiroz-Juárez and Alfred B. U’Ren
Cells 2026, 15(3), 214; https://doi.org/10.3390/cells15030214 - 23 Jan 2026
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a silent condition that can lead to fatal cirrhosis, with dietary factors playing a central role. The effect of various dietary interventions on male Wistar rats were evaluated in four diets: control, arsenic, sucrose, and arsenic–sucrose. SHG
[...] Read more.
Non-alcoholic fatty liver disease (NAFLD) is a silent condition that can lead to fatal cirrhosis, with dietary factors playing a central role. The effect of various dietary interventions on male Wistar rats were evaluated in four diets: control, arsenic, sucrose, and arsenic–sucrose. SHG microscopy images from the right ventral lobe of the liver tissue were analyzed with a neural network trained to detect the presence or absence of collagen fibers, followed by the assessment of their orientation and angular distribution. Machine learning classification of SHG microscopy images revealed a marked increase in fibrosis risk with dietary interventions: <10% in controls, 24% with arsenic, 40% with sucrose, and 62% with combined arsenic–sucrose intake. Angular width distribution of collagen fibers narrowed dramatically across groups: 26° (control), 24° (arsenic), 15.7° (sucrose), and 2.8° (arsenic–sucrose). This analysis revealed four key statistical features for classifying the images according to the presence or absence of collagen fibers: (1) the percentage of pixels whose intensity is above the 15% noise threshold, (2) the Mean-to-Standard Deviation ratio (Mean/std), (3) the mode, and (4) the total intensity (sum). These results demonstrate that a diet rich in sucrose, particularly in combination with arsenic, constitutes a significant risk factor for liver collagen fiber remodeling.
Full article
(This article belongs to the Topic Application of Animal Models: From Physiology to Pathology)
►▼
Show Figures

Figure 1
Open AccessArticle
Synergistic Anticancer Activity of Annona muricata Leaf Extract and Cisplatin in 4T1 Triple-Negative Breast Cancer Cells
by
Oumayma Kouki, Mohamed Montassar Lasram, Amel Abidi, Jérôme Leprince, Imen Ghzaiel, John J. Mackrill, Taoufik Ghrairi, Gérard Lizard and Olfa Masmoudi-Kouki
Cells 2026, 15(3), 213; https://doi.org/10.3390/cells15030213 - 23 Jan 2026
Abstract
Breast cancer remains one of the leading causes of cancer-related mortality among women worldwide. Although cisplatin is widely used in chemotherapy, its clinical efficacy is often limited by adverse effects and resistance. Thus, natural bioactive compounds are gaining attention as complementary therapeutic agents.
[...] Read more.
Breast cancer remains one of the leading causes of cancer-related mortality among women worldwide. Although cisplatin is widely used in chemotherapy, its clinical efficacy is often limited by adverse effects and resistance. Thus, natural bioactive compounds are gaining attention as complementary therapeutic agents. This study aimed to evaluate the anti-tumor effects of Annona muricata leaf extract on murine breast cancer 4T1 cells, used alone or in combination with cisplatin. Cisplatin induced intrinsic apoptosis through mitochondrial membrane disruption, up-regulation of the Bax gene and inhibition of the PI3K/AKT/mTOR signaling pathway. Cisplatin also promoted hypoxia by HIF1α gene expression, inflammation by TNFα and IL-6 gene expression, and induced cell cycle arrest at the sub-G1 phase by down-regulation of cyclin D1 and cyclin E1 genes. Annona muricata leaf extract triggered autophagy-mediated 4T1 cell death through mainly mTOR down-regulation and increased expression of Beclin1 and LC3 genes. It also induced cell cycle arrest at sub-G1 and S phases in a concentration- and time-dependent manner. When, combined with cisplatin, Annona muricata extract shifts the cell death pathway from intrinsic apoptosis toward autophagy by reduced caspase-3 gene expression and activity and enhanced LC3-I to LC3-II conversion. Moreover, Annona muricata extract attenuated cisplatin-induced inflammation by inhibiting TNFα and IL-6 gene expression and reinforced cell cycle arrest through suppression of the cyclin D1 gene. In conclusion, our results suggest that Annona muricata leaf extract exerts significant anti-tumor activity in breast cancer cells and may enhance cisplatin efficacy by shifting the signaling pathway from intrinsic apoptosis toward autophagy, and attenuating inflammation-related effects, supporting its potential use as a complementary therapeutic strategy.
Full article
(This article belongs to the Section Cellular Pathology)
►▼
Show Figures

Figure 1
Open AccessEditorial
Gene and Cell Therapy in Regenerative Medicine
by
Albert A. Rizvanov and Ayşegül Doğan
Cells 2026, 15(3), 212; https://doi.org/10.3390/cells15030212 - 23 Jan 2026
Abstract
Gene and cell therapies have become core components of regenerative medicine, moving from proof-of-concept studies toward clinically actionable strategies for repairing or replacing damaged tissues [...]
Full article
(This article belongs to the Special Issue Gene and Cell Therapy in Regenerative Medicine)
Open AccessArticle
Small Molecule Cocktail DLC79 Suppresses Gliomagenesis by Activating Ascl1 and Remodeling Transcriptome
by
Chuxiao Mao, Zhancheng Deng, Zhuming Chen, Lirong Huang, Caiyun Wang, Gong Chen and Qingsong Wang
Cells 2026, 15(2), 211; https://doi.org/10.3390/cells15020211 - 22 Jan 2026
Abstract
Glioblastoma (GBM) remains incurable due to its invasive growth and therapeutic resistance. While the neurogenic transcription factor-mediated reprogramming of glioma cells has been reported, pharmacological reprogramming offers a promising alternative due to its potential advantages for clinical translation. Using phenotype-driven screening, we identified
[...] Read more.
Glioblastoma (GBM) remains incurable due to its invasive growth and therapeutic resistance. While the neurogenic transcription factor-mediated reprogramming of glioma cells has been reported, pharmacological reprogramming offers a promising alternative due to its potential advantages for clinical translation. Using phenotype-driven screening, we identified a multi-target small-molecule cocktail DLC79 (DAPT, LDN193189, CHIR99021, I-BET762, and Isx9) that effectively reprograms human glioma cells into neuron-like cells by activating endogenous ASCL1 (174.4-fold) and remodeling the transcriptional landscape. This conversion led to the strong upregulation of neuronal markers (e.g., MAP2 and GAD67) and suppression of glial identity. Functionally, DLC79 treatment inhibited glioma malignancy in vitro, impairing proliferation, migration, invasion, and clonogenicity. In a subcutaneous xenograft model, brief pretreatment with DLC79 significantly attenuated the tumorigenic potential of glioma cells, reducing tumor bioluminescence by 56% and tumor mass by 47%. Our study establishes pharmacological reprogramming as a promising anti-glioma strategy that leverages neuronal conversion to reduce oncogenic properties, thereby initiating a novel therapeutic paradigm.
Full article
(This article belongs to the Topic Advances in Glioblastoma: From Biology to Therapeutics)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Establishing a Non-Surgical Mouse Model of Laryngopharyngeal Reflux Disease: Acid-Induced Epithelial Disruption and Protective Role of N-Acetylcysteine
by
You Yeon Chung, Byoungjae Kim, Juhyun Lee, Sooun Kwak, Mingeun Jung, Yeon Soo Kim and Seung-Kuk Baek
Cells 2026, 15(2), 210; https://doi.org/10.3390/cells15020210 - 22 Jan 2026
Abstract
Laryngopharyngeal reflux disease (LPRD) results from the retrograde flow of gastric contents into the upper aerodigestive tract, causing epithelial injury. Progress in its management has been limited by the lack of objective biomarkers and reproducible in vivo models. This study aimed to establish
[...] Read more.
Laryngopharyngeal reflux disease (LPRD) results from the retrograde flow of gastric contents into the upper aerodigestive tract, causing epithelial injury. Progress in its management has been limited by the lack of objective biomarkers and reproducible in vivo models. This study aimed to establish a chronic, non-surgical mouse model of LPRD and to investigate the protective effect of N-acetylcysteine (NAC). Female C57BL/6 mice were randomly assigned to three groups: control (standard drinking water), study (acidified water, pH 3.0, for 12 weeks), and treatment (acidified water for 12 weeks plus NAC supplementation during the final 4 weeks). Body weight, food intake, and water consumption were monitored weekly. Pharyngeal tissues were analyzed by immunohistochemistry and Western blotting. Chronic acid exposure resulted in loss of membrane-localized E-cadherin, cytoplasmic redistribution, and upregulation of matrix metalloproteinase-7 (MMP-7). These molecular alterations were accompanied by enhanced phosphorylation of ERK and c-Jun, consistent with activation of the ROS–ERK–c-Jun signaling pathway. NAC supplementation was associated with partial restoration of E-cadherin, reduced MMP-7 expression, and attenuation of ERK/c-Jun phosphorylation. No systemic toxicity or weight loss was observed, indicating good tolerability of the model. This non-surgical ingestion-based model faithfully recapitulates key epithelial features of LPRD and provides a feasible platform for mechanistic investigation and exploratory therapeutic studies. NAC may exert protective effects against acid-induced epithelial injury in this model.
Full article
(This article belongs to the Topic Application of Animal Models: From Physiology to Pathology)
►▼
Show Figures

Figure 1
Open AccessArticle
Cell Density-Dependent Suppression of Perlecan and Biglycan Expression by Gold Nanocluster in Vascular Endothelial Cells
by
Takato Hara, Misato Saeki, Misaki Shirai, Yuichi Negishi, Chika Yamamoto and Toshiyuki Kaji
Cells 2026, 15(2), 209; https://doi.org/10.3390/cells15020209 - 22 Jan 2026
Abstract
Proteoglycans are macromolecules consisting of a core protein and one or more glycosaminoglycan side chains. Proteoglycans synthesized by vascular endothelial cells modulate various functions such as anticoagulant activity and vascular permeability. We previously reported that some heavy metals interfere with proteoglycan expression, and
[...] Read more.
Proteoglycans are macromolecules consisting of a core protein and one or more glycosaminoglycan side chains. Proteoglycans synthesized by vascular endothelial cells modulate various functions such as anticoagulant activity and vascular permeability. We previously reported that some heavy metals interfere with proteoglycan expression, and that organic–inorganic hybrid molecules, such as metal complexes and organometallic compounds, serve as useful tools to analyze proteoglycan synthesis mechanisms. However, the effects of metal compounds lacking electrophilicity on proteoglycan synthesis remain unclear. Au25(SG)18, a nanoscale gold cluster consisting of a metal core protected by gold–glutathione complexes, exhibits extremely low intramolecular polarity. In this study, we investigated the effect of Au25(SG)18 on proteoglycan synthesis in vascular endothelial cells. Au25(SG)18 accumulated significantly in vascular endothelial cells at low cell density and suppressed the expression of perlecan, a major heparan sulfate proteoglycan in cells, by inactivating ADP-ribosylation factor 6 (Arf6). Additionally, Au25(SG)18 reduced the expression of biglycan, a small dermatan sulfate proteoglycan, in vascular endothelial cells at low cell density; however, the underlying mechanisms remain unclear. Overall, our findings suggest that organic–inorganic hybrid molecules regulate the activity of Arf6-mediated protein transport to the extracellular space and that perlecan is regulated through this mechanism, highlighting the importance of Arf6-mediated extracellular transport for maintaining vascular homeostasis.
Full article
(This article belongs to the Special Issue Molecular Signaling and Mechanism on Vascular Remodeling)
►▼
Show Figures

Graphical abstract
Journal Menu
► ▼ Journal Menu-
- Cells Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Biomolecules, Cancers, Cells, JMP, Livers
Signaling Pathways in Liver Disease 2nd Edition
Topic Editors: Ralf Weiskirchen, Amedeo AmedeiDeadline: 20 March 2026
Topic in
Biomolecules, Cancers, Cells, Organoids, Current Oncology
Advances in Glioblastoma: From Biology to Therapeutics
Topic Editors: Javier S. Castresana, Miguel IdoateDeadline: 31 March 2026
Topic in
Cells, JCM, Organoids, JMP
Novel Discoveries in Oncology 2nd Edition
Topic Editors: Michela Campolo, Giovanna Casili, Alessia Filippone, Marika LanzaDeadline: 20 June 2026
Topic in
Biomedicines, Biomolecules, Cancers, Cells, Hematology Reports, IJMS
Advances in Molecular Pathogenesis and Targeted Therapies for Multiple Myeloma
Topic Editors: Chung Hoow Kok, Cindy H. S. Lee, Claudio CerchioneDeadline: 3 August 2026
Special Issues
Special Issue in
Cells
Targeting Immune Dysfunction in Aging and Age-Related Diseases
Guest Editors: Anna Aiello, Anna CalabròDeadline: 25 January 2026
Special Issue in
Cells
Decoding the Tumor-Immune Intersection: Opportunities for Breakthroughs in Cancer Therapies
Guest Editor: Qiwei WangDeadline: 25 January 2026
Special Issue in
Cells
Immune Cell Signaling Networks in Tumor and Regenerative Stem Cell Niches
Guest Editor: Luigi RacioppiDeadline: 25 January 2026
Special Issue in
Cells
The Role of T Cells in Type 1 Diabetes
Guest Editors: Ismail Syed, Mayur ParmarDeadline: 25 January 2026
Topical Collections
Topical Collection in
Cells
Pulmonary Fibrosis and Cell Therapy
Collection Editor: Anna Serrano-Mollar
Topical Collection in
Cells
Feature Papers in Cell Nuclei: Function, Transport and Receptors
Collection Editor: Hiroshi Miyamoto
Topical Collection in
Cells
Computational Imaging for Biophotonics and Biomedicine
Collection Editors: An Pan, Baoli Yao, Chao Zuo, Fei Liu, Jiamiao Yang, Liangcai Cao



