You are currently viewing a new version of our website. To view the old version click .

Minerals

Minerals is an international, peer-reviewed, open access journal of natural mineral systems, mineral resources, mining, and mineral processing.
Minerals is published monthly online by MDPI.
Quartile Ranking JCR - Q2 (Mining and Mineral Processing | Mineralogy | Geochemistry and Geophysics)

All Articles (10,214)

A study on the selective solvent extraction (SX) of molybdenum (Mo) and rhenium (Re) from two industrial pregnant leach solutions (PLSs) was carried out using Alamine 336 as the extractant and the ionic liquid (IL) 1-octyl-3-methyl Imidazolium bis (trifluoromethylsulfonyl) imide [Omim][Tf2N] as the diluent. One industrial PLS was rich in Mo (VI) (PLS-Mo) and the second one rich in Re (VII) (PLS-Re). Experiments were carried out in open vials in which the concentration of Alamine336 in the diluent, the aqueous-to-organic ratio (A/O), and the stripping with ammonium carbonate (NH42CO3) were carried out systematically. Results indicate that decreasing the aqueous-to-organic (A/O) ratio led to an enhancement in the extraction performances of both Mo (VI) and Re (VII), reaching recoveries of 95%–98% at an A/O ratio of 1:1. However, differences between PLSs became evident at higher ratios, as Re extraction declined more sharply than Mo. Third-phase formation was observed only in the Mo-containing PLS. The PLS–Re system did not exhibit the formation of a third phase due to a lower concentration of metal (1 g/L Mo). The use of ammonium carbonate for stripping led to enhanced recoveries, achieving 84.4% for Re and 46.8% for Mo. A total of 50 extraction-stripping cycles were carried out in this work. These demonstrated nearly total initial extraction, but performance decreased over the cycles because of insufficient stripping and solvent loading. Overall, [Omim][Tf2N] proved to be an effective and environmentally friendly alternative to conventional diluents for Mo and Re separation and recovery from industrial leach solutions.

15 November 2025

Extraction percentage of all metals in PLS-Re when using A/O ratios 1:1, 2:1, and 4:1.

The CO2 absorption rate and total uptake by MgO aqueous suspensions were investigated in batch experiments by systematically varying MgO concentrations (0.5–5 wt.%), CO2 flow rates (0.5–2 L/min), temperatures (278–363 K), NaCl salinities (0–7 wt.%), Na2SO4 and K2SO4 concentrations (0–10.5 wt.%), and gas–liquid mixing systems (pipe outlet and porous stone sparger). Results show that temperature strongly controls the carbonation process: increasing temperature above 303 K consistently reduced both the CO2 absorption rate and the total CO2 uptake due to the destabilization of metastable Mg(HCO3)2 solutions and accelerated precipitation of less soluble hydrated magnesium carbonates. Under optimal low-temperature conditions (278–283 K, 1–1.5 wt.% MgO, sparger mixing, pure system), the average capture efficiency reached ≈ 35%, with maximum peaks over 70% and total CO2 uptakes of ≈ 12–17 L. Adding NaCl at typical seawater levels (3.5–7 wt.%) slightly increased CO2 uptake at temperatures above 323 K. Sulfate ions (Na2SO4 and K2SO4) were found to enhance the absorption rate at low concentrations (<2 wt.%) but reduce it at higher levels, with no significant impact on the total CO2 uptake observed in this study. Using a CO2 sparger significantly improved gas–liquid contact, achieving average CO2 capture efficiencies above 70% at low temperatures, compared to <20% with simple pipe bubbling. A direct comparison with Ca(OH)2 aqueous carbonation confirmed that, despite its lower solubility and slower kinetics, MgO can outperform Ca-based systems under specific conditions. These results provide practical experimental benchmarks and process guidance for designing Mg-based aqueous carbonation systems, including applications that use brines, industrial wastewater or seawater.

15 November 2025

Unraveling Reservoir Quality: How Mineralogy Shapes Pore Attributes in Sandstone Lithofacies

  • Antoine W. Guirguis,
  • Abdelmoktader A. El Sayed and
  • Ashraf R. Baghdady
  • + 3 authors

The Cenomanian Bahariya Formation exposed at Gebel El Dist in the Western Desert of Egypt provides valuable surface analogues for evaluating the reservoir quality of subsurface Bahariya sandstones. The formation was analyzed using 27 oriented samples and 91 core plugs from quartz arenite (QA) and quartz wacke (QW) facies. Analyses included XRD, petrography, SEM, helium porosity–permeability, and capillary tests, as well as measurements of pore-throat radii (R) at 35% and 36% mercury saturation. X-ray diffraction analyses reveal a heterogeneous mineral composition dominated by quartz, feldspars, dolomite, pyrite, siderite, goethite, hematite, clay minerals, glauconite, and gypsum. QA displays higher porosity and permeability than QW, along with larger pore radii, and lower specific surface area per unit pore volume (Spv) and per unit grain volume (Sgv). Multivariate regression equations, specific to each facies, were developed to convert standardized XRD mineral percentages directly into pore-system and flow attributes (ϕ, k, r, Spv, Sgv, R35, R36), quantifying capillary-based recovery contrasts between facies. Across both facies, regressions linking mineralogy to ϕ, k, r, Spv, Sgv, R35, and R36 are strong (R2 = 0.78–1.00). The established predictive equations provide a low-cost method to estimate reservoir quality from mineralogy alone, enabling rapid screening of Cenomanian Bahariya analogues and similar clastic reservoirs where core data are limited.

15 November 2025

This study provides the first comprehensive characterization and classification of organic microfacies within the globally significant Jurassic hydrocarbon source rocks of Iraqi Kurdistan. This study aims to resolve the knowledge gap in the Jurassic source rocks of northern Iraq by establishing the first organic microfacies classification scheme, utilizing an integrated petrographic and geochemical approach to reconstruct the regional paleoenvironmental evolution and confirm the source rock’s petroleum potential. The Middle–Late Jurassic Sargelu, Naokelekan, and Barsarin formations were investigated using samples from the Mangesh-1 and Sheikhan-8 wells. Using cluster analysis, we identified five distinct organic microfacies (A–E). Microfacies A (highly laminated bituminite), B (laminated/groundmass bituminite), C (laminated rock/lamalginite), and D (massive organic-matter-rich) show the highest hydrocarbon generation potential. The findings reveal a clear paleoenvironmental evolution: the Sargelu Formation was deposited in anoxic open marine conditions (microfacies C, D); the Naokelekan Formation represents a progressively restricted silled basin with intense anoxia leading to condensed sections dominated by microfacies A, which shows the highest source rock potential; and the Barsarin Formation reflects increasing restriction and hypersalinity, showing diverse microfacies (B, C, D, E) that captured variations in marine productivity and terrigenous influx. Principal component analysis (PCA) quantitatively modeled these paleoenvironmental gradients, aligning the distinct organic microfacies and their transitions with conceptual basin models. Geochemical analysis confirms that the organic matter is rich, predominantly Type II kerogen, and thermally mature, falling within the oil window. The presence of solid bitumen, both in situ and as evidence of migration (microfacies E), confirms effective hydrocarbon generation and movement. This integrated approach confirms the significant hydrocarbon potential of these Jurassic successions and highlights the critical role of specific organic microfacies in the region’s petroleum system, providing crucial guidance for future hydrocarbon exploration in northern Iraq.

14 November 2025

News & Conferences

Issues

Open for Submission

Editor's Choice

Reprints of Collections

Industrial Minerals Flotation
Reprint

Industrial Minerals Flotation

Fundamentals and Applications
Editors: Xuming Wang, Jan D. Miller
Geochemical Characteristics and Contamination Risk Assessment of Soil
Reprint

Geochemical Characteristics and Contamination Risk Assessment of Soil

Editors: Jasminka Alijagić, Srecko Stopic

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Minerals - ISSN 2075-163X