You are currently on the new version of our website. Access the old version .

Minerals

Minerals is an international, peer-reviewed, open access journal of natural mineral systems, mineral resources, mining, and mineral processing, and is published monthly online by MDPI.

Quartile Ranking JCR - Q2 (Mining and Mineral Processing | Mineralogy | Geochemistry and Geophysics)

All Articles (10,432)

As a potential strategic resource of critical metals, deep-sea cobalt-rich crusts represent one of the most promising metal reservoirs within oceanic seamount systems, and their metallogenic mechanism constitutes a frontier topic in deep-sea geoscience research. This review focuses on the cobalt-rich crusts from the Magellan Seamount region in the northwestern Pacific and synthesizes existing geological, mineralogical, and geochemical studies to systematically elucidate their mineralization processes and metal enrichment mechanisms from a microstructural perspective, with particular emphasis on cobalt enrichment and its controlling factors. Based on published observations and experimental evidence, the formation of cobalt-rich crusts is divided into three stages: (1) Mn/Fe colloid formation—At the chemical interface between oxygen-rich bottom water and the oxygen minimum zone (OMZ), Mn2+ and Fe2+ are oxidized to form hydrated oxide colloids such as δ-MnO2 and Fe(OH)3. (2) Key metal adsorption—Colloidal particles adsorb metal ions such as Co2+, Ni2+, and Cu2+ through surface complexation and oxidation–substitution reactions, among which Co2+ is further oxidized to Co3+ and stably incorporated into MnO6 octahedral vacancies. (3) Colloid deposition and mineralization—Mn–Fe colloids aggregate, dehydrate, and cement on the exposed seamount bedrock surface to form layered cobalt-rich crusts. This process is dominated by the Fe/Mn redox cycle, representing a continuous evolution from colloidal reactions to solid-phase mineral formation. Biological processes play a crucial catalytic role in the microstructural evolution of the crusts. Mn-oxidizing bacteria and extracellular polymeric substances (EPS) accelerate Mn oxidation, regulate mineral-oriented growth, and enhance particle cementation, thereby significantly improving the oxidation and adsorption efficiency of metal ions. Tectonic and paleoceanographic evolution, seamount topography, and the circulation of Antarctic Bottom Water jointly control the metallogenic environment and metal sources, while crystal defects, redox gradients, and biological activity collectively drive metal enrichment. This review establishes a conceptual framework of a multi-level metallogenic model linking macroscopic oceanic circulation and geological evolution with microscopic chemical and biological processes, providing a theoretical basis for the exploration, prediction, and sustainable development of potential cobalt-rich crust deposits.

17 January 2026

(a) Location of the study area and the modern Pacific Ocean circulation system. The white box indicates the enlarged area shown in panel (b), highlighting the Caiwei and Jiaxie Guyots in the Magellan Seamount region. The circulation pathways of major deep-water masses: Antarctic Bottom Water (AABW, blue); Pacific Deep Water (PDW), composed of Upper Circumpolar Deep Water (UCDW, red), characterized by a temperature maximum, and Lower Circumpolar Deep Water (LCDW, orange), characterized by a salinity maximum; and North Pacific Deep Water (NPDW, purple). Modified from [26].

Geochemical Framework of Ataúro Island (Timor-Leste) in an Arc–Continent Collision Setting

  • Job Brites dos Santos,
  • Marina Cabral Pinto and
  • João A. M. S. Pratas
  • + 1 author

Ataúro Island, located in the inner Banda Arc, provides a natural laboratory to investigate the interplay between magmatic evolution, hydrothermal circulation, and near-surface weathering in an active arc–continent collision setting. This study presents the first systematic island-wide geochemical baseline for Ataúro Island, based on multi-element analyses of stream sediments integrated with updated geological, structural, and hydromorphological information. Compositional Data Analysis (CoDA–CLR–PCA), combined with anomaly mapping and spatial overlays, defines a coherent three-tier geochemical framework comprising: (i) a lithogenic component dominated by Fe–Ti–Mg–Ni–Co–Cr, reflecting the geochemical signature of basaltic to andesitic volcanic rocks; (ii) a hydrothermal component characterized by Ag–As–Sb–S–Au associations spatially linked to structurally controlled zones; and (iii) an oxidative–supergene component marked by Fe–V–Zn redistribution along drainage convergence areas. These domains are defined strictly on geochemical criteria and represent geochemical process domains rather than proven metallogenic provinces. Rare earth element (REE) systematics further constrain the geotectonic setting and indicate that the primary geochemical patterns are largely controlled by lithological and magmatic differentiation processes. Spatial integration of geochemical patterns with fault architecture highlights the importance of NW–SE and NE–SW structural corridors in focusing hydrothermal fluid circulation and associated metal dispersion. The identified Ag–As–Sb–Au associations are interpreted as epithermal-style hydrothermal geochemical enrichment and exploration-relevant geochemical footprints, rather than as evidence of confirmed or economic mineralization. Overall, Ataúro Island emerges as a compact natural analogue of post-arc geochemical system evolution in the eastern Banda Arc, where lithogenic background, hydrothermal fluid–rock interaction, and early supergene processes are superimposed. The integrated geochemical framework presented here provides a robust baseline for future targeted investigations aimed at distinguishing lithogenic from hydrothermal contributions and evaluating the potential significance of the identified geochemical enrichments.

17 January 2026

Location of Ataúro Island within the eastern segment of the Banda Arc, highlighting its position between the volcanic front and the Australian continental margin.

Although mining activities are economically essential, they have led to significant environmental contamination, particularly in northern Chile. The discharge of untreated tailings has impacted coastal and soil ecosystems. This analysis investigates the biosorption and desorption of copper using the dried biomass of Lessonia berteroana, a brown alga, focusing on its reuse over multiple cycles. Biosorption experiments were conducted using synthetic copper sulfate solutions and real leachates (PLS) obtained from historically contaminated soils, obtaining maximum uptakes of 66.1 and 41.1 mg/g, respectively. In addition, four isotherm models—Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich (D–R)—were applied to describe equilibrium behavior. In synthetic systems, the Langmuir model described the data better. In the real matrix, the D–R model showed superior performance, indicating a more heterogeneous mechanism and a lower adsorption capacity. Desorption experiments, fundamental to evaluating the recyclability capacity of biosorbents, used HCl, HNO3, H2SO4, and C6H8O7 as desorbing agents. These experiments showed high initial efficiency (>95%) for all desorbents, and regeneration remained consistent over five cycles. In real PLS systems, nitric and citric acids maintained high desorption efficiencies with minimal degradation of biosorbent capacity. This study highlights the potential of L. berteroana as a sustainable biosorbent for copper recovery in both controlled and real-world applications, supporting its integration into circular economy strategies for mine-impacted environments.

16 January 2026

Conceptual processing of metallurgical effluents by biosorption and benefits of this biotreatment.

This study investigated the effect of mechanical activation on the physicochemical properties of lepidolite and the leaching behavior of mechanically activated samples in sulfuric acid (H2SO4). Lepidolite was mechanically activated using a high-energy planetary ball mill (PBM) at 400 RPM with a 20:1 ball-to-feed weight ratio (BFR, g:g) and the samples activated for different durations were characterized for amorphous phase content, particle size, and morphology using various solid analyses. X-ray diffraction (XRD) revealed the progressive amorphization of lepidolite, with the amorphous fraction increased from 34.1% (unactivated) to 81.4% after 60 min of mechanical activation. Scanning electron microscopy (SEM) showed that mechanically activated particles became fluffy and rounded, whereas unactivated particles retained lamellar and angular shapes. The reactivity of minerals after mechanical activation was evaluated through a 2 M H2SO4 leaching test at different leaching temperatures (25–80 °C) and time periods (30–180 min). Although the leaching efficiencies of Li and Al slightly improved at higher leaching temperatures and longer leaching times, the leaching of these metals was primarily governed by the mechanical activation time. The highest Li and Al leaching efficiencies—87.0% for Li and 79.4% for Al—were obtained from lepidolite that was mechanically activated for 60 min under leaching conditions of 80 °C and a 10% (w/v) solid/liquid (S/L) ratio for 30 min. The elemental mapping images of leaching feed and residue produced via energy dispersive spectroscopy (EDS) indicated that unactivated particles in the leaching residue had much higher metal content than mechanically activated particles. Kinetic analysis further suggested that leaching predominantly occurs at mechanically activated sites and the apparent activation energies calculated in this study (<3.1 kJ·mol−1) indicate diffusion-controlled behavior with weak temperature dependence. This result confirmed that mechanical activation significantly improves reactivity and that the residual unleached fraction can be attributed to unactivated particles.

16 January 2026

The tetrahedra-octahedra-tetrahedra (TOT) structure of lepidolite.

News & Conferences

Issues

Open for Submission

Editor's Choice

Reprints of Collections

Large Igneous Provinces
Reprint

Large Igneous Provinces

Research Frontiers
Editors: Richard E. Ernst, Hafida El Bilali
Industrial Minerals Flotation
Reprint

Industrial Minerals Flotation

Fundamentals and Applications
Editors: Xuming Wang, Jan D. Miller

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Minerals - ISSN 2075-163X