You are currently viewing a new version of our website. To view the old version click .

Agronomy

Agronomy is an international, peer-reviewed, open access journal on agronomy and agroecology published monthly online by MDPI. 
The Spanish Society of Plant Biology (SEBP) is affiliated with Agronomy and their members receive discounts on the article processing charges.
Quartile Ranking JCR - Q1 (Agronomy | Plant Sciences)

All Articles (18,310)

Effects of Grassland Ley Sward Diversity on Soil Potassium and Magnesium Forms in Two Contrasting Sites

  • Matej Orešković,
  • Waldemar Spychalski and
  • Barbara Golińska
  • + 1 author

Although multispecies grassland leys are known to influence nutrient dynamics in soils, little is known about the soil potassium (K) and magnesium (Mg) quantities in such systems. In this study, we quantified soluble, active, and exchangeable forms of K and Mg in two contrasting sites differing in soil types: Cambisols and Luvisols. These measurements were conducted in grassland ley swards differing in the species composition of their sown mixtures. The grassland ley experiment included six species belonging to three functional groups: grasses (G1: Lolium perenne, G2: Phleum pratense), legumes (L1: Trifolium repens, L2: Trifolium pratense), and herbs (H1: Cichorium intybus, H2: Plantago lanceolata). Thirty-three plant communities were established following a simplex design approach, with sown proportions ranging from 100% (monocultures) to 50%, 33%, 25%, 16.7%, and 0% across the different mixture combinations. Plant diversity only had a slightly negative trend for potassium on Cambisols. Grass-dominated mixtures maintained higher soil K levels, while legume-rich swards exhibited lower concentrations, consistent with legumes’ greater K demand. Notably, the different effects of extractants on K were most evident in Cambisols, indicating stronger cation retention. This indicates the need to use the CaCl2 and NH4OAc extraction methods to determine the potassium content in this type of soil, and that these methods should be considered for evaluation of soil fertility.

7 December 2025

Scatterplots with pie-glyphs showing (a) potassium content and (b) magnesium content at both sites, measured via CaCl2 extraction (raw data). Pie-glyphs represent species composition (1—monoculture; 2–6—mixtures).

Sustaining irrigated agriculture under drought conditions with alternative water sources such as saline groundwater requires understanding their effects on salt-tolerant crops like pistachio. During recent California droughts, pistachio trees planted in 2002, 2009, and 2011 were irrigated with high-saline water containing traces of boron (B) and selenium (Se). In 2018, irrigation was divided so that half of the trees received low-saline water, while the others continued under high-saline irrigation. Three years later, nuts were harvested to evaluate how irrigation quality affected seed coats, the main storage site of phenolic antioxidants. Sixty seed coat extracts from both irrigation treatments were analyzed for antioxidant capacity (ABTS, DPPH, FRAP and Folin–Ciocalteu assays). Nuts from the oldest trees (planted in 2002) had the highest antioxidant capacity. High-performance liquid chromatography (HPLC) identified gallic acid and nine flavonoids. Catechin, procyanidin B1, cyanidin-3-O-galactoside, and eriodictyol were most abundant in the oldest trees. Irrigation salinity significantly affected gallic acid, quercetin, and isoquercetin, with higher concentrations detected in seed coats from trees receiving continued high-saline irrigation. These compound-specific shifts, together with strong age-dependent patterns, provide insight into how long-term salinity exposure influences phenolic composition in pistachio seed coats.

7 December 2025

Soil salinization poses a major threat to agricultural sustainability in arid regions worldwide, where it is intrinsically linked to irrigated agriculture. In these water-scarce environments, the equilibrium of the water and salt balance is easily disrupted, causing salts to accumulate in the root zone and directly constraining crop growth, thereby creating an urgent need for precise water and salt management strategies. While precise water and salt transport models are essential for prediction and control, their accuracy is often compromised by parameter uncertainty. To address this, we developed a lumped water–salt balance model for the Hetao Irrigation District (HID) in China, integrating farmland and non-farmland areas and vertically structured into root zone, transition layer, and aquifer. A novel calibration approach, combining random sampling with Kernel Density Estimation (KDE), was introduced to identify optimal parameter ranges rather than single values, thereby enhancing model robustness. The model was calibrated and validated using data from the Yichang sub-district. Results showed that the water balance module performed satisfactorily in simulating groundwater depth (R2 = 0.79 for calibration, 0.65 for validation). The salt balance module effectively replicated the general trends of soil salinity dynamics, albeit with lower R2 values, which reflects the challenges of high spatial variability and data scarcity. This method innovatively addresses the common challenge of parameter uncertainty in the model, narrows the parameter value ranges, enhances model reliability, and incorporates sensitivity analysis (SA) to identify key parameters in the water–salt model. This study not only provides a practical tool for managing water and salt dynamics in HID but also offers a methodological reference for addressing parameter uncertainty in hydrological modeling of other data-scarce regions.

7 December 2025

To address the automation of table grape harvesting, a clamping and cutting integrated, four-point flexible end-effector is designed, based on the biological and mechanical characteristics of grapes. The clamping device is validated in regard to force closure requirements using a force spiral. On this basis, a finite element model of the grape pedicel–blade system is established, and dynamic simulations of pedicel cutting are conducted using ANSYS 2021/LS-DYNA. The simulation results indicate that when the pedicel diameter is 10 mm, the maximum shear stress is 1.515 MPa. A kinematic simulation of the clamping device is performed using ADAMS, producing a contact force curve between the end effector’s finger joints and the grape during the clamping process. The simulation results show that the peak contact force of 11 N is lower than the critical rupture force of the grape (24.79 N), satisfying the requirements for flexible, low-damage harvesting. Furthermore, to address the vulnerability of grapes, a contact-force control system is designed, employing a position–speed–torque three-loop control strategy. Pressure sensors integrated into the four clamping fingers provide real-time feedback to adjust the contact force, ensuring precise clamping control. Finally, a physical prototype of the end effector and controller is developed, and harvesting trials are conducted in a vineyard. The harvesting success rate reaches 96.7%, with an average harvesting time of 13.7 s per trial. The grape cluster damage and berry drop rates are 3.2% and 2.8%, respectively, meeting the expected design requirements.

7 December 2025

News & Conferences

Issues

Open for Submission

Editor's Choice

Reprints of Collections

Recent Advances in Legume Crop Protection
Reprint

Recent Advances in Legume Crop Protection

Editors: Kai Li, Yu Gao, Zhaofeng Huang
Climate Change and Agriculture
Reprint

Climate Change and Agriculture

Sustainable Plant Production
Editors: Jinlong Dong, Junjie Lin, Yang Yang, Zhongxiu Sun, Nazim Gruda

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Agronomy - ISSN 2073-4395