- Article
Physiological and Transcriptomic Responses of Xinjiang Wheat ‘Xindong 22’ (Triticum aestivum L.) to Drought Stress During Early Development
- Kunkun Wu,
- Xiaoya Li and
- Weihong Sun
- + 4 authors
The Xinjiang wheat variety ‘Xindong 22’ was used as experimental material. Two soil moisture treatments were established: control (CK, 70–75% field capacity), drought (X1, 60–65%). The photosynthetic characteristics and resistance physiological indexes of wheat leaves under different stress levels were analyzed, and RNA-Seq technology was used to conduct transcriptome sequencing and analysis were performed on wheat leaves. The results showed that under drought stress, superoxide dismutase (SOD) activity was significantly enhanced, while peroxidase (POD) activity decreased. Soluble sugar and proline contents also increased. These changes likely enhanced reactive oxygen species scavenging, thereby reducing the content of malondialdehyde in the leaves. Meanwhile, under the X1 treatment, stomatal conductance and transpiration rate of wheat leaves showed a slow decreasing trend, the intercellular CO2 concentration decreased slightly, the decline in Fv/Fm was relatively small, and the value of the non-photochemical quenching coefficient gradually increased. Transcriptome analysis identified 1881 differentially expressed genes (DEGs). Notably, drought stress induced the up-regulation of key genes involved in the ABA signaling pathway (e.g., SnRK2 and ABF) and the MAPK cascade, suggesting their crucial roles in mediating drought responses in this wheat variety. In the jasmonic acid signaling pathway, MYC2 functions as a positive regulator by interacting with JAZ proteins. These findings demonstrate that Xinjiang wheat employs integrated physiological and molecular strategies to cope with drought stress.
21 February 2026







