Journal Description
International Journal of Molecular Sciences
International Journal of Molecular Sciences
is an international, peer-reviewed, open access journal providing an advanced forum for biochemistry, molecular and cell biology, molecular biophysics, molecular medicine, and all aspects of molecular research in chemistry, and is published semimonthly online by MDPI. The Australian Society of Plant Scientists (ASPS), Epigenetics Society, European Calcium Society (ECS), European Chitin Society (EUCHIS), Spanish Society for Cell Biology (SEBC) and others are affiliated with IJMS and their members receive a discount on the article processing charges.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, PMC, MEDLINE, Embase, CAPlus / SciFinder, and other databases.
- Journal Rank: JCR - Q1 (Biochemistry & Molecular Biology) / CiteScore - Q1 (Inorganic Chemistry)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 15.9 days after submission; acceptance to publication is undertaken in 2.9 days (median values for papers published in this journal in the second half of 2022).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
- Testimonials: See what our editors and authors say about the IJMS.
- Companion journals for IJMS include: Biophysica, Obesities, Stresses and Lymphatics.
Impact Factor:
6.208 (2021);
5-Year Impact Factor:
6.628 (2021)
Latest Articles
Metabolism-Disrupting Chemicals Affecting the Liver: Screening, Testing, and Molecular Pathway Identification
Int. J. Mol. Sci. 2023, 24(3), 2686; https://doi.org/10.3390/ijms24032686 (registering DOI) - 31 Jan 2023
Abstract
The liver is the central metabolic organ of the body. The plethora of anabolic and catabolic pathways in the liver is tightly regulated by physiological signaling but may become imbalanced as a consequence of malnutrition or exposure to certain chemicals, so-called metabolic endocrine
[...] Read more.
The liver is the central metabolic organ of the body. The plethora of anabolic and catabolic pathways in the liver is tightly regulated by physiological signaling but may become imbalanced as a consequence of malnutrition or exposure to certain chemicals, so-called metabolic endocrine disrupters, or metabolism-disrupting chemicals (MDCs). Among different metabolism-related diseases, obesity and non-alcoholic fatty liver disease (NAFLD) constitute a growing health problem, which has been associated with a western lifestyle combining excessive caloric intake and reduced physical activity. In the past years, awareness of chemical exposure as an underlying cause of metabolic endocrine effects has continuously increased. Within this review, we have collected and summarized evidence that certain environmental MDCs are capable of contributing to metabolic diseases such as liver steatosis and cholestasis by different molecular mechanisms, thereby contributing to the metabolic syndrome. Despite the high relevance of metabolism-related diseases, standardized mechanistic assays for the identification and characterization of MDCs are missing. Therefore, the current state of candidate test systems to identify MDCs is presented, and their possible implementation into a testing strategy for MDCs is discussed.
Full article
(This article belongs to the Special Issue Metabolism Disrupting Chemicals: Screening, Testing and Molecular Pathway Identification)
►
Show Figures
Open AccessReview
FDA-Approved Monoclonal Antibodies for Unresectable Hepatocellular Carcinoma: What Do We Know So Far?
by
, , , , , , , , , , , and
Int. J. Mol. Sci. 2023, 24(3), 2685; https://doi.org/10.3390/ijms24032685 (registering DOI) - 31 Jan 2023
Abstract
Unresectable hepatocellular carcinoma (HCC) is an advanced primary liver malignancy with a poor prognosis. The Food and Drug Administration (FDA) has, to date, approved nivolumab, pembrolizumab, ramucirumab, nivolumab/ipilimumab, atezolizumab/bevacizumab, as well as tremelimumab/durvalumab, as first- or second-line monoclonal antibodies (mAbs) for unresectable HCC.
[...] Read more.
Unresectable hepatocellular carcinoma (HCC) is an advanced primary liver malignancy with a poor prognosis. The Food and Drug Administration (FDA) has, to date, approved nivolumab, pembrolizumab, ramucirumab, nivolumab/ipilimumab, atezolizumab/bevacizumab, as well as tremelimumab/durvalumab, as first- or second-line monoclonal antibodies (mAbs) for unresectable HCC. The present review examines the current state of knowledge, and provides a useful update on the safety and efficacy of these therapeutic agents, thus attempting to define the suitability of each mAb for different patient subgroups.
Full article
(This article belongs to the Special Issue Challenges and Future Trends of Hepatocellular Carcinoma Immunotherapy)
►▼
Show Figures

Figure 1
Open AccessArticle
PTCHD1 Binds Cholesterol but Not Sonic Hedgehog, Suggesting a Distinct Cellular Function
by
Mimmu K. Hiltunen
, Alex J. Timmis
, Maren Thomsen
, Danai S. Gkotsi
, Hideo Iwaï
, Orquidea M. Ribeiro
, Adrian Goldman
and Natalia A. Riobo-Del Galdo
Int. J. Mol. Sci. 2023, 24(3), 2682; https://doi.org/10.3390/ijms24032682 (registering DOI) - 31 Jan 2023
Abstract
Deleterious mutations in the X-linked Patched domain-containing 1 (PTCHD1) gene may account for up to 1% of autism cases. Despite this, the PTCHD1 protein remains poorly understood. Structural similarities to Patched family proteins point to a role in sterol transport, but this hypothesis
[...] Read more.
Deleterious mutations in the X-linked Patched domain-containing 1 (PTCHD1) gene may account for up to 1% of autism cases. Despite this, the PTCHD1 protein remains poorly understood. Structural similarities to Patched family proteins point to a role in sterol transport, but this hypothesis has not been verified experimentally. Additionally, PTCHD1 has been suggested to be involved in Hedgehog signalling, but thus far, the experimental results have been conflicting. To enable a variety of biochemical and structural experiments, we developed a method for expressing PTCHD1 in Spodoptera frugiperda cells, solubilising it in glycol-diosgenin, and purifying it to homogeneity. In vitro and in silico experiments show that PTCHD1 function is not interchangeable with Patched 1 (PTCH1) in canonical Hedgehog signalling, since it does not repress Smoothened in Ptch1−/− mouse embryonic fibroblasts and does not bind Sonic Hedgehog. However, we found that PTCHD1 binds cholesterol similarly to PTCH1. Furthermore, we identified 13 PTCHD1-specific protein interactors through co-immunoprecipitation and demonstrated a link to cell stress responses and RNA stress granule formation. Thus, our results support the notion that despite structural similarities to other Patched family proteins, PTCHD1 may have a distinct cellular function.
Full article
(This article belongs to the Collection Feature Papers in Molecular Biology)
►▼
Show Figures

Figure 1
Open AccessArticle
Novel Organoruthenium(II) Complex C1 Selectively Inhibits Butyrylcholinesterase without Side Effects on Neuromuscular Transmission
Int. J. Mol. Sci. 2023, 24(3), 2681; https://doi.org/10.3390/ijms24032681 (registering DOI) - 31 Jan 2023
Abstract
Enzyme butyrylcholinesterase (BChE) shows increased activity in some brain regions after progression of Alzheimer’s disease and is therefore one of the therapeutic targets for symptomatic treatment of this neurodegenerative disorder. The organoruthenium(II) complex [(η6-p-cymene)Ru(II)(1-hydroxy-3-methoxypyridine-2(1H)-thionato)pta]PF6 (C1
[...] Read more.
Enzyme butyrylcholinesterase (BChE) shows increased activity in some brain regions after progression of Alzheimer’s disease and is therefore one of the therapeutic targets for symptomatic treatment of this neurodegenerative disorder. The organoruthenium(II) complex [(η6-p-cymene)Ru(II)(1-hydroxy-3-methoxypyridine-2(1H)-thionato)pta]PF6 (C1) was designed based on the results of our previous structure–activity studies. Inhibitory activity toward cholinesterase enzymes shows that this complex selectively, competitively, and reversibly inhibits horse serum BChE (hsBChE) with an IC50 value of 2.88 µM. When tested at supra-pharmacological concentrations (30, 60, 90, and 120 µM), C1 had no significant effect on the maximal amplitude of nerve-evoked and directly elicited single-twitch and tetanic contractions. At the highest tested concentration (120 µM), C1 had no effect on resting membrane potential, but significantly decreased the amplitude of miniature end-plate potentials (MEPP) without reducing their frequency. The same concentration of C1 had no effect on the amplitude of end-plate potentials (EPP), however it shortened the half-decay time of MEPPs and EPPs. The decrease in the amplitude of MEPPs and shortening of the half-decay time of MEPPs and EPPs suggest a possible weak inhibitory effect on muscle-type nicotinic acetylcholine receptors (nAChR). These combined results show that, when applied at supra-pharmacological concentrations up to 120 µM, C1 does not importantly affect the physiology of neuromuscular transmission and skeletal muscle contraction.
Full article
(This article belongs to the Section Molecular Neurobiology)
►▼
Show Figures

Figure 1
Open AccessArticle
Assessment of the Permeability of 3,4-Methylenedioxypyrovalerone (MDPV) across the Caco-2 Monolayer for Estimation of Intestinal Absorption and Enantioselectivity
Int. J. Mol. Sci. 2023, 24(3), 2680; https://doi.org/10.3390/ijms24032680 (registering DOI) - 31 Jan 2023
Abstract
3,4-Methylenedioxypyrovalerone (MDPV) is a widely studied synthetic cathinone heterocycle mainly concerning its psychoactive effects. It is a chiral molecule and one of the most abused new psychoactive substances worldwide. Enantioselectivity studies for MDPV are still scarce and the extent to which it crosses
[...] Read more.
3,4-Methylenedioxypyrovalerone (MDPV) is a widely studied synthetic cathinone heterocycle mainly concerning its psychoactive effects. It is a chiral molecule and one of the most abused new psychoactive substances worldwide. Enantioselectivity studies for MDPV are still scarce and the extent to which it crosses the intestinal membrane is still unknown. Herein, an in vitro permeability study was performed to evaluate the passage of the enantiomers of MDPV across the Caco-2 monolayer. To detect and quantify MDPV, a UHPLC-UV method was developed and validated. Acceptable values within the recommended limits were obtained for all evaluated parameters (specificity, linearity, accuracy, limit of detection (LOD), limit of quantification (LOQ) and precision). The enantiomers of MDPV were found to be highly permeable across the Caco-2 monolayer, which can indicate a high intestinal permeability. Enantioselectivity was observed for the Papp values in the basolateral (BL) to apical (AP) direction. Furthermore, efflux ratios are indicative of efflux through a facilitated diffusion mechanism. To the best of our knowledge, determination of the permeability of MDPV across the intestinal epithelial cell monolayer is presented here for the first time.
Full article
(This article belongs to the Special Issue Recent Advances: Heterocycles in Drugs and Drug Discovery)
►▼
Show Figures

Figure 1
Open AccessArticle
Fusion of Wild-Type Mesoangioblasts with Myotubes of mtDNA Mutation Carriers Leads to a Proportional Reduction in mtDNA Mutation Load
by
, , , , , , and
Int. J. Mol. Sci. 2023, 24(3), 2679; https://doi.org/10.3390/ijms24032679 (registering DOI) - 31 Jan 2023
Abstract
In 25% of patients with mitochondrial myopathies, pathogenic mitochondrial DNA (mtDNA) mutation are the cause. For heteroplasmic mtDNA mutations, symptoms manifest when the mutation load exceeds a tissue-specific threshold. Therefore, lowering the mutation load is expected to ameliorate disease manifestations. This can be
[...] Read more.
In 25% of patients with mitochondrial myopathies, pathogenic mitochondrial DNA (mtDNA) mutation are the cause. For heteroplasmic mtDNA mutations, symptoms manifest when the mutation load exceeds a tissue-specific threshold. Therefore, lowering the mutation load is expected to ameliorate disease manifestations. This can be achieved by fusing wild-type mesoangioblasts with mtDNA mutant myotubes. We have tested this in vitro for female carriers of the m.3271T>C or m.3291T>C mutation (mutation load >90%) using wild-type male mesoangioblasts. Individual fused myotubes were collected by a newly-developed laser capture microdissection (LCM) protocol, visualized by immunostaining using an anti-myosin antibody. Fusion rates were determined based on male-female nuclei ratios by fluorescently labelling the Y-chromosome. Using combined ‘wet’ and ‘air dried’ LCM imaging improved fluorescence imaging quality and cell yield. Wild-type mesoangioblasts fused in different ratios with myotubes containing either the m.3271T>C or the m.3291T>C mutation. This resulted in the reduction of the mtDNA mutation load proportional to the number of fused wild-type mesoangioblasts for both mtDNA mutations. The proportional reduction in mtDNA mutation load in vitro after fusion is promising in the context of muscle stem cell therapy for mtDNA mutation carriers in vivo, in which we propose the same strategy using autologous wild-type mesoangioblasts.
Full article
(This article belongs to the Special Issue Recent Advances on Mitochondrial Diseases)
►▼
Show Figures

Figure 1
Open AccessArticle
Effect of Hydrogel Substrate Components on the Stability of Tetracycline Hydrochloride and Swelling Activity against Model Skin Sebum
Int. J. Mol. Sci. 2023, 24(3), 2678; https://doi.org/10.3390/ijms24032678 (registering DOI) - 31 Jan 2023
Abstract
Due to its high instability and rapid degradation under adverse conditions, tetracycline hydrochloride (TC) can cause difficulties in the development of an effective but stable formulation for the topical treatment of acne. The aim of the following work was to propose a hydrogel
[...] Read more.
Due to its high instability and rapid degradation under adverse conditions, tetracycline hydrochloride (TC) can cause difficulties in the development of an effective but stable formulation for the topical treatment of acne. The aim of the following work was to propose a hydrogel formulation that would ensure the stability of the antibiotic contained in it. Additionally, an important property of the prepared formulations was the activity of the alcoholamines contained in them against the components of the model sebum. This feature may help effectively cleanse the hair follicles in the accumulated sebum layer. A series of formulations with varying proportions of anionic polymer and alcoholamine and containing different polymers have been developed. The stability of tetracycline hydrochloride contained in the hydrogels was evaluated for 28 days by HPLC analysis. Formulations containing a large excess of TRIS alcoholamine led to the rapid degradation of TC from an initial concentration of about 10 µg/mL to about 1 µg/mL after 28 days. At the same time, these formulations showed the highest activity against artificial sebum components. Thanks to appropriately selected proportions of the components, it was possible to develop a formulation that assured the stability of tetracycline for ca. one month, while maintaining formulation activity against the components of model sebum.
Full article
(This article belongs to the Special Issue Chemistry towards Biology)
►▼
Show Figures

Figure 1
Open AccessArticle
Age-Related Changes in Neurons and Satellite Glial Cells in Mouse Dorsal Root Ganglia
Int. J. Mol. Sci. 2023, 24(3), 2677; https://doi.org/10.3390/ijms24032677 (registering DOI) - 31 Jan 2023
Abstract
The effects of aging on the nervous system are well documented. However, most previous studies on this topic were performed on the central nervous system. The present study was carried out on the dorsal root ganglia (DRGs) of mice, and focused on age-related
[...] Read more.
The effects of aging on the nervous system are well documented. However, most previous studies on this topic were performed on the central nervous system. The present study was carried out on the dorsal root ganglia (DRGs) of mice, and focused on age-related changes in DRG neurons and satellite glial cells (SGCs). Intracellular electrodes were used for dye injection to examine the gap junction-mediated coupling between neurons and SGCs, and for intracellular electrical recordings from the neurons. Tactile sensitivity was assessed with von Frey hairs. We found that 3-23% of DRG neurons were dye-coupled to SGCs surrounding neighboring neurons in 8–24-month (Mo)-old mice, whereas in young adult (3 Mo) mice, the figure was 0%. The threshold current for firing an action potential in sensory neurons was significantly lower in DRGs from 12 Mo mice compared with those from 3 Mo mice. The percentage of neurons with spontaneous subthreshold membrane potential oscillation was greater by two-fold in 12 Mo mice. The withdrawal threshold was lower by 22% in 12 Mo mice compared with 3 Mo ones. These results show that in the aged mice, a proportion of DRG neurons is coupled to SGCs, and that the membrane excitability of the DRG neurons increases with age. We propose that augmented neuron–SGC communications via gap junctions are caused by low-grade inflammation associated with aging, and this may contribute to pain behavior.
Full article
(This article belongs to the Special Issue Immune Functions of Astrocytes)
►▼
Show Figures

Figure 1
Open AccessReview
Leading Edge: Intratumor Delivery of Monoclonal Antibodies for the Treatment of Solid Tumors
by
, , , , , , , , and
Int. J. Mol. Sci. 2023, 24(3), 2676; https://doi.org/10.3390/ijms24032676 (registering DOI) - 31 Jan 2023
Abstract
Immunotherapies based on immune checkpoint blockade have shown remarkable clinical outcomes and durable responses in patients with many tumor types. Nevertheless, these therapies lack efficacy in most cancer patients, even causing severe adverse events in a small subset of patients, such as inflammatory
[...] Read more.
Immunotherapies based on immune checkpoint blockade have shown remarkable clinical outcomes and durable responses in patients with many tumor types. Nevertheless, these therapies lack efficacy in most cancer patients, even causing severe adverse events in a small subset of patients, such as inflammatory disorders and hyper-progressive disease. To diminish the risk of developing serious toxicities, intratumor delivery of monoclonal antibodies could be a solution. Encouraging results have been shown in both preclinical and clinical studies. Thus, intratumor immunotherapy as a new strategy may retain efficacy while increasing safety. This approach is still an exploratory frontier in cancer research and opens up new possibilities for next-generation personalized medicine. Local intratumor delivery can be achieved through many means, but an attractive approach is the use of gene therapy vectors expressing mAbs inside the tumor mass. Here, we summarize basic, translational, and clinical results of intratumor mAb delivery, together with descriptions of non-viral and viral strategies for mAb delivery in preclinical and clinical development. Currently, this is an expanding research subject that will surely play a key role in the future of oncology.
Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Oncology 2023)
►▼
Show Figures

Figure 1
Open AccessArticle
Myofilament Alterations Associated with Human R14del-Phospholamban Cardiomyopathy
by
, , , , , , and
Int. J. Mol. Sci. 2023, 24(3), 2675; https://doi.org/10.3390/ijms24032675 (registering DOI) - 31 Jan 2023
Abstract
Phospholamban (PLN) is a major regulator of cardiac contractility, and human mutations in this gene give rise to inherited cardiomyopathies. The deletion of Arginine 14 is the most-prevalent cardiomyopathy-related mutation, and it has been linked to arrhythmogenesis and early death. Studies
[...] Read more.
Phospholamban (PLN) is a major regulator of cardiac contractility, and human mutations in this gene give rise to inherited cardiomyopathies. The deletion of Arginine 14 is the most-prevalent cardiomyopathy-related mutation, and it has been linked to arrhythmogenesis and early death. Studies in PLN-humanized mutant mice indicated an increased propensity to arrhythmias, but the underlying cellular mechanisms associated with R14del-PLN cardiac dysfunction in the absence of any apparent structural remodeling remain unclear. The present study addressed the specific role of myofilaments in the setting of R14del-PLN and the long-term effects of R14del-PLN in the heart. Maximal force was depressed in skinned cardiomyocytes from both left and right ventricles, but this effect was more pronounced in the right ventricle of R14del-PLN mice. In addition, the Ca2+ sensitivity of myofilaments was increased in both ventricles of mutant mice. However, the depressive effects of R14del-PLN on contractile parameters could be reversed with the positive inotropic drug omecamtiv mecarbil, a myosin activator. At 12 months of age, corresponding to the mean symptomatic age of R14del-PLN patients, contractile parameters and Ca2+ transients were significantly depressed in the right ventricular R14del-PLN cardiomyocytes. Echocardiography did not reveal any alterations in cardiac function or remodeling, although histological and electron microscopy analyses indicated subtle alterations in mutant hearts. These findings suggest that both aberrant myocyte calcium cycling and aberrant contractility remain specific to the right ventricle in the long term. In addition, altered myofilament activity is an early characteristic of R14del-PLN mutant hearts and the positive inotropic drug omecamtiv mecarbil may be beneficial in treating R14del-PLN cardiomyopathy.
Full article
(This article belongs to the Special Issue Molecular Cardiology and Pharmacogenomics)
►▼
Show Figures

Figure 1
Open AccessReview
Thermo-L-Asparaginases: From the Role in the Viability of Thermophiles and Hyperthermophiles at High Temperatures to a Molecular Understanding of Their Thermoactivity and Thermostability
by
and
Int. J. Mol. Sci. 2023, 24(3), 2674; https://doi.org/10.3390/ijms24032674 (registering DOI) - 31 Jan 2023
Abstract
L-asparaginase (L-ASNase) is a vital enzyme with a broad range of applications in medicine, food industry, and diagnostics. Among various organisms expressing L-ASNases, thermophiles and hyperthermophiles produce enzymes with superior performances—stable and heat resistant thermo-ASNases. This review is an attempt to take a
[...] Read more.
L-asparaginase (L-ASNase) is a vital enzyme with a broad range of applications in medicine, food industry, and diagnostics. Among various organisms expressing L-ASNases, thermophiles and hyperthermophiles produce enzymes with superior performances—stable and heat resistant thermo-ASNases. This review is an attempt to take a broader view on the thermo-ASNases. Here we discuss the position of thermo-ASNases in the large family of L-ASNases, their role in the heat-tolerance cellular system of thermophiles and hyperthermophiles, and molecular aspects of their thermoactivity and thermostability. Different types of thermo-ASNases exhibit specific L-asparaginase activity and additional secondary activities. All products of these enzymatic reactions are associated with diverse metabolic pathways and are important for mitigating heat stress. Thermo-ASNases are quite distinct from typical mesophilic L-ASNases based on structural properties, kinetic and activity profiles. Here we attempt to summarize the current understanding of the molecular mechanisms of thermo-ASNases’ thermoactivity and thermostability, from amino acid composition to structural–functional relationships. Research of these enzymes has fundamental and biotechnological significance. Thermo-ASNases and their improved variants, cloned and expressed in mesophilic hosts, can form a large pool of enzymes with valuable characteristics for biotechnological application.
Full article
(This article belongs to the Special Issue Thermophilic and Hyperthermophilic Microbes and Enzymes 2.0)
►▼
Show Figures

Figure 1
Open AccessArticle
DNA Damage Response Gene Signature as Potential Treatment Markers for Oral Squamous Cell Carcinoma
by
, , , , , , and
Int. J. Mol. Sci. 2023, 24(3), 2673; https://doi.org/10.3390/ijms24032673 (registering DOI) - 31 Jan 2023
Abstract
Oral squamous cell carcinoma (OSCC) is a rapidly progressive cancer that often develops resistance against DNA damage inducers, such as radiotherapy and chemotherapy, which are still the standard of care regimens for this tumor. Thus, the identification of biomarkers capable of monitoring the
[...] Read more.
Oral squamous cell carcinoma (OSCC) is a rapidly progressive cancer that often develops resistance against DNA damage inducers, such as radiotherapy and chemotherapy, which are still the standard of care regimens for this tumor. Thus, the identification of biomarkers capable of monitoring the clinical progression of OSCC and its responsiveness to therapy is strongly required. To meet this need, here we have employed Whole Genome Sequencing and RNA-seq data from a cohort of 316 patients retrieved from the TCGA Pan-Cancer Atlas to analyze the genomic and transcriptomic status of the DNA damage response (DDR) genes in OSCC. Then, we correlated the transcriptomic data with the clinical parameters of each patient. Finally, we relied on transcriptomic and drug sensitivity data from the CTRP v2 portal, performing Pearson’s correlation analysis to identify putative vulnerabilities of OSCC cell lines correlated with DDR gene expression. Our results indicate that several DDR genes show a high frequency of genomic and transcriptomic alterations and that the expression of some of them correlates with OSCC grading and infection by the human papilloma virus. In addition, we have identified a signature of eight DDR genes (namely CCNB1, CCNB2, CDK2, CDK4, CHECK1, E2F1, FANCD2, and PRKDC) that could be predictive for OSCC response to the novel antitumor compounds sorafenib and tipifarnib-P1. Altogether, our data demonstrate that alterations in DDR genes could have an impact on the biology of OSCC. Moreover, here we propose a DDR gene signature whose expression could be predictive of OSCC responsiveness to therapy.
Full article
(This article belongs to the Collection Feature Papers in Molecular Pathology, Diagnostics, and Therapeutics)
►▼
Show Figures

Figure 1
Open AccessReview
Endocrine Disruptor Chemicals and Children’s Health
Int. J. Mol. Sci. 2023, 24(3), 2671; https://doi.org/10.3390/ijms24032671 (registering DOI) - 31 Jan 2023
Abstract
We are all exposed to endocrine-disrupting chemicals (EDCs) starting from embryonic life. The fetus and child set up crucial developmental processes allowing adaptation to the environment throughout life: they are extremely sensitive to very low doses of hormones and EDCs because they are
[...] Read more.
We are all exposed to endocrine-disrupting chemicals (EDCs) starting from embryonic life. The fetus and child set up crucial developmental processes allowing adaptation to the environment throughout life: they are extremely sensitive to very low doses of hormones and EDCs because they are developing organisms. Considering the developmental origin of well-being and diseases, every adult organism expresses consequences of the environment in which it developed. The molecular mechanisms through which the main EDCs manifest their effects and their potential association with endocrine disorders, such as diabetes, obesity, thyroid disease and alteration of adrenal hormones, will be reviewed here. Despite 40 years having passed since the first study on EDCs, little is yet known about them; therefore, our purpose is to take stock of the situation to establish a starting point for further studies. Since there is plenty of evidence showing that exposure to EDCs may adversely impact the health of adults and children through altered endocrine function—suggesting their link to endocrinopathies—it is essential in this context to bear in mind what is already known about endocrine disruptors and to deepen our knowledge to establish rules of conduct aimed at limiting exposure to EDCs’ negative effects. Considering that during the COVID-19 pandemic an increase in endocrine disruptor effects has been reported, it will also be useful to address this new phenomenon for better understanding its basis and limiting its consequences.
Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
►▼
Show Figures

Figure 1
Open AccessReview
Tumors of the Nose and Paranasal Sinuses: Promoting Factors and Molecular Mechanisms—A Systematic Review
by
, , , , , and
Int. J. Mol. Sci. 2023, 24(3), 2670; https://doi.org/10.3390/ijms24032670 (registering DOI) - 31 Jan 2023
Abstract
Sinonasal neoplasms are uncommon diseases, characterized by heterogeneous biological behavior, which frequently results in challenges in differential diagnosis and treatment choice. The aim of this review was to examine the pathogenesis and molecular mechanisms underlying the regulation of tumor initiation and growth, in
[...] Read more.
Sinonasal neoplasms are uncommon diseases, characterized by heterogeneous biological behavior, which frequently results in challenges in differential diagnosis and treatment choice. The aim of this review was to examine the pathogenesis and molecular mechanisms underlying the regulation of tumor initiation and growth, in order to better define diagnostic and therapeutic strategies as well as the prognostic impact of these rare neoplasms. A systematic review according to Preferred Reporting Items for Systematic Review and Meta-Analysis criteria was conducted between September and November 2022. The authors considered the three main histological patterns of sinonasal tumors, namely Squamous Cell Carcinoma, Intestinal-Type Adenocarcinoma, and Olfactory Neuroblastoma. In total, 246 articles were eventually included in the analysis. The genetic and epigenetic changes underlying the oncogenic process were discussed, through a qualitative synthesis of the included studies. The identification of a comprehensive model of carcinogenesis for each sinonasal cancer subtype is needed, in order to pave the way toward tailored treatment approaches and improve survival for this rare and challenging group of cancers.
Full article
(This article belongs to the Special Issue Molecular Mechanisms of Carcinogenesis in Airways Tumors)
►▼
Show Figures

Figure 1
Open AccessArticle
Oxidation State in Peritoneal Dialysis in Patients with Type 2 Diabetes Mellitus
by
, , , , , , , and
Int. J. Mol. Sci. 2023, 24(3), 2669; https://doi.org/10.3390/ijms24032669 (registering DOI) - 31 Jan 2023
Abstract
End-stage renal disease (ESRD) progression is closely related to oxidative stress (OS). The study objective was to determine the oxidant and antioxidant status in peritoneal dialysis (PD) patients with type 2 diabetes mellitus (DM). An analytical cross-sectional study from the PD program was
[...] Read more.
End-stage renal disease (ESRD) progression is closely related to oxidative stress (OS). The study objective was to determine the oxidant and antioxidant status in peritoneal dialysis (PD) patients with type 2 diabetes mellitus (DM). An analytical cross-sectional study from the PD program was carried out with 62 patients, 22 with and 40 without DM. Lipoperoxides (LPO) levels in patients with DM, 3.74 ± 1.09 mM/L, and without DM, 3.87 ± 0.84 mM/L were found to increase compared to healthy controls (HC) 3.05 ± 0.58 mM/L (p = 0.006). The levels of the oxidative DNA damage marker (8-OH-dG) were found to be significantly increased in patients with DM, 1.71 ng/mL (0.19–71.92) and without DM, 1.05 ng/mL (0.16–68.80) front to 0.15 ng/mL (0.15–0.1624) of HC (p = 0.001). The antioxidant enzyme superoxide dismutase (SOD) activity was found to be significantly increased in patients with DM, 0.37 ± 0.15 U/mL, and without DM, 0.37 ± 0.17 compared to HC, 0.23 ± 0.05 U/mL (p = 0.038). The activity of the enzyme glutathione peroxidase (GPx) showed a significant increase (p < 0.001) in patients with DM, 3.56 ± 2.18 nmol/min/mL, and without DM, 3.28 ± 1.46 nmol/min/mL, contrary to the activity obtained in HC, 1.55 ± 0.34 nmol/min/mL. In conclusion, we found an imbalance of oxidative status in patients undergoing PD with and without DM through the significant increase in LPO oxidants and the marker of oxidative damage in DNA. The activity of the antioxidant enzymes SOD and GPx were significantly increased in patients with and without DM undergoing PD, possibly in an attempt to compensate for the deregulation of oxidants. Antioxidant enzymes could be promising therapeutic strategies as a complement to the management of chronic kidney diseases.
Full article
(This article belongs to the Special Issue Molecular Mechanisms of Diabetic Kidney Disease)
Open AccessReview
Looking at Biomolecular Interactions through the Lens of Correlated Fluorescence-Optical Tweezers
Int. J. Mol. Sci. 2023, 24(3), 2668; https://doi.org/10.3390/ijms24032668 (registering DOI) - 31 Jan 2023
Abstract
Understanding complex biological events at the molecular level paves the path to determine mechanistic processes across the timescale necessary for breakthrough discoveries. While various conventional biophysical methods provide some information for understanding biological systems, they often lack a complete picture of the molecular-level
[...] Read more.
Understanding complex biological events at the molecular level paves the path to determine mechanistic processes across the timescale necessary for breakthrough discoveries. While various conventional biophysical methods provide some information for understanding biological systems, they often lack a complete picture of the molecular-level details of such dynamic processes. Studies at the single-molecule level have emerged to provide crucial missing links to understanding complex and dynamic pathways in biological systems, which are often superseded by bulk biophysical and biochemical studies. Latest developments in techniques combining single-molecule manipulation tools such as optical tweezers and visualization tools such as fluorescence or label-free microscopy have enabled the investigation of complex and dynamic biomolecular interactions at the single-molecule level. In this review, we present recent advances using correlated single-molecule manipulation and visualization-based approaches to obtain a more advanced understanding of the pathways for fundamental biological processes, and how this combination technique is facilitating research in the dynamic single-molecule (DSM), cell biology, and nanomaterials fields.
Full article
(This article belongs to the Special Issue Recent Advances in Single Molecule Studies)
►▼
Show Figures

Figure 1
Open AccessArticle
Ultrastructural and Immunohistochemical Detection of Hydroxyapatite Nucleating Role by rRNA and Nuclear Chromatin Derivatives in Aortic Valve Calcification: In Vitro and In Vivo Pro-Calcific Animal Models and Actual Calcific Disease in Humans
Int. J. Mol. Sci. 2023, 24(3), 2667; https://doi.org/10.3390/ijms24032667 (registering DOI) - 31 Jan 2023
Abstract
Calcification starts with hydroxyapatite (HA) crystallization on cell membranous components, as with aortic valve interstitial cells (AVICs), wherein a cell-membrane-derived substance containing acidic phospholipids (PPM/PPLs) acts as major crystal nucleator. Since nucleic acid removal is recommended to prevent calcification in valve biosubstitutes derived
[...] Read more.
Calcification starts with hydroxyapatite (HA) crystallization on cell membranous components, as with aortic valve interstitial cells (AVICs), wherein a cell-membrane-derived substance containing acidic phospholipids (PPM/PPLs) acts as major crystal nucleator. Since nucleic acid removal is recommended to prevent calcification in valve biosubstitutes derived from decellularized valve scaffolds, the involvement of ribosomal RNA (rRNA) and nuclear chromatin (NC) was here explored in three distinct contexts: (i) bovine AVIC pro-calcific cultures; (ii) porcine aortic valve leaflets that had undergone accelerated calcification after xenogeneic subdermal implantation; and (iii) human aortic valve leaflets affected by calcific stenosis. Ultrastructurally, shared AVIC degenerative patterns included (i) the melting of ribosomes with PPM/PPLs, and the same for apparently well-featured NC; (ii) selective precipitation of silver particles on all three components after adapted von Kossa reactions; and (iii) labelling by anti-rRNA immunogold particles. Shared features were also provided by parallel light microscopy. In conclusion, the present results indicate that rRNA and NC contribute to AVIC mineralization in vitro and in vivo, with their anionic charges enhancing the HA nucleation capacity exerted by PPM/PPL substrates, supporting the concept that nucleic acid removal is needed for valve pre-implantation treatments, besides better elucidating the modality of pro-calcific cell death.
Full article
(This article belongs to the Collection Feature Papers in Molecular Genetics and Genomics)
►▼
Show Figures

Figure 1
Open AccessArticle
Spawning-Induced pH Increase Activates Sperm Attraction and Fertilization Abilities in Eggs of the Ascidian, Phallusia philippinensis and Ciona intestinalis
by
, , , , , and
Int. J. Mol. Sci. 2023, 24(3), 2666; https://doi.org/10.3390/ijms24032666 (registering DOI) - 31 Jan 2023
Abstract
In Phlebobranchiata ascidians, oocytes and spermatozoa are stored in the oviduct and spermiduct, respectively, until spawning occurs. Gametes in the gonoducts are mature and fertilizable; however, it was found that the gametes of the ascidians Phallusia philippinensis and Ciona intestinalis could not undergo
[...] Read more.
In Phlebobranchiata ascidians, oocytes and spermatozoa are stored in the oviduct and spermiduct, respectively, until spawning occurs. Gametes in the gonoducts are mature and fertilizable; however, it was found that the gametes of the ascidians Phallusia philippinensis and Ciona intestinalis could not undergo fertilization in the gonoductal fluids. The body fluids of the ascidians, especially in the gonoducts, were much more acidic (pH 5.5–6.8) than seawater (pH 8.2), and the fertilization rate was low under such acidic conditions. Hence, we examined the effect of pH on gametes. Pre-incubation of gonoductal eggs at pH 8.2 prior to insemination increased fertilization rates, even when insemination was performed under low pH conditions. Furthermore, an increase in ambient pH induced an increase in the intracellular pH of the eggs. It was also found that an increase in ambient pH triggered the release of sperm attractants from the egg and is therefore necessary for sperm chemotaxis. Hence, acidic conditions in the gonoductal fluids keep the gametes, especially eggs, infertile, and the release of eggs into seawater upon spawning induces an increase in ambient pH, which enables egg fertilization.
Full article
(This article belongs to the Special Issue Molecular Mechanisms of Sperm Activation)
►▼
Show Figures

Figure 1
Open AccessReview
Fermented Foods in the Management of Obesity: Mechanisms of Action and Future Challenges
Int. J. Mol. Sci. 2023, 24(3), 2665; https://doi.org/10.3390/ijms24032665 (registering DOI) - 31 Jan 2023
Abstract
Fermented foods are part of the staple diet in many different countries and populations and contain various probiotic microorganisms and non-digestible prebiotics. Fermentation is the process of breaking down sugars by bacteria and yeast species; it not only enhances food preservation but can
[...] Read more.
Fermented foods are part of the staple diet in many different countries and populations and contain various probiotic microorganisms and non-digestible prebiotics. Fermentation is the process of breaking down sugars by bacteria and yeast species; it not only enhances food preservation but can also increase the number of beneficial gut bacteria. Regular consumption of fermented foods has been associated with a variety of health benefits (although some health risks also exist), including improved digestion, enhanced immunity, and greater weight loss, suggesting that fermented foods have the potential to help in the design of effective nutritional therapeutic approaches for obesity. In this article, we provide a comprehensive overview of the health effects of fermented foods and the corresponding mechanisms of action in obesity and obesity-related metabolic abnormalities.
Full article
(This article belongs to the Special Issue Natural Products in Obesity: Novel Strategies and Molecular Mechanisms)
►▼
Show Figures

Figure 1
Open AccessArticle
p27Kip1 Deficiency Impairs Brown Adipose Tissue Function Favouring Fat Accumulation in Mice
by
, , , , , , , and
Int. J. Mol. Sci. 2023, 24(3), 2664; https://doi.org/10.3390/ijms24032664 (registering DOI) - 31 Jan 2023
Abstract
The aim of this work was to investigate the effect of the whole-body deletion of p27 on the activity of brown adipose tissue and the susceptibility to develop obesity and glucose homeostasis disturbances in mice, especially when subjected to a high fat diet.
[...] Read more.
The aim of this work was to investigate the effect of the whole-body deletion of p27 on the activity of brown adipose tissue and the susceptibility to develop obesity and glucose homeostasis disturbances in mice, especially when subjected to a high fat diet. p27 knockout (p27−/−) and wild type (WT) mice were fed a normal chow diet or a high fat diet (HFD) for 10-weeks. Body weight and composition were assessed. Insulin and glucose tolerance tests and indirect calorimetry assays were performed. Histological analysis of interscapular BAT (iBAT) was carried out, and expression of key genes/proteins involved in BAT function were characterized by qPCR and Western blot. iBAT activity was estimated by 18F-fluorodeoxyglucose (18FDG) uptake with microPET. p27−/− mice were more prone to develop obesity and insulin resistance, exhibiting increased size of all fat depots. p27−/− mice displayed a higher respiratory exchange ratio. iBAT presented larger adipocytes in p27−/− HFD mice, accompanied by downregulation of both Glut1 and uncoupling protein 1 (UCP1) in parallel with defective insulin signalling. Moreover, p27−/− HFD mice exhibited impaired response to cold exposure, characterized by a reduced iBAT 18FDG uptake and difficulty to maintain body temperature when exposed to cold compared to WT HFD mice, suggesting reduced thermogenic capacity. These data suggest that p27 could play a role in BAT activation and in the susceptibility to develop obesity and insulin resistance.
Full article
(This article belongs to the Special Issue Molecular Advances on Insulin Resistance and Metabolic Dysfunction)
►▼
Show Figures

Figure 1

Journal Menu
► ▼ Journal Menu-
- IJMS Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal Browser-
arrow_forward_ios
Forthcoming issue
arrow_forward_ios Current issue - Vol. 24 (2023)
- Vol. 23 (2022)
- Vol. 22 (2021)
- Vol. 21 (2020)
- Vol. 20 (2019)
- Vol. 19 (2018)
- Vol. 18 (2017)
- Vol. 17 (2016)
- Vol. 16 (2015)
- Vol. 15 (2014)
- Vol. 14 (2013)
- Vol. 13 (2012)
- Vol. 12 (2011)
- Vol. 11 (2010)
- Vol. 10 (2009)
- Vol. 9 (2008)
- Vol. 8 (2007)
- Vol. 7 (2006)
- Vol. 6 (2005)
- Vol. 5 (2004)
- Vol. 4 (2003)
- Vol. 3 (2002)
- Vol. 2 (2001)
- Vol. 1 (2000)
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Bioengineering, Biomechanics, Biomolecules, IJMS, Nanomaterials
Dynamic Nano-Biomaterials in Tissue Remodeling and Drug Delivery
Topic Editors: Ramar Thangam, Heemin Kang, Bibin G. Anand, Ramachandran VijayanDeadline: 31 January 2023
Topic in
Cancers, Cells, Endocrines, IJMS, Metabolites
Cancer Cell Metabolism
Topic Editors: Sung Eun Kim, Arun Dharmarajan, Paula Guedes de PinhoDeadline: 15 February 2023
Topic in
IJMS, JCM, JPM, Medicina, Rheumato
Crystal-Induced Arthritis: Pathogenetic Mechanisms and Clinical Advances
Topic Editors: Francesca Oliviero, Hang Korng EaDeadline: 28 February 2023
Topic in
Cancers, IJMS, JPM, Onco, Pharmaceuticals
Pharmacogenetics: A Tool in Cancer Therapy
Topic Editors: Stefania Crucitta, Gloria Ravegnini, Rossana RoncatoDeadline: 15 March 2023

Conferences
Special Issues
Special Issue in
IJMS
21st Anniversary of IJMS: Advances in Biochemistry
Guest Editor: Claudiu T. SupuranDeadline: 31 January 2023
Special Issue in
IJMS
Biochemistry, Molecular Biology and Druggability of Proteins
Guest Editors: Silvia Selleri, Claudiu T. Supuran, Paola GratteriDeadline: 28 February 2023
Special Issue in
IJMS
Stress-Related Disorders and Depression: From Molecular Basis to Therapy
Guest Editors: Irena Nalepa, Agnieszka Zelek-MolikDeadline: 15 March 2023
Topical Collections
Topical Collection in
IJMS
Feature Papers in Bioactives and Nutraceuticals
Collection Editor: Maurizio Battino
Topical Collection in
IJMS
State-of-the-Art Molecular Microbiology in Poland
Collection Editors: Alicja Wegrzyn, Satish Raina
Topical Collection in
IJMS
Computational, Structural and Spectroscopic Studies of Enzyme Mechanisms, Inhibition and Dynamics
Collection Editor: Christo Christov