-
Metabolic Regulation of Ferroptosis in Breast Cancer -
Reactive Oxygen Species Across Death Pathways: Gatekeepers of Apoptosis, Ferroptosis, Pyroptosis, Paraptosis, and Beyond -
Fusobacterium Nucleatum in Colorectal Cancer: Relationship Among Immune Modulation, Potential Biomarkers and Therapeutic Implications -
Chronic Stress and Autoimmunity: The Role of HPA Axis and Cortisol Dysregulation -
Astatine-211-Labeled Therapy Targeting Amino Acid Transporters: Overcoming Drug Resistance in Non-Small Cell Lung Cancer
Journal Description
International Journal of Molecular Sciences
International Journal of Molecular Sciences
is an international, peer-reviewed, open access journal providing an advanced forum for biochemistry, molecular and cell biology, molecular biophysics, molecular medicine, and all aspects of molecular research in chemistry, and published semimonthly online by MDPI. The Epigenetics Society, European Chitin Society (EUCHIS), Spanish Society for Cell Biology (SEBC) and others are affiliated with IJMS and their members receive a discount on the article processing charges.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, PMC, MEDLINE, Embase, CAPlus / SciFinder, and other databases.
- Journal Rank: JCR - Q1 (Biochemistry and Molecular Biology) / CiteScore - Q1 (Organic Chemistry)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 17.8 days after submission; acceptance to publication is undertaken in 2.6 days (median values for papers published in this journal in the second half of 2025).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
- Testimonials: See what our editors and authors say about IJMS.
- Companion journals for IJMS include: Biophysica, Stresses, Lymphatics and SynBio.
Impact Factor:
4.9 (2024);
5-Year Impact Factor:
5.7 (2024)
Latest Articles
Transcriptomic Analysis Reveals Novel Mechanisms Underlying Neutrophil Activation Induced by High Salt
Int. J. Mol. Sci. 2026, 27(2), 1083; https://doi.org/10.3390/ijms27021083 (registering DOI) - 21 Jan 2026
Abstract
Elevated sodium concentrations are commonly observed in tumors and sites of inflammation. Previous studies have shown that high salt levels modulate the phenotype and function of CD4+ and CD8+ T cells, regulatory T cells, and macrophages. In this study, we performed
[...] Read more.
Elevated sodium concentrations are commonly observed in tumors and sites of inflammation. Previous studies have shown that high salt levels modulate the phenotype and function of CD4+ and CD8+ T cells, regulatory T cells, and macrophages. In this study, we performed transcriptomic studies that revealed profound alterations in the neutrophil transcriptome upon high salt exposure, with changes that significantly exceeded those triggered by conventional agonists. By integrating transcriptomic data with functional assays, our findings suggest that high salt-induced neutrophil activation involves mitochondrial ROS production, which subsequently activates p38 MAPK and engages FOS-, Bruton’s tyrosine kinase (BTK)-, and cyclooxygenase 2 (COX2)-dependent pathways. Remarkably, the plasticity of the neutrophil transcriptome in response to high salt was further evidenced by the upregulation of genes typically associated with other cell types, including semenogelin 1 (SEMG1), intercellular adhesion molecule-4 (ICAM4), tripartite motif69 (TRIM69), amphiregulin (AREG), oncostatin (OSM), and transducer of ERBB2-1 (TOB1), suggesting a broader role for neutrophils in different biological processes beyond their participation in innate immunity.
Full article
(This article belongs to the Section Molecular Immunology)
►
Show Figures
Open AccessArticle
Serum Lipidomic Profile Signature of Active Acromegaly and Relationships to Cardiovascular Disease
by
Oana Stănoiu-Pînzariu, Thalijn L. C. Wolters, Carmen Socaciu, Cristina Alina Silaghi, Ana Valea, Ioana Popa-Ilie, Georgeta Hazi, Andreea Iulia Socaciu, Romana Teodora Netea-Maier and Carmen Emanuela Georgescu
Int. J. Mol. Sci. 2026, 27(2), 1082; https://doi.org/10.3390/ijms27021082 (registering DOI) - 21 Jan 2026
Abstract
Acromegaly is a rare endocrine disease characterized by multiple metabolic abnormalities and high cardiovascular risk. This cross-sectional study evaluated the lipidomic serum profile of 109 participants (59 acromegaly patients versus 50 healthy controls) via high-performance liquid chromatography combined with mass spectrometry (HPLC-MS). The
[...] Read more.
Acromegaly is a rare endocrine disease characterized by multiple metabolic abnormalities and high cardiovascular risk. This cross-sectional study evaluated the lipidomic serum profile of 109 participants (59 acromegaly patients versus 50 healthy controls) via high-performance liquid chromatography combined with mass spectrometry (HPLC-MS). The lipidomic profile that differentiated acromegaly from controls included sphingomyelins (SMs), glycerophospholipids, glycerolipids, ceramides, fatty acids, wax esters (WEs), carnitines, and sterol (ST) lipids. SM 34:0;O2 and phosphorylcholine best distinguished acromegaly patients from controls (VIP > 2.49). SM 34:0;O2 levels were significantly elevated in treatment-naïve versus uncontrolled patients (p < 0.0001). Furthermore, SM 34:0;O2 positively correlated with random GH and IGF-1. Lack of therapy predicted SM 34:0;O2 serum titers in acromegaly. Profound alterations of glycerophospholipids and sphingolipids were detected in acromegaly patients with cardiovascular complications. ST 24:1;O3, ceramide (Cer) 38:0;O4, and WE 34:1 were significantly increased in both hypertensive acromegaly patients and those with heart failure in comparison to patients without cardiovascular impairment. In conclusion, SM 34:0;O2 and phosphorylcholine emerged as potential lipidomic biomarkers in acromegaly. Moreover, SM 34:0;O2 potentially reflects disease severity. Identifying lipidomic profile alterations in acromegaly patients with cardiac involvement may provide a basis for further insights into the cardiovascular pathogenesis of the disease.
Full article
(This article belongs to the Special Issue Lipid Metabolism in Human Health and Diseases)
Open AccessReview
Opportunities and Challenges of mRNA and VLP Technologies for Pan-Flavivirus Vaccine Development: Focus on Conserved Quaternary Epitope Conformations
by
Eduar Fernando Pinzon Burgos, Sigrid Camacho Ortega, Ben Atkinson, Joel V. Chua and Alonso Heredia
Int. J. Mol. Sci. 2026, 27(2), 1081; https://doi.org/10.3390/ijms27021081 - 21 Jan 2026
Abstract
Mosquito-borne flaviviruses, including Dengue virus (DENV), Japanese encephalitis virus (JEV), West Nile virus (WNV), Yellow fever virus (YFV), and Zika virus (ZIKV), continue to present a significant threat to public health worldwide. In 2024, these viruses accounted for 11,717 reported cases in the
[...] Read more.
Mosquito-borne flaviviruses, including Dengue virus (DENV), Japanese encephalitis virus (JEV), West Nile virus (WNV), Yellow fever virus (YFV), and Zika virus (ZIKV), continue to present a significant threat to public health worldwide. In 2024, these viruses accounted for 11,717 reported cases in the United States and more than 7.6 million cases globally. As of early 2025, according to CDC data, 1830 cases of dengue had already been reported, with 1584 transmitted locally within the U.S. Despite the considerable burden that these diseases pose, no specific antiviral treatments exist. A very limited number of virus-specific vaccines have been licensed, such as those for YFV, JEV, and, with specific constraints, for DENV. To date, no pan-flavivirus vaccine is available. This review examines the potential of emerging vaccine platforms—particularly messenger RNA and virus-like particles—as promising tools in the pursuit of a broadly protective flavivirus vaccine. We analyze current strategies for inducing cross-neutralizing immune responses and discuss how these technologies could support the presentation of conserved quaternary epitope conformations, which are increasingly recognized as critical targets for establishing potent immune responses. We review key advances in virology, immune response, and immunogen delivery systems to highlight the potential for developing a pan-flavivirus vaccine.
Full article
(This article belongs to the Special Issue Molecular Insights in Antivirals and Vaccines)
Open AccessReview
Neuroimaging-Guided Insights into the Molecular and Network Mechanisms of Chronic Pain and Neuromodulation
by
Chiahui Yen and Ming-Chang Chiang
Int. J. Mol. Sci. 2026, 27(2), 1080; https://doi.org/10.3390/ijms27021080 - 21 Jan 2026
Abstract
Chronic pain is a pervasive and debilitating condition that affects millions of individuals worldwide. Unlike acute pain, which serves a protective physiological role, chronic pain persists beyond routine tissue healing and often arises without a discernible peripheral cause. Accumulating evidence indicates that chronic
[...] Read more.
Chronic pain is a pervasive and debilitating condition that affects millions of individuals worldwide. Unlike acute pain, which serves a protective physiological role, chronic pain persists beyond routine tissue healing and often arises without a discernible peripheral cause. Accumulating evidence indicates that chronic pain is not merely a symptom but a disorder of the central nervous system, underpinned by interacting molecular, neurochemical, and network-level alterations. Molecular neuroimaging using PET and MR spectroscopy has revealed dysregulated excitatory–inhibitory balance (glutamate/GABA), altered monoaminergic and opioidergic signaling, and neuroimmune activation (e.g., TSPO-indexed glial activation) in key pain-related regions such as the insula, anterior cingulate cortex, thalamus, and prefrontal cortex. Converging multimodal imaging—including functional MRI, diffusion MRI, and EEG/MEG—demonstrates aberrant activity and connectivity across the default mode, salience, and sensorimotor networks, alongside structural remodeling in cortical and subcortical circuits. Parallel advances in neuromodulation, including transcranial magnetic stimulation (TMS), transcranial electrical stimulation (tES), deep brain stimulation (DBS), and emerging biomarker-guided closed-loop approaches, provide tools to perturb these maladaptive circuits and to test mechanistic hypotheses in vivo. This review integrates neuroimaging findings with molecular and systems-level mechanistic insights into chronic pain and its modulation, highlighting how imaging markers can link biochemical signatures to neural dynamics and guide precision pain management and individualized therapeutic strategies.
Full article
(This article belongs to the Special Issue Neuroimaging Studies in Exploring the Molecular Mechanisms of Neurological Diseases)
►▼
Show Figures

Figure 1
Open AccessReview
Antioxidant and Anti-Inflammatory Activities of Probiotic Strains
by
Olga Adriana Caliman-Sturdza, Josiana A. Vaz, Ancuta Veronica Lupaescu, Andrei Lobiuc, Codruta Bran and Roxana Elena Gheorghita
Int. J. Mol. Sci. 2026, 27(2), 1079; https://doi.org/10.3390/ijms27021079 - 21 Jan 2026
Abstract
This review highlights the anti-inflammatory and antioxidant effects of probiotics and their complex health-related impacts. The main health areas targeted are gastrointestinal inflammation, neuroinflammation, systemic metabolic disorders, and liver conditions. Probiotics work mechanistically to regulate key inflammatory pathways by suppressing nuclear factor (NF-κb)
[...] Read more.
This review highlights the anti-inflammatory and antioxidant effects of probiotics and their complex health-related impacts. The main health areas targeted are gastrointestinal inflammation, neuroinflammation, systemic metabolic disorders, and liver conditions. Probiotics work mechanistically to regulate key inflammatory pathways by suppressing nuclear factor (NF-κb) and mitogen-activated protein kinase (MAPK) pathways and activating antioxidant defenses through nuclear erythroid 2-related factor (Nrf2). They stimulate anti-inflammatory cytokines (including interleukin 10 (IL-10) and inhibit pro-inflammatory mediators such as tumor necrosis factor-α (TNF-α), partly through the regulation of T cells. Probiotics also produce antioxidant metabolites (e.g., exopolysaccharides and short-chain fatty acids), which enhance the host’s resistance to oxidative stress. Supplementation with probiotics improves intestinal inflammation and oxidative injury in gut disorders. Clinical trials suggest that probiotic supplements may reduce neuroinflammation and oxidative stress, while improving cognitive or behavioral outcomes in neurodegenerative disorders. Overall, this review underscores that probiotics have potent anti-inflammatory and antioxidant effects within the gut–brain axis and across various organ systems, supporting their use as valuable adjunctive therapies for inflammatory and oxidative stress-related conditions. It further emphasizes that additional mechanistic research and controlled clinical trials are essential to translate these findings into the most effective therapeutic strategies.
Full article
(This article belongs to the Special Issue Effects of Bioactive Compounds in Oxidative Stress and Inflammation)
►▼
Show Figures

Figure 1
Open AccessArticle
SlACO1 and SlGARP Regulate Hormone-Mediated Metabolic Profiles in Tomato Fruit
by
Yanpei Liu, Chunlu He, Liuqing Han, Haipeng Zhang and Juan Xu
Int. J. Mol. Sci. 2026, 27(2), 1078; https://doi.org/10.3390/ijms27021078 - 21 Jan 2026
Abstract
Fruit quality is determined by multiple metabolites, which are mainly affected by plant hormones. In this study, two genes, ethylene-related gene SlACO1 and gibberellin-related gene SlGARP, were overexpressed (OE) and knocked down through RNAi in tomato, and the profiles of carotenoids, flavonoids,
[...] Read more.
Fruit quality is determined by multiple metabolites, which are mainly affected by plant hormones. In this study, two genes, ethylene-related gene SlACO1 and gibberellin-related gene SlGARP, were overexpressed (OE) and knocked down through RNAi in tomato, and the profiles of carotenoids, flavonoids, volatiles, and hormones were detected in the leaves and fruit. The color index significantly increased in SlACO1-OE fruit but significantly decreased in the SlACO1-RNAi line. Similarly, total carotenoids, volatiles, salicylic acid, and ethylene significantly increased in the fruits of SlACO1-OE and SlGARP-OE, whereas ABA decreased significantly. Some compounds, such as lycopene, 3-hexenal, and d-limonene, significantly increased in the fruit of SlACO1-OE but decreased in the SlACO1-RNAi line, indicating that SlACO1 might play an important role in the accumulation of these compounds. The functional characterization of SlACO1 and SlGARP would facilitate the improvement in tomato fruit quality.
Full article
(This article belongs to the Special Issue Advances in the Genetics and Precision Breeding of Tomato)
Open AccessCommunication
Complement Activation as a Predictor of Postoperative Delirium in Elderly Spine Surgery Patients
by
Antje Vogelgesang, Hannah Wolf, Sarah Strack, Agnes Flöel, Henry W. S. Schroeder, Jonas Müller, Jan-Uwe Müller, Angelika Fleischmann, Robert Fleischmann, Diana Pauly and Johanna Ruhnau
Int. J. Mol. Sci. 2026, 27(2), 1077; https://doi.org/10.3390/ijms27021077 - 21 Jan 2026
Abstract
Postoperative delirium (POD) is a frequent and serious complication among elderly surgical patients. Despite its clinical relevance, reliable biomarkers for early identification and pathophysiological insight remain limited. Recent evidence implicates systemic immune activation and complements dysregulation as contributors to cognitive decline after surgery.
[...] Read more.
Postoperative delirium (POD) is a frequent and serious complication among elderly surgical patients. Despite its clinical relevance, reliable biomarkers for early identification and pathophysiological insight remain limited. Recent evidence implicates systemic immune activation and complements dysregulation as contributors to cognitive decline after surgery. This study investigated the association between perioperative levels of selected complement pathway proteins and both the incidence and severity of POD. Methods: We performed a secondary analysis of 22 patients aged ≥ 60 years from the prospective CONFESS cohort undergoing elective spine surgery. Complement proteins (C1q, C2, C4), mannose-binding lectin (MBL), Factor D [FD], Factor B [FB], Factor I [FI] were quantified from blood samples collected at baseline, preoperatively, and on postoperative days 1 and 2. POD was assessed using the Nursing Delirium Screening Scale (Nu-DESC) and Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition criteria. Delirium severity was rated with the Confusion Assessment Method–Severity (CAM-S) scale. Associations were tested using univariate and multivariate regression analyses. Preoperative levels of FD and C2 were significantly elevated in patients who developed POD (FD: p = 0.023; C2: p = 0.044), while C4 levels trended lower. FD remained an independent predictor of POD in multivariate regression (p = 0.049), although cognitive performance was the only significant predictor when adjusted for surgery duration. Delirium severity was associated with perioperative reductions in C1q, FI, and FB and with increased MBL levels, explaining up to 43% of CAM-S score variance. These findings highlight the role of complement activation—particularly FD, C2, MBL—in the development and clinical expression of POD. Complement profiling may offer a novel approach for risk stratification and therapeutic targeting in perioperative neurocognitive disorders.
Full article
(This article belongs to the Special Issue Predictive and Diagnostic Biomarkers in Inflammatory and Neurodegenerative Diseases)
Open AccessReview
Metalloprotein-Based Nanomedicines: Design Strategies, Functional Mechanisms, and Biomedical Applications
by
Tingting Ma, Zhongwei Mao, Bin Xue, Yi Cao and Wei Sun
Int. J. Mol. Sci. 2026, 27(2), 1076; https://doi.org/10.3390/ijms27021076 - 21 Jan 2026
Abstract
Metalloprotein-based nanomedicines integrate the multifunctionality of metal centers with the engineerability of proteins to construct advanced nanoplatforms for targeted delivery, diagnostic imaging, and multimodal therapy. In these nanomedicines, metal ions or clusters act as functional cores, enabling imaging contrast enhancement, catalytic reactions, and
[...] Read more.
Metalloprotein-based nanomedicines integrate the multifunctionality of metal centers with the engineerability of proteins to construct advanced nanoplatforms for targeted delivery, diagnostic imaging, and multimodal therapy. In these nanomedicines, metal ions or clusters act as functional cores, enabling imaging contrast enhancement, catalytic reactions, and modulation of pathological microenvironments, while protein frameworks provide structural stability, intrinsic biocompatibility, and programmable bio-interfaces. This review summarizes the design principles of three major metalloprotein-based nanomedicines, including native metalloproteins, engineered metalloproteins, and metal–protein hybrid nanostructures, with a focus on ferritin, transferrin, and heme/cytochrome proteins in the contexts of cancer therapy, imaging diagnostics, antimicrobial, and anti-resistance applications. Through discussion of representative metal- and metalloprotein-based nanomedicine candidates, this review highlights the current challenges and outlines opportunities brought by emerging technologies such as artificial intelligence-guided protein design. Collectively, these advances underscore metal- and metalloprotein-based nanomedicines as multifunctional, tunable, and clinically promising platforms that are poised to become an important pillar of future nanomedicine.
Full article
(This article belongs to the Special Issue Nanoparticles in Molecular Pharmaceutics)
►▼
Show Figures

Figure 1
Open AccessReview
Oxidative Stress and Its Role in Vascular Damage and Atherosclerosis
by
Adela Pozo Giráldez, Adrián Bravo Gómez, Pilar Calmarza, Paula Sienes Bailo, Anita Dayaldasani Khialani, Silvia Montolio Breva, Nerea Sainz-Pastor and Isabel Fort Gallifa
Int. J. Mol. Sci. 2026, 27(2), 1075; https://doi.org/10.3390/ijms27021075 - 21 Jan 2026
Abstract
Oxidative stress (OS) resulting from an imbalance between reactive oxygen species (ROS) generation and antioxidant defenses plays a pivotal role in vascular diseases such as atherosclerosis and hypertension. ROS derived from NADPH oxidase, mitochondria, and xanthine oxidase promote endothelial dysfunction by inducing lipid
[...] Read more.
Oxidative stress (OS) resulting from an imbalance between reactive oxygen species (ROS) generation and antioxidant defenses plays a pivotal role in vascular diseases such as atherosclerosis and hypertension. ROS derived from NADPH oxidase, mitochondria, and xanthine oxidase promote endothelial dysfunction by inducing lipid and protein oxidation, apoptosis, and pro-inflammatory signaling, thereby enhancing smooth muscle proliferation and atherogenesis. This review summarizes the molecular mechanisms linking OS to vascular injury and aims to systematically elucidate the role of OS in vascular diseases, with a specific focus on critiquing the current challenges in translating biomarkers to clinical practice and the emerging trends in personalized antioxidant therapy. Particular attention is given to biomarkers of oxidative stress, including those assessing antioxidant enzyme activity and oxidative damage products, which possess potential for clinical use. Therapeutic strategies targeting OS, including dietary and pharmacological antioxidants, show promise in improving vascular health, although clinical outcomes have been inconsistent and it is necessary to resolve the standardization and validation of these biomarkers, develop precise targeted therapies against specific ROS sources (e.g., NOX inhibitors, mitochondrial antioxidants), and explore personalized clinical trials based on redox stratification. Overall, OS is a central mediator in vascular pathology, and progress in biomarker validation and targeted therapies will be essential to translate current knowledge into effective prevention, diagnosis, and treatment of cardiovascular diseases. Personalized approaches based on accurate redox profiling may enhance efficacy.
Full article
(This article belongs to the Special Issue Oxidation in Human Health and Disease)
Open AccessArticle
Tangeretin Suppresses LUAD via SSTR4 Downregulation: Integrated Bioinformatics and Functional Validation
by
Yizhen Yuan, Yongfu Wang, Wei Liu, Changmin Liu, Yajing Xue, Pengzhuo Tao, Shilin Chen and Chi Song
Int. J. Mol. Sci. 2026, 27(2), 1074; https://doi.org/10.3390/ijms27021074 - 21 Jan 2026
Abstract
Lung adenocarcinoma (LUAD) remains the leading cause of cancer-related mortality worldwide, highlighting the urgent need for novel therapeutic targets. While the role of the somatostatin receptor (SSTR) family is well established in neuroendocrine tumors, their expression patterns, clinical significance, and therapeutic potential in
[...] Read more.
Lung adenocarcinoma (LUAD) remains the leading cause of cancer-related mortality worldwide, highlighting the urgent need for novel therapeutic targets. While the role of the somatostatin receptor (SSTR) family is well established in neuroendocrine tumors, their expression patterns, clinical significance, and therapeutic potential in LUAD are not fully understood. In this study, comprehensive analyses of publicly available databases, including TCGA, GSCA, and TIMER, revealed that SSTR4 transcriptional expression is significantly downregulated in LUAD tissues compared to adjacent normal lung tissues. Moreover, low SSTR4 expression correlates with advanced tumor stage, remodeling of the immune microenvironment, and decreased overall survival in patients with LUAD. Using the PRESTO-Tango system, we identified tangeretin (TAN) as a potential ligand for SSTR4. Functional assays demonstrated that SSTR4 knockdown markedly enhanced TAN-mediated proliferative, migratory, and survival inhibitory effects in LUAD cells. Subsequent RNA sequencing and pathway enrichment analyses revealed that the loss of SSTR4 altered the effects of TAN from extracellular matrix remodeling to disruption of calcium homeostasis and energy metabolism disorders, elucidating the mechanism underlying the enhanced antitumor activity. Collectively, these findings establish SSTR4 as a critical tumor suppressor and prognostic biomarker in LUAD and highlight the therapeutic potential of targeting the TAN–SSTR4 signaling axis. These results provide novel insights into the biological functions of SSTR family members in LUAD.
Full article
(This article belongs to the Section Molecular Informatics)
►▼
Show Figures

Figure 1
Open AccessReview
Molecular Identification and RNA-Based Management of Fungal Plant Pathogens: From PCR to CRISPR/Cas9
by
Rizwan Ali Ansari, Younes Rezaee Danesh, Ivana Castello and Alessandro Vitale
Int. J. Mol. Sci. 2026, 27(2), 1073; https://doi.org/10.3390/ijms27021073 - 21 Jan 2026
Abstract
Fungal diseases continue to limit global crop production and drive major economic losses. Conventional diagnostic and control approaches depend on time-consuming culture-based methods and broad-spectrum chemicals, which offer limited precision. Advances in molecular identification have changed this landscape. PCR, qPCR, LAMP, sequencing and
[...] Read more.
Fungal diseases continue to limit global crop production and drive major economic losses. Conventional diagnostic and control approaches depend on time-consuming culture-based methods and broad-spectrum chemicals, which offer limited precision. Advances in molecular identification have changed this landscape. PCR, qPCR, LAMP, sequencing and portable platforms enable rapid and species-level detection directly from plant tissue. These tools feed into RNA-based control strategies, where knowledge of pathogen genomes and sRNA exchange enables targeted suppression of essential fungal genes. Host-induced and spray-induced gene silencing provide selective control without the long-term environmental costs associated with chemical use. CRISPR/Cas9 based tools now refine both diagnostics and resistance development, and bioinformatics improves target gene selection. Rising integration of artificial intelligence indicates a future in which disease detection, prediction and management connect in near real time. The major challenge lies in limited field validation and the narrow range of fungal species with complete molecular datasets, yet coordinated multi-site trials and expansion of annotated genomic resources can enable wider implementation. The combined use of molecular diagnostics and RNA-based strategies marks a shift from disease reaction to disease prevention and moves crop protection towards a precise, sustainable and responsive management system. This review synthesizes the information related to current molecular identification tools and RNA-based management strategies, and evaluates how their integration supports precise and sustainable approaches for fungal disease control under diverse environmental settings.
Full article
(This article belongs to the Special Issue Fungal Genetics and Functional Genomics Research)
Open AccessReview
Pathogen Evasion of Humoral Innate Immunity: Coping with C-Reactive Protein and Serum Amyloid A
by
Weichen Gong, Xuefei Cheng, Julio Villena and Haruki Kitazawa
Int. J. Mol. Sci. 2026, 27(2), 1072; https://doi.org/10.3390/ijms27021072 - 21 Jan 2026
Abstract
C-reactive protein (CRP) and serum amyloid A (SAA) are classical acute-phase proteins that exemplify humoral innate immunity, the soluble arm of the host’s first-line defense. Beyond their traditional use as biomarkers of inflammation, both proteins function as active effectors against pathogens by binding
[...] Read more.
C-reactive protein (CRP) and serum amyloid A (SAA) are classical acute-phase proteins that exemplify humoral innate immunity, the soluble arm of the host’s first-line defense. Beyond their traditional use as biomarkers of inflammation, both proteins function as active effectors against pathogens by binding microbial components, activating complements, and modulating inflammation. However, bacteria, viruses, and fungi have co-evolved diverse mechanisms to cope with or evade these host defenses. This review aims to summarize the current understanding of CRP and SAA as soluble innate immune effectors and to highlight pathogen strategies to counteract their antimicrobial pressure. We systematically surveyed and summarized evidence from experimental and clinical studies describing “function of CRP and SAA during infection”, “CRP and SAA in innate immune defense”, and “evasion mechanisms across bacterial, viral, and fungal pathogens”. CRP and SAA are rapidly upregulated in response to infection and contribute to pathogen recognition, opsonization, and inflammation. Pathogens, however, employ multiple coping strategies, including surface modification to block CRP binding, proteolytic degradation of acute-phase proteins, shielding within biofilms, and subversion of host signaling. These countermeasures enable microbes to reduce immune clearance and promote persistence. CRP and SAA represent central elements of humoral innate immunity, shaping the outcome of host–pathogen interactions. Pathogen adaptations to these proteins illustrate an ongoing evolutionary arms race between host defense and microbial survival. A deeper understanding of these processes may open avenues for novel therapeutic approaches, such as targeting microbial evasion factors or enhancing host acute-phase responses.
Full article
(This article belongs to the Section Molecular Microbiology)
Open AccessArticle
Effect of the AHR Inhibitor CH223191 as an Adjunct Treatment for Mammarenavirus Infections
by
Miguel Angel Pelaez, Jonna B. Westover, Dionna Scharton, Cybele Carina García and Brian B. Gowen
Int. J. Mol. Sci. 2026, 27(2), 1071; https://doi.org/10.3390/ijms27021071 - 21 Jan 2026
Abstract
The family Arenaviridae encompasses zoonotic, rodent-borne pathogens (e.g., Lassa, Machupo, and Junín viruses) that cause severe viral hemorrhagic fevers with high case fatality rates. The current therapeutic landscape is severely limited, underscoring the urgent need for novel antiviral strategies. A promising approach involves
[...] Read more.
The family Arenaviridae encompasses zoonotic, rodent-borne pathogens (e.g., Lassa, Machupo, and Junín viruses) that cause severe viral hemorrhagic fevers with high case fatality rates. The current therapeutic landscape is severely limited, underscoring the urgent need for novel antiviral strategies. A promising approach involves combining directly acting antivirals with host-targeted antivirals. A compelling host-targeted antiviral target is the aryl hydrocarbon receptor (AHR). This ubiquitous ligand-activated transcription factor is a recognized pro-viral host factor across multiple viral families. Building on prior work with Junín and Tacaribe viruses, we investigated whether the AHR inhibitor CH223191 could enhance the virus-directed antiviral activity of favipiravir against these viruses. First, we evaluated the toxicity and antiviral potential of CH223191 against a lethal Junín virus infection in male and female hTfR1 mice. After demonstrating substantial protection, we conducted preliminary assays to study the antiviral effects of combining CH223191 and favipiravir on Tacaribe virus (TCRV) infections in the Vero cell culture model. We observed synergistic interaction with all four models (ZIP, Loewe, Bliss, and HSA). We next determined the sub-optimal dose of favipiravir and conducted an antiviral combination study in the male and female AG129 mouse model infected with TCRV. The combination effectively protected mice from a lethal TCRV infection and showed cooperative effects, reducing weight loss and viral loads. Overall, these results show that the AHR is a promising pharmacological target for the development of novel antivirals. Furthermore, we discovered a cooperative interaction between the activities of favipiravir and CH223191.
Full article
(This article belongs to the Special Issue Antiviral Mechanisms of Natural/Synthetic Compounds)
►▼
Show Figures

Figure 1
Open AccessArticle
Gut Microbiota and Type 2 Diabetes: Genetic Associations, Biological Mechanisms, Drug Repurposing, and Diagnostic Modeling
by
Xinqi Jin, Xuanyi Chen, Heshan Chen and Xiaojuan Hong
Int. J. Mol. Sci. 2026, 27(2), 1070; https://doi.org/10.3390/ijms27021070 - 21 Jan 2026
Abstract
Gut microbiota is a potential therapeutic target for type 2 diabetes (T2D), but its role remains unclear. Investigating causal associations between them could further our understanding of their biological and clinical significance. A two-sample Mendelian randomization (MR) analysis was conducted to assess the
[...] Read more.
Gut microbiota is a potential therapeutic target for type 2 diabetes (T2D), but its role remains unclear. Investigating causal associations between them could further our understanding of their biological and clinical significance. A two-sample Mendelian randomization (MR) analysis was conducted to assess the causal relationship between gut microbiota and T2D. Key genes and mechanisms were identified through the integration of Genome-Wide Association Studies (GWAS) and cis-expression quantitative trait loci (cis-eQTL) data. Network pharmacology was applied to identify potential drugs and targets. Additionally, gut microbiota community analysis and machine learning models were used to construct a diagnostic model for T2D. MR analysis identified 17 gut microbiota taxa associated with T2D, with three showing significant associations: Actinomyces (odds ratio [OR] = 1.106; 95% confidence interval [CI]: 1.06–1.15; p < 0.01; adjusted p-value [padj] = 0.0003), Ruminococcaceae (UCG010 group) (OR = 0.897; 95% CI: 0.85–0.95; p < 0.01; padj = 0.018), and Deltaproteobacteria (OR = 1.072; 95% CI: 1.03–1.12; p < 0.01; padj = 0.029). Ten key genes, such as EXOC4 and IGF1R, were linked to T2D risk. Network pharmacology identified INSR and ESR1 as target driver genes, with drugs like Dienestrol showing promise. Gut microbiota analysis revealed reduced α-diversity in T2D patients (p < 0.05), and β-diversity showed microbial community differences (R2 = 0.012, p = 0.001). Furthermore, molecular docking confirmed the binding affinity of potential therapeutic agents to their targets. Finally, we developed a class-weight optimized Extreme Gradient Boosting (XGBoost) diagnostic model, which achieved an area under the curve (AUC) of 0.84 with balanced sensitivity (95.1%) and specificity (83.8%). Integrating machine learning predictions with MR causal inference highlighted Bacteroides as a key biomarker. Our findings elucidate the gut microbiota-T2D causal axis, identify therapeutic targets, and provide a robust tool for precision diagnosis.
Full article
(This article belongs to the Special Issue Type 2 Diabetes: Molecular Pathophysiology and Treatment)
►▼
Show Figures

Figure 1
Open AccessArticle
Febuxostat Improves MASLD in Male Rats: Roles of XOR Inhibition and Associated JNK/NRF2/HO-1 Pathway Changes
by
Zhiyu Pu, Yangyang Cen, Bowen Yang, Kaijun Xing, Linxi Lian, Xi Chi, Jianjun Yang and Yannan Zhang
Int. J. Mol. Sci. 2026, 27(2), 1069; https://doi.org/10.3390/ijms27021069 - 21 Jan 2026
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a peril to public health. Xanthine oxidoreductase (XOR) is implicated in oxidative stress and lipid metabolism, which constitute the pathological basis of MASLD. As a specific XOR inhibitor, febuxostat therefore exhibits considerable potential for mitigating MASLD.
[...] Read more.
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a peril to public health. Xanthine oxidoreductase (XOR) is implicated in oxidative stress and lipid metabolism, which constitute the pathological basis of MASLD. As a specific XOR inhibitor, febuxostat therefore exhibits considerable potential for mitigating MASLD. However, the efficacy and underlying mechanisms of febuxostat in this context remain to be elucidated. Against this background, the present study aimed to observe the effect of febuxostat on the physiological changes of male MASLD rats and explore the related mechanisms. All rats were assigned to three groups: control, high-fat diet (HF), and high-fat diet with febuxostat (HF + F). After euthanasia, biosamples were immediately harvested to conduct an extensive suite of experiments, encompassing histological examination, assessment of biochemical and oxidative stress markers, serum non-targeted metabolomics, and Western blot analysis. Histological examination showed marked reductions in hepatic lipid accumulation and hepatocellular degeneration in the HF + F group relative to the HF group. Consistently, compared to the HF group, the HF + F group showed significant reductions in the elevated levels of plasma/hepatic lipids, and plasma oxidative stress markers (p < 0.05). Serum metabolomics revealed distinct metabolic profiles among groups, with 51 differential metabolites between HF + F and HF groups, with pathways such as taurine and hypotaurine metabolism and starch and sucrose metabolism being significantly altered (p < 0.05). Western blot analysis showed reduced p-JNK and increased NRF2 and HO-1 expression in the HF + F group (p < 0.05). In summary, we found that inhibiting XOR with febuxostat improved hepatic steatosis, serum metabolic dysregulation and systemic oxidative stress status, and it accompanied by JNK/NRF2/HO-1 pathway key molecule protein alterations in male MASLD rats.
Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Open AccessArticle
Genome-Wide Identification and Transcriptomic Analysis of MYB Transcription Factors in Seashore Paspalum Under Salt Stress
by
Yuzhu Wang, Xuanyang Wu, Qi Sun, Wenjie Lu, Zhanfeng Ren, Zeng-Yu Wang and Xueli Wu
Int. J. Mol. Sci. 2026, 27(2), 1068; https://doi.org/10.3390/ijms27021068 - 21 Jan 2026
Abstract
The MYB transcription factor family plays crucial roles in plant growth, development, and responses to biotic and abiotic stresses. Seashore paspalum (Paspalum vaginatum) is a halophytic grass species with remarkable salt tolerance, yet its MYB gene family has not been systematically
[...] Read more.
The MYB transcription factor family plays crucial roles in plant growth, development, and responses to biotic and abiotic stresses. Seashore paspalum (Paspalum vaginatum) is a halophytic grass species with remarkable salt tolerance, yet its MYB gene family has not been systematically characterized. In this study, we conducted a genome-wide identification of MYB genes in seashore paspalum using a Hidden Markov Model (HMM)-based approach, resulting in the identification of 157 PvMYB genes. Phylogenetic and conserved motif analyses revealed distinct subfamily groupings and evolutionary relationships within the PvMYB family. Promoter analysis indicated that PvMYB genes contain multiple cis-acting elements responsive to light, hormones, and abiotic stresses, suggesting their potential regulatory roles under salt stress. Collinearity and duplication analyses demonstrated that gene duplication events contributed to the expansion of the PvMYB family. Moreover, protein interaction network prediction suggested that PvMYB73 may interact with key regulatory proteins such as BZIP8 and DREB1F involved in salt stress signaling. Transcriptome and reverse transcription quantitative PCR (RT-qPCR) analyses showed that PvMYB90, PvMYB123, and PvMYB150 were upregulated in leaves and roots under salinity stress, while PvMYB85 and PvMYB90 were experimentally validated to localize in the nucleus and function in salt tolerance regulation. Collectively, this study provides the first comprehensive characterization of the MYB gene family in seashore paspalum and offers valuable insights into the molecular mechanisms underlying salt tolerance in halophytic grasses.
Full article
(This article belongs to the Section Molecular Genetics and Genomics)
►▼
Show Figures

Figure 1
Open AccessReview
Genome Agnostic Reprogramming of Acute Myelocytic Leukemia Hallmarks by Targeting Non-Oncogene Addictions with Azacitidine Plus Pioglitazone and All-Trans Retinoic Acid
by
Dennis Christoph Harrer, Florian Lüke, Tobias Pukrop, Albrecht Reichle and Daniel Heudobler
Int. J. Mol. Sci. 2026, 27(2), 1067; https://doi.org/10.3390/ijms27021067 - 21 Jan 2026
Abstract
The search for new therapeutic principles is essential for treating relapsed/refractory (r/r) acute myeloid leukemia (AML). Novel principles include genome-agnostic differentiation induction, controlling AML-triggering inflammation, potentiating the immune response and ‘normalizing’ AML metabolism. This review summarizes data from a phase I study (10
[...] Read more.
The search for new therapeutic principles is essential for treating relapsed/refractory (r/r) acute myeloid leukemia (AML). Novel principles include genome-agnostic differentiation induction, controlling AML-triggering inflammation, potentiating the immune response and ‘normalizing’ AML metabolism. This review summarizes data from a phase I study (10 patients, pts) and three case reports reporting 7 pts on the treatment of r/r AML by reprogramming AML hallmarks using APA, low-dose azacitidine, pioglitazone (PPARα/γ agonist) and all-trans retinoic acid. APA reprograms the r/r AML phenotype in patients with clinically and molecularly/genetically unfavorable risk profiles (17 pts, 16 refractory, one relapsed) in a genome-agnostic manner, restoring the plasticity of AML hallmarks, thereby improving immune surveillance, attenuating inflammation-triggered promotion of AML and distant microbial inflammation (healing of fungal pneumonia during induction of complete remission (CR) with APA), while normalizing leukemia metabolism (restoring phagocytosis and ROS production in leukemic neutrophils). APA induces complete remission (CR) in 10 pts (59%), with only modest hematotoxicity following CR induction. This allows treatment to be carried out in an outpatient setting, including for elderly and comorbid patients. Triple transcriptional modulation, facilitated by epigenetic modelling with azacitidine, targets reprogramming of non-oncogene addiction networks in AML, re-establishing functionally active, closely interrelated myeloid hallmarks and AML cell death genome-agnostically.
Full article
(This article belongs to the Special Issue Targeting Hallmarks of Acute Myelocytic Leukemia (AML): Differentiation Induction in Non-Acute Promyelocytic Leukemia (Non-APL) AML)
►▼
Show Figures

Figure 1
Open AccessReview
The Interplay Between Cellular Senescence and Lipid Metabolism in the Progression of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD)
by
Eleftheria M. Mastoridou, Anna C. Goussia, Agapi Kataki, Efthymios Koniaris, Georgios K. Glantzounis, Alexandra Papoudou-Bai, Panagiotis Kanavaros and Antonia V. Charchanti
Int. J. Mol. Sci. 2026, 27(2), 1066; https://doi.org/10.3390/ijms27021066 - 21 Jan 2026
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease (NAFLD), is now recognized as the leading cause of chronic liver disease worldwide. MASLD spans a spectrum ranging from simple steatosis to metabolic dysfunction-associated steatohepatitis (MASH) and is linked to
[...] Read more.
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease (NAFLD), is now recognized as the leading cause of chronic liver disease worldwide. MASLD spans a spectrum ranging from simple steatosis to metabolic dysfunction-associated steatohepatitis (MASH) and is linked to progressive fibrosis and ultimately hepatocellular carcinoma (HCC). Growing evidence implicates cellular senescence (CS) and lipid droplets (LDs) as key drivers of disease progression, although their interaction remains poorly characterized. This review provides an integrative and stage-dependent synthesis of current mechanistic insights into how bidirectional crosstalk between CS and LD regulation shapes the transition from steatosis to MASH. Senescent hepatocytes display altered lipid metabolism, including upregulation of receptors such as cluster of differentiation (CD) 36, enhancing lipid uptake to meet increased energy demands. Initially, elevated free fatty acid influx can activate peroxisome-proliferator-activated receptor alpha (PPARα), promoting fatty acid oxidation (FAO) as a compensatory response. Over time, persistent CS under steatotic conditions leads to mitochondrial dysfunction and suppression of fatty acid oxidation (FAO), while the senescence-associated secretory phenotype (SASP), largely driven by nuclear factor—kappa B (NF-κB) signaling, promotes chronic hepatic inflammation. By framing LDs as active modulators of senescence-associated signaling rather than passive lipid stores, this review highlights how disruption of senescence–lipid feedback loops may represent a disease-modifying opportunity in MASLD progression.
Full article
(This article belongs to the Special Issue Liver Fibrosis: Molecular Pathogenesis, Diagnosis and Treatment)
Open AccessArticle
SIAH2–WNK1 Signaling Drives Glycolytic Metabolism and Therapeutic Resistance in Colorectal Cancer
by
Kee-Thai Kiu, Cheng-Ying Chu, Yi-Chiao Cheng, Min-Hsuan Yen, Ying-Wei Chen, Narpati Wesa Pikatan, Vijesh Kumar Yadav and Tung-Cheng Chang
Int. J. Mol. Sci. 2026, 27(2), 1065; https://doi.org/10.3390/ijms27021065 - 21 Jan 2026
Abstract
Colorectal cancer (CRC) progression and therapy resistance are driven in part by metabolic reprogramming and the persistence of cancer stem-like cells (CSCs). The seven in absentia homolog 2 (SIAH2)/with-no-lysine kinase 1 (WNK1) signaling axis has emerged as a potential regulator of these processes,
[...] Read more.
Colorectal cancer (CRC) progression and therapy resistance are driven in part by metabolic reprogramming and the persistence of cancer stem-like cells (CSCs). The seven in absentia homolog 2 (SIAH2)/with-no-lysine kinase 1 (WNK1) signaling axis has emerged as a potential regulator of these processes, yet its functional role in CRC metabolism and tumor–stroma crosstalk remains incompletely understood. Integrated analyses of The Cancer Genome Atlas–Colon Adenocarcinoma (TCGA-COAD) and Gene Expression Omnibus (GEO, GSE17538) datasets revealed significant upregulation of SIAH2 and WNK1 in CRC tissues, with strong positive correlations to glycolysis- and hypoxia-associated genes, including PFKP, LDHA, BPGM, ADH1A, ADH1B, and HIF-1α. Single-cell and clinical profiling further demonstrated preferential enrichment of SIAH2 in undifferentiated, stem-like tumor cell populations. Functional studies across multiple CRC cell lines showed that SIAH2 silencing suppressed proliferation, clonogenic growth, tumor sphere formation, and cell-cycle progression, whereas SIAH2 overexpression exerted opposite effects. Seahorse extracellular flux analyses established that SIAH2 promotes glycolytic capacity and metabolic flexibility. At the protein level, SIAH2 regulated glycolytic enzymes and WNK1/hypoxia-inducible factor-1α (HIF-1α) signaling, effects that were amplified by cancer-associated fibroblast (CAF)-derived conditioned medium. CAF exposure enhanced SIAH2 expression, CSC spheroid growth, and resistance to fluorouracil, leucovorin, and oxaliplatin (FOLFOX) chemotherapy, whereas SIAH2 depletion effectively abrogated these effects. Collectively, these findings identify the SIAH2/WNK1 axis as a central metabolic regulator linking glycolysis, CSC maintenance, and microenvironment-driven therapy resistance in CRC, highlighting its potential as a therapeutic target.
Full article
(This article belongs to the Special Issue Colorectal Cancers: New Approach to Their Pathology, Diagnosis and Therapy)
►▼
Show Figures

Figure 1
Open AccessArticle
Genome-Wide Identification of PSK Gene Family and Effects of Abscisic Acid (ABA) in Regulating Antioxidant Activity and ROS Signaling Under Drought Stress in Brassica napus
by
Xiaojing Zhang, Zeeshan Ghulam Nabi Ghishkori, Iqbal Hussain, Muhammad Haseeb Javaid, Guangqi Zhu, Jiabao Huang and Rana Muhammad Amir Gulzar
Int. J. Mol. Sci. 2026, 27(2), 1064; https://doi.org/10.3390/ijms27021064 - 21 Jan 2026
Abstract
Phytosulfokine (PSK) is a tyrosine-sulfated pentapeptide found throughout the plant kingdom, playing key roles in plant growth, development, and responses to biotic and abiotic stresses. However, there is still a lack of a comprehensive analysis of the BnPSK gene family in Brassica napus
[...] Read more.
Phytosulfokine (PSK) is a tyrosine-sulfated pentapeptide found throughout the plant kingdom, playing key roles in plant growth, development, and responses to biotic and abiotic stresses. However, there is still a lack of a comprehensive analysis of the BnPSK gene family in Brassica napus. In this study, we conducted a genome-wide identification and characterized 19 BnPSK genes in oil seed plants, which are unevenly distributed across both sub-genomes (A and C). BnPSK proteins ranged from 77 to 99 amino acids (BnPSK3c and BnPSK3d) in length, all belonging to the PSK-α type and containing conserved PSK domains. Synteny analysis revealed that the expansion of the BnPSK gene family is primarily attributed to whole genome duplication, with homology to Arabidopsis thaliana PSK genes. A promoter region analysis identified cis-acting elements related to hormone and stress responses. An expression profile analysis showed that BnPSK genes are highly expressed in roots, leaves, petals, and pollens and are induced by both abiotic stresses and phytohormone application. Furthermore, RT-qPCR assay demonstrated that the expression levels of BnPSK4c, BnPSK5a, and BnPSK5b were significantly enhanced under drought stress (3~5-fold) both in plant roots and leaves following ABA application. Lastly, the application of ABA induced antioxidant activity including SOD, POD, CAT and APX (2~5-fold) and their corresponding genes (3~5-fold), and altered the ROS-signaling in rapeseed plants; also, strong evidence of mitigating drought stress was present. These findings establish a basis for further research into the role of the BnPSK gene family in oilseed plant tolerance against drought stress and underlying molecular mechanisms, offering valuable perspectives for developing novel peptides.
Full article
(This article belongs to the Special Issue Rapeseed: Genetic Breeding, Key Trait Mining and Genome)
►▼
Show Figures

Figure 1
Journal Menu
► ▼ Journal Menu-
- IJMS Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal Browser-
arrow_forward_ios
Forthcoming issue
arrow_forward_ios Current issue - Vol. 27 (2026)
- Vol. 26 (2025)
- Vol. 25 (2024)
- Vol. 24 (2023)
- Vol. 23 (2022)
- Vol. 22 (2021)
- Vol. 21 (2020)
- Vol. 20 (2019)
- Vol. 19 (2018)
- Vol. 18 (2017)
- Vol. 17 (2016)
- Vol. 16 (2015)
- Vol. 15 (2014)
- Vol. 14 (2013)
- Vol. 13 (2012)
- Vol. 12 (2011)
- Vol. 11 (2010)
- Vol. 10 (2009)
- Vol. 9 (2008)
- Vol. 8 (2007)
- Vol. 7 (2006)
- Vol. 6 (2005)
- Vol. 5 (2004)
- Vol. 4 (2003)
- Vol. 3 (2002)
- Vol. 2 (2001)
- Vol. 1 (2000)
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Chemistry, Inorganics, IJMS, Pharmaceuticals
Natural Coumarin and Metal Complexes: Pharmacological Properties and Potential ApplicationsTopic Editors: Dušan Dimić, Edina Avdović, Dejan MilenkovićDeadline: 31 January 2026
Topic in
Agrochemicals, Agronomy, Insects, IJMS, Marine Drugs, Toxins, Agriculture, Biology
Research on Natural Bioactive Product-Based Pesticidal Agents—2nd Edition
Topic Editors: Min Lv, Hui XuDeadline: 28 February 2026
Topic in
Biomedicines, Diagnostics, Endocrines, JCM, JPM, IJMS
Development of Diagnosis and Treatment Modalities in Obstetrics and Gynecology
Topic Editors: Osamu Hiraike, Fuminori TaniguchiDeadline: 20 March 2026
Topic in
Cancers, IJMS, Pharmaceuticals, Pharmaceutics, Sci. Pharm., Current Oncology, Molecules
Recent Advances in Anticancer Strategies, 2nd Edition
Topic Editors: Hassan Bousbaa, Zhiwei HuDeadline: 31 March 2026
Conferences
Special Issues
Special Issue in
IJMS
From Mechanisms to Medicine: Cellular Insights into Pulmonary Hypertension
Guest Editor: Swati DabralDeadline: 25 January 2026
Special Issue in
IJMS
Mitochondrial Dysfunction in Disease: Mechanisms, Biomarkers and Emerging Therapies
Guest Editor: Alexandre AmaralDeadline: 25 January 2026
Special Issue in
IJMS
Mechanisms of Heavy Metal Toxicity: 3rd Edition
Guest Editor: Toshiyuki KajiDeadline: 25 January 2026
Special Issue in
IJMS
Molecular Mechanisms of Hematologic Disorders
Guest Editor: Valentina GiudiceDeadline: 25 January 2026
Topical Collections
Topical Collection in
IJMS
Latest Review Papers in Bioactives and Nutraceuticals
Collection Editor: Nobuyuki Takahashi
Topical Collection in
IJMS
Feature Papers in Molecular Nanoscience
Collection Editor: Yuri Lyubchenko
Topical Collection in
IJMS
Latest Review Papers in Molecular Microbiology
Collection Editors: Matthew Cheesman, Ian Edwin Cock
Topical Collection in
IJMS
Feature Papers in Molecular Genetics and Genomics
Collection Editors: Cristoforo Comi, Benoit Gauthier, Dimitrios H. Roukos, Alfredo Fusco





