Journal Description
International Journal of Molecular Sciences
International Journal of Molecular Sciences
is an international, peer-reviewed, open access journal providing an advanced forum for biochemistry, molecular and cell biology, molecular biophysics, molecular medicine, and all aspects of molecular research in chemistry, and is published semimonthly online by MDPI. The Australian Society of Plant Scientists (ASPS), Epigenetics Society, European Calcium Society (ECS), European Chitin Society (EUCHIS), Spanish Society for Cell Biology (SEBC) and others are affiliated with IJMS and their members receive a discount on the article processing charges.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, PMC, MEDLINE, Embase, CAPlus / SciFinder, and many other databases.
- Journal Rank: JCR - Q1 (Biochemistry & Molecular Biology) / CiteScore - Q1 (Inorganic Chemistry)
- Rapid Publication: manuscripts are peer-reviewed and a first decision provided to authors approximately 15.9 days after submission; acceptance to publication is undertaken in 2.4 days (median values for papers published in this journal in the first half of 2022).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
- Testimonials: See what our editors and authors say about the IJMS.
- Companion journals for IJMS include: Biophysica, Obesities, Stresses and Lymphatics.
Impact Factor:
6.208 (2021)
;
5-Year Impact Factor:
6.628 (2021)
Latest Articles
Pivotal Role of Phytohormones and Their Responsive Genes in Plant Growth and Their Signaling and Transduction Pathway under Salt Stress in Cotton
Int. J. Mol. Sci. 2022, 23(13), 7339; https://doi.org/10.3390/ijms23137339 (registering DOI) - 30 Jun 2022
Abstract
The presence of phyto-hormones in plants at relatively low concentrations plays an indispensable role in regulating crop growth and yield. Salt stress is one of the major abiotic stresses limiting cotton production. It has been reported that exogenous phyto-hormones are involved in various
[...] Read more.
The presence of phyto-hormones in plants at relatively low concentrations plays an indispensable role in regulating crop growth and yield. Salt stress is one of the major abiotic stresses limiting cotton production. It has been reported that exogenous phyto-hormones are involved in various plant defense systems against salt stress. Recently, different studies revealed the pivotal performance of hormones in regulating cotton growth and yield. However, a comprehensive understanding of these exogenous hormones, which regulate cotton growth and yield under salt stress, is lacking. In this review, we focused on new advances in elucidating the roles of exogenous hormones (gibberellin (GA) and salicylic acid (SA)) and their signaling and transduction pathways and the cross-talk between GA and SA in regulating crop growth and development under salt stress. In this review, we not only focused on the role of phyto-hormones but also identified the roles of GA and SA responsive genes to salt stress. Our aim is to provide a comprehensive review of the performance of GA and SA and their responsive genes under salt stress, assisting in the further elucidation of the mechanism that plant hormones use to regulate growth and yield under salt stress.
Full article
(This article belongs to the Special Issue Cotton Molecular Genetics and Genomics)
Open AccessArticle
Leafamine®, a Free Amino Acid-Rich Biostimulant, Promotes Growth Performance of Deficit-Irrigated Lettuce
by
, , , , , , , and
Int. J. Mol. Sci. 2022, 23(13), 7338; https://doi.org/10.3390/ijms23137338 (registering DOI) - 30 Jun 2022
Abstract
Water deficit causes substantial yield losses that climate change is going to make even more problematic. Sustainable agricultural practices are increasingly developed to improve plant tolerance to abiotic stresses. One innovative solution amongst others is the integration of plant biostimulants in agriculture. In
[...] Read more.
Water deficit causes substantial yield losses that climate change is going to make even more problematic. Sustainable agricultural practices are increasingly developed to improve plant tolerance to abiotic stresses. One innovative solution amongst others is the integration of plant biostimulants in agriculture. In this work, we investigate for the first time the effects of the biostimulant –Leafamine®–a protein hydrolysate on greenhouse lettuce (Lactuca sativa L.) grown under well-watered and water-deficit conditions. We examined the physiological and metabolomic water deficit responses of lettuce treated with Leafamine® (0.585 g/pot) or not. Root application of Leafamine® increased the shoot fresh biomass of both well-watered (+40%) and deficit-irrigated (+20%) lettuce plants because the projected leaf area increased. Our results also indicate that Leafamine® application could adjust the nitrogen metabolism by enhancing the total nitrogen content, amino acid (proline) contents and the total protein level in lettuce leaves, irrespective of the water condition. Osmolytes such as soluble sugars and polyols, also increased in Leafamine®-treated lettuce. Our findings suggest that the protective effect of Leafamine is a widespread change in plant metabolism and could involve ABA, putrescine and raffinose.
Full article
(This article belongs to the Collection State-of-the-Art Molecular Plant Sciences in France)
Open AccessArticle
A Quantitative Assay for Ca2+ Uptake through Normal and Pathological Hemichannels
by
, , , , , , , , , , , , and
Int. J. Mol. Sci. 2022, 23(13), 7337; https://doi.org/10.3390/ijms23137337 (registering DOI) - 30 Jun 2022
Abstract
Connexin (Cx) hemichannels (HCs) are large pore hexameric structures that allow the exchange of ions, metabolites and a variety of other molecules between the cell cytoplasm and extracellular milieu. HC inhibitors are attracting growing interest as drug candidates because deregulated fluxes through HCs
[...] Read more.
Connexin (Cx) hemichannels (HCs) are large pore hexameric structures that allow the exchange of ions, metabolites and a variety of other molecules between the cell cytoplasm and extracellular milieu. HC inhibitors are attracting growing interest as drug candidates because deregulated fluxes through HCs have been implicated in a plethora of genetic conditions and other diseases. HC activity has been mainly investigated by electrophysiological methods and/or using HC-permeable dye uptake measurements. Here, we present an all-optical assay based on fluorometric measurements of ionized calcium (Ca2+) uptake with a Ca2+-selective genetically encoded indicator (GCaMP6s) that permits the optical tracking of cytosolic Ca2+ concentration ([Ca2+]cyt) changes with high sensitivity. We exemplify use of the assay in stable pools of HaCaT cells overexpressing human Cx26, Cx46, or the pathological mutant Cx26G45E, under control of a tetracycline (Tet) responsive element (TRE) promoter (Tet-on). We demonstrate the usefulness of the assay for the characterization of new monoclonal antibodies (mAbs) targeting the extracellular domain of the HCs. Although we developed the assay on a spinning disk confocal fluorescence microscope, the same methodology can be extended seamlessly to high-throughput high-content platforms to screen other kinds of inhibitors and/or to probe HCs expressed in primary cells and microtissues.
Full article
(This article belongs to the Special Issue Connexin and Pannexin Signaling in Health and Disease 2.0)
Open AccessArticle
Chronic Immune Platelet Activation Is Followed by Platelet Refractoriness and Impaired Contractility
by
, , , , , , , and
Int. J. Mol. Sci. 2022, 23(13), 7336; https://doi.org/10.3390/ijms23137336 (registering DOI) - 30 Jun 2022
Abstract
Autoimmune diseases, including systemic lupus erythematosus (SLE), have a high risk of thrombotic and hemorrhagic complications associated with altered platelet functionality. We studied platelets from the blood of SLE patients and their reactivity. The surface expression of phosphatidylserine, P-selectin, and active integrin αIIbβ3
[...] Read more.
Autoimmune diseases, including systemic lupus erythematosus (SLE), have a high risk of thrombotic and hemorrhagic complications associated with altered platelet functionality. We studied platelets from the blood of SLE patients and their reactivity. The surface expression of phosphatidylserine, P-selectin, and active integrin αIIbβ3 were measured using flow cytometry before and after platelet stimulation. Soluble P-selectin was measured in plasma. The kinetics of platelet-driven clot contraction was studied, as well as scanning and transmission electron microscopy of unstimulated platelets. Elevated levels of membrane-associated phosphatidylserine and platelet-attached and soluble P-selectin correlated directly with the titers of IgG, anti-dsDNA-antibodies, and circulating immune complexes. Morphologically, platelets in SLE lost their resting discoid shape, formed membrane protrusions and aggregates, and had a rough plasma membrane. The signs of platelet activation were associated paradoxically with reduced reactivity to a physiological stimulus and impaired contractility that revealed platelet exhaustion and refractoriness. Platelet activation has multiple pro-coagulant effects, and the inability to fully contract (retract) blood clots can be either a hemorrhagic or pro-thrombotic mechanism related to altered clot permeability, sensitivity of clots to fibrinolysis, obstructiveness, and embologenicity. Therefore, chronic immune platelet activation followed by secondary platelet dysfunction comprise an understudied pathogenic mechanism that supports hemostatic disorders in autoimmune diseases, such as SLE.
Full article
(This article belongs to the Special Issue Molecular Research on Platelet Function in Disease 2.0)
Open AccessArticle
Evolutionary Analysis and Functional Identification of Clock-Associated PSEUDO-RESPONSE REGULATOR (PRRs) Genes in the Flowering Regulation of Roses
Int. J. Mol. Sci. 2022, 23(13), 7335; https://doi.org/10.3390/ijms23137335 (registering DOI) - 30 Jun 2022
Abstract
Pseudo-response regulators (PRRs) are the important genes for flowering in roses. In this work, clock PRRs were genome-wide identified using Arabidopsis protein sequences as queries, and their evolutionary analyses were deliberated intensively in Rosaceae in correspondence with angiosperms species. To draw
[...] Read more.
Pseudo-response regulators (PRRs) are the important genes for flowering in roses. In this work, clock PRRs were genome-wide identified using Arabidopsis protein sequences as queries, and their evolutionary analyses were deliberated intensively in Rosaceae in correspondence with angiosperms species. To draw a comparative network and flow of clock PRRs in roses, a co-expression network of flowering pathway genes was drawn using a string database, and their functional analysis was studied by silencing using VIGS and protein-to-protein interaction. We revealed that the clock PRRs were significantly expanded in Rosaceae and were divided into three major clades, i.e., PRR5/9 (clade 1), PRR3/7 (clade 2), and TOC1/PRR1 (clade 3), based on their phylogeny. Within the clades, five clock PRRs were identified in Rosa chinensis. Clock PRRs had conserved RR domain and shared similar features, suggesting the duplication occurred during evolution. Divergence analysis indicated the role of duplication events in the expansion of clock PRRs. The diverse cis elements and interaction of clock PRRs with miRNAs suggested their role in plant development. Co-expression network analysis showed that the clock PRRs from Rosa chinensis had a strong association with flowering controlling genes. Further silencing of RcPRR1b and RcPRR5 in Rosa chinensis using VIGS led to earlier flowering, confirming them as negative flowering regulators. The protein-to-protein interactions between RcPRR1a/RcPRR5 and RcCO suggested that RcPRR1a/RcPRR5 may suppress flowering by interfering with the binding of RcCO to the promoter of RcFT. Collectively, these results provided an understanding of the evolutionary profiles as well as the functional role of clock PRRs in controlling flowering in roses.
Full article
(This article belongs to the Special Issue Circadian Rhythms in Plants)
Open AccessArticle
11β-Hydroxysteroid Dehydrogenase Type 1 within Osteoclasts Mediates the Bone Protective Properties of Therapeutic Corticosteroids in Chronic Inflammation
by
, , , , , , , , , , , , , , and
Int. J. Mol. Sci. 2022, 23(13), 7334; https://doi.org/10.3390/ijms23137334 (registering DOI) - 30 Jun 2022
Abstract
Therapeutic glucocorticoids (GCs) are powerful anti-inflammatory tools in the management of chronic inflammatory diseases such as rheumatoid arthritis (RA). However, their actions on bone in this context are complex. The enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) is a mediator of the anti-inflammatory actions
[...] Read more.
Therapeutic glucocorticoids (GCs) are powerful anti-inflammatory tools in the management of chronic inflammatory diseases such as rheumatoid arthritis (RA). However, their actions on bone in this context are complex. The enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) is a mediator of the anti-inflammatory actions of therapeutic glucocorticoids (GCs) in vivo. In this study we delineate the role of 11β-HSD1 in the effects of GC on bone during inflammatory polyarthritis. Its function was assessed in bone biopsies from patients with RA and osteoarthritis, and in primary osteoblasts and osteoclasts. Bone metabolism was assessed in the TNF-tg model of polyarthritis treated with oral GC (corticosterone), in animals with global (TNF-tg11βKO), mesenchymal (including osteoblast) (TNF-tg11βflx/tw2cre) and myeloid (including osteoclast) (TNF-tg11βflx/LysMcre) deletion. Bone parameters were assessed by micro-CT, static histomorphometry and serum metabolism markers. We observed a marked increase in 11β-HSD1 activity in bone in RA relative to osteoarthritis bone, whilst the pro-inflammatory cytokine TNFα upregulated 11β-HSD1 within osteoblasts and osteoclasts. In osteoclasts, 11β-HSD1 mediated the suppression of bone resorption by GCs. Whilst corticosterone prevented the inflammatory loss of trabecular bone in TNF-tg animals, counterparts with global deletion of 11β-HSD1 were resistant to these protective actions, characterised by increased osteoclastic bone resorption. Targeted deletion of 11β-HSD1 within osteoclasts and myeloid derived cells partially reproduced the GC resistant phenotype. These data reveal the critical role of 11β-HSD1 within bone and osteoclasts in mediating the suppression of inflammatory bone loss in response to therapeutic GCs in chronic inflammatory disease.
Full article
(This article belongs to the Special Issue Mechanisms of Endocrine and Molecular Bone Regulation)
Open AccessArticle
Effect of the Size of Titanium Particles Released from Dental Implants on Immunological Response
Int. J. Mol. Sci. 2022, 23(13), 7333; https://doi.org/10.3390/ijms23137333 (registering DOI) - 30 Jun 2022
Abstract
The techniques used in oral implantology to remove bacterial biofilm from the surface of implants by machining the titanium surface (implantoplasty) or by placing rough dental implants through friction with the cortical bone generate a large release of particles. In this work, we
[...] Read more.
The techniques used in oral implantology to remove bacterial biofilm from the surface of implants by machining the titanium surface (implantoplasty) or by placing rough dental implants through friction with the cortical bone generate a large release of particles. In this work, we performed a simulation of particle generation following clinical protocols. The particles were characterized for commercially pure titanium with particle sizes of 5, 10, 15, and 30 μm. The aim was to determine the effect of particle size and chemical composition of the implant on the immune response. For this purpose, their morphology and possible contamination were characterized by scanning electron microscopy and X-ray microanalysis. In addition, the granulometry, specific surface area, release of metal ions into the medium, and studies of cytocompatibility, gene expression, and cytokine release linked to the inflammatory process were studied. The release of ions for titanium particles showed levels below 800 ppb for all sizes. Smaller particle sizes showed less cytotoxicity, although particles of 15 μm presented higher levels of cytocompatibility. In addition, inflammatory markers (TNFα and Il-1β) were higher compared to larger titanium. Specifically, particles of 15 μm presented a lower proinflammatory and higher anti-inflammatory response as characterized by gene expression and cytokine release, compared to control or smaller particles. Therefore, in general, there is a greater tendency for smaller particles to produce greater toxicity and a greater proinflammatory response.
Full article
(This article belongs to the Special Issue Titanium-Based Biomaterials and Their Applications)
Open AccessReview
Peptidomic Approaches and Observations in Neurodegenerative Diseases
by
and
Int. J. Mol. Sci. 2022, 23(13), 7332; https://doi.org/10.3390/ijms23137332 (registering DOI) - 30 Jun 2022
Abstract
Mass spectrometry (MS), with its immense technological developments over the last two decades, has emerged as an unavoidable technique in analyzing biomolecules such as proteins and peptides. Its multiplexing capability and explorative approach make it a valuable tool for analyzing complex clinical samples
[...] Read more.
Mass spectrometry (MS), with its immense technological developments over the last two decades, has emerged as an unavoidable technique in analyzing biomolecules such as proteins and peptides. Its multiplexing capability and explorative approach make it a valuable tool for analyzing complex clinical samples concerning biomarker research and investigating pathophysiological mechanisms. Peptides regulate various biological processes, and several of them play a critical role in many disease-related pathological conditions. One important example in neurodegenerative diseases is the accumulation of amyloid-beta peptides (Aβ) in the brain of Alzheimer’s disease (AD) patients. When investigating brain function and brain-related pathologies, such as neurodegenerative diseases, cerebrospinal fluid (CSF) represents the most suitable sample because of its direct contact with the brain. In this review, we evaluate publications applying peptidomics analysis to CSF samples, focusing on neurodegenerative diseases. We describe the methodology of peptidomics analysis and give an overview of the achievements of CSF peptidomics over the years. Finally, publications reporting peptides regulated in AD are discussed.
Full article
(This article belongs to the Special Issue Proteomics in Diagnosis and Treatment of Neurodegenerative Diseases)
Open AccessReview
Enhancing Animal Disease Resistance, Production Efficiency, and Welfare through Precise Genome Editing
by
, , , , , , and
Int. J. Mol. Sci. 2022, 23(13), 7331; https://doi.org/10.3390/ijms23137331 (registering DOI) - 30 Jun 2022
Abstract
The major goal of animal breeding is the genetic enhancement of economic traits. The CRISPR/Cas system, which includes nuclease-mediated and base editor mediated genome editing tools, provides an unprecedented approach to modify the mammalian genome. Thus, farm animal genetic engineering and genetic manipulation
[...] Read more.
The major goal of animal breeding is the genetic enhancement of economic traits. The CRISPR/Cas system, which includes nuclease-mediated and base editor mediated genome editing tools, provides an unprecedented approach to modify the mammalian genome. Thus, farm animal genetic engineering and genetic manipulation have been fundamentally revolutionized. Agricultural animals with traits of interest can be obtained in just one generation (and without long time selection). Here, we reviewed the advancements of the CRISPR (Clustered regularly interspaced short palindromic repeats)/Cas (CRISPR associated proteins) genome editing tools and their applications in animal breeding, especially in improving disease resistance, production performance, and animal welfare. Additionally, we covered the regulations on genome-edited animals (GEAs) and ways to accelerate their use. Recommendations for how to produce GEAs were also discussed. Despite the current challenges, we believe that genome editing breeding and GEAs will be available in the near future.
Full article
(This article belongs to the Special Issue Gene Editing and Delivery in Animal Genetic Engineering)
Open AccessArticle
Next-Generation Grade and Survival Expression Biomarkers of Human Gliomas Based on Algorithmically Reconstructed Molecular Pathways
by
, , , , , , , and
Int. J. Mol. Sci. 2022, 23(13), 7330; https://doi.org/10.3390/ijms23137330 (registering DOI) - 30 Jun 2022
Abstract
In gliomas, expression of certain marker genes is strongly associated with survival and tumor type and often exceeds histological assessments. Using a human interactome model, we algorithmically reconstructed 7494 new-type molecular pathways that are centered each on an individual protein. Each single-gene expression
[...] Read more.
In gliomas, expression of certain marker genes is strongly associated with survival and tumor type and often exceeds histological assessments. Using a human interactome model, we algorithmically reconstructed 7494 new-type molecular pathways that are centered each on an individual protein. Each single-gene expression and gene-centric pathway activation was tested as a survival and tumor grade biomarker in gliomas and their diagnostic subgroups (IDH mutant or wild type, IDH mutant with 1p/19q co-deletion, MGMT promoter methylated or unmethylated), including the three major molecular subtypes of glioblastoma (proneural, mesenchymal, classical). We used three datasets from The Cancer Genome Atlas and the Chinese Glioma Genome Atlas, which in total include 527 glioblastoma and 1097 low grade glioma profiles. We identified 2724 such gene and 2418 pathway survival biomarkers out of total 17,717 genes and 7494 pathways analyzed. We then assessed tumor grade and molecular subtype biomarkers and with the threshold of AUC > 0.7 identified 1322/982 gene biomarkers and 472/537 pathway biomarkers. This suggests roughly two times greater efficacy of the reconstructed pathway approach compared to gene biomarkers. Thus, we conclude that activation levels of algorithmically reconstructed gene-centric pathways are a potent class of new-generation diagnostic and prognostic biomarkers for gliomas.
Full article
(This article belongs to the Special Issue Glioblastoma: Recapitulating the Key Breakthroughs and Future Perspective)
►▼
Show Figures

Figure 1
Open AccessArticle
Loxin Reduced the Inflammatory Response in the Liver and the Aortic Fatty Streak Formation in Mice Fed with a High-Fat Diet
by
, , , , , , , , , and
Int. J. Mol. Sci. 2022, 23(13), 7329; https://doi.org/10.3390/ijms23137329 (registering DOI) - 30 Jun 2022
Abstract
Oxidized low-density lipoprotein (ox-LDL) is the most harmful form of cholesterol associated with vascular atherosclerosis and hepatic injury, mainly due to inflammatory cell infiltration and subsequent severe tissue injury. Lox-1 is the central ox-LDL receptor expressed in endothelial and immune cells, its activation
[...] Read more.
Oxidized low-density lipoprotein (ox-LDL) is the most harmful form of cholesterol associated with vascular atherosclerosis and hepatic injury, mainly due to inflammatory cell infiltration and subsequent severe tissue injury. Lox-1 is the central ox-LDL receptor expressed in endothelial and immune cells, its activation regulating inflammatory cytokines and chemotactic factor secretion. Recently, a Lox-1 truncated protein isoform lacking the ox-LDL binding domain named LOXIN has been described. We have previously shown that LOXIN overexpression blocked Lox-1-mediated ox-LDL internalization in human endothelial progenitor cells in vitro. However, the functional role of LOXIN in targeting inflammation or tissue injury in vivo remains unknown. In this study, we investigate whether LOXIN modulated the expression of Lox-1 and reduced the inflammatory response in a high-fat-diet mice model. Results indicate that human LOXIN blocks Lox-1 mediated uptake of ox-LDL in H4-II-E-C3 cells. Furthermore, in vivo experiments showed that overexpression of LOXIN reduced both fatty streak lesions in the aorta and inflammation and fibrosis in the liver. These findings were associated with the down-regulation of Lox-1 in endothelial cells. Then, LOXIN prevents hepatic and aortic tissue damage in vivo associated with reduced Lox-1 expression in endothelial cells. We encourage future research to understand better the underlying molecular mechanisms and potential therapeutic use of LOXIN.
Full article
(This article belongs to the Topic Clinical, Translational and Basic Research on Liver Diseases)
►▼
Show Figures

Figure 1
Open AccessCommunication
Controlling Gas Generation of Li-Ion Battery through Divinyl Sulfone Electrolyte Additive
by
, , , , , , , and
Int. J. Mol. Sci. 2022, 23(13), 7328; https://doi.org/10.3390/ijms23137328 (registering DOI) - 30 Jun 2022
Abstract
The focus of mainstream lithium-ion battery (LIB) research is on increasing the battery’s capacity and performance; however, more effort should be invested in LIB safety for widespread use. One aspect of major concern for LIB cells is the gas generation phenomenon. Following conventional
[...] Read more.
The focus of mainstream lithium-ion battery (LIB) research is on increasing the battery’s capacity and performance; however, more effort should be invested in LIB safety for widespread use. One aspect of major concern for LIB cells is the gas generation phenomenon. Following conventional battery engineering practices with electrolyte additives, we examined the potential usage of electrolyte additives to address this specific issue and found a feasible candidate in divinyl sulfone (DVSF). We manufactured four identical battery cells and employed an electrolyte mixture with four different DVSF concentrations (0%, 0.5%, 1.0%, and 2.0%). By measuring the generated gas volume from each battery cell, we demonstrated the potential of DVSF additives as an effective approach for reducing the gas generation in LIB cells. We found that a DVSF concentration of only 1% was necessary to reduce the gas generation by approximately 50% while simultaneously experiencing a negligible impact on the cycle life. To better understand this effect on a molecular level, we examined possible electrochemical reactions through ab initio molecular dynamics (AIMD) based on the density functional theory (DFT). From the electrolyte mixture’s exposure to either an electrochemically reductive or an oxidative environment, we determined the reaction pathways for the generation of CO2 gas and the mechanism by which DVSF additives effectively blocked the gas’s generation. The key reaction was merging DVSF with cyclic carbonates, such as FEC. Therefore, we concluded that DVSF additives could offer a relatively simplistic and effective approach for controlling the gas generation in lithium-ion batteries.
Full article
(This article belongs to the Special Issue Advanced Polymer Composite Materials III)
Open AccessArticle
VARS2 Depletion Leads to Activation of the Integrated Stress Response and Disruptions in Mitochondrial Fatty Acid Oxidation
by
, , , , , , , , , , and
Int. J. Mol. Sci. 2022, 23(13), 7327; https://doi.org/10.3390/ijms23137327 (registering DOI) - 30 Jun 2022
Abstract
Mutations in mitochondrial aminoacyl-tRNA synthetases (mtARSs) have been reported in patients with mitochondriopathies: most commonly encephalopathy, but also cardiomyopathy. Through a GWAS, we showed possible associations between mitochondrial valyl-tRNA synthetase (VARS2) dysregulations and non-ischemic cardiomyopathy. We aimed to investigate the possible consequences of
[...] Read more.
Mutations in mitochondrial aminoacyl-tRNA synthetases (mtARSs) have been reported in patients with mitochondriopathies: most commonly encephalopathy, but also cardiomyopathy. Through a GWAS, we showed possible associations between mitochondrial valyl-tRNA synthetase (VARS2) dysregulations and non-ischemic cardiomyopathy. We aimed to investigate the possible consequences of VARS2 depletion in zebrafish and cultured HEK293A cells. Transient VARS2 loss-of-function was induced in zebrafish embryos using Morpholinos. The enzymatic activity of VARS2 was measured in VARS2-depleted cells via northern blot. Heterozygous VARS2 knockout was established in HEK293A cells using CRISPR/Cas9 technology. BN-PAGE and SDS-PAGE were used to investigate electron transport chain (ETC) complexes, and the oxygen consumption rate and extracellular acidification rate were measured using a Seahorse XFe96 Analyzer. The activation of the integrated stress response (ISR) and possible disruptions in mitochondrial fatty acid oxidation (FAO) were explored using RT-qPCR and western blot. Zebrafish embryos with transient VARS2 loss-of-function showed features of heart failure as well as indications of CNS and skeletal muscle involvements. The enzymatic activity of VARS2 was significantly reduced in VARS2-depleted cells. Heterozygous VARS2-knockout cells showed a rearrangement of ETC complexes in favor of complexes III2, III2 + IV, and supercomplexes without significant respiratory chain deficiencies. These cells also showed the enhanced activation of the ISR, as indicated by increased eIF-2α phosphorylation and a significant increase in the transcript levels of ATF4, ATF5, and DDIT3 (CHOP), as well as disruptions in FAO. The activation of the ISR and disruptions in mitochondrial FAO may underlie the adaptive changes in VARS2-depleted cells.
Full article
(This article belongs to the Special Issue Molecular Research on Cardiomyopathy 2.0)
Open AccessReview
The Relationship between COVID-19 and Hypothalamic–Pituitary–Adrenal Axis: A Large Spectrum from Glucocorticoid Insufficiency to Excess—The CAPISCO International Expert Panel
by
, , , , , , , , , , , , , , , , , , , , , , and add
Show full author list
remove
Hide full author list
Int. J. Mol. Sci. 2022, 23(13), 7326; https://doi.org/10.3390/ijms23137326 (registering DOI) - 30 Jun 2022
Abstract
Coronavirus disease 2019 (COVID-19) is a highly heterogeneous disease regarding severity, vulnerability to infection due to comorbidities, and treatment approaches. The hypothalamic–pituitary–adrenal (HPA) axis has been identified as one of the most critical endocrine targets of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
[...] Read more.
Coronavirus disease 2019 (COVID-19) is a highly heterogeneous disease regarding severity, vulnerability to infection due to comorbidities, and treatment approaches. The hypothalamic–pituitary–adrenal (HPA) axis has been identified as one of the most critical endocrine targets of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that might significantly impact outcomes after infection. Herein we review the rationale for glucocorticoid use in the setting of COVID-19 and emphasize the need to have a low index of suspicion for glucocorticoid-induced adrenal insufficiency, adjusting for the glucocorticoid formulation used, dose, treatment duration, and underlying health problems. We also address several additional mechanisms that may cause HPA axis dysfunction, including critical illness-related corticosteroid insufficiency, the direct cytopathic impacts of SARS-CoV-2 infection on the adrenals, pituitary, and hypothalamus, immune-mediated inflammations, small vessel vasculitis, microthrombotic events, the resistance of cortisol receptors, and impaired post-receptor signaling, as well as the dissociation of ACTH and cortisol regulation. We also discuss the increased risk of infection and more severe illness in COVID-19 patients with pre-existing disorders of the HPA axis, from insufficiency to excess. These insights into the complex regulation of the HPA axis reveal how well the body performs in its adaptive survival mechanism during a severe infection, such as SARS-CoV-2, and how many parameters might disbalance the outcomes of this adaptation.
Full article
(This article belongs to the Collection Feature Paper Collection in Biochemistry)
►▼
Show Figures

Figure 1
Open AccessReview
Dendritic Cell-Based Immunotherapy in Hot and Cold Tumors
by
and
Int. J. Mol. Sci. 2022, 23(13), 7325; https://doi.org/10.3390/ijms23137325 (registering DOI) - 30 Jun 2022
Abstract
Dendritic cells mediate innate and adaptive immune responses and are directly involved in the activation of cytotoxic T lymphocytes that kill tumor cells. Dendritic cell-based cancer immunotherapy has clinical benefits. Dendritic cell subsets are diverse, and tumors can be hot or cold, depending
[...] Read more.
Dendritic cells mediate innate and adaptive immune responses and are directly involved in the activation of cytotoxic T lymphocytes that kill tumor cells. Dendritic cell-based cancer immunotherapy has clinical benefits. Dendritic cell subsets are diverse, and tumors can be hot or cold, depending on their immunogenicity; this heterogeneity affects the success of dendritic cell-based immunotherapy. Here, we review the ontogeny of dendritic cells and dendritic cell subsets. We also review the characteristics of hot and cold tumors and briefly introduce therapeutic trials related to hot and cold tumors. Lastly, we discuss dendritic cell-based cancer immunotherapy in hot and cold tumors.
Full article
(This article belongs to the Special Issue Dendritic Cell and Cancer Therapy)
Open AccessArticle
Comprehensive Identification of Human Cell Type Chromatin Activity-Specific and Cell Type Expression-Specific MicroRNAs
Int. J. Mol. Sci. 2022, 23(13), 7324; https://doi.org/10.3390/ijms23137324 (registering DOI) - 30 Jun 2022
Abstract
MicroRNAs (miRNAs) regulate multiple transcripts and thus shape the expression landscape of a cell. Information about miRNA expression and distribution across cell types is crucial for the understanding of miRNAs’ functions and their translational applications as biomarkers or therapeutic targets. In this study,
[...] Read more.
MicroRNAs (miRNAs) regulate multiple transcripts and thus shape the expression landscape of a cell. Information about miRNA expression and distribution across cell types is crucial for the understanding of miRNAs’ functions and their translational applications as biomarkers or therapeutic targets. In this study, we identify cell-type-specific miRNAs by combining multiple correspondence analysis and Gini coefficients to dissect miRNAs’ expression profiles and chromatin activity score profiles, which results in collections of chromatin activity-specific miRNAs in 91 cell types and expression-specific miRNAs in 124 cell types. Moreover, we find that cell-type-specific miRNAs are closely associated with disease miRNAs, such as T-cell-specific miRNAs, which are closely associated with cancer prognosis. Finally, we constructed mirCellType, an online tool based on cell-type-specific miRNA signatures, to dissect the cell type composition of complex samples with miRNA expression profiles.
Full article
(This article belongs to the Collection Regulation by Non-Coding RNAs)
Open AccessArticle
Epigenetic and Transcriptomic Programming of HSC Quiescence Signaling in Large for Gestational Age Neonates
by
, , ,
Mickaël Canouil
, , , , , , , and
Int. J. Mol. Sci. 2022, 23(13), 7323; https://doi.org/10.3390/ijms23137323 (registering DOI) - 30 Jun 2022
Abstract
Excessive fetal growth is associated with DNA methylation alterations in human hematopoietic stem and progenitor cells (HSPC), but their functional impact remains elusive. We implemented an integrative analysis combining single-cell epigenomics, single-cell transcriptomics, and in vitro analyses to functionally link DNA methylation changes
[...] Read more.
Excessive fetal growth is associated with DNA methylation alterations in human hematopoietic stem and progenitor cells (HSPC), but their functional impact remains elusive. We implemented an integrative analysis combining single-cell epigenomics, single-cell transcriptomics, and in vitro analyses to functionally link DNA methylation changes to putative alterations of HSPC functions. We showed in hematopoietic stem cells (HSC) from large for gestational age neonates that both DNA hypermethylation and chromatin rearrangements target a specific network of transcription factors known to sustain stem cell quiescence. In parallel, we found a decreased expression of key genes regulating HSC differentiation including EGR1, KLF2, SOCS3, and JUNB. Our functional analyses showed that this epigenetic programming was associated with a decreased ability for HSCs to remain quiescent. Taken together, our multimodal approach using single-cell (epi)genomics showed that human fetal overgrowth affects hematopoietic stem cells’ quiescence signaling via epigenetic programming.
Full article
(This article belongs to the Special Issue Epigenetic Mechanisms and Human Pathology 3.0)
►▼
Show Figures

Figure 1
Open AccessReview
The Change in Paradigm for NSCLC Patients with EML4–ALK Translocation
by
, , , , , , , and
Int. J. Mol. Sci. 2022, 23(13), 7322; https://doi.org/10.3390/ijms23137322 (registering DOI) - 30 Jun 2022
Abstract
The severe prognosis linked with a lung cancer diagnosis has changed with the discovery of oncogenic molecularly driven subgroups and the use of tailored treatment. ALK-translocated advanced lung cancer is the most interesting model, having achieved the longest overall survival. Here, we report
[...] Read more.
The severe prognosis linked with a lung cancer diagnosis has changed with the discovery of oncogenic molecularly driven subgroups and the use of tailored treatment. ALK-translocated advanced lung cancer is the most interesting model, having achieved the longest overall survival. Here, we report the most important paradigmatic shifts in the prognosis and treatment for this subgroup population occurred among lung cancer.
Full article
(This article belongs to the Special Issue Non-Small-Cell Lung Cancer (NSCLC): The Changes of Molecular Immunotherapy and Targeted Therapy)
Open AccessReview
Bioenergetics and Reactive Nitrogen Species in Bacteria
by
and
Int. J. Mol. Sci. 2022, 23(13), 7321; https://doi.org/10.3390/ijms23137321 (registering DOI) - 30 Jun 2022
Abstract
The production of reactive nitrogen species (RNS) by the innate immune system is part of the host's defense against invading pathogenic bacteria. In this review, we summarize recent studies on the molecular basis of the effects of nitric oxide and peroxynitrite on microbial
[...] Read more.
The production of reactive nitrogen species (RNS) by the innate immune system is part of the host's defense against invading pathogenic bacteria. In this review, we summarize recent studies on the molecular basis of the effects of nitric oxide and peroxynitrite on microbial respiration and energy conservation. We discuss possible molecular mechanisms underlying RNS resistance in bacteria mediated by unique respiratory oxygen reductases, the mycobacterial bcc-aa3 supercomplex, and bd-type cytochromes. A complete picture of the impact of RNS on microbial bioenergetics is not yet available. However, this research area is developing very rapidly, and the knowledge gained should help us develop new methods of treating infectious diseases.
Full article
(This article belongs to the Special Issue Molecular Mechanisms of Infection for Pathogenic Bacteria)
Open AccessArticle
I2-Imidazoline Ligand CR4056 Improves Memory, Increases ApoE Expression and Reduces BBB Leakage in 5xFAD Mice
by
, , , , , , and
Int. J. Mol. Sci. 2022, 23(13), 7320; https://doi.org/10.3390/ijms23137320 (registering DOI) - 30 Jun 2022
Abstract
Recent evidence suggests that I2-imidazoline ligands have neuroprotective properties in animal models of neurodegeneration, such as Alzheimer’s disease (AD). We recently demonstrated that the I2-ligand BU224 reversed memory impairments in AD transgenic mice and this effect was not because of reductions in amyloid-β
[...] Read more.
Recent evidence suggests that I2-imidazoline ligands have neuroprotective properties in animal models of neurodegeneration, such as Alzheimer’s disease (AD). We recently demonstrated that the I2-ligand BU224 reversed memory impairments in AD transgenic mice and this effect was not because of reductions in amyloid-β (Aβ) deposition. In this study, our aim was to determine the therapeutic potential of the powerful analgesic I2-imidazoline ligand CR4056 in the 5xFAD model of AD, since this ligand has been proven to be safely tolerated in humans. Sub-chronic oral administration of CR4056 (30 mg/kg for 10 days) led to an improvement in recognition memory in 6-NOur results also revealed a change in the profile of microglia by CR4056, resulting in a suppression of pro-inflammatory activated microglia, but increased the density of astrocytes and the expression of ApoE, which is mainly produced by these glial cells. In addition, CR4056 restored fibrinogen extravasation, affecting the distribution of markers of astrocytic end feet in blood vessels. Therefore, these results suggest that CR4056 protects against Aβ-mediated neuroinflammation and vascular damage, and offers therapeutic potential at any stage of AD.
Full article
(This article belongs to the Special Issue Imidazoline Receptors in Diseases of the CNS)

Journal Menu
► ▼ Journal Menu-
- IJMS Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal Browser-
arrow_forward_ios
Forthcoming issue
arrow_forward_ios Current issue - Vol. 23 (2022)
- Vol. 22 (2021)
- Vol. 21 (2020)
- Vol. 20 (2019)
- Vol. 19 (2018)
- Vol. 18 (2017)
- Vol. 17 (2016)
- Vol. 16 (2015)
- Vol. 15 (2014)
- Vol. 14 (2013)
- Vol. 13 (2012)
- Vol. 12 (2011)
- Vol. 11 (2010)
- Vol. 10 (2009)
- Vol. 9 (2008)
- Vol. 8 (2007)
- Vol. 7 (2006)
- Vol. 6 (2005)
- Vol. 5 (2004)
- Vol. 4 (2003)
- Vol. 3 (2002)
- Vol. 2 (2001)
- Vol. 1 (2000)
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Biomolecules, Cancers, Current Oncology, IJMS, Onco
Novel Approaches in Bladder Cancer Treatment
Topic Editors: Roman Blaheta, Beatrice E. BachmeierDeadline: 31 July 2022
Topic in
Biomedicines, CIMB, Diagnostics, IJMS, Reports
Clinical, Translational and Basic Research on Liver Diseases
Topic Editors: Neuman Manuela, Stephen MalnickDeadline: 31 August 2022
Topic in
Biomedicines, CIMB, IJMS, Neurology International, Pharmaceuticals
Neuroprotection by Drugs, Nutraceuticals and Physical Activity
Topic Editors: Cristina Angeloni, Andrea TarozziDeadline: 30 September 2022
Topic in
Brain Sciences, CTN, IJMS, Life, NeuroSci
Olfactory Function in Neurodegenerative Disorders
Topic Editors: Tommaso Ercoli, Paolo Solla, Carla MasalaDeadline: 19 October 2022

Conferences
Special Issues
Special Issue in
IJMS
Extracellular Vesicles and Metastatic Niche 3.0
Guest Editor: Ilaria GiustiDeadline: 1 July 2022
Special Issue in
IJMS
Extracellular Matrix in Development and Disease 3.0
Guest Editor: Frank ZauckeDeadline: 15 July 2022
Special Issue in
IJMS
Membrane–Peptide Interactions: From Basics to Current Applications 2.0
Guest Editors: Nuno C. Santos, Sónia GonçalvesDeadline: 20 July 2022
Special Issue in
IJMS
Dendritic Cells—Conductors and Activators of the Immunological Orchestra
Guest Editor: Helga Maria SchmetzerDeadline: 31 July 2022
Topical Collections
Topical Collection in
IJMS
State-of-the-Art Molecular Neurobiology in Poland
Collection Editor: Irena Nalepa
Topical Collection in
IJMS
Proteins and Protein-Ligand Interactions
Collection Editors: Tatyana Karabencheva-Christova, Christo Christov
Topical Collection in
IJMS
Feature Papers in Bioactives and Nutraceuticals
Collection Editor: Maurizio Battino