Journal Description
International Journal of Molecular Sciences
International Journal of Molecular Sciences
is an international, peer-reviewed, open access journal providing an advanced forum for biochemistry, molecular and cell biology, molecular biophysics, molecular medicine, and all aspects of molecular research in chemistry, and is published semimonthly online by MDPI. The Australian Society of Plant Scientists (ASPS), Epigenetics Society, European Calcium Society (ECS), European Chitin Society (EUCHIS), Spanish Society for Cell Biology (SEBC) and Signal Transduction Society (STS) are affiliated with IJMS and their members receive a discount on the article processing charges.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, PMC, MEDLINE, Embase, CAPlus / SciFinder, and many other databases.
- Journal Rank: JCR - Q1 (Biochemistry & Molecular Biology) / CiteScore - Q1 (Inorganic Chemistry)
- Rapid Publication: manuscripts are peer-reviewed and a first decision provided to authors approximately 16.1 days after submission; acceptance to publication is undertaken in 2.8 days (median values for papers published in this journal in the second half of 2021).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
- Testimonials: See what our authors say about the IJMS.
- Companion journals for IJMS include: Biophysica, Obesities, Stresses and Lymphatics.
Impact Factor:
5.924 (2020)
;
5-Year Impact Factor:
6.132 (2020)
Latest Articles
Locally Secreted Semaphorin 4D Is Engaged in Both Pathogenic Bone Resorption and Retarded Bone Regeneration in a Ligature-Induced Mouse Model of Periodontitis
Int. J. Mol. Sci. 2022, 23(10), 5630; https://doi.org/10.3390/ijms23105630 (registering DOI) - 18 May 2022
Abstract
It is well known that Semaphorin 4D (Sema4D) inhibits IGF-1-mediated osteogenesis by binding with PlexinB1 expressed on osteoblasts. However, its elevated level in the gingival crevice fluid of periodontitis patients and the broader scope of its activities in the context of potential upregulation
[...] Read more.
It is well known that Semaphorin 4D (Sema4D) inhibits IGF-1-mediated osteogenesis by binding with PlexinB1 expressed on osteoblasts. However, its elevated level in the gingival crevice fluid of periodontitis patients and the broader scope of its activities in the context of potential upregulation of osteoclast-mediated periodontal bone-resorption suggest the need for further investigation of this multifaceted molecule. In short, the pathophysiological role of Sema4D in periodontitis requires further study. Accordingly, attachment of the ligature to the maxillary molar of mice for 7 days induced alveolar bone-resorption accompanied by locally elevated, soluble Sema4D (sSema4D), TNF-α and RANKL. Removal of the ligature induced spontaneous bone regeneration during the following 14 days, which was significantly promoted by anti-Sema4D-mAb administration. Anti-Sema4D-mAb was also suppressed in vitro osteoclastogenesis and pit formation by RANKL-stimulated BMMCs. While anti-Sema4D-mAb downmodulated the bone-resorption induced in mouse periodontitis, it neither affected local production of TNF-α and RANKL nor systemic skeletal bone remodeling. RANKL-induced osteoclastogenesis and resorptive activity were also suppressed by blocking of CD72, but not Plexin B2, suggesting that sSema4D released by osteoclasts promotes osteoclastogenesis via ligation to CD72 receptor. Overall, our data indicated that ssSema4D released by osteoclasts may play a dual function by decreasing bone formation, while upregulating bone-resorption.
Full article
(This article belongs to the Special Issue Molecular Mechanisms of Periodontal Disease 2.0)
►
Show Figures
Open AccessArticle
Antibacterial [email protected] Loaded PVA Nanofiber Membrane for Infected Bone Repair
by
, , , , , , , and
Int. J. Mol. Sci. 2022, 23(10), 5629; https://doi.org/10.3390/ijms23105629 (registering DOI) - 18 May 2022
Abstract
Bone substitutes with strong antibacterial properties and bone regeneration effects have an inherent potential in the treatment of severe bone tissue infections, such as osteomyelitis. In this study, vancomycin (Van) was loaded into zeolitic imidazolate framework-8 (ZIF-8) to prepare composite particles, which is
[...] Read more.
Bone substitutes with strong antibacterial properties and bone regeneration effects have an inherent potential in the treatment of severe bone tissue infections, such as osteomyelitis. In this study, vancomycin (Van) was loaded into zeolitic imidazolate framework-8 (ZIF-8) to prepare composite particles, which is abbreviated as [email protected] As a pH-responsive particle, ZIF-8 can be cleaved in the weak acid environment caused by bacterial infection to realize the effective release of drugs. Then, [email protected] was loaded into polyvinyl alcohol (PVA) fiber by electrospinning to prepare PVA/[email protected] composite bone filler. The drug-loading rate of [email protected] was about 6.735%. The membranes exhibited super hydrophilicity, water absorption and pH-controlled Van release behavior. The properties of anti E. coli and S. aureus were studied under the pH conditions of normal physiological tissues and infected tissues (pH 7.4 and pH 6.5, respectively). It was found that the material had good surface antibacterial adhesion and antibacterial property. The PVA/[email protected] membrane had the more prominent bacteria-killing effect compared with the same amount of single antibacterial agent containing membrane such as ZIF-8 or Van loaded PVA, and the antibacterial rate was up to 99%. The electrospun membrane had good biocompatibility and can promote MC3T3-E1 cell spreading on it.
Full article
(This article belongs to the Collection State-of-the-Art Materials Science in China)
►▼
Show Figures

Figure 1
Open AccessCorrection
Correction: Pande et al. Nitric Oxide Signaling and Its Association with Ubiquitin-Mediated Proteasomal Degradation in Plants. Int. J. Mol. Sci. 2022, 23, 1657
by
, , , , , , , and
Int. J. Mol. Sci. 2022, 23(10), 5628; https://doi.org/10.3390/ijms23105628 (registering DOI) - 18 May 2022
Abstract
The authors wish to make the following corrections to the original publication [...]
Full article
(This article belongs to the Special Issue Ubiquitylation in Plant Developmental and Physiological Processes)
►▼
Show Figures

Figure 1
Open AccessArticle
The Cytoskeletal Protein Zyxin Inhibits Retinoic Acid Signaling by Destabilizing the Maternal mRNA of the RXRγ Nuclear Receptor
Int. J. Mol. Sci. 2022, 23(10), 5627; https://doi.org/10.3390/ijms23105627 (registering DOI) - 17 May 2022
Abstract
Zyxin is an LIM-domain-containing protein that regulates the assembly of F-actin filaments in cell contacts. Additionally, as a result of mechanical stress, Zyxin can enter nuclei and regulate gene expression. Previously, we found that Zyxin could affect mRNA stability of the maternally derived
[...] Read more.
Zyxin is an LIM-domain-containing protein that regulates the assembly of F-actin filaments in cell contacts. Additionally, as a result of mechanical stress, Zyxin can enter nuclei and regulate gene expression. Previously, we found that Zyxin could affect mRNA stability of the maternally derived stemness factors of Pou5f3 family in Xenopus laevis embryos through binding to Y-box factor1. In the present work, we demonstrate that Zyxin can also affect mRNA stability of the maternally derived retinoid receptor Rxrγ through the same mechanism. Moreover, we confirmed the functional link between Zyxin and Rxrγ-dependent gene expression. As a result, Zyxin appears to play an essential role in the regulation of the retinoic acid signal pathway during early embryonic development. Besides, our research indicates that the mechanism based on the mRNA destabilization by Zyxin may take part in the control of the expression of a fairly wide range of maternal genes.
Full article
(This article belongs to the Special Issue Molecular Biology of Nuclear Receptors 3.0)
►▼
Show Figures

Graphical abstract
Open AccessReview
Endothelial Dysfunction Induced by Extracellular Neutrophil Traps Plays Important Role in the Occurrence and Treatment of Extracellular Neutrophil Traps-Related Disease
Int. J. Mol. Sci. 2022, 23(10), 5626; https://doi.org/10.3390/ijms23105626 (registering DOI) - 17 May 2022
Abstract
Many articles have demonstrated that extracellular neutrophil traps (NETs) are often described as part of the antibacterial function. However, since the components of NETs are non-specific, excessive NETs usually cause inflammation and tissue damage. Endothelial dysfunction (ED) caused by NETs is the major
[...] Read more.
Many articles have demonstrated that extracellular neutrophil traps (NETs) are often described as part of the antibacterial function. However, since the components of NETs are non-specific, excessive NETs usually cause inflammation and tissue damage. Endothelial dysfunction (ED) caused by NETs is the major focus of tissue damage, which is highly related to many inflammatory diseases. Therefore, this review summarizes the latest advances in the primary and secondary mechanisms between NETs and ED regarding inflammation as a mediator. Moreover, the detailed molecular mechanisms with emphasis on the disadvantages from NETs are elaborated: NETs can use its own enzymes, release particles as damage-associated molecular patterns (DAMPs) and activate the complement system to interact with endothelial cells (ECs), drive ECs damage and eventually aggravate inflammation. In view of the role of NETs-induced ED in different diseases, we also discussed possible molecular mechanisms and the treatments of NETs-related diseases.
Full article
(This article belongs to the Topic Angiology and Endothelial Pathophysiology in Human Diseases)
►▼
Show Figures

Figure 1
Open AccessArticle
First-Void Urine Microbiome in Women with Chlamydia trachomatis Infection
by
, , , , , , , , , and
Int. J. Mol. Sci. 2022, 23(10), 5625; https://doi.org/10.3390/ijms23105625 (registering DOI) - 17 May 2022
Abstract
Background: Chlamydia trachomatis (CT) is the agent of the most common bacterial sexually transmitted infection worldwide. Until now, little information is available about the microbial composition of urine samples during CT urethritis. Therefore, in this study, we characterized the microbiome and metabolome profiles
[...] Read more.
Background: Chlamydia trachomatis (CT) is the agent of the most common bacterial sexually transmitted infection worldwide. Until now, little information is available about the microbial composition of urine samples during CT urethritis. Therefore, in this study, we characterized the microbiome and metabolome profiles of first-void urines in a cohort of women with CT urethral infection attending an STI clinic. Methods: Based on CT positivity by nucleic acid amplification techniques on urine samples, the enrolled women were divided into two groups, i.e., “CT-negative” (n = 21) and “CT-positive” (n = 11). Urine samples were employed for (i) the microbiome profile analysis by means of 16s rRNA gene sequencing and (ii) the metabolome analysis by 1H-NMR. Results: Irrespective of CT infection, the microbiome of first-void urines was mainly dominated by Lactobacillus, L. iners and L. crispatus being the most represented species. CT-positive samples were characterized by reduced microbial biodiversity compared to the controls. Moreover, a significant reduction of the Mycoplasmataceae family—in particular, of the Ureaplasma parvum species—was observed during CT infection. The Chlamydia genus was positively correlated with urine hippurate and lactulose. Conclusions: These data can help elucidate the pathogenesis of chlamydial urogenital infections, as well as to set up innovative diagnostic and therapeutic approaches.
Full article
(This article belongs to the Special Issue Chlamydia trachomatis Pathogenicity and Disease)
Open AccessArticle
Crassolide Induces G2/M Cell Cycle Arrest, Apoptosis, and Autophagy in Human Lung Cancer Cells via ROS-Mediated ER Stress Pathways
by
, , , , , , and
Int. J. Mol. Sci. 2022, 23(10), 5624; https://doi.org/10.3390/ijms23105624 (registering DOI) - 17 May 2022
Abstract
Crassolide, a cembranoid diterpene extracted from the soft coral Lobophytum crissum, has been proven to possess antioxidant and immunomodulatory properties. In the present study, we assessed the anticancer effects of crassolide on human H460 non-small-cell lung cancer (NSCLC) cells. We found that
[...] Read more.
Crassolide, a cembranoid diterpene extracted from the soft coral Lobophytum crissum, has been proven to possess antioxidant and immunomodulatory properties. In the present study, we assessed the anticancer effects of crassolide on human H460 non-small-cell lung cancer (NSCLC) cells. We found that crassolide exerted cytotoxic effects on H460 cancer cells in vitro, inducing G2/M phase arrest and apoptosis. In addition, in H460 cells exposed to crassolide, the expression of the autophagy-related proteins LC3-II and beclin was increased, while the expression of p62 was decreased. Moreover, inhibiting autophagy with chloroquine (CQ) suppressed the crassolide-induced G2/M arrest and apoptosis of H460 cells. Moreover, we also found that crassolide induced endoplasmic reticulum (ER) stress in lung cancer cells by increasing the expression of ER stress marker proteins and that the crassolide-induced G2/M arrest, apoptosis, and autophagy were markedly attenuated by the ER stress inhibitor 4-phenylbutyric acid (4-PBA). Furthermore, we found that crassolide promoted reactive oxygen species (ROS) production by H460 cells and that the ROS inhibitor N-acetylcysteine (NAC) decreased the crassolide-induced ER stress, G2/M arrest, apoptosis, and autophagy. In conclusion, our findings show that crassolide inhibits NSCLC cell malignant biological behaviors for the first time, suggesting that this effect may be mechanistically achieved by inducing G2/M arrest, apoptosis, and autophagy through ROS accumulation, which activates the ER stress pathway. As a result of our findings, we now have a better understanding of the molecular mechanism underlying the anticancer effect of crassolide, and we believe crassolide might be a candidate for targeted cancer therapy.
Full article
(This article belongs to the Special Issue Antitumor Agents from Marine Natural Products)
►▼
Show Figures

Figure 1
Open AccessArticle
miR-22-3p and miR-30e-5p Are Associated with Prognosis in Cervical Squamous Cell Carcinoma
by
, , , , , , , , and
Int. J. Mol. Sci. 2022, 23(10), 5623; https://doi.org/10.3390/ijms23105623 (registering DOI) - 17 May 2022
Abstract
Alteration in expression of miRNAs can cause various malignant changes and the metastatic process. Our aim was to identify the miRNAs involved in cervical squamous cell carcinoma (SqCC) and metastasis, and to test their utility as indicators of metastasis and survival. Using microarray
[...] Read more.
Alteration in expression of miRNAs can cause various malignant changes and the metastatic process. Our aim was to identify the miRNAs involved in cervical squamous cell carcinoma (SqCC) and metastasis, and to test their utility as indicators of metastasis and survival. Using microarray technology, we performed miRNA expression profiling on primary cervical SqCC tissue (n = 6) compared with normal control (NC) tissue and compared SqCC that had (SqC-M; n = 3) and had not (SqC-NM; n = 3) metastasized. Four miRNAs were selected for validation by qRT-PCR on 29 SqC-NM and 27 SqC-M samples, and nine metastatic lesions (ML-SqC), from a total of 56 patients. Correlation of miRNA expression and clinicopathological parameters was analyzed to evaluate the clinical impact of candidate miRNAs. We found 40 miRNAs differentially altered in cervical SqCC tissue: 21 miRNAs were upregulated and 19 were downregulated (≥2-fold, p < 0.05). Eight were differentially altered in SqC-M compared with SqC-NM samples: four were upregulated (miR-494, miR-92a-3p, miR-205-5p, and miR-221-3p), and four were downregulated (miR-574-3p, miR-4769-3p, miR-1281, and miR-1825) (≥1.5-fold, p < 0.05). MiR-22-3p might be a metastamiR, which was gradually further downregulated in SqC-NM > SqC-M > ML-SqC. Downregulation of miR-30e-5p significantly correlated with high stage, lymph node metastasis, and low survival rate, suggesting an independent poor prognostic factor.
Full article
(This article belongs to the Collection Regulation by Non-Coding RNAs)
Open AccessReview
Spinal Cord Injury and Loss of Cortical Inhibition
Int. J. Mol. Sci. 2022, 23(10), 5622; https://doi.org/10.3390/ijms23105622 (registering DOI) - 17 May 2022
Abstract
After spinal cord injury (SCI), the destruction of spinal parenchyma causes permanent deficits in motor functions, which correlates with the severity and location of the lesion. Despite being disconnected from their targets, most cortical motor neurons survive the acute phase of SCI, and
[...] Read more.
After spinal cord injury (SCI), the destruction of spinal parenchyma causes permanent deficits in motor functions, which correlates with the severity and location of the lesion. Despite being disconnected from their targets, most cortical motor neurons survive the acute phase of SCI, and these neurons can therefore be a resource for functional recovery, provided that they are properly reconnected and retuned to a physiological state. However, inappropriate re-integration of cortical neurons or aberrant activity of corticospinal networks may worsen the long-term outcomes of SCI. In this review, we revisit recent studies addressing the relation between cortical disinhibition and functional recovery after SCI. Evidence suggests that cortical disinhibition can be either beneficial or detrimental in a context-dependent manner. A careful examination of clinical data helps to resolve apparent paradoxes and explain the heterogeneity of treatment outcomes. Additionally, evidence gained from SCI animal models indicates probable mechanisms mediating cortical disinhibition. Understanding the mechanisms and dynamics of cortical disinhibition is a prerequisite to improve current interventions through targeted pharmacological and/or rehabilitative interventions following SCI.
Full article
(This article belongs to the Special Issue Modulation of Neuronal Excitability, Synaptic Transmission, and Plasticity in Health and Disease 2.0)
►▼
Show Figures

Figure 1
Open AccessArticle
Chemosensitization of U-87 MG Glioblastoma Cells by Neobavaisoflavone towards Doxorubicin and Etoposide
by
, , , , , and
Int. J. Mol. Sci. 2022, 23(10), 5621; https://doi.org/10.3390/ijms23105621 (registering DOI) - 17 May 2022
Abstract
Glioblastoma (GB) is the most common type of glioma, which is distinguished by high mortality. Due to the rapid progression of the tumor and drug resistance, the treatment is often ineffective. The development of novel therapies in a big part concerns the application
[...] Read more.
Glioblastoma (GB) is the most common type of glioma, which is distinguished by high mortality. Due to the rapid progression of the tumor and drug resistance, the treatment is often ineffective. The development of novel therapies in a big part concerns the application of anti-cancer agents already used in clinical practice, unfortunately often with limited effects. This could be overcome through the use of compounds that possess chemosensitizing properties. In our previous work, it has been shown that neobavaisoflavone (NBIF) enhances the in vitro activity of doxorubicin in GB cells. The aim of this study was a further investigation of the possible chemosensitizing effects of this isoflavone. The experimental panel involving image cytometry techniques, such as count assay, examination of mitochondrial membrane potential, Annexin V assay, and cell cycle analysis, was performed in human glioblastoma U-87 MG cells and normal human astrocytes (NHA) treated with NBIF, doxorubicin, etoposide, and their mixes with NBIF. NBIF in co-treatment with etoposide or doxorubicin caused an increase in the population of apoptotic cells and prompted alterations in the cell cycle. NBIF enhances the pro-apoptotic activity of etoposide and doxorubicin in U-87 MG cells, which could be a sign of the chemosensitizing properties of the isoflavone.
Full article
(This article belongs to the Special Issue Antitumor/Anti-inflammatory Activities of Natural Compounds from Plants 2.0)
►▼
Show Figures

Figure 1
Open AccessEditorial
Molecular Diagnostic and Prognostication Assays for the Subtyping of Urinary Bladder Cancer Are on the Way to Illuminating Our Vision
Int. J. Mol. Sci. 2022, 23(10), 5620; https://doi.org/10.3390/ijms23105620 (registering DOI) - 17 May 2022
Abstract
After the successful publication of three Special Issues devoted to highlighting novel scientific research results in the field of bladder cancer and their clinical implications, we are now directing our efforts towards a fourth edition which will aim at compiling innovative research strategies
[...] Read more.
After the successful publication of three Special Issues devoted to highlighting novel scientific research results in the field of bladder cancer and their clinical implications, we are now directing our efforts towards a fourth edition which will aim at compiling innovative research strategies that will ultimately guide and support clinicians in the decision-making process for targeted bladder cancer therapies [...]
Full article
(This article belongs to the Special Issue Molecular Research on Bladder Cancer)
Open AccessArticle
Characterization of Two Highly Arsenic-Resistant Caulobacteraceae Strains of Brevundimonas nasdae: Discovery of a New Arsenic Resistance Determinant
by
, , , , , and
Int. J. Mol. Sci. 2022, 23(10), 5619; https://doi.org/10.3390/ijms23105619 (registering DOI) - 17 May 2022
Abstract
Arsenic (As), distributed widely in the natural environment, is a toxic substance which can severely impair the normal functions in living cells. Research on the genetic determinants conferring functions in arsenic resistance and metabolism is of great importance for remediating arsenic-contaminated environments. Many
[...] Read more.
Arsenic (As), distributed widely in the natural environment, is a toxic substance which can severely impair the normal functions in living cells. Research on the genetic determinants conferring functions in arsenic resistance and metabolism is of great importance for remediating arsenic-contaminated environments. Many organisms, including bacteria, have developed various strategies to tolerate arsenic, by either detoxifying this harmful element or utilizing it for energy generation. More and more new arsenic resistance (ars) determinants have been identified to be conferring resistance to diverse arsenic compounds and encoded in ars operons. There is a hazard in mobilizing arsenic during gold-mining activities due to gold- and arsenic-bearing minerals coexisting. In this study, we isolated 8 gold enrichment strains from the Zijin gold and copper mine (Longyan, Fujian Province, China) wastewater treatment site soil, at an altitude of 192 m. We identified two Brevundimonas nasdae strains, Au-Bre29 and Au-Bre30, among these eight strains, having a high minimum inhibitory concentration (MIC) for As(III). These two strains contained the same ars operons but displayed differences regarding secretion of extra-polymeric substances (EPS) upon arsenite (As(III)) stress. B. nasdae Au-Bre29 contained one extra plasmid but without harboring any additional ars genes compared to B. nasdae Au-Bre30. We optimized the growth conditions for strains Au-Bre29 and Au-Bre30. Au-Bre30 was able to tolerate both a lower pH and slightly higher concentrations of NaCl. We also identified folE, a folate synthesis gene, in the ars operon of these two strains. In most organisms, folate synthesis begins with a FolE (GTP-Cyclohydrolase I)-type enzyme, and the corresponding gene is typically designated folE (in bacteria) or gch1 (in mammals). Heterologous expression of folE, cloned from B. nasdae Au-Bre30, in the arsenic-hypersensitive strain Escherichia coli AW3110, conferred resistance to As(III), arsenate (As(V)), trivalent roxarsone (Rox(III)), pentavalent roxarsone (Rox(V)), trivalent antimonite (Sb(III)), and pentavalent antimonate (Sb(V)), indicating that folate biosynthesis is a target of arsenite toxicity and increased production of folate confers increased resistance to oxyanions. Genes encoding Acr3 and ArsH were shown to confer resistance to As(III), Rox(III), Sb(III), and Sb(V), and ArsH also conferred resistance to As(V). Acr3 did not confer resistance to As(V) and Rox(V), while ArsH did not confer resistance to Rox(V).
Full article
(This article belongs to the Special Issue Metal Homeostasis and Resistance in Microbes)
►▼
Show Figures

Figure 1
Open AccessCommunication
Biofabrication of Collagen Tissue-Engineered Blood Vessels with Direct Co-Axial Extrusion
Int. J. Mol. Sci. 2022, 23(10), 5618; https://doi.org/10.3390/ijms23105618 - 17 May 2022
Abstract
Cardiovascular diseases are considered one of the worldwide causes of death, with atherosclerosis being the most predominant. Nowadays, the gold standard treatment is blood vessel replacement by bypass surgery; however, autologous source is not always possible. Thereby, tissue-engineered blood vessels (TEBVs) are emerging
[...] Read more.
Cardiovascular diseases are considered one of the worldwide causes of death, with atherosclerosis being the most predominant. Nowadays, the gold standard treatment is blood vessel replacement by bypass surgery; however, autologous source is not always possible. Thereby, tissue-engineered blood vessels (TEBVs) are emerging as a potential alternative source. In terms of composition, collagen has been selected in many occasions to develop TEBVs as it is one of the main extracellular matrix components of arteries. However, it requires specific support or additional processing to maintain the tubular structure and appropriate mechanical properties. Here, we present a method to develop support-free collagen TEBVs with co-axial extrusion in a one-step procedure with high concentrated collagen. The highest concentration of collagen of 20 mg/mL presented a burst pressure of 619.55 ± 48.77 mmHg, being able to withstand perfusion of 10 dynes/cm2. Viability results showed a high percentage of viability (86.1 and 85.8% with 10 and 20 mg/mL, respectively) of human aortic smooth muscle cells (HASMCs) and human umbilical vein endothelial cells (HUVEC) after 24 h extrusion. Additionally, HUVEC and HASMCs were mainly localized in their respective layers, mimicking the native distribution. All in all, this approach allows the direct extrusion of collagen TEBVs in a one-step procedure with enough mechanical properties to be perfused.
Full article
(This article belongs to the Special Issue Biofabrication for Tissue Engineering Applications)
Open AccessArticle
The Association between Single Nucleotide Polymorphisms, including miR-499a Genetic Variants, and Dyslipidemia in Subjects Treated with Pharmacological or Phytochemical Lipid-Lowering Agents
by
, , , , , , , , , , and
Int. J. Mol. Sci. 2022, 23(10), 5617; https://doi.org/10.3390/ijms23105617 - 17 May 2022
Abstract
Disorders of lipoprotein metabolism are among the major risk factors for cardiovascular disease (CVD) development. Single nucleotide polymorphisms (SNPs) have been associated with the individual variability in blood lipid profile and response to lipid-lowering treatments. Here, we genotyped 34 selected SNPs located in
[...] Read more.
Disorders of lipoprotein metabolism are among the major risk factors for cardiovascular disease (CVD) development. Single nucleotide polymorphisms (SNPs) have been associated with the individual variability in blood lipid profile and response to lipid-lowering treatments. Here, we genotyped 34 selected SNPs located in coding genes related to lipid metabolism, inflammation, coagulation, and a polymorphism in the MIR499 gene—a microRNA previously linked to CVD—to evaluate the association with lipid trait in subjects with moderate dyslipidemia not on lipid-lowering treatment (Treatment-naïve (TN) cohort, n = 125) and in patients treated with statins (STAT cohort, n = 302). We also explored the association between SNPs and the effect of a novel phytochemical lipid-lowering treatment in the TN cohort. We found that 6 SNPs (in the MIR499, TNFA, CETP, SOD2, and VEGFA genes) were associated with lipid traits in the TN cohort, while no association was found with the response to twelve-week phytochemical treatment. In the STAT cohort, nine SNPs (in the MIR499, CETP, CYP2C9, IL6, ABCC2, PON1, IL10, and VEGFA genes) were associated with lipid traits, three of which were in common with the TN cohort. Interestingly, in both cohorts, the presence of the rs3746444 MIR499 SNP was associated with a more favorable blood lipid profile. Our findings could add information to better understand the individual genetic variability in maintaining a low atherogenic lipid profile and the response to different lipid-lowering therapies.
Full article
(This article belongs to the Special Issue Molecular Effects of Phytochemicals on Cholesterol Metabolism Genes)
Open AccessArticle
Intestinal Radiation Protection and Mitigation by Second-Generation Probiotic Lactobacillus-reuteri Engineered to Deliver Interleukin-22
by
, , , , , , , , , , , , , , , , , and
Int. J. Mol. Sci. 2022, 23(10), 5616; https://doi.org/10.3390/ijms23105616 - 17 May 2022
Abstract
(1) Background: The systemic administration of therapeutic agents to the intestine including cytokines, such as Interleukin-22 (IL-22), is compromised by damage to the microvasculature 24 hrs after total body irradiation (TBI). At that time, there is significant death of intestinal microvascular endothelial cells
[...] Read more.
(1) Background: The systemic administration of therapeutic agents to the intestine including cytokines, such as Interleukin-22 (IL-22), is compromised by damage to the microvasculature 24 hrs after total body irradiation (TBI). At that time, there is significant death of intestinal microvascular endothelial cells and destruction of the lamina propria, which limits drug delivery through the circulation, thus reducing the capacity of therapeutics to stabilize the numbers of Lgr5+ intestinal crypt stem cells and their progeny, and improve survival. By its direct action on intestinal stem cells and their villus regeneration capacity, IL-22 is both an ionizing irradiation protector and mitigator. (2) Methods: To improve delivery of IL-22 to the irradiated intestine, we gavaged Lactobacillus-reuteri as a platform for the second-generation probiotic Lactobacillus-reuteri-Interleukin-22 (LR-IL-22). (3) Results: There was effective radiation mitigation by gavage of LR-IL-22 at 24 h after intestinal irradiation. Multiple biomarkers of radiation damage to the intestine, immune system and bone marrow were improved by LR-IL-22 compared to the gavage of control LR or intraperitoneal injection of IL-22 protein. (4) Conclusions: Oral administration of LR-IL-22 is an effective protector and mitigator of intestinal irradiation damage.
Full article
(This article belongs to the Special Issue Interleukin 22)
►▼
Show Figures

Figure 1
Open AccessArticle
Unveiling Molecular Mechanisms of Nitric Oxide-Induced Low-Temperature Tolerance in Cucumber by Transcriptome Profiling
by
, , , , , , , and
Int. J. Mol. Sci. 2022, 23(10), 5615; https://doi.org/10.3390/ijms23105615 - 17 May 2022
Abstract
Cucumber (Cucumis sativus L.) is one of the most popular cultivated vegetable crops but it is intrinsically sensitive to cold stress due to its thermophilic nature. To explore the molecular mechanism of plant response to low temperature (LT) and the mitigation effect
[...] Read more.
Cucumber (Cucumis sativus L.) is one of the most popular cultivated vegetable crops but it is intrinsically sensitive to cold stress due to its thermophilic nature. To explore the molecular mechanism of plant response to low temperature (LT) and the mitigation effect of exogenous nitric oxide (NO) on LT stress in cucumber, transcriptome changes in cucumber leaves were compared. The results showed that LT stress regulated the transcript level of genes related to the cell cycle, photosynthesis, flavonoid accumulation, lignin synthesis, active gibberellin (GA), phenylalanine metabolism, phytohormone ethylene and salicylic acid (SA) signaling in cucumber seedlings. Exogenous NO improved the LT tolerance of cucumber as reflected by increased maximum photochemical efficiency (Fv/Fm) and decreased chilling damage index (CI), electrolyte leakage and malondialdehyde (MDA) content, and altered transcript levels of genes related to phenylalanine metabolism, lignin synthesis, plant hormone (SA and ethylene) signal transduction, and cell cycle. In addition, we found four differentially expressed transcription factors (MYB63, WRKY21, HD-ZIP, and b-ZIP) and their target genes such as the light-harvesting complex I chlorophyll a/b binding protein 1 gene (LHCA1), light-harvesting complex II chlorophyll a/b binding protein 1, 3, and 5 genes (LHCB1, LHCB3, and LHCB5), chalcone synthase gene (CSH), ethylene-insensitive protein 3 gene (EIN3), peroxidase, phenylalanine ammonia-lyase gene (PAL), DNA replication licensing factor gene (MCM5 and MCM6), gibberellin 3 beta-dioxygenase gene (GA3ox), and regulatory protein gene (NPRI), which are potentially associated with plant responses to NO and LT stress. Notably, HD-ZIP and b-ZIP specifically responded to exogenous NO under LT stress. Taken together, these results demonstrate that cucumber seedlings respond to LT stress and exogenous NO by modulating the transcription of some key transcription factors and their downstream genes, thereby regulating photosynthesis, lignin synthesis, plant hormone signal transduction, phenylalanine metabolism, cell cycle, and GA synthesis. Our study unveiled potential molecular mechanisms of plant response to LT stress and indicated the possibility of NO application in cucumber production under LT stress, particularly in winter and early spring.
Full article
(This article belongs to the Section Molecular Plant Sciences)
►▼
Show Figures

Figure 1
Open AccessArticle
Specific Local Predictors That Reflect the Tropism of Endometriosis—A Multiple Immunohistochemistry Technique
by
, , , , , , , , , , and
Int. J. Mol. Sci. 2022, 23(10), 5614; https://doi.org/10.3390/ijms23105614 - 17 May 2022
Abstract
Ectopic endometrial epithelium associates a wide spectrum of symptomatology. Their evolution can be influenced by inflammatory and vascular changes, that affect not only the structure and cell proliferation rate, but also symptoms. This prospective study involved tissue samples from surgically treated patients, stained
[...] Read more.
Ectopic endometrial epithelium associates a wide spectrum of symptomatology. Their evolution can be influenced by inflammatory and vascular changes, that affect not only the structure and cell proliferation rate, but also symptoms. This prospective study involved tissue samples from surgically treated patients, stained using classical histotechniques and immunohistochemistry. We assessed ectopic endometrial glands (CK7+, CK20−), adjacent blood vessels (CD34+), estrogen/progesterone hormone receptors (ER+, PR+), inflammatory cells (CD3+, CD20+, CD68+, Tryptase+), rate of inflammatory cells (Ki67+) and oncoproteins (BCL2+, PTEN+, p53+) involved in the development of endometriosis/adenomyosis. A CK7+/CK20− expression profile was present in the ectopic epithelium and differentiated it from digestive metastases. ER+/PR+ were present in all cases analyzed. We found an increased vascularity (CD34+) in the areas with abdominal endometriosis and CD3+−:T-lymphocytes, CD20+−:B-lymphocytes, CD68+:macrophages, and Tryptase+: mastocytes were abundant, especially in cases with adenomyosis as a marker of proinflammatory microenvironment. In addition, we found a significantly higher division index-(Ki67+) in the areas with adenomyosis, and inactivation of tumor suppressor genes-p53+ in areas with neoplastic changes. The inflammatory/vascular/hormonal mechanisms trigger endometriosis progression and neoplastic changes increasing local pain. Furthermore, they may represent future therapeutic targets. Simultaneous-multiple immunohistochemical labelling represents a valuable technique for rapidly detecting cellular features that facilitate comparative analysis of the studied predictors.
Full article
(This article belongs to the Special Issue Molecular and Cellular Advances in Endometriosis Research 2.0)
Open AccessArticle
Fatty Acid Fingerprints and Hyaluronic Acid in Extracellular Vesicles from Proliferating Human Fibroblast-like Synoviocytes
by
, , , , , , , , , , and
Int. J. Mol. Sci. 2022, 23(10), 5613; https://doi.org/10.3390/ijms23105613 (registering DOI) - 17 May 2022
Abstract
Extracellular vesicles (EVs) function as conveyors of fatty acids (FAs) and other bioactive lipids and can modulate the gene expression and behavior of target cells. EV lipid composition influences the fluidity and stability of EV membranes and reflects the availability of lipid mediator
[...] Read more.
Extracellular vesicles (EVs) function as conveyors of fatty acids (FAs) and other bioactive lipids and can modulate the gene expression and behavior of target cells. EV lipid composition influences the fluidity and stability of EV membranes and reflects the availability of lipid mediator precursors. Fibroblast-like synoviocytes (FLSs) secrete EVs that transport hyaluronic acid (HA). FLSs play a central role in inflammation, pannus formation, and cartilage degradation in joint diseases, and EVs have recently emerged as potential mediators of these effects. The aim of the present study was to follow temporal changes in HA and EV secretion by normal FLSs, and to characterize the FA profiles of FLSs and EVs during proliferation. The methods used included nanoparticle tracking analysis, confocal laser scanning microscopy, sandwich-type enzyme-linked sorbent assay, quantitative PCR, and gas chromatography. The expression of hyaluronan synthases 1–3 in FLSs and HA concentrations in conditioned media decreased during cell proliferation. This was associated with elevated proportions of 20:4n-6 and total n-6 polyunsaturated FAs (PUFAs) in high-density cells, reductions in n-3/n-6 PUFA ratios, and up-regulation of cluster of differentiation 44, tumor necrosis factor α, peroxisome proliferator-activated receptor (PPAR)-α, and PPAR-γ. Compared to the parent FLSs, 16:0, 18:0, and 18:1n-9 were enriched in the EV fraction. EV counts decreased during cell growth, and 18:2n-6 in EVs correlated with the cell count. To conclude, FLS proliferation was featured by increased 20:4n-6 proportions and reduced n-3/n-6 PUFA ratios, and FAs with a low degree of unsaturation were selectively transferred from FLSs into EVs. These FA modifications have the potential to affect membrane fluidity, biosynthesis of lipid mediators, and inflammatory processes in joints, and could eventually provide tools for translational studies to counteract cartilage degradation in inflammatory joint diseases.
Full article
(This article belongs to the Special Issue Musculoskeletal Development and Skeletal Pathophysiologies)
Open AccessArticle
Microbial Consortia and Mixed Plastic Waste: Pangenomic Analysis Reveals Potential for Degradation of Multiple Plastic Types via Previously Identified PET Degrading Bacteria
by
, , , , , , and
Int. J. Mol. Sci. 2022, 23(10), 5612; https://doi.org/10.3390/ijms23105612 - 17 May 2022
Abstract
The global utilization of single-use, non-biodegradable plastics, such as bottles made of polyethylene terephthalate (PET), has contributed to catastrophic levels of plastic pollution. Fortunately, microbial communities are adapting to assimilate plastic waste. Previously, our work showed a full consortium of five bacteria capable
[...] Read more.
The global utilization of single-use, non-biodegradable plastics, such as bottles made of polyethylene terephthalate (PET), has contributed to catastrophic levels of plastic pollution. Fortunately, microbial communities are adapting to assimilate plastic waste. Previously, our work showed a full consortium of five bacteria capable of synergistically degrading PET. Using omics approaches, we identified the key genes implicated in PET degradation within the consortium’s pangenome and transcriptome. This analysis led to the discovery of a novel PETase, EstB, which has been observed to hydrolyze the oligomer BHET and the polymer PET. Besides the genes implicated in PET degradation, many other biodegradation genes were discovered. Over 200 plastic and plasticizer degradation-related genes were discovered through the Plastic Microbial Biodegradation Database (PMBD). Diverse carbon source utilization was observed by a microbial community-based assay, which, paired with an abundant number of plastic- and plasticizer-degrading enzymes, indicates a promising possibility for mixed plastic degradation. Using RNAseq differential analysis, several genes were predicted to be involved in PET degradation, including aldehyde dehydrogenases and several classes of hydrolases. Active transcription of PET monomer metabolism was also observed, including the generation of polyhydroxyalkanoate (PHA)/polyhydroxybutyrate (PHB) biopolymers. These results present an exciting opportunity for the bio-recycling of mixed plastic waste with upcycling potential.
Full article
(This article belongs to the Special Issue Biodegradation of Pollutants in the Environment: Omics Approaches)
Open AccessArticle
Piperine Improves Lipid Dysregulation by Modulating Circadian Genes Bmal1 and Clock in HepG2 Cells
Int. J. Mol. Sci. 2022, 23(10), 5611; https://doi.org/10.3390/ijms23105611 (registering DOI) - 17 May 2022
Abstract
Metabolic disorders are closely associated with the dysregulation of circadian rhythms. Many bioactive components with lipid metabolism-regulating effects have been reported to function through circadian clock-related mechanisms. As the main pungent principle of black pepper, piperine (PIP) has been demonstrated to possess anti-obesity
[...] Read more.
Metabolic disorders are closely associated with the dysregulation of circadian rhythms. Many bioactive components with lipid metabolism-regulating effects have been reported to function through circadian clock-related mechanisms. As the main pungent principle of black pepper, piperine (PIP) has been demonstrated to possess anti-obesity bioactivity by affecting hepatic lipid metabolism-related factors. However, whether the circadian clock genes Bmal1 and Clock are involved in the protective effect of PIP against lipid metabolism disorders remains unknown. In this work, oleic acid (OA) induced lipid accumulation in HepG2 cells. The effect of PIP on redox status, mitochondrial functions, and circadian rhythms of core clock genes were evaluated. Results revealed that PIP alleviated circadian desynchrony, ROS overproduction, and mitochondrial dysfunction. A mechanism study showed that PIP could activate the SREBP-1c/PPARγ and AMPK/AKT-mTOR signaling pathways in a Bmal1/Clock-dependent manner in HepG2 cells. These results indicated that Bmal1 and Clock played important roles in the regulating effect of PIP on hepatic lipid homeostasis.
Full article
(This article belongs to the Special Issue Nutritional Biochemistry)
►▼
Show Figures

Graphical abstract

Journal Menu
► ▼ Journal Menu-
- IJMS Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal Browser-
arrow_forward_ios
Forthcoming issue
arrow_forward_ios Current issue - Vol. 23 (2022)
- Vol. 22 (2021)
- Vol. 21 (2020)
- Vol. 20 (2019)
- Vol. 19 (2018)
- Vol. 18 (2017)
- Vol. 17 (2016)
- Vol. 16 (2015)
- Vol. 15 (2014)
- Vol. 14 (2013)
- Vol. 13 (2012)
- Vol. 12 (2011)
- Vol. 11 (2010)
- Vol. 10 (2009)
- Vol. 9 (2008)
- Vol. 8 (2007)
- Vol. 7 (2006)
- Vol. 6 (2005)
- Vol. 5 (2004)
- Vol. 4 (2003)
- Vol. 3 (2002)
- Vol. 2 (2001)
- Vol. 1 (2000)
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Antioxidants, Cells, IJMS
Cellular Redox Homeostasis
Topic Editors: Edward E. Schmidt, Hozumi Motohashi, Anna KippDeadline: 31 May 2022
Topic in
Biomedicines, IJMS
Translation from Microgravity Research to Earth Application
Topic Editors: Daniela Grimm, Ruth HemmersbachDeadline: 30 June 2022
Topic in
Biomolecules, Cancers, Current Oncology, IJMS, Onco
Novel Approaches in Bladder Cancer Treatment
Topic Editors: Roman Blaheta, Beatrice E. BachmeierDeadline: 31 July 2022
Topic in
Biomedicines, CIMB, Diagnostics, IJMS, Reports
Clinical, Translational and Basic Research on Liver Diseases
Topic Editors: Neuman Manuela, Stephen MalnickDeadline: 31 August 2022

Conferences
Special Issues
Special Issue in
IJMS
Risk Factors and Molecular Mechanisms of Gestational Diabetes III
Guest Editor: Vernon W. DolinskyDeadline: 20 May 2022
Special Issue in
IJMS
Redox Modulation: Biological and Therapeutical Implication
Guest Editors: Claudio Santi, Luca SancinetoDeadline: 31 May 2022
Special Issue in
IJMS
Skin Cancer: State-of-the-Art
Guest Editors: Andrzej Mackiewicz, Piotr RutkowskiDeadline: 15 June 2022
Special Issue in
IJMS
Transcriptional Mechanism of Glycosyltransferase Genes Related to Cancer and Diseases
Guest Editor: Takeshi SatoDeadline: 30 June 2022
Topical Collections
Topical Collection in
IJMS
State-of-the-Art Molecular Neurobiology in Poland
Collection Editor: Irena Nalepa
Topical Collection in
IJMS
Proteins and Protein-Ligand Interactions
Collection Editors: Tatyana Karabencheva-Christova, Christo Christov
Topical Collection in
IJMS
Feature Papers in Bioactives and Nutraceuticals
Collection Editor: Maurizio Battino