-
Genome-Wide Associations and Confirmatory Meta-Analyses in Diabetic Retinopathy
-
Molecular Phylogenetic Relationships and Unveiling Novel Genetic Diversity among Slow and Pygmy Lorises, including Resurrection of Xanthonycticebus intermedius
-
Genetic and Genomic Analysis of Cow Mortality in the Israeli Holstein Population
-
The Autism Spectrum: Behavioral, Psychiatric and Genetic Associations
-
Past Connectivity but Recent Inbreeding in Cross River Gorillas Determined Using Whole Genomes from Single Hairs
Journal Description
Genes
Genes
is a peer-reviewed, open access journal of genetics and genomics published monthly online by MDPI. The Spanish Society for Biochemistry and Molecular Biology (SEBBM) is affiliated with Genes and their members receive discounts on the article processing charges.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, MEDLINE, PMC, Embase, PubAg, and other databases.
- Journal Rank: JCR - Q2 (Genetics & Heredity) / CiteScore - Q2 (Genetics)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 16.7 days after submission; acceptance to publication is undertaken in 2.9 days (median values for papers published in this journal in the second half of 2022).
- Recognition of Reviewers: Reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Impact Factor:
4.141 (2021);
5-Year Impact Factor:
4.474 (2021)
Latest Articles
Identification of MicroRNA Expression Profiles Related to the Aggressiveness of Salivary Gland Adenoid Cystic Carcinomas
Genes 2023, 14(6), 1220; https://doi.org/10.3390/genes14061220 (registering DOI) - 02 Jun 2023
Abstract
Adenoid cystic carcinoma (ACC) has been reported as the second most frequent carcinoma of the salivary glands. Few studies have associated the miRNAs expression with ACC aggressiveness. In this study, we evaluated the miRNAs profile of formalin-fixed, paraffin-embedded (FFPE) samples of salivary gland
[...] Read more.
Adenoid cystic carcinoma (ACC) has been reported as the second most frequent carcinoma of the salivary glands. Few studies have associated the miRNAs expression with ACC aggressiveness. In this study, we evaluated the miRNAs profile of formalin-fixed, paraffin-embedded (FFPE) samples of salivary gland ACC patients using the NanoString platform. We studied the miRNA expression levels associated with the solid growth pattern, the more aggressive histologic feature of ACCs, compared with the tubular and cribriform growth patterns. Moreover, the perineural invasion status, a common clinicopathological feature of the disease that is frequently associated with the clinical progression of ACC, was investigated. The miRNAs showing significant differences between the study groups were selected for target prediction and functional enrichment, which included associations with the disease according to dedicated databases. We observed decreased expression of miR-181d, miR-23b, miR-455, miR-154-5p, and miR-409 in the solid growth pattern compared with tubular and cribriform growth patterns. In contrast, miR-29c, miR-140, miR-195, miR-24, miR-143, and miR-21 were overexpressed in patients with perineural invasion. Several target genes of the miRNAs identified have been associated with molecular processes involved in cell proliferation, apoptosis, and tumor progression. Together, these findings allowed the characterization of miRNAs potentially associated with aggressiveness in salivary gland adenoid cystic carcinoma. Our results highlight important new miRNA expression profiles involved in ACC carcinogenesis that could be associated with the aggressive behavior of this tumor type.
Full article
(This article belongs to the Special Issue Bioinformatic Approaches in Cancer)
Open AccessArticle
Evaluation of the Analytical Performance of Oncomine Lung cfDNA Assay for Detection of Plasma EGFR Mutations
Genes 2023, 14(6), 1219; https://doi.org/10.3390/genes14061219 (registering DOI) - 02 Jun 2023
Abstract
Background: The clinical utility of circulating tumor DNA (ctDNA) in the early detection of tumor mutations for targeted therapy and the monitoring of tumor recurrence has been reported. However, the analytical validation of ctDNA assays is required for clinical application. Methods: This study
[...] Read more.
Background: The clinical utility of circulating tumor DNA (ctDNA) in the early detection of tumor mutations for targeted therapy and the monitoring of tumor recurrence has been reported. However, the analytical validation of ctDNA assays is required for clinical application. Methods: This study evaluated the analytical performance of the Oncomine Lung cfDNA Assay compared with the cobas® EGFR Mutation Test v2. The analytical specificity and sensitivity were estimated using commercially pre-certified reference materials. The comparative evaluation of the two assays was carried out using reference materials and plasma derived from patients diagnosed with lung cancer. Results: Using 20 ng of input cell-free DNA (cfDNA), the analytical sensitivities for EGFR mutations with variant allele frequencies (VAFs) of 1% and 0.1% were 100% and 100%, respectively. With VAFs of 1.2% and 0.1% using 20 ng of input cfDNA, seven out of nine different mutations in six driver genes were identified in the Oncomine Lung cfDNA Assay. The two assays showed 100% concordance in 16 plasma samples clinically. Furthermore, various PIK3CA and/or TP53 mutations were identified only in the Oncomine Lung cfDNA Assay. Conclusions: The Oncomine Lung cfDNA Assay can be used to identify plasma EGFR mutations in patients with lung cancer, although further large-scale studies are required to evaluate the analytical validity for other types of aberrations and genes using clinical samples.
Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Open AccessArticle
Development and Application of Real-Time PCR-Based Screening for Identification of Omicron SARS-CoV-2 Variant Sublineages
by
, , , , , , , , , , , and
Genes 2023, 14(6), 1218; https://doi.org/10.3390/genes14061218 (registering DOI) - 02 Jun 2023
Abstract
The Omicron strain is currently the main dominant variant of SARS-CoV-2, with a large number of sublineages. In this article, we present our experience in tracing it in Russia using molecular diagnostic methods. For this purpose, different approaches were used; for example, we
[...] Read more.
The Omicron strain is currently the main dominant variant of SARS-CoV-2, with a large number of sublineages. In this article, we present our experience in tracing it in Russia using molecular diagnostic methods. For this purpose, different approaches were used; for example, we developed multiprimer panels for RT-PCR and Sanger and NGS sequencing methods. For the centralized collection and analysis of samples, the VGARus database was developed, which currently includes more than 300,000 viral sequences.
Full article
(This article belongs to the Special Issue Genomic Epidemiology of SARS-CoV-2)
►▼
Show Figures

Figure 1
Open AccessCase Report
Case Report—An Inherited Loss-of-Function NRXN3 Variant Potentially Causes a Neurodevelopmental Disorder with Autism Consistent with Previously Described 14q24.3-31.1 Deletions
Genes 2023, 14(6), 1217; https://doi.org/10.3390/genes14061217 - 02 Jun 2023
Abstract
Background: Heterozygous, large-scale deletions at 14q24.3-31.1 affecting the neurexin-3 gene have been associated with neurodevelopmental disorders such as autism. Both “de novo” occurrences and inheritance from a healthy parent suggest incomplete penetrance and expressivity, especially in autism spectrum disorder. NRXN3 encodes neurexin-3, a
[...] Read more.
Background: Heterozygous, large-scale deletions at 14q24.3-31.1 affecting the neurexin-3 gene have been associated with neurodevelopmental disorders such as autism. Both “de novo” occurrences and inheritance from a healthy parent suggest incomplete penetrance and expressivity, especially in autism spectrum disorder. NRXN3 encodes neurexin-3, a neuronal cell surface protein involved in cell recognition and adhesion, as well as mediating intracellular signaling. NRXN3 is expressed in two distinct isoforms (alpha and beta) generated by alternative promoters and splicing. MM/Results: Using exome sequencing, we identified a monoallelic frameshift variant c.159_160del (p.Gln54AlafsTer50) in the NRXN3 beta isoform (NM_001272020.2) in a 5-year-old girl with developmental delay, autism spectrum disorder, and behavioral issues. This variant was inherited from her mother, who did not have any medical complaints. Discussion: This is the first detailed report of a loss-of-function variant in NRXN3 causing an identical phenotype, as reported for heterozygous large-scale deletions in the same genomic region, thereby confirming NRXN3 as a novel gene for neurodevelopmental disorders with autism.
Full article
(This article belongs to the Special Issue Genetics of Rare Monogenic Neurodevelopmental Syndromes)
►▼
Show Figures

Figure 1
Open AccessCommunication
Efficient and Specific Generation of MSTN-Edited Hu Sheep Using C-CRISPR
by
, , , , , , , , , , , , and
Genes 2023, 14(6), 1216; https://doi.org/10.3390/genes14061216 - 02 Jun 2023
Abstract
Hu sheep, an indigenous breed in China known for its high fecundity, are being studied to improve their growth and carcass traits. MSTN is a negative regulator of muscle development, and its inactivation results in muscularity. The C-CRISPR system, utilizing multiple neighboring sgRNAs
[...] Read more.
Hu sheep, an indigenous breed in China known for its high fecundity, are being studied to improve their growth and carcass traits. MSTN is a negative regulator of muscle development, and its inactivation results in muscularity. The C-CRISPR system, utilizing multiple neighboring sgRNAs targeting a key exon, has been successfully used to generate genes for complete knockout (KO) monkeys and mice in one step. In this study, the C-CRISPR system was used to generate MSTN-edited Hu sheep; 70 embryos injected with Cas9 mRNA and four sgRNAs targeting exon 3 of sheep MSTN were transferred to 13 recipients. Out of 10 lambs born from five recipients after full-term pregnancies, nine had complete MSTN KO with various mutations. No off-target effects were found. These MSTN-KO Hu sheep showed a double-muscled (DM) phenotype, characterized by a higher body weight at 3 and 4 months old, prominent muscular protrusion, clearly visible intermuscular groves, and muscle hypertrophy. The molecular analysis indicated enhanced AKT and suppressed ERK1/2 signaling in the gluteus muscle of the edited Hu sheep. In conclusion, MSTN complete KO Hu sheep with a DM phenotype were efficiently and specifically generated using C-CRISPR, and the C-CRISPR method is a promising tool for farm animal breeding.
Full article
(This article belongs to the Special Issue Genetic Regulation of Animal Reproduction)
►▼
Show Figures

Figure 1
Open AccessArticle
Identification of Key Genes Regulating Sorghum Mesocotyl Elongation through Transcriptome Analysis
by
, , , , , , , , and
Genes 2023, 14(6), 1215; https://doi.org/10.3390/genes14061215 - 02 Jun 2023
Abstract
Sorghum with longer mesocotyls is beneficialfor improving its deep tolerance, which is important for the seedling rates. Here, we perform transcriptome analysis between four different sorghum lines, with the aim of identifying the key genes regulating sorghum mesocotyl elongation. According to the mesocotyl
[...] Read more.
Sorghum with longer mesocotyls is beneficialfor improving its deep tolerance, which is important for the seedling rates. Here, we perform transcriptome analysis between four different sorghum lines, with the aim of identifying the key genes regulating sorghum mesocotyl elongation. According to the mesocotyl length (ML) data, we constructed four comparison groups for the transcriptome analysis and detected 2705 common DEGs. GO and KEGG enrichment analysis showed that the most common category of DEGs were involved in cell wall, microtubule, cell cycle, phytohormone, and energy metabolism-related pathways. In the cell wall biological processes, the expression of SbEXPA9-1, SbEXPA9-2, SbXTH25, SbXTH8-1, and SbXTH27 are increased in the sorghum lines with long ML. In the plant hormone signaling pathway, five auxin-responsive genes and eight cytokinin/zeatin/abscisic acid/salicylic acid-related genes showed a higher expression level in the long ML sorghum lines. In addition, five ERF genes showed a higher expression level in the sorghum lines with long ML, whereas two ERF genes showed a lower expression level in these lines. Furthermore, the expression levels of these genes were further analyzed using real-time PCR (RT-qPCR), which showed similar results. This work identified the candidate gene regulating ML, which may provide additional evidence to understand the regulatory molecular mechanisms of sorghum mesocotyl elongation.
Full article
(This article belongs to the Special Issue Genetics of Biotic and Abiotic Stress Response in Crops)
►▼
Show Figures

Figure 1
Open AccessArticle
Genetic Determinants of Atherogenic Indexes
by
, , , , , , and
Genes 2023, 14(6), 1214; https://doi.org/10.3390/genes14061214 - 01 Jun 2023
Abstract
Atherogenesis and dyslipidemia increase the risk of cardiovascular disease, which is the leading cause of death in developed countries. While blood lipid levels have been studied as disease predictors, their accuracy in predicting cardiovascular risk is limited due to their high interindividual and
[...] Read more.
Atherogenesis and dyslipidemia increase the risk of cardiovascular disease, which is the leading cause of death in developed countries. While blood lipid levels have been studied as disease predictors, their accuracy in predicting cardiovascular risk is limited due to their high interindividual and interpopulation variability. The lipid ratios, atherogenic index of plasma (AIP = log TG/HDL-C) and the Castelli risk index 2 (CI2 = LDL-C/HDL-C), have been proposed as better predictors of cardiovascular risk, but the genetic variability associated with these ratios has not been investigated. This study aimed to identify genetic associations with these indexes. The study population (n = 426) included males (40%) and females (60%) aged 18–52 years (mean 39 years); the Infinium GSA array was used for genotyping. Regression models were developed using R and PLINK. AIP was associated with variation on APOC3, KCND3, CYBA, CCDC141/TTN, and ARRB1 (p-value < 2.1 × 10−6). The three former were previously associated with blood lipids, while CI2 was associated with variants on DIPK2B, LIPC, and 10q21.3 rs11251177 (p-value 1.1 × 10−7). The latter was previously linked to coronary atherosclerosis and hypertension. KCND3 rs6703437 was associated with both indexes. This study is the first to characterize the potential link between genetic variation and atherogenic indexes, AIP, and CI2, highlighting the relationship between genetic variation and dyslipidemia predictors. These results also contribute to consolidating the genetics of blood lipid and lipid indexes.
Full article
(This article belongs to the Special Issue Genetic Variants in Human Population and Diseases)
►▼
Show Figures

Figure 1
Open AccessArticle
Transcriptome Analysis of Leg Muscles and the Effects of ALOX5 on Proliferation and Differentiation of Myoblasts in Haiyang Yellow Chickens
Genes 2023, 14(6), 1213; https://doi.org/10.3390/genes14061213 - 01 Jun 2023
Abstract
Skeletal muscle growth and development from embryo to adult consists of a series of carefully regulated changes in gene expression. This study aimed to identify candidate genes involved in Haiyang Yellow Chickens’ growth and to understand the regulatory role of the key gene
[...] Read more.
Skeletal muscle growth and development from embryo to adult consists of a series of carefully regulated changes in gene expression. This study aimed to identify candidate genes involved in Haiyang Yellow Chickens’ growth and to understand the regulatory role of the key gene ALOX5 (arachidonate 5-lipoxygenase) in myoblast proliferation and differentiation. In order to search the key candidate genes in the process of muscle growth and development, RNA sequencing was used to compare the transcriptomes of chicken muscle tissues at four developmental stages and to analyze the effects of ALOX5 gene interference and overexpression on myoblast proliferation and differentiation at the cellular level. The results showed that 5743 differentially expressed genes (DEGs) (|fold change| ≥ 2; FDR ≤ 0.05) were detected by pairwise comparison in male chickens. Functional analysis showed that the DEGs were mainly involved in the processes of cell proliferation, growth, and developmental process. Many of the DEGs, such as MYOCD (Myocardin), MUSTN1 (Musculoskeletal Embryonic Nuclear Protein 1), MYOG (MYOGenin), MYOD1 (MYOGenic differentiation 1), FGF8 (fibroblast growth factor 8), FGF9 (fibroblast growth factor 9), and IGF-1 (insulin-like growth factor-1), were related to chicken growth and development. KEGG pathway (Kyoto Encyclopedia of Genes and Genomes pathway) analysis showed that the DEGs were significantly enriched in two pathways related to growth and development: ECM-receptor interaction (Extracellular Matrix) and MAPK signaling pathway (Mitogen-Activated Protein Kinase). With the extension of differentiation time, the expression of the ALOX5 gene showed an increasing trend, and it was found that interference with the ALOX5 gene could inhibit the proliferation and differentiation of myoblasts and that overexpression of the ALOX5 gene could promote the proliferation and differentiation of myoblasts. This study identified a range of genes and several pathways that may be involved in regulating early growth, and it can provide theoretical research for understanding the regulation mechanism of muscle growth and development of Haiyang Yellow Chickens.
Full article
(This article belongs to the Section Animal Genetics and Genomics)
►▼
Show Figures

Figure 1
Open AccessArticle
Profiling of Antimicrobial Resistance Genes and Integron from Escherichia coli Isolates Using Whole Genome Sequencing
by
, , , , , , , and
Genes 2023, 14(6), 1212; https://doi.org/10.3390/genes14061212 - 01 Jun 2023
Abstract
This study is designed to investigate Escherichia coli for the antibiotic resistance genes (ARGs) and integrons from healthy as well as diarrhoeic/diseased animals/birds’ faecal samples. A total of eight samples were selected for the study; from each animal, two samples were taken, one
[...] Read more.
This study is designed to investigate Escherichia coli for the antibiotic resistance genes (ARGs) and integrons from healthy as well as diarrhoeic/diseased animals/birds’ faecal samples. A total of eight samples were selected for the study; from each animal, two samples were taken, one from healthy animals/birds and one from diarrhoeic/diseased animals/birds. Antibiotic sensitivity testing (AST) and whole genome sequencing (WGS) was performed for selected isolates. The E. coli isolates showed resistance to moxifloxacin, followed by erythromycin, ciprofloxacin, pefloxacin, tetracycline, levofloxacin, ampicillin, amoxicillin, and sulfadiazine (4/8, 50.00% each). The E. coli isolates were 100% sensitive to amikacin, followed by chloramphenicol, cefixime, cefoperazone, and cephalothin. A total of 47 ARGs from 12 different antibiotic classes were detected among the eight isolates by WGS. The different classes of antibiotics included aminoglycoside, sulphonamide, tetracycline, trimethoprim, quinolone, fosfomycin, phenicol, macrolide, colistin, fosmidomycin, and multidrug efflux. The class 1 integrons were detected in 6/8 (75.00%) isolates with 14 different gene cassettes.
Full article
(This article belongs to the Special Issue Bioinformatics Study of Bacterial Genomes)
Open AccessArticle
Genome-Wide Assessment of Runs of Homozygosity by Whole-Genome Sequencing in Diverse Horse Breeds Worldwide
Genes 2023, 14(6), 1211; https://doi.org/10.3390/genes14061211 - 01 Jun 2023
Abstract
In the genomes of diploid organisms, runs of homozygosity (ROH), consecutive segments of homozygosity, are extended. ROH can be applied to evaluate the inbreeding situation of individuals without pedigree data and to detect selective signatures via ROH islands. We sequenced and analyzed data
[...] Read more.
In the genomes of diploid organisms, runs of homozygosity (ROH), consecutive segments of homozygosity, are extended. ROH can be applied to evaluate the inbreeding situation of individuals without pedigree data and to detect selective signatures via ROH islands. We sequenced and analyzed data derived from the whole-genome sequencing of 97 horses, investigated the distribution of genome-wide ROH patterns, and calculated ROH-based inbreeding coefficients for 16 representative horse varieties from around the world. Our findings indicated that both ancient and recent inbreeding occurrences had varying degrees of impact on various horse breeds. However, recent inbreeding events were uncommon, particularly among indigenous horse breeds. Consequently, the ROH-based genomic inbreeding coefficient could aid in monitoring the level of inbreeding. Using the Thoroughbred population as a case study, we discovered 24 ROH islands containing 72 candidate genes associated with artificial selection traits. We found that the candidate genes in Thoroughbreds were involved in neurotransmission (CHRNA6, PRKN, and GRM1), muscle development (ADAMTS15 and QKI), positive regulation of heart rate and heart contraction (HEY2 and TRDN), regulation of insulin secretion (CACNA1S, KCNMB2, and KCNMB3), and spermatogenesis (JAM3, PACRG, and SPATA6L). Our findings provide insight into horse breed characteristics and future breeding strategies.
Full article
(This article belongs to the Special Issue Equine Genetics and Genomics)
►▼
Show Figures

Figure 1
Open AccessArticle
PKD1 Nonsense Variant in a Lagotto Romagnolo Family with Polycystic Kidney Disease
by
, , , , and
Genes 2023, 14(6), 1210; https://doi.org/10.3390/genes14061210 - 01 Jun 2023
Abstract
A female Lagotto Romagnolo dog with polycystic kidney disease (PKD) and her progeny, including PKD-affected offspring, were studied. All affected dogs appeared clinically inconspicuous, while sonography revealed the presence of renal cysts. The PKD-affected index female was used for breeding and produced two
[...] Read more.
A female Lagotto Romagnolo dog with polycystic kidney disease (PKD) and her progeny, including PKD-affected offspring, were studied. All affected dogs appeared clinically inconspicuous, while sonography revealed the presence of renal cysts. The PKD-affected index female was used for breeding and produced two litters with six affected offspring of both sexes and seven unaffected offspring. The pedigrees suggested an autosomal dominant mode of inheritance of the trait. A trio whole genome sequencing analysis of the index female and her unaffected parents identified a de novo heterozygous nonsense variant in the coding region of the PKD1 gene. This variant, NM_001006650.1:c.7195G>T, is predicted to truncate 44% of the open reading frame of the wild-type PKD1 protein, NP_001006651.1:p.(Glu2399*). The finding of a de novo variant in an excellent functional candidate gene strongly suggests that the PKD1 nonsense variant caused the observed phenotype in the affected dogs. Perfect co-segregation of the mutant allele with the PKD phenotype in two litters supports the hypothesized causality. To the best of our knowledge, this is the second description of a PKD1-related canine form of autosomal dominant PKD that may serve as an animal model for similar hepatorenal fibrocystic disorders in humans.
Full article
(This article belongs to the Special Issue Companion Animal Genetics and Genomics)
►▼
Show Figures

Figure 1
Open AccessArticle
Associations between Lipid Profiles and Graves’ Orbitopathy can Be HLA-Dependent
by
, , , and
Genes 2023, 14(6), 1209; https://doi.org/10.3390/genes14061209 - 31 May 2023
Abstract
The risk of Graves’ orbitopathy (GO) is related to the human leukocyte antigen (HLA) profile and was demonstrated to be increased in patients with elevated total cholesterol (TC) and/or low-density lipoprotein (LDL) cholesterol. We hypothesized that there were some HLA alleles that were
[...] Read more.
The risk of Graves’ orbitopathy (GO) is related to the human leukocyte antigen (HLA) profile and was demonstrated to be increased in patients with elevated total cholesterol (TC) and/or low-density lipoprotein (LDL) cholesterol. We hypothesized that there were some HLA alleles that were related to both GO and TC and/or LDL levels. Therefore, the aim of the study was to compare the TC/LDL results in patients in whom GO-related HLA alleles were present to those in whom they did not occur. HLA classes were genotyped using a next-generation sequencing method in 118 patients with Graves’ disease (GD), including 63 and 55 patients with and without GO, respectively. Lipid profiles were assessed at the time of the GD diagnosis. A significant correlation between the presence of GO high-risk alleles (HLA-B*37:01 and C*03:02) and higher TC/LDL levels was found. Additionally, the presence of alleles associated with non-GO GD (HLA-C*17:01 and B*08:01), as well as alleles in linkage disequilibrium with B*08:01 (i.e., HLA-DRB1*03:01 and DQB1*02:01), was correlated with lower TC levels. These results further confirm the significance of TC/LDL in the risk of GO development and provide evidence that associations between TC/LDL and GO can be HLA-dependent.
Full article
(This article belongs to the Special Issue Genetics of Complex Human Disease)
Open AccessArticle
Characteristics of Neuroimaging and Behavioural Phenotype in Polish Patients with PIGV-CDG—An Observational Study and Literature Review
Genes 2023, 14(6), 1208; https://doi.org/10.3390/genes14061208 - 31 May 2023
Abstract
Congenital disorders of glycosylation (CDGs) are a wide group of genetic diseases characterised by a severe clinical spectrum, consisting of developmental delays, dysmorphisms, and neurological deficits. Mutations in the PIGV gene lead to a disorder called hyperphosphatasia with impaired intellectual development syndrome 1
[...] Read more.
Congenital disorders of glycosylation (CDGs) are a wide group of genetic diseases characterised by a severe clinical spectrum, consisting of developmental delays, dysmorphisms, and neurological deficits. Mutations in the PIGV gene lead to a disorder called hyperphosphatasia with impaired intellectual development syndrome 1 (HPMRS1), distinct from other CDGs in terms of hyperphosphatemia related to abnormal ALP activity and brachytelephalangy. This article discusses the phenotype of six Polish patients with HPMRS1 with a special focus on behavioural and imaging features, which were not addressed in 26 previously reported cases. The medical records of six patients aged 6 to 22 years were collected and analysed. In all cases, the same PIGV homozygotic mutation (c.1022C>A; p.Ala341Glu) was found, although the patients presented a diverse spectrum of neurological and developmental disorders, concerning in most cases the muscular tonus and general developmental delay. The most prevalent dysmorphic features included hypertelorism, high palate, and finger anomalies, whereas other characteristics present in all previously described cases, such as a short, broad nose and brachytelephalangy, were less frequently observed. Similarly to previous reports, the magnetic resonance (MR) and computed tomography (CT) head scans returned varied results, including physiological and pathological brain images in equal measure, the latter of which consisted of cortical atrophy, delayed myelination, hydrocephalus, and hypoplastic corpus callosum. Each patient exhibited symptoms characteristic of autism spectrum disorders, especially in terms of attention deficits, as well as controlling and expressing emotions. The most common type of sensory processing disorder was over-responsivity. Despite the low prevalence of HPMRS1, the patients reported in the literature presented a rather uniform phenotype, which does not correspond with the one found in each individual of the studied group. Behavioural disorders and sensory impairment require additional care and awareness considering the global developmental delay often observed in these patients.
Full article
(This article belongs to the Special Issue Genetic Diversity - Recent Advances and Applications in Inherited Metabolic Diseases)
►▼
Show Figures

Figure 1
Open AccessArticle
The Mouse CircGHR Regulates Proliferation, Differentiation and Apoptosis of Hepatocytes and Myoblasts
Genes 2023, 14(6), 1207; https://doi.org/10.3390/genes14061207 - 31 May 2023
Abstract
The anterior pituitary gland of animals secretes growth hormone (GH) to bind to the growth hormone receptor (GHR) on the liver cell membrane through the blood circulation, thereby promoting the downstream gene insulin-like growth factor-1 (IGF1) expression, which is the canonical GH–GHR–IGF1 signaling
[...] Read more.
The anterior pituitary gland of animals secretes growth hormone (GH) to bind to the growth hormone receptor (GHR) on the liver cell membrane through the blood circulation, thereby promoting the downstream gene insulin-like growth factor-1 (IGF1) expression, which is the canonical GH–GHR–IGF1 signaling pathway. Therefore, the amount of GHR and the integrity of its structure will affect animal growth and development. In the previous study, we found that the mouse GHR gene can transcribe a circular transcript named circGHR. Our group cloned the full-length of the mouse circGHR and analyzed its spatiotemporal expression profile. In this study, we further predicted the open reading frame of circGHR with bioinformatics, subsequently constructed a Flag-tagged protein vector and preliminarily verified its coding potential with western blot. Additionally, we found that circGHR could inhibit the proliferation of NCTC469 cells and has a tendency to inhibit cell apoptosis, while for C2C12 cells, it showed a tendency to inhibit cell proliferation and promote its differentiation. Overall, these results suggested that the mouse circGHR had the potential to encode proteins and affect cell proliferation, differentiation and apoptosis.
Full article
(This article belongs to the Section Molecular Genetics and Genomics)
►▼
Show Figures

Figure 1
Open AccessArticle
Regulatory Mechanisms of ArAux/IAA13 and ArAux/IAA16 in the Rooting Process of Acer rubrum
Genes 2023, 14(6), 1206; https://doi.org/10.3390/genes14061206 - 31 May 2023
Abstract
Acer rubrum is difficult to root during cutting propagation. Auxin/indole-acetic acids (Aux/IAA) proteins, which are encoded by the early response genes of auxin, are transcriptional repressors that play important roles in auxin-mediated root growth and development. In this study, ArAux/IAA13 and
[...] Read more.
Acer rubrum is difficult to root during cutting propagation. Auxin/indole-acetic acids (Aux/IAA) proteins, which are encoded by the early response genes of auxin, are transcriptional repressors that play important roles in auxin-mediated root growth and development. In this study, ArAux/IAA13 and ArAux/IAA16, which were significantly differentially expressed after 300 mg/L indole butyric acid treatment, were cloned. Heatmap analysis revealed that they might be associated with the process of adventitious root (AR) growth and development mediated by auxin. Subcellular localization analysis showed that they performed their function in the nucleus. Bimolecular fluorescence complementation assays revealed the interactions between them and two auxin response factor (ARF) proteins, ArARF10 and ArARF18, confirming their relevance to AR growth and development. Overexpression of transgenic plants confirmed that the overexpression of ArAux/IAA13 and ArAux/IAA16 inhibited AR development. These results help elucidate the mechanisms of auxin-mediated AR growth and development during the propagation of A. rubrum and provide a molecular basis for the rooting of cuttings.
Full article
(This article belongs to the Section Plant Genetics and Genomics)
►▼
Show Figures

Figure 1
Open AccessArticle
Characterization and Phylogenetic Analysis of the Complete Mitochondrial Genome of Aythya marila
by
, , , , , , and
Genes 2023, 14(6), 1205; https://doi.org/10.3390/genes14061205 - 31 May 2023
Abstract
Aythya marila is a large diving duck belonging to the family Anatidae. However, the phylogenetic relationship among these Aythya species remains unclear due to the presence of extensive interspecific hybridization events within the Aythya genus. Here, we sequenced and annotated the complete mitochondrial
[...] Read more.
Aythya marila is a large diving duck belonging to the family Anatidae. However, the phylogenetic relationship among these Aythya species remains unclear due to the presence of extensive interspecific hybridization events within the Aythya genus. Here, we sequenced and annotated the complete mitochondrial genome of A. marila, which contained 22 tRNAs, 13 protein-coding genes (PCGs), 2 ribosomal RNAs, and 1 D-loop, with a length of 16,617 bp. The sizes of the PCGs ranged from 297 to 1824 bp and were all, except for ND6, located on the heavy chain (H). ATG and TAA were the most common start and termination codons of the 13 PCGs, respectively. The fastest- and slowest-evolving genes were ATP8 and COI, respectively. Codon usage analysis indicated that CUA, AUC, GCC, UUC, CUC, and ACC were the six most frequent codons. The nucleotide diversity values indicated a high level of genetic diversity in A. marila. FST analysis suggested a widespread gene exchange between A. baeri and A. nyroca. Moreover, phylogenetic reconstructions using the mitochondrial genomes of all available Anatidae species showed that, in addition to A. marila, four major clades among the Anatidae (Dendrocygninae, Oxyurinae, Anserinae, and Anatinae) were closely related to A. fuligula. Overall, this study provides valuable information on the evolution of A. marila and new insights into the phylogeny of Anatidae.
Full article
(This article belongs to the Section Animal Genetics and Genomics)
►▼
Show Figures

Figure 1
Open AccessCase Report
Digenic Congenital Hypogonadotropic Hypogonadism Due to Heterozygous GNRH1 p.R31C and AMHR2 p.G445_L453del Variants
Genes 2023, 14(6), 1204; https://doi.org/10.3390/genes14061204 - 31 May 2023
Abstract
A 28-year-old man with congenital hypogonadotropic hypogonadism (CHH) was found to be heterozygous for the GNRH1 p.R31C mutation, reported in the literature as pathogenic and dominant. The same mutation was found in his son at birth, but the testing of the infant at
[...] Read more.
A 28-year-old man with congenital hypogonadotropic hypogonadism (CHH) was found to be heterozygous for the GNRH1 p.R31C mutation, reported in the literature as pathogenic and dominant. The same mutation was found in his son at birth, but the testing of the infant at 64 days confirmed the hormonal changes associated with minipuberty. This led to further genetic sequencing of the patient and his son, which found a second variant, AMHR2 p.G445_L453del, in the heterozygous form, reported as pathogenic in the patient but not in his son. This suggests a digenic cause of the patient’s CHH. Together, these mutations are postulated to contribute to CHH by the lack of anti-Müllerian hormone (AMH) signalling, leading to the impaired migration of gonadotrophin releasing hormone (GnRH) neurons, the lack of the AMH effect on GnRH secretion, and altered GnRH decapeptide with reduced binding to GnRH receptors. This led us to the conclusion that the observed GNRH1 mutation in the heterozygous state is not certain to be dominant or, at least, exhibits incomplete penetrance and variable expressivity. This report also emphasises the opportunity afforded by the time window of minipuberty in assessing the inherited genetic disorders of hypothalamic function.
Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
►▼
Show Figures

Figure 1
Open AccessSystematic Review
Diagnostic Yield of Exome Sequencing in Fetuses with Sonographic Features of Skeletal Dysplasias but Normal Karyotype or Chromosomal Microarray Analysis: A Systematic Review
by
, , , , , and
Genes 2023, 14(6), 1203; https://doi.org/10.3390/genes14061203 - 30 May 2023
Abstract
Skeletal dysplasias are a group of diseases characterized by bone and joint abnormalities, which can be detected during prenatal ultrasound. Next-generation sequencing has rapidly revolutionized molecular diagnostic approaches in fetuses with structural anomalies. This review studies the additional diagnostic yield of prenatal exome
[...] Read more.
Skeletal dysplasias are a group of diseases characterized by bone and joint abnormalities, which can be detected during prenatal ultrasound. Next-generation sequencing has rapidly revolutionized molecular diagnostic approaches in fetuses with structural anomalies. This review studies the additional diagnostic yield of prenatal exome sequencing in fetuses with prenatal sonographic features of skeletal dysplasias. This was a systematic review by searching PubMed for studies published between 2013 and July 2022 that identified the diagnostic yield of exome sequencing after normal karyotype or chromosomal microarray analysis (CMA) for cases with suspected fetal skeletal dysplasias based on prenatal ultrasound. We identified 10 out of 85 studies representing 226 fetuses. The pooled additional diagnostic yield was 69.0%. The majority of the molecular diagnoses involved de novo variants (72%), while 8.7% of cases were due to inherited variants. The incremental diagnostic yield of exome sequencing over CMA was 67.4% for isolated short long bones and 77.2% for non-isolated cases. Among phenotypic subgroup analyses, features with the highest additional diagnostic yield were an abnormal skull (83.3%) and a small chest (82.5%). Prenatal exome sequencing should be considered for cases with suspected fetal skeletal dysplasias with or without a negative karyotype or CMA results. Certain sonographic features, including an abnormal skull and small chest, may indicate a potentially higher diagnostic yield.
Full article
(This article belongs to the Special Issue Novel Insights into Prenatal Genetic Testing)
►▼
Show Figures

Figure 1
Open AccessReview
The Potential Role of Epigenetic Modifications on Different Facets in the Periodontal Pathogenesis
by
, , , , and
Genes 2023, 14(6), 1202; https://doi.org/10.3390/genes14061202 - 30 May 2023
Abstract
Periodontitis is a chronic inflammatory disease that affects the supporting structures of teeth. In the literature, the association between the pathogenicity of bacteria and environmental factors in this regard have been extensively examined. In the present study, we will shed light on the
[...] Read more.
Periodontitis is a chronic inflammatory disease that affects the supporting structures of teeth. In the literature, the association between the pathogenicity of bacteria and environmental factors in this regard have been extensively examined. In the present study, we will shed light on the potential role that epigenetic change can play on different facets of its process, more particularly the modifications concerning the genes involved in inflammation, defense, and immune systems. Since the 1960s, the role of genetic variants in the onset and severity of periodontal disease has been widely demonstrated. These make some people more susceptible to developing it than others. It has been documented that the wide variation in its frequency for various racial and ethnic populations is due primarily to the complex interplay among genetic factors with those affecting the environment and the demography. In molecular biology, epigenetic modifications are defined as any change in the promoter for the CpG islands, in the structure of the histone protein, as well as post-translational regulation by microRNAs (miRNAs), being known to contribute to the alteration in gene expression for complex multifactorial diseases such as periodontitis. The key role of epigenetic modification is to understand the mechanism involved in the gene-environment interaction, and the development of periodontitis is now the subject of more and more studies that attempt to identify which factors are stimulating it, but also affect the reduced response to therapy.
Full article
(This article belongs to the Section Molecular Genetics and Genomics)
►▼
Show Figures

Figure 1
Open AccessReview
Prediction of Tumor Development and Urine-Based Liquid Biopsy for Molecule-Targeted Therapy of Gliomas
Genes 2023, 14(6), 1201; https://doi.org/10.3390/genes14061201 - 30 May 2023
Abstract
The timing of the acquisition of tumor-specific gene mutations and the systems by which these gene mutations are acquired during tumorigenesis were clarified. Advances in our understanding of tumorigenesis are being made every day, and therapies targeting fundamental genetic alterations have great potential
[...] Read more.
The timing of the acquisition of tumor-specific gene mutations and the systems by which these gene mutations are acquired during tumorigenesis were clarified. Advances in our understanding of tumorigenesis are being made every day, and therapies targeting fundamental genetic alterations have great potential for cancer treatment. Moreover, our research team successfully estimated tumor progression using mathematical modeling and attempted early diagnosis of brain tumors. We developed a nanodevice that enables urinary genetic diagnosis in a simple and noninvasive manner. Mainly on the basis of our research and experience, this review article presents novel therapies being developed for central nervous system cancers and six molecules, which upon mutation cause tumorigenesis and tumor progression. Further understanding of the genetic characteristics of brain tumors will lead to the development of precise drugs and improve individual treatment outcomes.
Full article
(This article belongs to the Special Issue Molecular Oncology–Unmask the True Nature of Cancer 2023)
►▼
Show Figures

Figure 1

Journal Menu
► ▼ Journal Menu-
- Genes Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Biomedicines, Cells, CIMB, Diagnostics, Genes, IJMS, IJTM
Animal Models of Human Disease
Topic Editors: Sigrun Lange, Jameel M. InalDeadline: 15 June 2023
Topic in
Diversity, Ecologies, Plants, Genes, Sustainability
Diversity, Ecology, and Genetics of Invasive Plants
Topic Editors: Jordi López-Pujol, Neus Nualart, Roser Vilatersana, Ileana HerreraDeadline: 30 June 2023
Topic in
Biomolecules, Cells, Genes, IJMS, AI
Systems Biology and Network Medicine: From Bench to Bedside
Topic Editors: Mauro Fasano, Marta LualdiDeadline: 31 July 2023
Topic in
Genes, IJERPH, Life, Vaccines, Viruses
Transmission Clusters and Containment Measures in Global Different Regions during COVID-19 Pandemic
Topic Editors: Dimitrios Paraskevis, Maja StanojevicDeadline: 31 August 2023

Conferences
Special Issues
Special Issue in
Genes
Genetic Mechanisms Involved in Microbial Stress Responses
Guest Editor: Jose María RequenaDeadline: 10 June 2023
Special Issue in
Genes
Microbiome Analysis Techniques and Discovery
Guest Editor: Christopher E. MasonDeadline: 25 June 2023
Special Issue in
Genes
Head and Neck Genetics
Guest Editor: Christos YapijakisDeadline: 15 July 2023
Special Issue in
Genes
Mechanisms of Transgenerational Epigenetic Inheritance
Guest Editor: Chunxia ZhangDeadline: 20 July 2023
Topical Collections
Topical Collection in
Genes
Study on Genotypes and Phenotypes of Pediatric Clinical Rare Diseases
Collection Editors: Livia Garavelli, Stefano Giuseppe Caraffi
Topical Collection in
Genes
Eukaryotic Non-coding RNAs: Diversity, Structure/Function, Implication in Cardiovascular Disease
Collection Editors: Morten Andre Høydal, Christiane Branlant
Topical Collection in
Genes
Feature Papers in Animal Genetics and Genomics
Collection Editor: Antonio Figueras