-
Head to Head Study of Developmental Neurotoxicity and ASD-like Phenotype in Rats: Alpha-HBCDD versus Valproic Acid
-
Exposure to Endocrine Disrupting Chemicals in Canada: Population-Based Estimates of Disease Burden and Economic Costs
-
Neuronal and Astrocytic Morphological Alterations Driven by Prolonged Exposure with Δ9-Tetrahydrocannabinol but Not Cannabidiol
-
MPTP-Treated Zebrafish Recapitulate ‘Late-Stage’ Parkinson’s-like Cognitive Decline
-
Personal Exposure to BC, PM and Nitrogen Dioxide in the Paris Region Measured by Portable Sensors Worn by Volunteers
Journal Description
Toxics
Toxics
is an international, peer-reviewed, open access journal on all aspects of the toxic chemicals and materials, published monthly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, PMC, Embase, CAPlus / SciFinder, AGRIS, and many other databases.
- Journal Rank: JCR - Q2 (Toxicology) / CiteScore - Q1 (Chemical Health and Safety)
- Rapid Publication: manuscripts are peer-reviewed and a first decision provided to authors approximately 17.8 days after submission; acceptance to publication is undertaken in 3.4 days (median values for papers published in this journal in the second half of 2021).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Impact Factor:
4.146 (2020)
;
5-Year Impact Factor:
4.816 (2020)
Latest Articles
Adverse Effects of Perfluorooctane Sulfonate on the Liver and Relevant Mechanisms
Toxics 2022, 10(5), 265; https://doi.org/10.3390/toxics10050265 (registering DOI) - 19 May 2022
Abstract
Perfluorooctane sulfonate (PFOS) is a persistent, widely present organic pollutant. PFOS can enter the human body through drinking water, ingestion of food, contact with utensils containing PFOS, and occupational exposure to PFOS, and can have adverse effects on human health. Increasing research shows
[...] Read more.
Perfluorooctane sulfonate (PFOS) is a persistent, widely present organic pollutant. PFOS can enter the human body through drinking water, ingestion of food, contact with utensils containing PFOS, and occupational exposure to PFOS, and can have adverse effects on human health. Increasing research shows that the liver is the major target of PFOS, and that PFOS can damage liver tissue and disrupt its function; however, the exact mechanisms remain unclear. In this study, we reviewed the adverse effects of PFOS on liver tissue and cells, as well as on liver function, to provide a reference for subsequent studies related to the toxicity of PFOS and liver injury caused by PFOS.
Full article
(This article belongs to the Topic Hazard Assessment of Endocrine Disrupting Chemicals)
►
Show Figures
Open AccessArticle
Simulating PM2.5 Concentrations during New Year in Cuenca, Ecuador: Effects of Advancing the Time of Burning Activities
Toxics 2022, 10(5), 264; https://doi.org/10.3390/toxics10050264 (registering DOI) - 19 May 2022
Abstract
Fine particulate matter (PM2.5) is dangerous to human health. At midnight on 31 December, in Ecuadorian cities, people burn puppets and fireworks, emitting high amounts of PM2.5. On 1 January 2022, concentrations between 27.3 and 40.6 µg m−3
[...] Read more.
Fine particulate matter (PM2.5) is dangerous to human health. At midnight on 31 December, in Ecuadorian cities, people burn puppets and fireworks, emitting high amounts of PM2.5. On 1 January 2022, concentrations between 27.3 and 40.6 µg m−3 (maximum mean over 24 h) were measured in Cuenca, an Andean city located in southern Ecuador; these are higher than 15 µg m−3, the current World Health Organization guideline. We estimated the corresponding PM2.5 emissions and used them as an input to the Weather Research and Forecasting with Chemistry (WRF-Chem 3.2) model to simulate the change in PM2.5 concentrations, assuming these emissions started at 18:00 LT or 21:00 LT on 31 December 2021. On average, PM2.5 concentrations decreased by 51.4% and 33.2%. Similar modeling exercises were completed for 2016 to 2021, providing mean decreases between 21.4% and 61.0% if emissions started at 18:00 LT. Lower mean reductions, between 2.3% and 40.7%, or even local increases, were computed for emissions beginning at 21:00 LT. Reductions occurred through better atmospheric conditions to disperse PM2.5 compared to midnight. Advancing the burning time can help reduce the health effects of PM2.5 emissions on 31 December.
Full article
(This article belongs to the Special Issue Sources, Atmospheric Transformation and Dispersion of Aerosol Particles)
►▼
Show Figures

Figure 1
Open AccessArticle
Insights into the Endocrine Disrupting Activity of Emerging Non-Phthalate Alternate Plasticizers against Thyroid Hormone Receptor: A Structural Perspective
Toxics 2022, 10(5), 263; https://doi.org/10.3390/toxics10050263 (registering DOI) - 19 May 2022
Abstract
Many endocrine-disrupting chemicals (EDCs) have a ubiquitous presence in our environment due to anthropogenic activity. These EDCs can disrupt hormone signaling in the human and animal body systems including the very important hypothalamic-pituitary-thyroid (HPT) axis causing adverse health effects. Thyroxine (T4) and triiodothyronine
[...] Read more.
Many endocrine-disrupting chemicals (EDCs) have a ubiquitous presence in our environment due to anthropogenic activity. These EDCs can disrupt hormone signaling in the human and animal body systems including the very important hypothalamic-pituitary-thyroid (HPT) axis causing adverse health effects. Thyroxine (T4) and triiodothyronine (T3) are hormones of the HPT axis which are essential for regulation of metabolism, heart rate, body temperature, growth, development, etc. In this study, potential endocrine-disrupting activity of the most common phthalate plasticizer, DEHP, and emerging non-phthalate alternate plasticizers, DINCH, ATBC, and DEHA against thyroid hormone receptor (TRα) were characterized. The structural binding characterization of indicated ligands was performed against the TRα ligand binding site employing Schrodinger’s induced fit docking (IFD) approach. The molecular simulations of interactions of the ligands against the residues lining a TRα binding pocket, including bonding interactions, binding energy, docking score, and IFD score were analyzed. In addition, the structural binding characterization of TRα native ligand, T3, was also done for comparative analysis. The results revealed that all ligands were placed stably in the TRα ligand-binding pocket. The binding energy values were highest for DINCH, followed by ATBC, and were higher than the values estimated for TRα native ligand, T3, whereas the values for DEHA and DEHP were similar and comparable to that of T3. This study suggested that all the indicated plasticizers have the potential for thyroid hormone disruption with two alternate plasticizers, DINCH and ATBC, exhibiting higher potential for thyroid dysfunction compared to DEHA and DEHP.
Full article
(This article belongs to the Topic Hazard Assessment of Endocrine Disrupting Chemicals)
►▼
Show Figures

Figure 1
Open AccessSystematic Review
Impacts of Cigarette Smoke (CS) on Muscle Derangement in Rodents—A Systematic Review
by
, , , , and
Toxics 2022, 10(5), 262; https://doi.org/10.3390/toxics10050262 - 18 May 2022
Abstract
Cigarette smoke (CS) is the major risk factor for chronic obstructive pulmonary disease (COPD) and can induce systemic manifestations, such as skeletal muscle derangement. However, inconsistent findings of muscle derangement were reported in previous studies. The aim of the present study was to
[...] Read more.
Cigarette smoke (CS) is the major risk factor for chronic obstructive pulmonary disease (COPD) and can induce systemic manifestations, such as skeletal muscle derangement. However, inconsistent findings of muscle derangement were reported in previous studies. The aim of the present study was to consolidate the available evidence and assess the impact of CS on muscle derangement in rodents. A comprehensive literature search of five electronic databases identified ten articles for final analysis. Results showed that the diaphragm, rectus femoris, soleus, and gastrocnemius exhibited significant oxidative to glycolytic fiber conversions upon CS exposure. In contrast, the extensor digitorum longus (EDL), plantaris, and tibialis did not exhibit a similar fiber-type conversion after CS exposure. Hindlimb muscles, including the quadriceps, soleus, gastrocnemius, and EDL, showed significant reductions in the CSA of the muscle fibers in the CS group when compared to the control group. Changes in inflammatory cytokines, exercise capacity, and functional outcomes induced by CS have also been evaluated. CS could induce a shift from oxidative fibers to glycolytic fibers in high-oxidative muscles such as the diaphragm, rectus femoris, and soleus, and cause muscle atrophy, as reflected by a reduction in the CSA of hindlimb muscles such as the quadriceps, soleus, gastrocnemius, and EDL.
Full article
(This article belongs to the Section Exposome)
►▼
Show Figures

Figure 1
Open AccessEditorial
Statistical Assessment, Modeling, and Mitigation of Water and Soil Pollution
by
and
Toxics 2022, 10(5), 261; https://doi.org/10.3390/toxics10050261 - 18 May 2022
Abstract
Nowadays, ambient air pollution levels and trends have become a topic of interest worldwide because primary atmospheric pollutants (APPs) are risk factors for the population and ecosystems [...]
Full article
(This article belongs to the Special Issue Statistical Assessment, Modeling, and Mitigation of Water and Soil Pollution)
Open AccessArticle
Impact of Particle Size on Toxicity, Tissue Distribution and Excretion Kinetics of Subchronic Intratracheal Instilled Silver Nanoparticles in Mice
by
, , , , , and
Toxics 2022, 10(5), 260; https://doi.org/10.3390/toxics10050260 (registering DOI) - 18 May 2022
Abstract
The unique physicochemical properties of silver nanoparticles (AgNPs) make them useful in a wide range of sectors, increasing their propensity for human exposure, as well as the need for thorough toxicological assessment. The biodistribution of silver, hematological parameters and GSH/GSSG levels in the
[...] Read more.
The unique physicochemical properties of silver nanoparticles (AgNPs) make them useful in a wide range of sectors, increasing their propensity for human exposure, as well as the need for thorough toxicological assessment. The biodistribution of silver, hematological parameters and GSH/GSSG levels in the lung and liver were studied in mice that were intratracheally instilled with AgNP (5 and 50 nm) and AgNO3 once a week for 5 weeks, followed by a recovery period of up to 28 days (dpi). Data was gathered to build a PBPK model after the entry of AgNPs into the lungs. AgNPs could be absorbed into the blood and might cross the physiological barriers and be distributed extensively in mice. Similar to AgNO3, AgNP5 induced longer-lasting toxicity toward blood cells and increased GSH levels in the lung. The exposure to AgNP50 increased the GSH from 1 dpi onward in the liver and silver was distributed to the organs after exposure, but its concentration decreased over time. In AgNP5 treated mice, silver levels were highest in the spleen, kidney, liver and blood, persisting for at least 28 days, suggesting accumulation. The major route for excretion seemed to be through the urine, despite a high concentration of AgNP5 also being found in feces. The modeled silver concentration was in line with the in vivo data for the heart and liver.
Full article
(This article belongs to the Special Issue Impacts of Nanomaterials in the Environment)
►▼
Show Figures

Figure 1
Open AccessFeature PaperArticle
Multi-Component Passivators Regulate Heavy Metal Accumulation in Paddy Soil and Rice: A Three-Site Field Experiment in South China
by
, , , , , , , and
Toxics 2022, 10(5), 259; https://doi.org/10.3390/toxics10050259 - 18 May 2022
Abstract
To fulfill sustainability principles, a three-site field experiment was conducted to screen suitably mixed passivators from lime + biochar (L + C, 9000 kgha−1 with a rate of 1:1) and lime + biochar + sepiolite (L + C + S, 9000 kg
[...] Read more.
To fulfill sustainability principles, a three-site field experiment was conducted to screen suitably mixed passivators from lime + biochar (L + C, 9000 kgha−1 with a rate of 1:1) and lime + biochar + sepiolite (L + C + S, 9000 kg ha−1 with a rate of 1:1:1), in Yuecheng (YC), Zhuji (ZJ), and Fuyang (FY), where there are typical contaminated soils, in South China. Treated with passivators in soil, DTPA-extractable Cd, Crand Pb in soil were decreased by 9.87–26.3%, 37.2–67.5%, and 19.0–54.2%, respectively; Cd, Cr, and Pb in rice were decreased by 85.9–91.5%, 40.0–76.5%, and 16.4–45.4%, respectively; and these were followed by slightly higher efficacy of L + C + S than L + C. The differences between L + C and L + C + S mainly lie in soil microbial communities, enzymes, and fertility. In YC, treatment with L + C + S increased microbial carbon and activities of urease (EC3.5.1.5) and phosphatase (EC3.1.3.1) by 21.0%, 85.5%, and 22.3%; while treatment with L + C decreased microbial carbon and activities of phosphatase and sucrose (EC3.2.1.26) by 1.31%, 34.9%, and 43.4%, respectively. Moreover, the treatment of FY soils with L + C + S increased microbial carbon and activities of urease, phosphatase, and sucrase by 35.4%, 41.6%, 27.9%, and 7.37%; and L + C treatment only increased the microbial carbon and the activity of phosphatase by 3.14% and 30.3%, respectively. Furthermore, the organic matter and available nitrogen were also increased by 8.8–19.0% and 7.4–14.6% with L + C + S treatments, respectively. These suggested that the combination of L + C + S stimulated the growth of soil microbial communities and increased the activity of soil enzymes. Therefore, the L + C + S strategy can be a practical and effective measure for safe rice production as it was more suitable for the remediation of heavy metals in our experimental sites.
Full article
(This article belongs to the Special Issue Safety Utilization and Remediation of Heavy Metal Polluted Farmland)
►▼
Show Figures

Figure 1
Open AccessSystematic Review
Towards Reference Values for Malondialdehyde on Exhaled Breath Condensate: A Systematic Literature Review and Meta-Analysis
by
, , , , , and
Toxics 2022, 10(5), 258; https://doi.org/10.3390/toxics10050258 - 18 May 2022
Abstract
Many pathological conditions and certain airway exposures are associated with oxidative stress (OS). Malondialdehyde (MDA) is an end-product of the oxidation of lipids in our cells and is present in all biological matrices including exhaled breath condensate (EBC). To use MDA as a
[...] Read more.
Many pathological conditions and certain airway exposures are associated with oxidative stress (OS). Malondialdehyde (MDA) is an end-product of the oxidation of lipids in our cells and is present in all biological matrices including exhaled breath condensate (EBC). To use MDA as a biomarker of OS in EBC, a reference interval should be defined. Thus, we sought to summarize reference values reported in healthy adult populations by performing a systematic review and meta-analysis using a standardized protocol registered in PROSPERO (CRD42020146623). Articles were retrieved from four major databases and 25 studies with 28 subgroups were included. Defining the distribution of MDA measured in reference populations with a detection combined with a separation technique still represents a challenge due to the low number of studies available, different analytical methods used, and questionable methodological qualities of many studies. The most salient methodological drawbacks have been in data collection and reporting of methods and study results by the researchers. The lack of compliance with the recommendations of the European Respiratory Society and American Thoracic Society was the major limitation in the current research involving EBC. Consequently, we were unable to establish a reference interval for MDA in EBC.
Full article
(This article belongs to the Special Issue Human Biomonitoring in Health Risk Assessment: Current Practices and Recommendations for the Future)
►▼
Show Figures

Figure 1
Open AccessArticle
Development of a 96-Well Electrophilic Allergen Screening Assay for Skin Sensitization Using a Measurement Science Approach
by
, , , , , and
Toxics 2022, 10(5), 257; https://doi.org/10.3390/toxics10050257 - 17 May 2022
Abstract
The Electrophilic Allergen Screening Assay (EASA) has emerged as a promising in chemico method to detect the first key event in the adverse outcome pathway (AOP) for skin sensitization. This assay functions by assessing the depletion of one of two probe molecules (4-nitrobenzenethiol
[...] Read more.
The Electrophilic Allergen Screening Assay (EASA) has emerged as a promising in chemico method to detect the first key event in the adverse outcome pathway (AOP) for skin sensitization. This assay functions by assessing the depletion of one of two probe molecules (4-nitrobenzenethiol (NBT) and pyridoxylamine (PDA)) in the presence of a test compound (TC). The initial development of EASA utilized a cuvette format resulting in multiple measurement challenges such as low throughput and the inability to include adequate control measurements. In this study, we describe the redesign of EASA into a 96-well plate format that incorporates in-process control measurements to quantify key sources of variability each time the assay is run. The data from the analysis of 67 TCs using the 96-well format had 77% concordance with animal data from the local lymph node assay (LLNA), a result consistent with that for the direct peptide reactivity assay (DPRA), an OECD test guideline (442C) protein binding assay. Overall, the measurement science approach described here provides steps during assay development that can be taken to increase confidence of in chemico assays by attempting to fully characterize the sources of variability and potential biases and incorporate in-process control measurements into the assay.
Full article
(This article belongs to the Section Toxicology)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Developmental Neurotoxicity and Behavioral Screening in Larval Zebrafish with a Comparison to Other Published Results
by
, , , , , and
Toxics 2022, 10(5), 256; https://doi.org/10.3390/toxics10050256 - 17 May 2022
Abstract
With the abundance of chemicals in the environment that could potentially cause neurodevelopmental deficits, there is a need for rapid testing and chemical screening assays. This study evaluated the developmental toxicity and behavioral effects of 61 chemicals in zebrafish (Danio rerio)
[...] Read more.
With the abundance of chemicals in the environment that could potentially cause neurodevelopmental deficits, there is a need for rapid testing and chemical screening assays. This study evaluated the developmental toxicity and behavioral effects of 61 chemicals in zebrafish (Danio rerio) larvae using a behavioral Light/Dark assay. Larvae (n = 16–24 per concentration) were exposed to each chemical (0.0001–120 μM) during development and locomotor activity was assessed. Approximately half of the chemicals (n = 30) did not show any gross developmental toxicity (i.e., mortality, dysmorphology or non-hatching) at the highest concentration tested. Twelve of the 31 chemicals that did elicit developmental toxicity were toxic at the highest concentration only, and thirteen chemicals were developmentally toxic at concentrations of 10 µM or lower. Eleven chemicals caused behavioral effects; four chemicals (6-aminonicotinamide, cyclophosphamide, paraquat, phenobarbital) altered behavior in the absence of developmental toxicity. In addition to screening a library of chemicals for developmental neurotoxicity, we also compared our findings with previously published results for those chemicals. Our comparison revealed a general lack of standardized reporting of experimental details, and it also helped identify some chemicals that appear to be consistent positives and negatives across multiple laboratories.
Full article
(This article belongs to the Special Issue Developmental Exposure to Environmental Contaminants)
►▼
Show Figures

Figure 1
Open AccessArticle
Acute and Chronic Toxicity of Binary Mixtures of Bisphenol A and Heavy Metals
Toxics 2022, 10(5), 255; https://doi.org/10.3390/toxics10050255 - 17 May 2022
Abstract
Bisphenol A (BPA) and heavy metals are widespread contaminants in the environment. However, the combined toxicities of these contaminants are still unknown. In this study, the bioluminescent bacteria Vibrio qinghaiensis Q67 was used to detect the single and combined toxicities of BPA and
[...] Read more.
Bisphenol A (BPA) and heavy metals are widespread contaminants in the environment. However, the combined toxicities of these contaminants are still unknown. In this study, the bioluminescent bacteria Vibrio qinghaiensis Q67 was used to detect the single and combined toxicities of BPA and heavy metals, then the joint effects of these contaminants were evaluated. The results show that chronic toxicities of chromium (Cr), cadmium (Cd), lead (Pb), arsenic (As), mercury (Hg), nickel (Ni), and BPA were time–dependent; in fact, the acute toxicities of these contaminants were stronger than the chronic toxicities. Furthermore, the combined toxicities of BPA and heavy metals displayed BPA + Hg > BPA + Cr > BPA + As > BPA + Ni > BPA + Pb > BPA + Cd in the acute test and BPA + Hg > BPA + Cd > BPA + As > BPA + Cd in the chronic test, which suggested that the combined toxicity of BPA and Hg was stronger than that of other mixtures in acute as well as chronic tests. Additionally, both CA and IA models underestimated the toxicities of mixtures at low concentrations but overestimated them at high concentrations, which indicates that CA and IA models were not suitable to predict the toxicities of mixtures of BPA and heavy metals. Moreover, the joint effects of BPA and heavy metals mainly showed antagonism and additive in the context of acute exposure but synergism and additive in the context of chronic exposure. Indeed, the difference in the joint effects on acute and chronic exposure can be explained by the possibility that mixtures inhibited cell growth and luminescence in chronic cultivation. The chronic toxicity of the mixture should be considered if the mixture results in the inhibition of the growth of cells.
Full article
(This article belongs to the Topic Aquatic Emerging Contaminants and Their Ecotoxicological Consequences)
►▼
Show Figures

Figure 1
Open AccessArticle
Lanthanides Release and Partitioning in Municipal Wastewater Effluents
Toxics 2022, 10(5), 254; https://doi.org/10.3390/toxics10050254 - 17 May 2022
Abstract
The use of lanthanides is increasing in our society, whether in communication technologies, transportation, electronics or medical imaging. Some lanthanides enter urban wastewater and flow through municipal wastewater treatment plants (WWTPs). However, little is known about the effectiveness of treatment processes to remove
[...] Read more.
The use of lanthanides is increasing in our society, whether in communication technologies, transportation, electronics or medical imaging. Some lanthanides enter urban wastewater and flow through municipal wastewater treatment plants (WWTPs). However, little is known about the effectiveness of treatment processes to remove these elements and the concentrations released in effluents to receiving waters. The main objective of this study was to investigate the fate of lanthanides in various wastewater treatment processes. A secondary objective was to better understand the fate of medical gadolinium (Gd) complexes; anthropogenic inputs were differentiated from geological sources using an approach based on concentration normalization with respect to chondrite Post-Archean Australian Shale (PAAS). The hypothesis was that most lanthanides, especially of geological origin, are associated with the particulate phase and could be efficiently removed by WWTPs. To monitor these elements in different WWTPs, various urban influents and effluents from simple aerated lagoons to advanced treatments were sampled in Canada. The results showed that the rates of lanthanide removal by treatment processes decrease with their atomic number; from 95% for cerium (Ce) to 70% for lutetium (Lu), except for Gd, which was minimally removed. The normalization approach permitted the determination of the origin of Gd in these wastewaters, i.e., medical application versus the geological background. By distinguishing the geogenic Gd fraction from the anthropogenic one, the removal efficiency was evaluated according to the origin of the Gd; nearly 90% for geogenic Gd and a rate varying from 15% to 50% in the case of anthropogenic Gd. The processes using alum as the flocculating agent had the highest removal efficiency from wastewater.
Full article
(This article belongs to the Special Issue Fate of Metals Released from Wastewater Effluents)
►▼
Show Figures

Figure 1
Open AccessArticle
Influence of Urban Informal Settlements on Trace Element Accumulation in Road Dust and Their Possible Health Implications in Ekurhuleni Metropolitan Municipality, South Africa
Toxics 2022, 10(5), 253; https://doi.org/10.3390/toxics10050253 - 17 May 2022
Abstract
The study was aimed at assessing the influence of urban informal settlement on trace element accumulation in road dust from the Ekurhuleni Metropolitan Municipality, South Africa, and their possible health implications. The concentration of major and trace elements was determined using the wavelength
[...] Read more.
The study was aimed at assessing the influence of urban informal settlement on trace element accumulation in road dust from the Ekurhuleni Metropolitan Municipality, South Africa, and their possible health implications. The concentration of major and trace elements was determined using the wavelength dispersive XRF method. The major elements in descending order were SiO2 (72.76%), Al2O3 (6.90%), Fe2O3 (3.88%), CaO (2.71%), K2O (1.56%), Na2O (0.99%), MgO (0.94%), MnO (0.57%), TiO2 (0.40%), and P2O5 (0.16%), with SiO2 and P2O5 at above-average shale values. The average mean concentrations of 17 trace elements in decreasing order were Cr (637.4), Ba (625.6), Zn (231.8), Zr (190.2), Sr (120.2), V (69), Rb (66), Cu (61), Ni (49), Pb (30.8), Co (17.4), Y (14.4), Nb (8.6), As (7.2), Sc (5.8), Th (4.58), and U (2.9) mg/kg. Trace elements such as Cr, Cu, Zn, Zr, Ba, and Pb surpassed their average shale values, and only Cr surpassed the South African soil screening values. The assessment of pollution through the geo-accumulation index (Igeo) revealed that road dust was moderately to heavily contaminated by Cr, whereas all other trace elements were categorized as being uncontaminated to moderately contaminated. The contamination factor (CF) exhibited road dust to be very highly contaminated by Cr, moderately contaminated by Zn, Pb, Cu, Zr, and Ba, and lowly contaminated by Co, U, Nb, Ni, As, Y, V, Rb, Sc, Sr, and Th. The pollution load index (PLI) also affirmed that the road dust in this study was very highly polluted by trace elements. Moreover, the results of the enrichment factor (EF) categorized Cr as having a significant degree of enrichment. Zn was elucidated as being minimally enriched, whereas all other trace elements were of natural origin. The results of the non-carcinogenic risk assessment revealed a possibility of non-carcinogenic risks to both children and adults. For the carcinogenic risk, the total CR values in children and adults were above the acceptable limit, signifying a likelihood of carcinogenic risk to the local inhabitants. From the findings of this study, it can be concluded that the levels of trace elements in the road dust of this informal settlement had the possibility to contribute to both non-carcinogenic and carcinogenic risks, and that children were at a higher risk than the adult population.
Full article
(This article belongs to the Special Issue Potentially Toxic Elements Pollution in Urban and Suburban Environments)
►▼
Show Figures

Figure 1
Open AccessArticle
Urinary Levels of Sirtuin-1, π-Glutathione S-Transferase, and Mitochondrial DNA in Maize Farmer Occupationally Exposed to Herbicide
by
, , , , and
Toxics 2022, 10(5), 252; https://doi.org/10.3390/toxics10050252 - 17 May 2022
Abstract
Epidemiologic studies have suggested an association between agrochemical exposure and risk of renal injury. Farmers face great risks to developing adverse effects. The most appropriate biomarker related to renal injury needs to be developed to encounter earlier detection. We aim to study the
[...] Read more.
Epidemiologic studies have suggested an association between agrochemical exposure and risk of renal injury. Farmers face great risks to developing adverse effects. The most appropriate biomarker related to renal injury needs to be developed to encounter earlier detection. We aim to study the association between early renal biomarker and occupational herbicide exposure in maize farmers, Thailand. Sixty-four farmers were recruited and interviewed concerning demographic data, herbicide usage, and protective behavior. Two spot urines before (pre-work task) and after (post-work task) herbicide spraying were collected. To estimate the intensity of exposure, the cumulative herbicide exposure intensity index (cumulative EII) was also calculated from activities on the farm, type of personal protective equipment (PPE) use, as well as duration and frequency of exposure. Four candidate renal biomarkers including π-GST, sirtuin-1, mitochondrial DNA (mtDNA) were measured. Most subjects were male and mostly sprayed three herbicides including glyphosate-based herbicides (GBH), paraquat, and 2,4-dichlorophenoxyacetic acid (2,4-D). A type of activity in farm was mixing and spraying herbicide. Our finding demonstrated no statistical significance of all biomarker levels between pre- and post-work task urine. To compare between single and cocktail use of herbicide, there was no statistical difference in all biomarker levels between pre- and post-work task urine. However, the urinary mtDNA seems to be increased in post-work task urine. Moreover, the cumulative EII was strongly associated with change in mtDNA content in both ND-1 and COX-3 gene. The possibility of urinary mtDNA as a valuable biomarker was promising as a noninvasive benchmark for early detection of the risk of developing renal injury from herbicide exposure.
Full article
(This article belongs to the Topic Air Pollution and Occupational Exposure)
►▼
Show Figures

Figure 1
Open AccessReview
Effects of Phthalate Mixtures on Ovarian Folliculogenesis and Steroidogenesis
by
, , , , and
Toxics 2022, 10(5), 251; https://doi.org/10.3390/toxics10050251 - 16 May 2022
Abstract
The female reproductive system is dependent upon the health of the ovaries. The ovaries are responsible for regulating reproduction and endocrine function. Throughout a female’s reproductive lifespan, the ovaries undergo continual structural changes that are crucial for the maturation of ovarian follicles and
[...] Read more.
The female reproductive system is dependent upon the health of the ovaries. The ovaries are responsible for regulating reproduction and endocrine function. Throughout a female’s reproductive lifespan, the ovaries undergo continual structural changes that are crucial for the maturation of ovarian follicles and the production of sex steroid hormones. Phthalates are known to target the ovaries at critical time points and to disrupt normal reproductive function. The US population is constantly exposed to measurable levels of phthalates. Phthalates can also pass placental barriers and affect the developing offspring. Phthalates are frequently prevalent as mixtures; however, most previous studies have focused on the effects of single phthalates on the ovary and female reproduction. Thus, the effects of exposure to phthalate mixtures on ovarian function and the female reproductive system remain unclear. Following a brief introduction to the ovary and its major roles, this review covers what is currently known about the effects of phthalate mixtures on the ovary, focusing primarily on their effects on folliculogenesis and steroidogenesis. Furthermore, this review focuses on the effects of phthalate mixtures on female reproductive outcomes. Finally, this review emphasizes the need for future research on the effects of environmentally relevant phthalate mixtures on the ovary and female reproduction.
Full article
(This article belongs to the Special Issue Evaluating Chemical Exposures and Toxicity of Complex Mixtures and Multiple Stressors)
►▼
Show Figures

Figure 1
Open AccessArticle
CeO2-Zn Nanocomposite Induced Superoxide, Autophagy and a Non-Apoptotic Mode of Cell Death in Human Umbilical-Vein-Derived Endothelial (HUVE) Cells
Toxics 2022, 10(5), 250; https://doi.org/10.3390/toxics10050250 - 16 May 2022
Abstract
In this study, a nanocomposite of cerium oxide-zinc (CeO2-Zn; 26 ± 11 nm) based on the antioxidant rare-earth cerium oxide (CeO2) nanoparticles (NPs) with the modifier zinc (Zn) was synthesized by sintering method and characterized. Its bio-response was examined in
[...] Read more.
In this study, a nanocomposite of cerium oxide-zinc (CeO2-Zn; 26 ± 11 nm) based on the antioxidant rare-earth cerium oxide (CeO2) nanoparticles (NPs) with the modifier zinc (Zn) was synthesized by sintering method and characterized. Its bio-response was examined in human umbilical-vein-derived endothelial (HUVE) cells to get insight into the components of vascular system. While NPs of CeO2 did not significantly alter cell viability up to a concentration of 200 µg/mL for a 24 h exposure, 154 ± 6 µg/mL of nanocomposite CeO2-Zn induced 50% cytotoxicity. Mechanism of cytotoxicity occurring due to nanocomposite by its Zn content was compared by choosing NPs of ZnO, possibly the closest nanoparticulate form of Zn. ZnO NPs lead to the induction of higher reactive oxygen species (ROS) (DCF-fluorescence), steeper depletion in antioxidant glutathione (GSH) and a greater loss of mitochondrial membrane potential (MMP) as compared to that induced by CeO2-Zn nanocomposite. Nanocomposite of CeO2-Zn, on the other hand, lead to significant higher induction of superoxide radical (O2•−, DHE fluorescence), nitric oxide (NO, determined by DAR-2 imaging and Griess reagent) and autophagic vesicles (determined by Lysotracker and monodansylcadeverine probes) as compared to that caused by ZnO NP treatment. Moreover, analysis after triple staining (by annexin V-FITC, PI, and Hoechst) conducted at their respective IC50s revealed an apoptosis mode of cell death due to ZnO NPs, whereas CeO2-Zn nanocomposite induced a mechanism of cell death that was significantly different from apoptosis. Our findings on advanced biomarkers such as autophagy and mode of cell death suggested the CeO2-Zn nanocomposite might behave as independent nanostructure from its constituent ones. Since nanocomposites can behave independently of their constituent NPs/elements, by creating nanocomposites, NP versatility can be increased manifold by just manipulating existing NPs. Moreover, data in this study can furnish early mechanistic insight about the potential damage that could occur in the integrity of vascular systems.
Full article
(This article belongs to the Section Toxicology)
Open AccessReview
Toxic Metals in a Paddy Field System: A Review
by
, , , , , , and
Toxics 2022, 10(5), 249; https://doi.org/10.3390/toxics10050249 - 16 May 2022
Abstract
The threat of toxic metals to food security and human health has become a high-priority issue in recent decades. As the world’s main food crop source, the safe cultivation of rice has been the focus of much research, particularly the restoration of toxic
[...] Read more.
The threat of toxic metals to food security and human health has become a high-priority issue in recent decades. As the world’s main food crop source, the safe cultivation of rice has been the focus of much research, particularly the restoration of toxic metals in paddy fields. Therefore, in this paper, we focus on the effects of toxic metals on rice, as well as the removal or repair methods of toxic metals in paddy fields. We also provide a detailed discussion of the sources and monitoring methods of toxic metals pollution, the current toxic metal removal, and remediation methods in paddy fields. Finally, several important research issues related to toxic metals in paddy field systems are proposed for future work. The review has an important guiding role for the future of heavy metal remediation in paddy fields, safe production of rice, green ecological fish culture, and human food security and health.
Full article
(This article belongs to the Topic Aquatic Emerging Contaminants and Their Ecotoxicological Consequences)
►▼
Show Figures

Figure 1
Open AccessArticle
Transfer of Pesticide Residues from Grapes (Vitis vinifera) into Wine—Correlation with Selected Physicochemical Properties of the Active Substances
Toxics 2022, 10(5), 248; https://doi.org/10.3390/toxics10050248 - 16 May 2022
Abstract
The concentration of pesticide residues in agricultural products at harvest can change during subsequent processing steps. This change, commonly expressed as Processing Factor (PF), is influenced by the raw agricultural commodity, and the processing conditions, as well as the properties of the substances.
[...] Read more.
The concentration of pesticide residues in agricultural products at harvest can change during subsequent processing steps. This change, commonly expressed as Processing Factor (PF), is influenced by the raw agricultural commodity, and the processing conditions, as well as the properties of the substances. As it is not possible to conduct processing studies for all possible combinations of pesticide × process × product, new approaches for determining processing factors are needed. Wine was chosen as the object of the present study because it is a widely consumed product. Furthermore, it is already known that the concentration of pesticide residues can change considerably during the processing of grapes into wine, substantiating the need for PFs for a large number of pesticides. The aim of the present study was to investigate the correlation between selected physicochemical properties and PFs. In addition, the influence of different winemaking processes was explored. For this purpose, 70 processing studies conducted by pesticide manufacturers in the framework of regulatory procedures were evaluated in detail and PFs were derived for 20 pesticides. For wine, a good correlation between the PF and the octanol-water partition coefficient of the substances was found, depending on the specific production methods used. Exemplarily, the coefficient of determination for white wine was 0.85, and 0.81 for red wine, when thermovinification was applied. These results can serve as the basis for a predictive model to be validated further with future winemaking studies for pesticides.
Full article
(This article belongs to the Special Issue Dietary Exposure at the Farm Level: Pesticide Residues and Their Metabolites)
►▼
Show Figures

Figure 1
Open AccessArticle
Association between Ambient Air Pollution and Emergency Room Visits for Pediatric Respiratory Diseases: The Impact of COVID-19 Pandemic
Toxics 2022, 10(5), 247; https://doi.org/10.3390/toxics10050247 - 14 May 2022
Abstract
The level and composition of air pollution have changed during the coronavirus disease 2019 (COVID-19) pandemic. However, the association between air pollution and pediatric respiratory disease emergency department (ED) visits during the COVID-19 pandemic remains unclear. The study was retrospectively conducted between 2017
[...] Read more.
The level and composition of air pollution have changed during the coronavirus disease 2019 (COVID-19) pandemic. However, the association between air pollution and pediatric respiratory disease emergency department (ED) visits during the COVID-19 pandemic remains unclear. The study was retrospectively conducted between 2017 and 2020 in Kaohsiung, Taiwan, from 1 January 2020 to 1 May 2020, defined as the period of the COVID-19 pandemic, and 1 January 2017 to 31 May 2019, defined as the pre-COVID-19 pandemic period. We enrolled patients under 17 years old who visited the ED in a medical center and were diagnosed with respiratory diseases such as pneumonia, asthma, bronchitis, and acute pharyngitis. Measurements of particulate matter (PM) with aerodynamic diameters of <10 μm (PM10) and < 2.5 μm (PM2.5), nitrogen dioxide (NO2), and Ozone (O3) were collected. During the COVID-19 pandemic, an increase in the interquartile range of PM2.5, PM10, and NO2 levels was associated with increases of 72.5% (95% confidence interval [CI], 50.5–97.7%), 98.0% (95% CI, 70.7–129.6%), and 54.7% (95% CI, 38.7–72.6%), respectively, in the risk of pediatric respiratory disease ED visits on lag 1, which were greater than those in the pre-COVID-19 pandemic period. After adjusting for temperature and humidity, the risk of pediatric respiratory diseases after exposure to PM2.5 (inter p = 0.001) and PM10 (inter p < 0.001) was higher during the COVID-19 pandemic. PM2.5, PM10, and NO2 may play important roles in pediatric respiratory events in Kaohsiung, Taiwan. Compared with the pre-COVID-19 pandemic period, the levels of PM2.5 and PM10 were lower; however, the levels were related to a greater increase in ED during the COVID-19 pandemic.
Full article
(This article belongs to the Topic Air Pollution and Occupational Exposure)
►▼
Show Figures

Figure 1
Open AccessStudy Protocol
In Vivo Estimation of the Biological Effects of Endocrine Disruptors in Rabbits after Combined and Long-Term Exposure: Study Protocol
by
, , , , , , , , , , , , and
Toxics 2022, 10(5), 246; https://doi.org/10.3390/toxics10050246 - 12 May 2022
Abstract
Recently, an increasing number of chemical compounds are being characterized as endocrine disruptors since they have been proven to interact with the endocrine system, which plays a crucial role in the maintenance of homeostasis. Glyphosate is the active substance of the herbicide Roundup
[...] Read more.
Recently, an increasing number of chemical compounds are being characterized as endocrine disruptors since they have been proven to interact with the endocrine system, which plays a crucial role in the maintenance of homeostasis. Glyphosate is the active substance of the herbicide Roundup®, bisphenol A (BPA) and di (2-ethylhexyl) phthalate (DEHP) are used as plasticizers, while triclosan (TCS), methyl (MePB), propyl (PrPB), and butyl (BuPB) parabens are used as antimicrobial agents and preservatives mainly in personal care products. Studies indicate that exposure to these substances can affect humans causing developmental problems and problems in the endocrine, reproductive, nervous, immune, and respiratory systems. Although there are copious studies related to these substances, there are few in vivo studies related to combined exposure to these endocrine disruptors. The aim of the present pilot study is the investigation and assessment of the above substances’ toxicity in rabbits after twelve months of exposure to glyphosate (both pure and commercial form) and to a mixture of all the above substances at subtoxic levels. The lack of data from the literature concerning rabbits’ exposure to these substances and the restrictions of the 3Rs Principle will result in a limited number of animals available for use (four animals per group, twenty animals in total).
Full article
(This article belongs to the Special Issue Pesticides in Formulations: Toxicological and Regulatory Assessments, New Developments)
►▼
Show Figures

Graphical abstract

Journal Menu
► ▼ Journal Menu-
- Toxics Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor's Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Molecules, Toxics, Pharmaceuticals, BioMed
Development of Protective Therapies Facing Toxic Environmental Exposures
Topic Editors: Ricardo Lagoa, Mário DinizDeadline: 30 June 2022
Topic in
Minerals, Life, Toxics
Understanding Uranium Toxicity
Topic Editors: Shino Homma-Takeda, Sarata Kumar SahooDeadline: 31 July 2022
Topic in
Microorganisms, Toxics, Toxins
Instrumental and Bioanalytical Methods for Food Contaminant Detection
Topic Editors: Jana Pulkrabova, Aristeidis Tsagkaris, Efstathios Z. PanagouDeadline: 30 September 2022
Topic in
JMSE, JoX, Toxics, Water
Aquatic Emerging Contaminants and Their Ecotoxicological Consequences
Topic Editors: François Gagné, Stefano Magni, Valerio MatozzoDeadline: 31 October 2022

Conferences
Special Issues
Special Issue in
Toxics
Interactions across Different Exposures and Life-Stages in Exposome Research
Guest Editors: Soterios Kyrtopoulos, Konstantinos MakrisDeadline: 20 May 2022
Special Issue in
Toxics
Computational Toxicology: Expanding Frontiers in Risk Assessment
Guest Editors: Peter P. Egeghy, Annie M. Jarabek, Alicia PainiDeadline: 1 June 2022
Special Issue in
Toxics
Biomonitoring of Human Exposure: From Individual to Group Exposure Assessment
Guest Editor: Radu-Corneliu DucaDeadline: 30 June 2022
Special Issue in
Toxics
The Identification of Drug Abuse
Guest Editor: Maria PieriDeadline: 15 July 2022
Topical Collections
Topical Collection in
Toxics
Exposure and Effects of Environmental Pollution on Vulnerable Populations
Collection Editors: Matteo Vitali, Carmela Protano
Topical Collection in
Toxics
Xenobiotics in Developmental Neurotoxicity
Collection Editor: David R. Wallace
Topical Collection in
Toxics
Environmental and Health Risks of Nanotechnology
Collection Editors: Laura Braydich-Stolle, Saber M. Hussain