-
Perstraction: A Membrane-Assisted Liquid–Liquid Extraction of PFOA from Water
-
Investigation of Island Growth on Fluidized Particles Coated by Means of Aerosol
-
Determination of the Dominating Coalescence Pathways in Double Emulsion Formulations by Use of Microfluidic Emulsions
-
Influence of Water on the Production of Liquid Fuel Intermediates from Furfural via Aldol Condensation over MgAl Catalyst
-
Fluidized Bed Spray Coating for Improved Mechanical Properties of Particles
Journal Description
Processes
Processes
is an international, peer-reviewed, open access journal on processes/systems in chemistry, biology, material, energy, environment, food, pharmaceutical, manufacturing, automation control, catalysis, separation, particle and allied engineering fields published monthly online by MDPI. The Systems and Control Division of the Canadian Society for Chemical Engineering (CSChE S&C Division) and the Brazilian Association of Chemical Engineering (ABEQ) are affiliated with Processes and their members receive a discount on the article processing charges. Please visit Society Collaborations for more details.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), CAPlus / SciFinder, Inspec, AGRIS, and other databases.
- Journal Rank: JCR - Q2 (Engineering, Chemical) / CiteScore - Q2 (Chemical Engineering (miscellaneous))
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 12.7 days after submission; acceptance to publication is undertaken in 3.7 days (median values for papers published in this journal in the second half of 2022).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Impact Factor:
3.352 (2021);
5-Year Impact Factor:
3.338 (2021)
Latest Articles
Mechanical Behavior of Gas-Transmission Pipeline in a Goaf
Processes 2023, 11(4), 1022; https://doi.org/10.3390/pr11041022 (registering DOI) - 28 Mar 2023
Abstract
To solve the safety hazard of a buried gas pipeline caused by subsidence of a mined-out area, a three-dimensional model of a buried pipeline in a mined-out area was established using geological parameters and the finite-element software ABAQUS. The effects of the friction
[...] Read more.
To solve the safety hazard of a buried gas pipeline caused by subsidence of a mined-out area, a three-dimensional model of a buried pipeline in a mined-out area was established using geological parameters and the finite-element software ABAQUS. The effects of the friction coefficient of the pipe and soil, the coal-seam dip angle, and the horizontal angle on the mechanical behavior of the pipe under varying widths of goaf area were investigated. The results indicate that the maximum equivalent stress of the pipeline is negatively correlated with the horizontal angle. Concerning longitudinal mining, the pipeline exhibits a high-stress zone when the mining length is >200 m, the surface displacement appears in a small range when the mining length is 40 m, and the stratum displacement range increases gradually with the increase in the mining length. When the width of the goaf is constant, the maximum equivalent stress of the pipeline is positively correlated with the tube-soil friction coefficient and negatively correlated with the coal seam dip angle. The position of maximum stress gradually tends to appear near the uphill side of the coal seam, with an increase in the coal seam dip angle.
Full article
(This article belongs to the Topic Multi-Phase Flow and Unconventional Oil/Gas Development)
►
Show Figures
Open AccessArticle
Application of Neuro-Fuzzy Techniques for Energy Scheduling in Smart Grids Integrating Photovoltaic Panels
by
, , , , and
Processes 2023, 11(4), 1021; https://doi.org/10.3390/pr11041021 (registering DOI) - 28 Mar 2023
Abstract
In recent years, most of the research in the field of smart grids integrating renewable energy sources assumed energy efficiency as a scheduling objective. However, the aspects of energy consumption or energy demand have not been described clearly, even though they have been
[...] Read more.
In recent years, most of the research in the field of smart grids integrating renewable energy sources assumed energy efficiency as a scheduling objective. However, the aspects of energy consumption or energy demand have not been described clearly, even though they have been proven to be an effective way of reducing energy consumption. In this context, this study aimed to cover a key research challenge in the field, such as the development of an intelligent strategy for solving energy consumption scheduling problems. The added value of our proposal consists of classifying individual consumption profiles assigned to each operation cycle phase, instead of considering an average of non-varying consumption of household appliances. Within this hybrid approach, the proposed explainable system, based on self-organizing maps of neural networks, fuzzy clustering algorithm, and scheduling technics, correlates the complex interrelation between power generated from renewable energy sources in a smart grid, prosumers’ load behaviors, and the consumption profile of controllable or uncontrollable appliances. The tests were made using green energy consumption and production from real monitored data sets. The load-shifting algorithm that was used to reduce energy consumption from the national energy grid proved its effectiveness. In fact, consumers paid 25% less for the energy they used from the national energy grid during the times when the amount of electricity produced from renewable sources was reduced as a result of weather conditions.
Full article
(This article belongs to the Special Issue Renewable Energy in Environmental Engineering)
►▼
Show Figures

Figure 1
Open AccessArticle
Pilot Study on a New Conveyor Bed Magnetization Roasting Process for Efficient Iron Extraction from Low-Grade Siderite
by
Shaowu Jiu
, Mingkang Lin
, Bo Zhao
, Yanxin Chen
and Chao Yang
Processes 2023, 11(4), 1020; https://doi.org/10.3390/pr11041020 (registering DOI) - 28 Mar 2023
Abstract
►▼
Show Figures
Realizing the large-scale development and utilization of siderite, a difficult iron ore reserve, has great practical significance in ensuring the supply of iron ore resources. Therefore, a new in-house conveyor bed magnetization roasting–dry cooling process was pilot-tested using low-grade siderite from the Daxigou
[...] Read more.
Realizing the large-scale development and utilization of siderite, a difficult iron ore reserve, has great practical significance in ensuring the supply of iron ore resources. Therefore, a new in-house conveyor bed magnetization roasting–dry cooling process was pilot-tested using low-grade siderite from the Daxigou iron ore mine. A two-stage weak magnetic separation method was used for a beneficiation test to investigate the influence of temperature and CO content on the magnetization of siderite. At 600 °C and 800 °C under suspension, iron minerals were converted into magnetite with an effective 3–5 s residence time. Furthermore, at 600 °C and 750 °C, increasing the calcination temperature increased the iron grade and the concentrate recovery rate. However, calcination at temperatures >750 °C resulted in a slight decrease in the iron grade and recovery rate of the concentrate. 61.50% Fe grade and 80.30% concentrate recovery rate were obtained under 750 °C from magnetization roasting. Magnetization roasting in a reducing atmosphere provides mainly magnetite as the roasted ore, and increased CO content can efficiently promote this effect. At 700–780 °C and when the CO content was increased to more than 3 wt.%, the improvement of the roasting effect was very limited. Rapid cooling of the roasted ore using a mixture of circulating exhaust gas and air could prevent considerable oxidation of the magnetic ferrous material. Therefore, the preferred process conditions are 700–780 °C with a CO content range of 1–3%. It provided a concentrate iron grade of 59.27–61.50% and a recovery rate of 78.32–80.30%. The results of this study provide a reference for the development of conveyor bed magnetization technology, process design, and production control.
Full article

Figure 1
Open AccessReview
Fast Formation of Hydrate Induced by Micro-Nano Bubbles: A Review of Current Status
by
, , , , , , , , and
Processes 2023, 11(4), 1019; https://doi.org/10.3390/pr11041019 (registering DOI) - 28 Mar 2023
Abstract
Hydrate-based technologies have excellent application potential in gas separation, gas storage, transportation, and seawater desalination, etc. However, the long induction time and the slow formation rate are critical factors affecting the application of hydrate-based technologies. Micro-nano bubbles (MNBs) can dramatically increase the formation
[...] Read more.
Hydrate-based technologies have excellent application potential in gas separation, gas storage, transportation, and seawater desalination, etc. However, the long induction time and the slow formation rate are critical factors affecting the application of hydrate-based technologies. Micro-nano bubbles (MNBs) can dramatically increase the formation rate of hydrates owing to their advantages of providing more nucleation sites, enhancing mass transfer, and increasing the gas–liquid interface and gas solubility. Initially, the review examines key performance MNBs on hydrate formation and dissociation processes. Specifically, a qualitative and quantitative assembly of the formation and residence characteristics of MNBs during hydrate dissociation is conducted. A review of the MNB characterization techniques to identify bubble size, rising velocity, and bubble stability is also included. Moreover, the advantages of MNBs in reinforcing hydrate formation and their internal relationship with the memory effect are summarized. Finally, combining with the current MNBs to reinforce hydrate formation technology, a new technology of gas hydrate formation by MNBs combined with ultrasound is proposed. It is anticipated that the use of MNBs could be a promising sustainable and low-cost hydrate-based technology.
Full article
(This article belongs to the Special Issue Advances in Numerical Modeling for Deep Water Geo-Environment)
►▼
Show Figures

Figure 1
Open AccessArticle
Transferring Bubble Breakage Models Tailored for Euler-Euler Approaches to Euler-Lagrange Simulations
by
and
Processes 2023, 11(4), 1018; https://doi.org/10.3390/pr11041018 (registering DOI) - 27 Mar 2023
Abstract
►▼
Show Figures
Most bubble breakage models have been developed for multiphase simulations using Euler-Euler (EE) approaches. Commonly, they are linked with population balance models (PBM) and are validated by making use of Reynolds-averaged Navier-Stokes (RANS) turbulence models. The latter, however, may be replaced by alternate
[...] Read more.
Most bubble breakage models have been developed for multiphase simulations using Euler-Euler (EE) approaches. Commonly, they are linked with population balance models (PBM) and are validated by making use of Reynolds-averaged Navier-Stokes (RANS) turbulence models. The latter, however, may be replaced by alternate approaches such as Large Eddy simulations (LES) that play a pivotal role in current developments based on lattice Boltzmann (LBM) technologies. Consequently, this study investigates the possibility of transferring promising bubble breakage models from the EE framework into Euler-Lagrange (EL) settings aiming to perform LES. Using our own model, it was possible to reproduce similar bubble size distributions (BSDs) for EL and EE simulations. Therefore, the critical Weber (Wecrit) number served as a threshold value for the occurrence of bubble breakage events. Wecrit depended on the bubble daughter size distribution (DSD) and a set minimum time between two consecutive bubble breakage events. The commercial frameworks Ansys Fluent and M-Star were applied for EE and EL simulations, respectively. The latter enabled the implementation of LES, i.e., the use of a turbulence model with non-time averaged entities. By properly choosing Wecrit, it was possible to successfully transfer two commonly applied bubble breakage models from EE to EL. Based on the mechanism of bubble breakage, Wecrit values of 7 and 11 were determined, respectively. Optimum Wecrit were identified as fitting the shape of DSDs, as this turned out to be a key criterion for reaching optimum prediction quality. Optimum Wecrit values hold true for commonly applied operational conditions in aerated bioreactors, considering water as the matrix.
Full article

Figure 1
Open AccessArticle
Time Series-Based Edge Resource Prediction and Parallel Optimal Task Allocation in Mobile Edge Computing Environment
by
, , , , and
Processes 2023, 11(4), 1017; https://doi.org/10.3390/pr11041017 (registering DOI) - 27 Mar 2023
Abstract
The offloading of computationally intensive tasks to edge servers is indispensable in the mobile edge computing (MEC) environment. Once the tasks are offloaded, the subsequent challenges lie in buffering them and assigning them to edge virtual machine (VM) resources to meet the multicriteria
[...] Read more.
The offloading of computationally intensive tasks to edge servers is indispensable in the mobile edge computing (MEC) environment. Once the tasks are offloaded, the subsequent challenges lie in buffering them and assigning them to edge virtual machine (VM) resources to meet the multicriteria requirement. Furthermore, the edge resources’ availability is dynamic in nature and needs a joint prediction and optimal allocation for the efficient usage of resources and fulfillment of the tasks’ requirements. To this end, this work has three contributions. First, a delay sensitivity-based priority scheduling (DSPS) policy is presented to schedule the tasks as per their deadline. Secondly, based on exploratory data analysis and inferred seasonal patterns in the usage of edge CPU resources from the GWA-T-12 Bitbrains VM utilization dataset, the availability of VM resources is predicted by using a Holt–Winters-based univariate algorithm (HWVMR) and a vector autoregression-based multivariate algorithm (VARVMR). Finally, for optimal and fast task assignment, a parallel differential evolution-based task allocation (pDETA) strategy is proposed. The proposed algorithms are evaluated extensively with standard performance metrics, and the results show nearly 22%, 35%, and 69% improvements in cost and 41%, 52%, and 78% improvements in energy when compared with MTSS, DE, and min–min strategies, respectively.
Full article
(This article belongs to the Special Issue Advanced Processes Creating New Technologies in Tomorrow’s Industry (II))
►▼
Show Figures

Figure 1
Open AccessArticle
Influence of Fe2O3 Nanoparticles on the Anaerobic Digestion of Macroalgae Sargassum spp.
Processes 2023, 11(4), 1016; https://doi.org/10.3390/pr11041016 (registering DOI) - 27 Mar 2023
Abstract
The anaerobic digestion (AD) of biomass is a green technology with known environmental benefits for biogas generation. The biogas yield from existing substrates and the biodegradability of biomasses can be improved by conventional or novel enhancement techniques, such as the addition of iron-based
[...] Read more.
The anaerobic digestion (AD) of biomass is a green technology with known environmental benefits for biogas generation. The biogas yield from existing substrates and the biodegradability of biomasses can be improved by conventional or novel enhancement techniques, such as the addition of iron-based nanoparticles (NPs). In this study, the effect of different concentrations of Fe2O3-based NPs on the AD of brown macroalga Sargassum spp. has been investigated by 30 days trials. The effect of NPs was evaluated at different concentrations. The control sample yielded a value of 80.25 ± 3.21 NmLCH4/gVS. When 5 mg/g substrate and 10 mg/g substrate of Fe2O3 NPs were added to the control sample, the yield increased by 24.07% and 26.97%, respectively. Instead, when 50 mg/g substrate of Fe2O3 NPs was added to the control sample, a negative effect was observed, and the biomethane yield decreased by 38.97%. Therefore, low concentrations of Fe2O3 NPs favor the AD process, whereas high concentrations have an inhibitory effect. Direct interspecies electron transfer (DIET) via Fe2O3 NPs and their insolubility play an important role in facilitating the methanogenesis process during AD.
Full article
(This article belongs to the Special Issue Process Intensification for Waste Valorization)
►▼
Show Figures

Graphical abstract
Open AccessArticle
The Study of Multi-Scale Specific Surface Area in Shale Rock with Fracture-Micropore-Nanopore
Processes 2023, 11(4), 1015; https://doi.org/10.3390/pr11041015 (registering DOI) - 27 Mar 2023
Abstract
The specific surface area is an important parameter to characterize pore structure and adsorption properties, however, it is difficult to calculate accurately in shale rock due to its multiscale pore structure. In this paper, the representative 3D gray images of a microfracture sample,
[...] Read more.
The specific surface area is an important parameter to characterize pore structure and adsorption properties, however, it is difficult to calculate accurately in shale rock due to its multiscale pore structure. In this paper, the representative 3D gray images of a microfracture sample, micropore subsample and nanopore subsample in shale rock were obtained with computed tomography (CT) scanning and focused ion beam-scanning electron microscopy (FIB-SEM) scanning. The multi-threshold segmentation algorithm with improved maximum inter-class variance method was introduced to construct the platform of multi-scale digital rock. Then, based on the fracture, micropore and nanopore digital rocks, the corresponding network models were extracted to obtain different-scale pore structures, respectively. Finally, based on the digital rock at different scales, the corresponding pore percentage, matrix percentage and specific surface area were calculated respectively. It was found that the specific surface areas of both microfractures and micropores are small, and their specific surface areas are 2~3 orders of magnitude smaller than that of nanopores, and the specific surface area of the shale formation is mainly contributed by nanopores. This paper provides an effective method to calculate the multi-scale specific surface area accurately in shale rock and has an important influence on the adsorption characteristics and swelling properties of the shale matrix.
Full article
(This article belongs to the Special Issue Unconventional Oil and Gas Reservoirs Seepage Theory, Numerical Simulation and Application Technology)
►▼
Show Figures

Figure 1
Open AccessReview
Human Cartilage Biomechanics: Experimental and Theoretical Approaches towards the Identification of Mechanical Properties in Healthy and Osteoarthritic Conditions
by
, , , , and
Processes 2023, 11(4), 1014; https://doi.org/10.3390/pr11041014 (registering DOI) - 27 Mar 2023
Abstract
Articular cartilage is a complex connective tissue with the fundamental functions of load bearing, shock absorption and lubrication in joints. However, traumatic events, aging and degenerative pathologies may affect its structural integrity and function, causing pain and long-term disability. Osteoarthritis represents a health
[...] Read more.
Articular cartilage is a complex connective tissue with the fundamental functions of load bearing, shock absorption and lubrication in joints. However, traumatic events, aging and degenerative pathologies may affect its structural integrity and function, causing pain and long-term disability. Osteoarthritis represents a health issue, which concerns an increasing number of people worldwide. Moreover, it has been observed that this pathology also affects the mechanical behavior of the articular cartilage. To better understand this correlation, the here proposed review analyzes the physiological aspects that influence cartilage microstructure and biomechanics, with a special focus on the pathological changes caused by osteoarthritis. Particularly, the experimental data on human articular cartilage are presented with reference to different techniques adopted for mechanical testing and the related theoretical mechanical models usually applied to articular cartilage are briefly discussed.
Full article
(This article belongs to the Special Issue Mechanics of Biological Tissues and Biomaterials)
►▼
Show Figures

Figure 1
Open AccessArticle
Biological Methanation in an Anaerobic Biofilm Reactor—Trace Element and Mineral Requirements for Stable Operation
Processes 2023, 11(4), 1013; https://doi.org/10.3390/pr11041013 (registering DOI) - 27 Mar 2023
Abstract
Biological methanation of carbon dioxide using hydrogen makes it possible to improve the methane and energy content of biogas produced from sewage sludge and organic residuals and to reach the requirements for injection into the natural gas network. Biofilm reactors, so-called trickling bed
[...] Read more.
Biological methanation of carbon dioxide using hydrogen makes it possible to improve the methane and energy content of biogas produced from sewage sludge and organic residuals and to reach the requirements for injection into the natural gas network. Biofilm reactors, so-called trickling bed reactors, offer a relatively simple, energy-efficient, and reliable technique for upgrading biogas via ex-situ methanation. A mesophilic lab-scale biofilm reactor was operated continuously for nine months to upgrade biogas from anaerobic sewage sludge digestion to a methane content >98%. To supply essential trace elements to the biomass, a stock solution was fed to the trickling liquid. Besides standard parameters and gas quality, concentrations of Na, K, Ca, Mg, Ni, and Fe were measured in the liquid and the biofilm using ICP-OES (inductively coupled plasma optical emission spectrometry) to examine the biofilms load-dependent uptake rate and to calculate quantities required for a stable operation. Additionally, microbial community dynamics were monitored by amplicon sequencing (16S rRNA gene). It was found that all investigated (trace) elements are taken up by the biomass. Some are absorbed depending on the load, others independently of it. For example, a biomass-specific uptake of 0.13 mg·g−1·d−1 for Ni and up to 50 mg·g−1·d−1 for Mg were measured.
Full article
(This article belongs to the Special Issue New Trends and Perspectives on Anaerobic Digestion)
Open AccessArticle
Extraction and Recovery of Critical Metals from Electronic Waste Using ISASMELT™ Technology
Processes 2023, 11(4), 1012; https://doi.org/10.3390/pr11041012 (registering DOI) - 27 Mar 2023
Abstract
Electronic goods are a major consumer of many critical metals, including copper, nickel, tin, zinc, lead, and precious metals. The processing of end-of-life electronic equipment (E-Scrap) is becoming increasingly important to maintain the supply of the critical metals required globally, and to reduce
[...] Read more.
Electronic goods are a major consumer of many critical metals, including copper, nickel, tin, zinc, lead, and precious metals. The processing of end-of-life electronic equipment (E-Scrap) is becoming increasingly important to maintain the supply of the critical metals required globally, and to reduce environmental pollution. Currently, the dominant route for E-Scrap processing is pyrometallurgical processing, with the first stage of processing being reductive smelting to produce a black copper and a ‘clean’ discard slag. The management of the slag in this first step is central to the success of the E-Scrap recycling process. The E-Scrap ISASMELT™ furnace has a highly turbulent bath, providing conditions that generate high rates of zinc fuming and allow a wide range of operable slag conditions. This enables efficient E-Scrap smelting to occur, whilst overcoming the challenges associated with alternative technologies. Operable slag compositions and high zinc fuming are heavily influenced by kinetic processes, with piloting critical to understanding the performance of this process. ISASMELT™ pilot tests were performed, with a wide range of fluxing targets tested to confirm these benefits. The testing demonstrated that high levels of zinc fuming (>80%) are obtained in the E-Scrap ISASMELT™ furnace, decreasing the iron and silica flux additions required to manage the detrimental viscosity effects of zinc in the slag. In addition, it was demonstrated that slags containing high concentrations of alumina (>10 wt%) are operable in an ISASMELT™ furnace. The ISASMELT™ technology was demonstrated to be the only E-Scrap furnace technology able to produce a ‘clean’ discard slag with low concentrations of zinc and minimal fluxing requirements.
Full article
(This article belongs to the Special Issue Pyrometallurgical Extraction of Critical Metals for Sustainable Development)
►▼
Show Figures

Figure 1
Open AccessArticle
Analysis of Sediment and Water Flow and Erosion Characteristics of Large Pelton Turbine Injector
Processes 2023, 11(4), 1011; https://doi.org/10.3390/pr11041011 - 27 Mar 2023
Abstract
►▼
Show Figures
Based on the solid–liquid two-phase flow model, SST k-ω model, and Lagrangian equation model of particle motion, numerical simulations of the sediment–water flow in the injector of a large Pelton turbine were conducted. The distribution rules of pressure, velocity, erosion rate, and erosion
[...] Read more.
Based on the solid–liquid two-phase flow model, SST k-ω model, and Lagrangian equation model of particle motion, numerical simulations of the sediment–water flow in the injector of a large Pelton turbine were conducted. The distribution rules of pressure, velocity, erosion rate, and erosion location of the injector were obtained by analyzing the sediment–water flow characteristics and sediment erosion distribution characteristics of the injector. The results revealed that the velocity distribution trend of the water inside the cylindrical jet exhibited a nonlinear distribution, and the phenomenon of “velocity deficit” occurred at the end of the needle guide and needle tip, resulting in a decrease in the jet quality of the injector. The sediment particle diameter affected the erosion rate of the needle and erosion location of the needle and nozzle port ring. This study provided guidance for sediment erosion analysis and the prediction of the utility of large Pelton turbines.
Full article

Figure 1
Open AccessArticle
A Novel Isolated Intelligent Adjustable Buck-Boost Converter with Hill Climbing MPPT Algorithm for Solar Power Systems
Processes 2023, 11(4), 1010; https://doi.org/10.3390/pr11041010 - 27 Mar 2023
Abstract
This study proposes a new isolated intelligent adjustable buck-boost (IIABB) converter with an intelligent control strategy that is suitable for regenerative energy systems with unsteady output voltages. It also serves as a reliable voltage source for loads such as battery systems, microgrids, etc.
[...] Read more.
This study proposes a new isolated intelligent adjustable buck-boost (IIABB) converter with an intelligent control strategy that is suitable for regenerative energy systems with unsteady output voltages. It also serves as a reliable voltage source for loads such as battery systems, microgrids, etc. In addition, the hill climbing (HC) maximum power point tracking (MPPT) algorithm can be utilized with this innovative IIABB converter to capture the MPP and then enhance system performance. In this converter, five inductors (LA, LB, LC, LD, and LE) and four power MOSFETs (SA, SB, SC, and SD) are used in the proposed novel isolated intelligent adjustable buck-boost (IIABB) converter to adjust the applied voltage across the load side. It also has a constant, stable output voltage. The new IIABB converter is simulated and verified using MATLAB R2021b, and the performances of the proposed IIABB converter and conventional SEPIC converter are compared. The solar photovoltaic module output voltages of 20 V, 30 V, and 40 V are given as inputs to the proposed IIABB converter, and the total output voltage of the proposed converter is 48 V. In the new IIABB converter, the duty cycle of the power MOSFET has a small variation. The proposed IIABB converter has an efficiency of 92~99%. On the other hand, in the conventional SEPIC converter, the duty cycle of a power MOSFET varies greatly depending on the relationship between the output and input voltage, which deteriorates the efficiency of the converter. As a result, this research contributes to the development of a novel type of IIABB converter that may be employed in renewable energy systems to considerably increase system performance and reduce the cost and size of the system.
Full article
(This article belongs to the Special Issue AC and DC Power Grids System Technologies: Analysis, Control and Practical Applications)
►▼
Show Figures

Figure 1
Open AccessFeature PaperArticle
Optimization of Binary Adsorption of Metronidazole and Sulfamethoxazole in Aqueous Solution Supported with DFT Calculations
by
, , , , , , and
Processes 2023, 11(4), 1009; https://doi.org/10.3390/pr11041009 - 27 Mar 2023
Abstract
Sulfamethoxazole [SMX] and metronidazole [MNZ] are emergent pollutants commonly found in surface water and wastewater, which can cause public health and environmental issues even at trace levels. An efficient alternative for their removal is the application of adsorption technology. The present work evaluated
[...] Read more.
Sulfamethoxazole [SMX] and metronidazole [MNZ] are emergent pollutants commonly found in surface water and wastewater, which can cause public health and environmental issues even at trace levels. An efficient alternative for their removal is the application of adsorption technology. The present work evaluated single and binary adsorption processes using granular activated carbon (CAG F400) for SMX and MNZ in an aqueous solution. The binary adsorption process was studied using a Box–Behnken experimental design (RSD), and the results were statistically tested using an analysis of variance. Density functional theory (DFT) modeling was employed to characterize the interactions between the antibiotics and the CAG F400 surface. For the individual adsorption process, adsorption capacities (qe) of 1.61 mmol g−1 for SMX and 1.10 mmol g−1 for MNZ were obtained. The adsorption isotherm model that best fit experimental data was the Radke–Prausnitz isotherm model. The adsorption mechanism occurs through electrostatic and π-π dispersive interactions. For the binary adsorption process, the total binary adsorption capacity achieved was 1.13 mmol g−1, evidencing competitive adsorption. The significant factors that determine the removal of SMX and MNZ from a binary solution were the solution pH and the initial concentration of antibiotics. From DFT studies, it was found that SMX adsorption on CAG F400 was favored with adsorption energy (Eads) of −10.36 kcal mol−1. Finally, the binary adsorption results corroborated that the adsorption process was favorable for both molecules.
Full article
(This article belongs to the Special Issue Municipal Wastewater Treatment and Removal of Micropollutants)
►▼
Show Figures

Figure 1
Open AccessArticle
Decomposition Mechanism and Calcination Properties of Small-Sized Limestone at Steelmaking Temperature
Processes 2023, 11(4), 1008; https://doi.org/10.3390/pr11041008 - 27 Mar 2023
Abstract
►▼
Show Figures
Limestone with a particle size of less than 5 mm was rapidly calcined in a high-temperature resistance furnace at 1623 K to simulate the conditions of rapid calcination of limestone at ultra-high temperature in a converter. In this study, the decomposition mechanism and
[...] Read more.
Limestone with a particle size of less than 5 mm was rapidly calcined in a high-temperature resistance furnace at 1623 K to simulate the conditions of rapid calcination of limestone at ultra-high temperature in a converter. In this study, the decomposition mechanism and calcination characteristics of small-sized limestone at steelmaking temperature were investigated. The study shows that the shrinking sphere or cylinder models with phase boundary reaction were found to be the best representation of limestone kinetic data, and the mechanism function equation is G(α) = 1 − (1 − α)n, n = 1/2 or 1/3. Limestone particles with a size of 0.18–1.0 mm can be quickly calcined to obtain a typical active lime microstructure and a high activity of more than 350 mL, which is the preferred limestone particle size range in the steelmaking process in which limestone powder is injected into the converter.
Full article

Figure 1
Open AccessFeature PaperArticle
Effect of Formation Pressure on Pore Structure Evolution and Hydrocarbon Expulsion in Organic-Rich Marine Shale
Processes 2023, 11(4), 1007; https://doi.org/10.3390/pr11041007 - 27 Mar 2023
Abstract
Exploring the relationship between formation pressure and shale pore evolution is helpful for the enrichment and development of marine shale gas accumulation theory. The thermal evolution experiment was carried out on the Xiamaling Formation (Pr3x) lowly matured marine shale, which has a similar
[...] Read more.
Exploring the relationship between formation pressure and shale pore evolution is helpful for the enrichment and development of marine shale gas accumulation theory. The thermal evolution experiment was carried out on the Xiamaling Formation (Pr3x) lowly matured marine shale, which has a similar sedimentary environment to the Longmaxi Formation (S1l) highly matured marine shale. Comparative experiments of open and semi-closed pyrolysis and multiple pore structure characterization techniques, including CO2 and N2 physisorption, mercury intrusion porosimetry, and field emission scanning electron microscopy, were conducted. The marine shale pore evolutionary model under formation pressure is proposed by characterizing pore evolution, and hydrocarbon expulsion and retention for shales under and without formation fluid pressures. The results show that the existence of formation pressure increases the percentage of quartz and reduces the content of clay minerals. The change in formation pressure has no obvious effect on the maturity evolution of shale samples. With the increase of formation pressure, the pore morphology of shale gradually changes from narrow slit pores to ink bottle-shaped pores. The retained hydrocarbons in shale mainly occupy the mesopore space, and the existence of formation pressure promotes hydrocarbon expulsion, especially the hydrocarbon expulsion in the mesopore. In addition, formation pressure improves pore connectivity, especially in the high-over mature stage of shale. With the increase of formation pressure, the micropore volume decreases slightly, the mesopore volume increases significantly, and the macropore volume changes have two stages.
Full article
(This article belongs to the Special Issue Physical, Chemical and Biological Processes in Energy Geoscience)
►▼
Show Figures

Figure 1
Open AccessArticle
Integrated Biobased Processes for Nanocellulose Preparation from Rice Straw Cellulose
Processes 2023, 11(4), 1006; https://doi.org/10.3390/pr11041006 - 26 Mar 2023
Abstract
High-potential nanomaterials were derived from rice straw using the integrated biobased processes of enzymatic hydrolysis with green organic acid hydrolysis assisted with ultrasonication pretreatment. The optimization condition of nanocellulose preparation by enzymatic hydrolysis via central composite design (CCD) achieved a maximum nanocellulose content
[...] Read more.
High-potential nanomaterials were derived from rice straw using the integrated biobased processes of enzymatic hydrolysis with green organic acid hydrolysis assisted with ultrasonication pretreatment. The optimization condition of nanocellulose preparation by enzymatic hydrolysis via central composite design (CCD) achieved a maximum nanocellulose content of 32.37 ± 0.47% using a cellulase concentration of 107.06 U/mL and 0.13% (w/w) of rice straw cellulose. The ultrasonication-assisted pretreatment prior to enzymatic hydrolysis improved nanocellulose preparation to 52.28 ± 1.55%. Integration with oxalic acid hydrolysis increased the nanocellulose content to 64.99 ± 0.16%. Granular nanocellulose was obtained and consisted of a 105–825 nm nanosize with a zeta potential value of −34.5 mV, and nanocellulose suspension showed high stability without aggregation. In addition, the remaining rice straw cellulose after oxalic acid was microcrystalline nanocellulose. All prepared nanocellulose represented a functional group as original cellulose but had a low crystallinity index (CrI) of 15.68% that could be classified as amorphous nanocellulose. Based on their characteristics, all nanocellose could be further applied in food, cosmetics, and pharmaceuticals. Moreover, the results indicated that the rice straw could be an alternative non-edible cellulose source for preparing potential nanocellulose via a controlled hydrolysis process.
Full article
(This article belongs to the Special Issue Lignocellulosic Biomass Pretreatment and Conversion Processing Technology to Produce Functional Carbon Products)
►▼
Show Figures

Figure 1
Open AccessFeature PaperArticle
Assessing and Improving Biooxidation for Acid Generation and Rare Earth Element Extraction
Processes 2023, 11(4), 1005; https://doi.org/10.3390/pr11041005 - 26 Mar 2023
Abstract
Microorganisms (Acidithiobacillus ferrooxidanns) are effective in oxidizing ferrous ions that can be used to oxidize pyrite and produce sulfuric acid. Many coal waste resources contain significant concentrations of rare earth elements (REE) and critical materials (CM) that can be extracted using
[...] Read more.
Microorganisms (Acidithiobacillus ferrooxidanns) are effective in oxidizing ferrous ions that can be used to oxidize pyrite and produce sulfuric acid. Many coal waste resources contain significant concentrations of rare earth elements (REE) and critical materials (CM) that can be extracted using sulfuric acid. These coal waste resources often contain significant concentrations of pyrite, which if not utilized or removed present a future environmental liability for potential acid mine drainage. Thus, the combination of pyrite and REE/CM in coal waste provides a significant resource opportunity for sulfuric acid generation that can be utilized using biooxidation. In addition, the pyrite concentrate used for acid generation also contains REE/CM content that is released during biooxidation of the pyrite concentrate that augments the REE/CM release from the main ore being leached with the acid generated from the pyrite. Thus, this approach provides a very significant environmental advantage as well as augmented REE/CM recovery. Although there are many studies associated with biooxidation in relation to mineral oxidation, there is a lack of information regarding the effects of operating parameters on biooxidation performance and optimization for practical applications. In this study, findings from research in assessing and improving biooxidation for acid generation for REE/CM extraction are presented. Results show that bacteria can very effectively and efficiently oxidize ferrous ions to ferric ions, which oxidize pyrite to produce acid for REE/CM extraction. The factors that showed significant impact on biooxidation performance include air flow rate, stirring speed, residence time, solids concentration, and temperature. The dominance of Leptospirillum ferriphilum species was noted in the bioreactor after a prolonged period of operation, although Acidithiobacillus ferrooxidanns was used in the beginning.
Full article
(This article belongs to the Special Issue Recent Advances in Processing Technologies for Substance Extraction, Separation, and Enrichment)
Open AccessArticle
Nickel Oxide Nanoparticles on KIT-6: An Efficient Catalyst in Methane Combustion
Processes 2023, 11(4), 1004; https://doi.org/10.3390/pr11041004 - 26 Mar 2023
Abstract
KIT-6 silica with well-ordered three–dimensional (3D) mesopores has been synthesized as a support for nickel-based catalysts. Transmission Electron Microscopy (TEM) and low-angle X-ray Diffraction (XRD) analysis are used to ensure that the ordered 3D mesostructure is stable after NiO incorporation. In this study,
[...] Read more.
KIT-6 silica with well-ordered three–dimensional (3D) mesopores has been synthesized as a support for nickel-based catalysts. Transmission Electron Microscopy (TEM) and low-angle X-ray Diffraction (XRD) analysis are used to ensure that the ordered 3D mesostructure is stable after NiO incorporation. In this study, the catalytic activities of the NiO/KIT-6 samples are investigated. Additionally, the results show that a 10 wt% NiO/KIT-6 catalyst exhibits high catalytic performance in methane combustion, with T10, T50 and T90 being only 386 °C, 456 °C and 507 °C, respectively. Hydrogen Temperature Programmed Reduction (H2-TPR) studies have shown that the interaction between NiO and KIT-6 in the 10 wt% NiO/KIT-6 catalyst is weak. Methane Temperature programmed Surface Reaction (CH4-TPSR) results show that the surface oxygen of the NiO/KIT-6 catalyst allows it to exhibit a high catalytic performance. NiO/KIT-6 catalysts exhibit superior activities to SBA-15, MCF and SiO2 support catalysts because KIT-6 has a higher surface area and ordered 3D mesopore connectivity, which is favorable for better NiO dispersion and peculiar diffusion for reactant and products. Furthermore, the used catalyst maintained an ordered mesostructure and reduction property.
Full article
(This article belongs to the Special Issue 10th Anniversary of Processes: Women's Special Issue Series)
►▼
Show Figures

Figure 1
Open AccessReview
Machine Learning Methods in Skin Disease Recognition: A Systematic Review
Processes 2023, 11(4), 1003; https://doi.org/10.3390/pr11041003 - 26 Mar 2023
Abstract
Skin lesions affect millions of people worldwide. They can be easily recognized based on their typically abnormal texture and color but are difficult to diagnose due to similar symptoms among certain types of lesions. The motivation for this study is to collate and
[...] Read more.
Skin lesions affect millions of people worldwide. They can be easily recognized based on their typically abnormal texture and color but are difficult to diagnose due to similar symptoms among certain types of lesions. The motivation for this study is to collate and analyze machine learning (ML) applications in skin lesion research, with the goal of encouraging the development of automated systems for skin disease diagnosis. To assist dermatologists in their clinical diagnosis, several skin image datasets have been developed and published online. Such efforts have motivated researchers and medical staff to develop automatic skin diagnosis systems using image segmentation and classification processes. This paper summarizes the fundamental steps in skin lesion diagnosis based on papers mainly published since 2013. The applications of ML methods (including traditional ML and deep learning (DL)) in skin disease recognition are reviewed based on their contributions, methods, and achieved results. Such technical analysis is beneficial to the continuing development of reliable and effective computer-aided skin disease diagnosis systems. We believe that more research efforts will lead to the current automatic skin diagnosis studies being used in real clinical settings in the near future.
Full article
(This article belongs to the Special Issue Machine Learning in Biomaterials, Biostructures and Bioinformatics)
►▼
Show Figures

Figure 1

Journal Menu
► ▼ Journal Menu-
- Processes Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor's Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Conferences
- Editorial Office
- 10th Anniversary of Processes
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Applied Mechanics, Applied Sciences, Energies, Fluids, JMSE, Processes
Latest Developments in Fluid Mechanics and Energy
Topic Editors: Ladislav Dzurenda, Richard Lenhard, Jozef JandačkaDeadline: 31 March 2023
Topic in
Energies, Sensors, Processes, Electronics, Smart Cities
Digitalization for Energy Systems
Topic Editors: Shengrong Bu, Shichao Liu, Dawei QiuDeadline: 15 April 2023
Topic in
Applied Sciences, Catalysts, Clean Technol., Processes, Water
Advanced Oxidation Processes (AOPs) in the Circular Economy
Topic Editors: Patrick Dunlop, Efthalia Chatzisymeon, Leónidas Pérez EstradaDeadline: 30 April 2023
Topic in
Applied Sciences, Processes, Beverages, Nutraceuticals, Foods
Innovative Food Processing Technologies – 2nd Volume
Topic Editors: Anet Režek Jambrak, Krystian MarszałekDeadline: 31 May 2023

Conferences
Special Issues
Special Issue in
Processes
Synthesis and Application of Novel Nanocatalysts
Guest Editors: Kang Hyun Park, Sungkyun Park, Ji Chan ParkDeadline: 31 March 2023
Special Issue in
Processes
Drying Kinetics and Quality Control in Food Processing
Guest Editors: Won Byong Yoon, Meng-I Kuo (Marie)Deadline: 15 April 2023
Special Issue in
Processes
CFD Applications in Energy Engineering Research and Simulation
Guest Editor: Alfredo IranzoDeadline: 30 April 2023
Special Issue in
Processes
Value-Added Utilization Processes of Industrial Wastes
Guest Editor: Catarina S.S. OliveiraDeadline: 15 May 2023
Topical Collections
Topical Collection in
Processes
Modeling, Simulation and Computation on Dynamics of Complex Fluids
Collection Editors: Gabriella Bognár, Krisztian Hriczo
Topical Collection in
Processes
Multi-Objective Optimization of Processes
Collection Editors: Gade Pandu Rangaiah, Andrew Hoadley
Topical Collection in
Processes
Principles of Modular Design and Control in Complex Systems
Collection Editor: Cong T. Trinh
Topical Collection in
Processes
Sustainable Food Processing Processes
Collection Editors: Dariusz Dziki, Renata Różyło, Urszula Gawlik-Dziki