You are currently viewing a new version of our website. To view the old version click .

Processes

Processes is an international, peer-reviewed, open access journal on processes/systems in chemistry, biology, material, energy, environment, food, pharmaceutical, manufacturing, automation control, catalysis, separation, particle and allied engineering fields published monthly online by MDPI.
The Brazilian Association of Chemical Engineering (ABEQ) is affiliated with Processes and its members receive discounts on the article processing charges. Please visit Society Collaborations for more details.
Quartile Ranking JCR - Q3 (Engineering, Chemical)

All Articles (18,671)

As the global cement industry moves toward energy efficiency and intelligent manufacturing, refined control of key processes like precalciner outlet temperature is critical for improving energy use and product quality. The precalciner’s outlet temperature directly affects clinker calcination quality and heat consumption, so developing a high-accuracy prediction model is essential to shift from empirical to intelligent control. This study proposes a TCN-BiLSTM hybrid neural network model for the accurate prediction and regulation of the outlet temperature of the decomposition furnace. Based on actual operational data from a cement plant in Guangxi, the Spearman correlation coefficient method is employed to select feature variables significantly correlated with the outlet temperature, including kiln rotation speed, high-temperature fan speed, temperature A at the middle-lower part of the decomposition furnace, temperature B of the discharge from the five-stage cyclone, exhaust fan speed, and tertiary air temperature of the decomposition furnace. This method effectively reduces feature dimensionality while enhancing the prediction accuracy of the model. All selected feature variables are normalized and used as input data for the model. Finally, comparative experiments with RNN, LSTM, BiLSTM, TCN, and TCN-LSTM models are performed. The experimental results indicate that the TCN-BiLSTM model achieves the best performance across major evaluation metrics, with a Mean Relative Error (MRE) as low as 0.91%, representing an average reduction of over 1.1% compared to other benchmark models, thereby demonstrating the highest prediction accuracy and robustness. This approach provides high-quality predictive inputs for constructing intelligent control systems, thereby facilitating the advancement of cement production toward intelligent, green, and high-efficiency development.

16 December 2025

Production Process Flowchart of the Precalciner Kiln. (Arrows in different colors represent distinct paths: blue for air path and orange for material path).

Silicon carbide (SiC) three-phase converters are widely adopted in parallel power distribution systems for their high efficiency, yet their performance is challenged by high switching frequency and communication constraints. For the parallel inverter system, problems such as uneven power distribution and circulating current may occur. Therefore, the droop control method was proposed. The droop control method is limited in precise power sharing and circulating current mitigation. To address these issues in the communication-free parallel inverter system, a hybrid droop-enhanced virtual impedance method is proposed. The methodology integrates droop characteristics with frequency-selective virtual impedance compensation, enabling concurrent optimization of power sharing and circulating current suppression. Through simulation, the droop control method and the improved droop control method were compared and analyzed. Finally, the effectiveness of the improved droop control method was verified through experiments.

16 December 2025

Understanding the deformation–failure process of sandstone is essential for energy extraction and stability assessment. Here, laboratory mechanical tests and discrete element simulations are combined to resolve how grain size controls deformation, cracking, and failure. Under uniaxial compression, fine-grained sandstone shows the highest strength (60.85–65.37 MPa) yet undergoes an abrupt brittle transition to axial splitting at a small peak axial strain of 0.41–0.42%; coarse-grained sandstone exhibits lower strength (26.94–28.67 MPa) but fails at peak axial strains of 0.44–0.53%, on average about 17% higher than those of FGS, indicating enhanced ductility; medium-grained sandstone lies in between in both strength (41.15–43.79 MPa) and peak axial strain (0.42–0.45%). With confining pressure, fine- and medium-grained sandstones display pronounced process evolution toward ductility, whereas coarse-grained sandstone shows limited pressure sensitivity. DEM results link microcrack evolution with the macroscopic response: under uniaxial loading, fine-grained sandstone is dominated by intergranular tensile cracking, while coarse-grained sandstone includes more intragranular cracks. Increasing confinement controls the cracking process, shifting fine- and medium-grained rocks from intergranular tension to mixed intragranular tension–shear, thereby enhancing ductility; in contrast, coarse-grained sandstone at high confinement localizes shear bands and remains relatively brittle. Normalized microcrack aperture distributions and fragment identification capture a continuous damage accumulation process from micro to macro scales. These process-based insights clarify the controllability of failure modes via grain size and confinement and offer optimization-oriented guidance for design parameters that mitigate splitting and promote stable deformation in deep sandstone reservoirs and underground excavations.

16 December 2025

  • Feature Paper
  • Article
  • Open Access

γ-Valerolactone Pulping as a Sustainable Route to Micro- and Nanofibrillated Cellulose from Sugarcane Bagasse

  • Roxana Giselle González,
  • Nanci Ehman and
  • Fernando Esteban Felissia
  • + 2 authors

The study explores γ-valerolactone (GVL) pulps as a sustainable approach to producing microfibrillated (MFC) and nanofibrillated (NFC) cellulose from sugarcane bagasse, a widely available agro-industrial by-product. Pulp was obtained by acid-catalyzed organosolv delignification with a GVL–water system. MFC was generated through a simple disc refiner, while NFC was produced by TEMPO-mediated oxidation followed by mechanical treatment in a colloidal mill. NFC and MFC produced using the same methodology from a commercial sugarcane totally chlorine-free (TCF) soda–anthraquinone (soda–AQ) pulp served as a reference. Structural and physicochemical characterization involved optical transmittance, turbidity, conductimetry, X-ray diffraction, viscosity, FTIR, carboxyl content, cationic demand, degree of polymerization, and morphology by scanning electron microscopy (SEM). Results demonstrated that xylan and residual lignin contents influenced MFC formation, and the NFC showed properties comparable to those of the commercial pulp with fewer fibrillation passes. The study highlights GVL pulping as a greener, efficient alternative to conventional processes, opening new pathways for producing viscosity-controlled nanocellulose suspensions suitable for advanced applications.

16 December 2025

News & Conferences

Issues

Open for Submission

Editor's Choice

Reprints of Collections

2nd Edition of Innovation in Chemical Plant Design
Reprint

2nd Edition of Innovation in Chemical Plant Design

Editors: Roberta Campardelli, Paolo Trucillo
Extraction, Utilization and Conversion of Woody Biomass
Reprint

Extraction, Utilization and Conversion of Woody Biomass

Editors: Ali Umut Şen, Catarina Pereira Nobre, Terencio Rebello de Aguiar Junior

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Processes - ISSN 2227-9717