Journal Description
Foods
Foods
is an international, scientific, peer-reviewed, open access journal of food science and is published semimonthly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, PMC, FSTA, AGRIS, PubAg, and many other databases.
- Journal Rank: JCR - Q2 (Food Science & Technology) / CiteScore - Q1 (Health Professions, miscellaneous)
- Rapid Publication: manuscripts are peer-reviewed and a first decision provided to authors approximately 17.6 days after submission; acceptance to publication is undertaken in 2.9 days (median values for papers published in this journal in the second half of 2021).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Impact Factor:
4.350 (2020)
;
5-Year Impact Factor:
4.957 (2020)
Latest Articles
Comparative Evaluation on the Bioaccessibility of Citrus Fruit Carotenoids In Vitro Based on Different Intake Patterns
Foods 2022, 11(10), 1457; https://doi.org/10.3390/foods11101457 (registering DOI) - 17 May 2022
Abstract
The intake pattern has a great impact on the bioaccessibility of carotenoids from citrus fruit. Here, we compared the bioaccessibility of carotenoids from fresh citrus fruit (FC), fresh citrus juice (FCJ), and not-from-concentrate citrus juice (NCJ) and analyzed the influencing factors. The results
[...] Read more.
The intake pattern has a great impact on the bioaccessibility of carotenoids from citrus fruit. Here, we compared the bioaccessibility of carotenoids from fresh citrus fruit (FC), fresh citrus juice (FCJ), and not-from-concentrate citrus juice (NCJ) and analyzed the influencing factors. The results demonstrated that particle size, viscosity, and some active components of the samples during digestion are potential factors affecting the bioaccessibility of carotenoids. The total carotenoid bioaccessibility of NCJ (31.45 ± 2.58%) was significantly higher than that of FC (8.11 ± 0.43%) and FCJ (12.43 ± 0.49%). This work demonstrates that NCJ is an appropriate intake pattern to improve the bioaccessibility of carotenoids from citrus fruit. The findings also suggest that adjustment of food intake patterns is an effective way to improve the digestion and absorption of nutrients.
Full article
(This article belongs to the Section Food Nutrition)
►
Show Figures
Open AccessReview
An Exploration of Listeria Monocytogenes, Its Influence on the UK Food Industry and Future Public Health Strategies
Foods 2022, 11(10), 1456; https://doi.org/10.3390/foods11101456 (registering DOI) - 17 May 2022
Abstract
Listeria monocytogenes is a Gram-positive intracellular pathogen that can cause listeriosis, an invasive disease affecting pregnant women, neonates, the elderly, and immunocompromised individuals. Principally foodborne, the pathogen is transmitted typically through contaminated foods. As a result, food manufacturers exert considerable efforts to eliminate
[...] Read more.
Listeria monocytogenes is a Gram-positive intracellular pathogen that can cause listeriosis, an invasive disease affecting pregnant women, neonates, the elderly, and immunocompromised individuals. Principally foodborne, the pathogen is transmitted typically through contaminated foods. As a result, food manufacturers exert considerable efforts to eliminate L. monocytogenes from foodstuffs and the environment through food processing and disinfection. However, L. monocytogenes demonstrates a range of environmental stress tolerances, resulting in persistent colonies that act as reservoirs for the reintroduction of L. monocytogenes to food contact surfaces and food. Novel technologies for the rapid detection of L. monocytogenes and disinfection of food manufacturing industries have been developed to overcome these obstacles to minimise the risk of outbreaks and sporadic cases of listeriosis. This review is aimed at exploring L. monocytogenes in the UK, providing a summary of outbreaks, current routine microbiological testing and the increasing awareness of biocide tolerances. Recommendations for future research in the UK are made, pertaining to expanding the understanding of L. monocytogenes dissemination in the UK food industry and the continuation of novel technological developments for disinfection of food and the food manufacturing environment.
Full article
(This article belongs to the Special Issue Food Safety: Persistence of Listeria monocytogenes in Food Production Environments)
Open AccessArticle
Bioactivity and Chemical Profile of Rubus idaeus L. Leaves Steam-Distillation Extract
by
, , , and
Foods 2022, 11(10), 1455; https://doi.org/10.3390/foods11101455 (registering DOI) - 17 May 2022
Abstract
The leaves of Rubus idaeus L., a by-product of the fruit food industry, are a known source of bioactive molecules, although the chemical composition has only been partially investigated. The main objective of this study was to examine the biological activities and the
[...] Read more.
The leaves of Rubus idaeus L., a by-product of the fruit food industry, are a known source of bioactive molecules, although the chemical composition has only been partially investigated. The main objective of this study was to examine the biological activities and the chemical composition of the extract of leaves of R. idaeus (RH), obtained by steam distillation (SD). The antioxidant capacity; the total phenolic content (TPC); the cytotoxic activity against tumor cell lines; and the antibacterial activity, in addition to the study of the chemical fingerprinting, carried out by Gas/Chromatography-Mass-Spectrometry (GC/MS) and Headspace (HS)-GC/MS, were established. The extract showed a strong antioxidant capacity and a modest antibacterial activity against two bacterial strains, as well as significant cytotoxic activity against tumor cell lines (Caco-2 and HL60) and being proliferative on healthy cells. Many of the GC-identified volatile molecules (1,8-cineol, β-linalool, geraniol, caryophyllene, τ-muurolol, citral, α-terpineol, 3- carene, α-terpinen-7-al, etc.) can explain most of the biological properties exhibited by the extract of R. idaeus L. The high biological activity of the RH and the high compatibility with the various matrices suggest good prospects for this extract, both in the food and cosmetic fields or in dietary supplements for improving human health.
Full article
(This article belongs to the Section Plant Foods)
►▼
Show Figures

Figure 1
Open AccessArticle
The Effect of Message Framing in Promoting the Mediterranean Diet: The Moderating Role of Eating Self-Efficacy
Foods 2022, 11(10), 1454; https://doi.org/10.3390/foods11101454 (registering DOI) - 17 May 2022
Abstract
Although a Mediterranean diet (MeDiet) provides several psychophysical health benefits, research on how to effectively promote MeDiet adherence is still lacking. In the present study, we tested the effectiveness of a messaging intervention aimed at promoting the adherence to the Mediterranean diet. A
[...] Read more.
Although a Mediterranean diet (MeDiet) provides several psychophysical health benefits, research on how to effectively promote MeDiet adherence is still lacking. In the present study, we tested the effectiveness of a messaging intervention aimed at promoting the adherence to the Mediterranean diet. A total of 435 Italian participants responded to a questionnaire on their eating self-efficacy and adherence to the MeDiet at Time 1. Then, participants were randomly assigned to three different conditions: (a) gain messages focused on the positive outcomes of MeDiet adherence; (b) non-loss messages focused on the avoided negative outcomes associated with MeDiet adherence; (c) no messages (control). After the 2 week intervention, participants answered some questions regarding their perception of threat and distress, evaluation of the messages, and adherence to the MeDiet at Time 2. We also tested whether the messaging intervention influenced participants’ MeDiet adherence at Time 2. Results confirmed that the messaging intervention enhanced the MeDiet adherence (F(2,432) = 4.61; p = 0.01, ηp2 = 0.02), with no difference between exposure to gain or non-loss messages (95% LLCI = −0.32; 95% ULCI = 0.54). We then tested whether message framing effectiveness was influenced by eating self-efficacy, and results showed that gain messages were more persuasive for participants with low eating self-efficacy (effect size = 0.01; p for interaction = 0.03). Discussion suggests that tailoring messages according to receivers’ psychological characteristics seems to be pivotal to enhance the persuasiveness of messages aimed at promoting the MeDiet adherence.
Full article
(This article belongs to the Section Sensory and Consumer Sciences)
►▼
Show Figures

Figure 1
Open AccessArticle
Application of a Rapid and Simple Technological Process to Increase Levels and Bioccessibility of Free Phenolic Compounds in Annurca Apple Nutraceutical Product
by
, , , , , , , and
Foods 2022, 11(10), 1453; https://doi.org/10.3390/foods11101453 - 17 May 2022
Abstract
Insoluble bound polyphenols (ISBP) are polyphenolic compounds linked to the food matrix with different interactions limiting both their water extractability and consequent bioaccessibility. The health-promoting potential of polyphenols is historically known and well-demonstrated; specifically, Annurca apple polyphenols were studied both in vitro and
[...] Read more.
Insoluble bound polyphenols (ISBP) are polyphenolic compounds linked to the food matrix with different interactions limiting both their water extractability and consequent bioaccessibility. The health-promoting potential of polyphenols is historically known and well-demonstrated; specifically, Annurca apple polyphenols were studied both in vitro and in vivo for their effect in controlling cholesterol plasma levels. The aim of the study was the preparation of nutraceutical products based on Annurca apple polyphenolic fraction through the application of a technological process (acid treatment) able to release the ISBP from Annurca apple food matrix and increase polyphenol bioaccessibility. Lyophilized annurca apple (LAA) underwent acid treatment (ATLAA), and differences in released polyphenol levels were analysed by DAD-HPLC. Free-polyphenol levels in samples treated under acid conditions were higher than in untreated ones; in particular, for oligomeric flavan-3-ols (+168% procyanidin B2, +42.97% procyanidin B1 and B2, +156.99% procyanidin C1), catechin (+512.20%), and gallic acid (+707.77%). Furthermore, ATLAA underwent an in vitro gastrointestinal digestion to evaluate the bioaccessibility of contained polyphenols, in comparison to the untreated Annurca apple. The bioaccessibility study indicates a valuable preservation of polyphenolic fraction compared to the control.
Full article
(This article belongs to the Special Issue Novel Functional Foods: Processing, Bioactive Compounds Characterization and Potential Health Effects)
Open AccessArticle
The First Optimization Process from Cultivation to Flavonoid-Rich Extract from Moringa oleifera Lam. Leaves in Brazil
by
, , , , , , , , and
Foods 2022, 11(10), 1452; https://doi.org/10.3390/foods11101452 - 17 May 2022
Abstract
Flavonoids are significant antioxidant and anti-inflammatory agents and have multiple potential health applications. Moringa oleifera is globally recognized for its nutritional and pharmacological properties, correlated to the high flavonoid content in its leaves. However, the bioactive compounds found in plants may vary according
[...] Read more.
Flavonoids are significant antioxidant and anti-inflammatory agents and have multiple potential health applications. Moringa oleifera is globally recognized for its nutritional and pharmacological properties, correlated to the high flavonoid content in its leaves. However, the bioactive compounds found in plants may vary according to the cultivation, origin, season, and extraction process used, making it difficult to extract reliable raw material. Hence, this study aimed to standardize the best cultivation and harvest season in Brazil and the best extraction process conditions to obtain a flavonoid-rich extract from M. oleifera as a final product. Firstly, ultrasound-assisted extraction (UAE) was optimized to reach the highest flavonoid content by three-level factorial planning and response surface methodology (RSM). The optimal cultivation condition was mineral soil fertilizer in the drought season, and the optimized extraction was with 80% ethanol and 13.4 min of extraction time. The flavonoid-rich extract was safe and significantly decreased reactive oxygen species (ROS) and nitric oxide (NO) in LPS-treated RAW 264.7 cells. Lastly, the major flavonoids characterized by HPLC-ESI-QTRAP-MS/MS were compounds derived from apigenin, quercetin, and kaempferol glycosides. The results confirmed that it was possible to standardize the flavonoid-rich extract leading to a standardized and reliable raw material extracted from M. oleifera leaves.
Full article
(This article belongs to the Section Plant Foods)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Lactiplantibacillus plantarum Y42 in Biofilm and Planktonic States Improves Intestinal Barrier Integrity and Modulates Gut Microbiota of Balb/c Mice
Foods 2022, 11(10), 1451; https://doi.org/10.3390/foods11101451 - 17 May 2022
Abstract
In our previous study, Lactiplantibacillus plantarum Y42 showed some potential probiotic functions and the ability to form biofilm. The aim of this study was to compare the similarities and differences in the probiotic and physiological traits of L. plantarum Y42 in the biofilm
[...] Read more.
In our previous study, Lactiplantibacillus plantarum Y42 showed some potential probiotic functions and the ability to form biofilm. The aim of this study was to compare the similarities and differences in the probiotic and physiological traits of L. plantarum Y42 in the biofilm and planktonic states. L. plantarum Y42 in the biofilm state was proven to have higher survival after passing through mimic gastrointestinal fluid, as well as excellent adhesion properties on the HT-29 cell monolayers, than those in the planktonic state. The expression of tight junction proteins (TJ proteins) of HT-29 cell monolayers treated by L. plantarum Y42 in the planktonic state increased, while similar changes were not observed in the HT-29 cells treated by the strain in the biofilm state. Furthermore, Balb/c mice were orally administered L. plantarum Y42 in the biofilm and planktonic states, respectively. Compared to the planktonic state, the oral administration of L. plantarum Y42 in the biofilm state significantly boosted IgA levels and improved the immunity of the mice. High-throughput sequencing showed that the diversity and structure of the intestinal flora of the mice were changed after the oral administration of L. plantarum Y42, including the up-regulated relative abundance of Lactobacillus in the intestinal tract of the mice, with no difference between the biofilm and planktonic states. Moreover, oral administration of L. plantarum Y42 in biofilm and planktonic states reduced the release of proinflammatory factors, to a certain extent, in the serum of the mice. The similarities and differences in the probiotic and physiological properties of L. plantarum Y42 in the biofilm and planktonic states can be contributed to the reasonable application of the strain.
Full article
(This article belongs to the Topic Probiotics, Prebiotics and Postbiotics in Human Health)
►▼
Show Figures

Figure 1
Open AccessArticle
Immunomodulatory Role of BLG-Derived Peptides Based on Simulated Gastrointestinal Digestion and DC-T Cell from Mice Allergic to Cow’s Milk
Foods 2022, 11(10), 1450; https://doi.org/10.3390/foods11101450 - 17 May 2022
Abstract
Peptides, but not whole protein, elicit an allergic reaction since food allergens should be consumed by digestion. In this study, we explored the remaining peptides after simulated digestion of cow’s milk in order to search for β-lactoglobulin (BLG)-derived peptides that could play an
[...] Read more.
Peptides, but not whole protein, elicit an allergic reaction since food allergens should be consumed by digestion. In this study, we explored the remaining peptides after simulated digestion of cow’s milk in order to search for β-lactoglobulin (BLG)-derived peptides that could play an immunomodulatory role. As a major allergen in milk, BLG-derived peptides, 109 in total, were identified both from simulated infant and adult digestion in vitro. These peptides were mainly located in four regions, and they were synthesized as five peptides, namely, BLG1–14, BLG24–35, BLG40–60, BLG82–101, and BLG123–139. Then, the effect of peptides on the Caco-2 cell’s transport absorption, the co-stimulatory molecules of DC, and the T-cell phenotype was explored. The results suggested all peptides showed better transport absorption capacity with the apparent permeability coefficient higher than 2 × 10−6 cm·s−1. The ability of BLG40–60 for promoting lamina propria-derived DC cell (LPDC) maturation was observed by the increase in MHC II. Moreover, BLG1–14 and BLG40–60 directed activation of T lymphocytes towards a Th1 phenotype. This is the first report of the immunomodulatory potential of peptides in the sensitization of allergic reaction, and one peptide, BLG40–60, was regarded as an immunomodulatory peptide, one that should be further explored in an animal model in depth.
Full article
(This article belongs to the Special Issue Food Intolerances, Allergies, and Celiac Disease)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Starch-Rich Microalgae as an Active Ingredient in Beer Brewing
by
, , , , , , and
Foods 2022, 11(10), 1449; https://doi.org/10.3390/foods11101449 - 17 May 2022
Abstract
Microalgal biomass is widely studied for its possible application in food and human nutrition due to its multiple potential health benefits, and to address raising sustainability concerns. An interesting field whereby to further explore the application of microalgae is that of beer brewing,
[...] Read more.
Microalgal biomass is widely studied for its possible application in food and human nutrition due to its multiple potential health benefits, and to address raising sustainability concerns. An interesting field whereby to further explore the application of microalgae is that of beer brewing, due to the capacity of some species to accumulate large amounts of starch under specific growth conditions. The marine species Tetraselmis chui is a well-known starch producer, and was selected in this study for the production of biomass to be explored as an active ingredient in beer brewing. Cultivation was performed under nitrogen deprivation in 250 L tubular photobioreactors, producing a biomass containing 50% starch. The properties of high-starch microalgal biomass in a traditional mashing process were then assessed to identify critical steps and challenges, test the efficiency of fermentable sugar release, and develop a protocol for small-scale brewing trials. Finally, T. chui was successfully integrated at a small scale into the brewing process as an active ingredient, producing microalgae-enriched beer containing up to 20% algal biomass. The addition of microalgae had a noticeable effect on the beer properties, resulting in a product with distinct sensory properties. Regulation of pH proved to be a key parameter in the process.
Full article
(This article belongs to the Special Issue The Application of Microalgae for the Development of High-Added-Value Products)
►▼
Show Figures

Figure 1
Open AccessArticle
Electrochemical Sensing of Vanillin Based on Fluorine-Doped Reduced Graphene Oxide Decorated with Gold Nanoparticles
Foods 2022, 11(10), 1448; https://doi.org/10.3390/foods11101448 - 17 May 2022
Abstract
4-hydroxy-3-methoxybenzaldehyde (vanillin) is a biophenol compound that is relatively abundant in the world’s most popular flavoring ingredient, natural vanilla. As a powerful antioxidant chemical with beneficial antimicrobial properties, vanillin is not only used as a flavoring agent in food, beverages, perfumery, and pharmaceutical
[...] Read more.
4-hydroxy-3-methoxybenzaldehyde (vanillin) is a biophenol compound that is relatively abundant in the world’s most popular flavoring ingredient, natural vanilla. As a powerful antioxidant chemical with beneficial antimicrobial properties, vanillin is not only used as a flavoring agent in food, beverages, perfumery, and pharmaceutical products, it may also be employed as a food-preserving agent, and to fight against yeast and molds. The widespread use of vanilla in major industries warrants the need to develop simple and cost-effective strategies for the quantitative determination of its major component, vanillin. Herein, we explore the applications of a selective and sensitive electrochemical sensor (Au electrodeposited on a fluorine-doped reduced-graphene-oxide-modified glassy-carbon electrode (Au/F-rGO/GCE)) for the detection of vanillin. The electrochemical performance and analytical capabilities of this novel electrochemical sensor were investigated using electrochemical techniques including cyclic voltammetry and differential pulse voltammetry. The excellent sensitivity, selectivity, and reproducibility of the proposed electrochemical sensor may be attributed to the high conductivity and surface area of the formed nanocomposite. The high performance of the sensor developed in the present study was further demonstrated with real-sample analysis.
Full article
(This article belongs to the Special Issue Technological Advancements in Food Processing, Rapid Detection, Process Monitoring, and Quality Control)
►▼
Show Figures

Graphical abstract
Open AccessArticle
“Food Village”: An Innovative Alternative Food Network Based on Human Scale Development Economic Model
by
, , , , and
Foods 2022, 11(10), 1447; https://doi.org/10.3390/foods11101447 - 17 May 2022
Abstract
Although the different alternative food networks (AFNs) have experienced increases worldwide for the last thirty years, they are still unable to provide an alternative capable of spreading on a large scale. They in fact remain niche experiments due to some limitations on their
[...] Read more.
Although the different alternative food networks (AFNs) have experienced increases worldwide for the last thirty years, they are still unable to provide an alternative capable of spreading on a large scale. They in fact remain niche experiments due to some limitations on their structure and governance. Thus, this study proposes and applies a design method to build a new sustainable food supply chain model capable of realizing a “jumping scale”. Based on the theoretical and value framework of the Civil Economy (CE), the Economy for the Common Good (ECG), and the Development on a Human Scale (H-SD), the proposed design model aims to satisfy the needs of all stakeholders in the supply chain. Max-Neef’s Needs Matrix and Design Thinking (DT) tools were used to develop the design model. Applying the design method to the food chain has allowed us to develop the concept of the “Food Village”, an innovative food supply network far from the current economic mechanisms and based on the community and eco-sustainability.
Full article
(This article belongs to the Special Issue Innovations in the Food System: Exploring the Future of Food)
►▼
Show Figures

Figure 1
Open AccessArticle
Glucosinolates as Markers of the Origin and Harvesting Period for Discrimination of Bee Pollen by UPLC-MS/MS
by
, , , , and
Foods 2022, 11(10), 1446; https://doi.org/10.3390/foods11101446 - 17 May 2022
Abstract
Bee pollen is currently one of the most commonly consumed food supplements, as it is considered to be a good source of bioactive substances and energy. It contains various health-promoting compounds, such as proteins, amino acids, lipids, as well as glucosinolates. In the
[...] Read more.
Bee pollen is currently one of the most commonly consumed food supplements, as it is considered to be a good source of bioactive substances and energy. It contains various health-promoting compounds, such as proteins, amino acids, lipids, as well as glucosinolates. In the present study, the glucosinolate content was determined, by means of ultra-performance liquid chromatography coupled to a quadrupole time-of-flight mass detector, in 72 bee pollen samples from four different apiaries in Guadalajara (Spain), harvested in three different periods. In addition, 11 commercial multifloral samples from different Spanish regions were also analyzed. The aim was to verify the suitability of these compounds as biomarkers of their geographical origin, and to test their potential for distinguishing the harvesting period. By means of a canonical discriminant analysis, it was possible to differentiate the apiary of origin of most of the samples, and these could also be clearly differentiated from the commercial ones, simply as a result of the glucosinolate content. In addition, it was also demonstrated for the first time that bee pollen samples were capable of being differentiated according to the time of harvesting and their glucosinolate content.
Full article
(This article belongs to the Special Issue Application of LC-MS/MS in Food Analysis and Quality Control)
►▼
Show Figures

Figure 1
Open AccessArticle
Antioxidant Activity and Multi-Elemental Analysis of Dark Chocolate
by
, , , , and
Foods 2022, 11(10), 1445; https://doi.org/10.3390/foods11101445 - 17 May 2022
Abstract
Cocoa beans are part of the cocoa plant fruit (Theobroma cacao L.) used to prepare various products such as chocolate, cocoa butter, jelly, liqueurs, cosmetics, etc. Dark chocolate is consumed worldwide by different populations and is known for its good taste, making
[...] Read more.
Cocoa beans are part of the cocoa plant fruit (Theobroma cacao L.) used to prepare various products such as chocolate, cocoa butter, jelly, liqueurs, cosmetics, etc. Dark chocolate is consumed worldwide by different populations and is known for its good taste, making it one of the most favoured food products. This work aimed to determine the content of total polyphenols (TPC), total flavonoids (TFC), and the antioxidant potential measured through the ability to scavenge DPPH free radicals (DPPH), ferric reducing power (FRAP), and total antioxidant capacity (TAC), as well as major and trace elements contained in twelve commercially available dark chocolate samples, with cocoa content ranging from 40% to 99%. The total polyphenols content ranged between 10.55 and 39.82 mg/g GAE, while the total flavonoid content was from 10.04 to 37.85 mg/g CE. All applied antioxidant assays indicate that the sample with the highest cocoa percentage shows the greatest antioxidant activity (DPPH: 48.34% of inhibition; FRAP: 89.00 mg/g GAE; TAC: 83.86 mg/g AAE). Statistical methods were applied to establish the differences between the samples concerning TPC, TFC, DPPH, FRAP and TAC, as well as to differentiate the samples according to the mineral content. The results indicated that the differences in TPC and TFC between different samples depended on the cocoa content and the addition of dried fruit pieces. A good correlation between antioxidant potency composite index (ACI) and declared cocoa content was noticed (R2 = 0.8034), indicating that the declared percentage of cocoa is a reliable indicator for antioxidant activity of analysed dark chocolate samples. The nutritional evaluation proved that the studied chocolate samples were an excellent source of Mg, Fe, Mn and Cu.
Full article
(This article belongs to the Special Issue Polyphenols in Food: Current Knowledge and Directions for Future Research II)
►▼
Show Figures

Figure 1
Open AccessArticle
HOG-SVM Impurity Detection Method for Chinese Liquor (Baijiu) Based on Adaptive GMM Fusion Frame Difference
Foods 2022, 11(10), 1444; https://doi.org/10.3390/foods11101444 - 17 May 2022
Abstract
Chinese liquor (Baijiu) is one of the four major distilled spirits in the world. At present, liquor products containing impurities still exist on the market, which not only damage corporate image but also endanger consumer health. Due to the production process and packaging
[...] Read more.
Chinese liquor (Baijiu) is one of the four major distilled spirits in the world. At present, liquor products containing impurities still exist on the market, which not only damage corporate image but also endanger consumer health. Due to the production process and packaging technologies, impurities usually appear in products of Baijiu before entering the market, such as glass debris, mosquitoes, aluminium scraps, hair, and fibres. In this paper, a novel method for detecting impurities in bottled Baijiu is proposed. Firstly, the region of interest (ROI) is cropped by analysing the histogram projection of the original image to eliminate redundant information. Secondly, to adjust the number of distributions in the Gaussian mixture model (GMM) dynamically, multiple unmatched distributions are removed and distributions with similar means are merged in the process of modelling the GMM background. Then, to adaptively change the learning rates of the front and background pixels, the learning rate of the pixel model is created by combining the frame difference results of the sequence images. Finally, a histogram of oriented gradient (HOG) features of the moving targets is extracted, and the Support Vector Machine (SVM) model is chosen to exclude bubble interference. The experimental results show that this impurity detection method for bottled Baijiu controls the missed rate by within 1% and the false detection rate by around 3% of impurities. Its speed is five times faster than manual inspection and its repeatability index is good, indicating that the overall performance of the proposed method is better than manual inspection with a lamp. This method is not only efficient and fast, but also provides practical, theoretical, and technical support for impurity detection of bottled Baijiu that has broad application prospects.
Full article
(This article belongs to the Special Issue Nondestructive Optical Sensing for Food Quality and Safety Inspection)
►▼
Show Figures

Figure 1
Open AccessArticle
Bioconversion of High-Calorie Potato Starch to Low-Calorie β-Glucan via 3D Printing Using Pleurotus eryngii Mycelia
Foods 2022, 11(10), 1443; https://doi.org/10.3390/foods11101443 - 16 May 2022
Abstract
Edible fungi play an important role in material and energy cycling. This study explored the role of Pleurotus eryngii mycelia in the transformation of potato high-calorie starch to low-calorie β-glucan. First, the 3D printing performance of the potato medium was optimized. After inoculating
[...] Read more.
Edible fungi play an important role in material and energy cycling. This study explored the role of Pleurotus eryngii mycelia in the transformation of potato high-calorie starch to low-calorie β-glucan. First, the 3D printing performance of the potato medium was optimized. After inoculating the fermentation broth of Pleurotus eryngii in 3D printing, we studied the microstructure and material composition of the product. Along with the increase in 3D printing filling ratio, the starch content of the culture product decreased from 84.18% to 60.35%, while the starch content in the solid medium prepared using the mold was 67.74%. The change in β-glucan content in cultured products was opposite to that of starch, and the content of the culture product increased from 12.57% to 24.31%, while the β-glucan content in the solid medium prepared using the mold was 22.17%. The amino acid composition and content of the 3D printing culture system and solid culture products prepared using the mold were similar. The 3D printing culture system promoted the bioconversion efficiency of mycelia. It also showed high application potential of Pleurotus eryngii mycelia for the preparation of low-calorie food.
Full article
(This article belongs to the Special Issue Novel Processing Technology of Starch Based Products in Food Industry)
►▼
Show Figures

Figure 1
Open AccessArticle
Substrate Selectivity of a Novel Amylo-α-1,6-glucosidase from Thermococcus gammatolerans STB12
by
, , , , , , and
Foods 2022, 11(10), 1442; https://doi.org/10.3390/foods11101442 - 16 May 2022
Abstract
Amylo-α-1,6-glucosidase (EC 3.2.1.33, AMY) exhibits hydrolytic activity towards α-1,6-glycosidic bonds of branched substrates. The debranching products of maltodextrin, waxy corn starch and cassava starch treated with AMY, pullulanase (EC 3.2.1.41, PUL) and isoamylase (EC 3.2.1.68, ISO), were investigated and their differences in substrate
[...] Read more.
Amylo-α-1,6-glucosidase (EC 3.2.1.33, AMY) exhibits hydrolytic activity towards α-1,6-glycosidic bonds of branched substrates. The debranching products of maltodextrin, waxy corn starch and cassava starch treated with AMY, pullulanase (EC 3.2.1.41, PUL) and isoamylase (EC 3.2.1.68, ISO), were investigated and their differences in substrate selectivity and debranching efficiency were compared. AMY had a preference for the branched structure with medium-length chains, and the optimal debranching length was DP 13–24. Its optimum debranching length was shorter than ISO (DP 25–36). In addition, the debranching rate of maltodextrin treated by AMY for 6 h was 80%, which was 20% higher than that of ISO. AMY could decompose most of the polymerized amylopectin in maltodextrin into short amylose and oligosaccharides, while it could only decompose the polymerized amylopectin in starch into branched glucan chains and long amylose. Furthermore, the successive use of AMY and β-amylase increased the hydrolysis rate of maltodextrin from 68% to 86%. Therefore, AMY with high substrate selectivity and a high catalytic capacity could be used synergistically with other enzyme preparations to improve substrate utilization and reduce reaction time. Importantly, the development of a novel AMY provides an effective choice to meet different production requirements.
Full article
(This article belongs to the Special Issue Application of Enzyme Engineering in Food)
►▼
Show Figures

Figure 1
Open AccessCommunication
Speciation of Arsenic(III) and Arsenic(V) in Plant-Based Drinks
by
and
Foods 2022, 11(10), 1441; https://doi.org/10.3390/foods11101441 - 16 May 2022
Abstract
Recently, food products based only on plants have become increasingly popular and are often found on store shelves. It is a specific market response to the growing demand for, and interest in, plant foods. Cow’s milk has also gained its counterpart in the
[...] Read more.
Recently, food products based only on plants have become increasingly popular and are often found on store shelves. It is a specific market response to the growing demand for, and interest in, plant foods. Cow’s milk has also gained its counterpart in the form of plant-based beverages, based on cereals, nuts or legumes. The emergence of an increasingly wide range of plant-based food products has also led to increased research on safe plant food consumption. This study was conducted to quantify total arsenic content and its species (arsenic(III) and (V)) in samples of plant-based beverages purchased at Polish markets. Speciation analysis of arsenic was performed by high-performance liquid chromatography combined with inductively coupled plasma mass spectrometry. The presented study was conducted on six selected plant-based beverages, including almond, millet, soybean, rice, coconut and oat. An analysis using size exclusion chromatography was performed. In order to initially visualize the content of the observed elements and the particle size of the compounds in which they occur, at first the samples were subjected to the size-exclusion chromatography. Speciation analysis of arsenic was carried out using anion-exchange liquid chromatography, combined with inductively coupled plasma mass spectrometry. The presented method was validated with certified reference material (CRM rice flour).
Full article
(This article belongs to the Topic Future Food Analysis and Detection)
►▼
Show Figures

Figure 1
Open AccessArticle
Analysis of the Fruit Quality of Pear (Pyrus spp.) Using Widely Targeted Metabolomics
Foods 2022, 11(10), 1440; https://doi.org/10.3390/foods11101440 - 16 May 2022
Abstract
Pear is a kind of common temperate fruit, whose metabolite composition that contributes to the difference in fruit quality is unclear. This study identified and quantified the metabolites using a widely targeted LC-MS/MS approach in three pear species, including Pyrus bretschneideri (PB), Pyrus
[...] Read more.
Pear is a kind of common temperate fruit, whose metabolite composition that contributes to the difference in fruit quality is unclear. This study identified and quantified the metabolites using a widely targeted LC-MS/MS approach in three pear species, including Pyrus bretschneideri (PB), Pyrus usssuriensis (PU) and Pyrus pyrifolia (PP). A total of 493 metabolites were identified, consisting of 68 carbohydrates, 47 organic acids, 50 polyphenols, 21 amino acids, 20 vitamins, etc. The results of PCA and OPLS-DA demonstrated that the metabolite compositions differed distinctly with cultivar variability. Our results also involved some metabolic pathways that may link to the fruit quality based on KEGG pathway analysis, the pathway of phenylalanine metabolism revealed significant differences between PB and PP (p < 0.05). Furthermore, the study selected D-xylose, formononetin, procyanidin A1 and β-nicotinamide mononucleotide as the major differentially expressed metabolites in the three species. The present study can open new avenues for explaining the differences in fruit quality of the major commercial pear cultivars in China.
Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
►▼
Show Figures

Figure 1
Open AccessArticle
Consumption of Tritordeum Bread Reduces Immunogenic Gluten Intake without Altering the Gut Microbiota
by
, , , , , , , , , and
Foods 2022, 11(10), 1439; https://doi.org/10.3390/foods11101439 - 16 May 2022
Abstract
Gluten proteins are responsible for the wheat breadmaking quality. However, gluten is also related to human pathologies for which the only treatment is a gluten-free diet (GFD). GFD has gained popularity among individuals who want to reduce their gluten intake. Tritordeum is a
[...] Read more.
Gluten proteins are responsible for the wheat breadmaking quality. However, gluten is also related to human pathologies for which the only treatment is a gluten-free diet (GFD). GFD has gained popularity among individuals who want to reduce their gluten intake. Tritordeum is a cereal species that originated after crossing durum wheat with wild barley and differs from bread wheat in its gluten composition. In this work, we have characterized the immunogenic epitopes of tritordeum bread and results from a four-phase study with healthy adults for preferences of bread and alterations in the gut microbiota after consuming wheat bread, gluten-free bread, and tritordeum bread are reported. Tritordeum presented fewer peptides related to gluten proteins, CD-epitopes, and IgE binding sites than bread wheat. Participants rated tritordeum bread higher than gluten-free bread. Gut microbiota analysis revealed that the adherence to a strict GFD involves some minor changes, especially altering the species producing short-chain fatty acids. However, the short-term consumption of tritordeum bread does not induce significant changes in the diversity or community composition of the intestinal microbiota in healthy individuals. Therefore, tritordeum bread could be an alternative for healthy individuals without wheat-related pathologies who want to reduce their gluten consumption without harming their gut health.
Full article
(This article belongs to the Special Issue Advances in Diet and Human Nutrition)
►▼
Show Figures

Figure 1
Open AccessArticle
Effects of Temperature and pH on Recombinant Thaumatin II Production by Pichia pastoris
Foods 2022, 11(10), 1438; https://doi.org/10.3390/foods11101438 (registering DOI) - 16 May 2022
Abstract
The sweet protein thaumatin is emerging as a promising sugar replacer in the market today, especially in the food and beverage sector. Rising demand for its production necessitates the large-scale extraction of this protein from its natural plant source, which can be limited
[...] Read more.
The sweet protein thaumatin is emerging as a promising sugar replacer in the market today, especially in the food and beverage sector. Rising demand for its production necessitates the large-scale extraction of this protein from its natural plant source, which can be limited in terms of raw material availability and production costs. Using a recombinant production technique via a yeast platform, specifically, Pichia pastoris, is more promising to achieve the product economically while maintaining batch-to-batch consistency. However, the bioproduction of recombinant proteins requires the identification of optimal process variables, constituting the maximal yield of the product of interest. These variables have a direct effect on the growth of the host organism and the secretion levels of the recombinant protein. In this study, two important environmental factors, pH, and temperature were assessed by cultivating P. pastoris in shake flasks to understand their influence on growth and the production levels of thaumatin II protein. The results from the pH study indicate that P. pastoris attained a higher viable cell density and secretion of protein at pH 6.0 compared to 5.0 when grown at 30 °C. Furthermore, within the three levels of temperatures investigated when grown at pH 6.0, the protein levels were the highest at 30 °C compared to 20 and 25 °C, whereas 25 °C exhibited the highest viable cell density. Interestingly, the trend observed from the qualitative effects of temperature and pH occurred in all the media that was investigated. These results broaden our understanding of how pH and temperature adjustment during P. pastoris cultivation aid in enhancing the production yields of thaumatin II prior to optimising the fed batch bioreactor operation.
Full article
(This article belongs to the Section Plant Foods)
►▼
Show Figures

Figure 1

Journal Menu
► ▼ Journal Menu-
- Foods Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor's Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Conferences
- Editorial Office
- 10th Anniversary of Foods
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Nutrients, Dairy, Foods, Children
Probiotics, Prebiotics and Postbiotics in Human Health
Topic Editors: Leyuan Li, Malgorzata Muc-Wierzgon, Sandra Martin-PelaezDeadline: 31 May 2022
Topic in
Dairy, Foods, Nutrients, Children
Advances in Dairy Foods: From Production to Nutritional and Health Attributes
Topic Editors: Abderrahmane AIT KADDOUR, Sandra AbreuDeadline: 30 June 2022
Topic in
Foods, Materials, Polymers, Sensors, Sustainability
Scientific Advances in STEM: Synergies to Achieve Success. 2nd Edition
Topic Editors: Yadir Torres Hernández, Ana María Beltrán Custodio, Manuel Félix ÁngelDeadline: 31 July 2022
Topic in
Applied Sciences, Foods, Gels, Materials, Polymers
Transdisciplinary Rheology, a Bridge to Sustainable Progress and Welfare
Topic Editors: Maria Teresa Cidade, Alberto Romero García, Anabela Raymundo, Luis Alfonso Trujillo-CayadoDeadline: 20 August 2022

Conferences
Special Issues
Special Issue in
Foods
Current Advances in Cheese Microbiology
Guest Editors: Javier Carballo, Juan Antonio CentenoDeadline: 20 May 2022
Special Issue in
Foods
Biosensors and Smart Analytical Systems in Food Quality and Safety: Status and Perspectives
Guest Editors: Jordi Riu, Barbara GiussaniDeadline: 31 May 2022
Special Issue in
Foods
Nutrients and Functional Properties of Crops
Guest Editors: Youn Young Shim, Martin J.T. ReaneyDeadline: 6 June 2022
Special Issue in
Foods
Postmortem Factors Affecting Meat Quality
Guest Editor: Andrea GarmynDeadline: 30 June 2022
Topical Collections
Topical Collection in
Foods
Edible Films and Coatings for Food Preservation
Collection Editor: Hiléia Karla Silva Souza
Topical Collection in
Foods
Bioactive Molecules and Health-Promoting Properties in Traditional and Innovative Food and Beverage
Collection Editor: Dario Donno
Topical Collection in
Foods
Phytonutrients in Food: From Traditional to Rational Usage
Collection Editor: Quanhong Li