- Hypothesis
Contemporary climate change, driven by anthropogenic greenhouse gas (GHG) emissions, has raised global temperatures by over 1 °C above pre-industrial levels, profoundly altering Earth’s energy balance. In marine turtles, which exhibit temperature-dependent sex determination (TSD), embryonic sex ratios are highly sensitive to nest temperature. Most studies predicting the effects of climate change on turtle sex ratios have used air temperature or sea surface temperature (SST) as proxies for nest temperature, despite limited empirical validation of this assumption. I question the validity of this approach by examining the physical mechanisms of heat transfer within beach soils, including conduction, convection, and radiation, and how they are modulated by factors such as soil texture, moisture, and solar radiation. The analysis highlights that while GHGs increase air temperature through the greenhouse effect, they do not directly alter incoming solar radiation, the principal driver of subsurface temperature. Furthermore, increased air temperature enhances evaporation and soil drying, reducing thermal conductivity and potentially lowering heat penetration into nesting depths. Consequently, air or SST proxies can misrepresent the actual thermal environment of marine turtle nests, leading to inaccurate or even reverse projections of sex ratios under climate change. A mechanistic approach integrating soil heat dynamics and solar radiation is therefore essential for realistic assessments of TSD responses and conservation planning in a warming world.
29 December 2025







