-
An Arylbenzofuran, Stilbene Dimers, and Prenylated Diels–Alder Adducts as Potent Diabetic Inhibitors from Morus bombycis Leaves
-
Redox Signaling in Plant Heat Stress Response
-
Hyaluronan and Reactive Oxygen Species Signaling—Novel Cues from the Matrix?
-
Grape Pomace as a Cardiometabolic Health-Promoting Ingredient: Activity in the Intestinal Environment
Journal Description
Antioxidants
Antioxidants
is an international, peer-reviewed, open access journal, published monthly online by MDPI. The International Coenzyme Q10 Association (ICQ10A), Israel Society for Oxygen and Free Radical Research (ISOFRR) and European Academy for Molecular Hydrogen Research (EAMHR) are affiliated with Antioxidants and their members receive discounts on the article processing charge.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, PMC, FSTA, PubAg, CAPlus / SciFinder, and other databases.
- Journal Rank: JCR - Q1 (Biochemistry & Molecular Biology) / CiteScore - Q1 (Food Science)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 16.8 days after submission; acceptance to publication is undertaken in 2.9 days (median values for papers published in this journal in the second half of 2022).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
- Testimonials: See what our editors and authors say about Antioxidants.
- Companion journal: Oxygen.
Impact Factor:
7.675 (2021);
5-Year Impact Factor:
7.886 (2021)
Latest Articles
Nutritional Characteristics of New Generation Extruded Snack Pellets with Edible Cricket Flour Processed at Various Extrusion Conditions
Antioxidants 2023, 12(6), 1253; https://doi.org/10.3390/antiox12061253 (registering DOI) - 10 Jun 2023
Abstract
As new sources of proteins, edible insects may be excellent additives in a new generation of environmentally friendly food products that are nutritionally valuable, safe, sustainable, and are needed in today’s world. The aim of this study was to determine the effect of
[...] Read more.
As new sources of proteins, edible insects may be excellent additives in a new generation of environmentally friendly food products that are nutritionally valuable, safe, sustainable, and are needed in today’s world. The aim of this study was to determine the effect of the application of cricket flour on extruded wheat-corn-based snack pellets’ basic composition, fatty acids profile, nutritional value, antioxidant activity and selected physicochemical properties. Results showed that the application of cricket flour had a significant impact on the composition and properties of snack pellets based on wheat-corn blends. In newly developed products, the enhanced level of protein and almost triple increase in crude fiber was found as an insect flour supplementation reached 30% level in the recipe. The level of cricket flour and the applied processing conditions (various moisture contents and screw speeds) significantly affect the water absorption and water solubility index and texture and color profile. Results revealed that cricket flour application significantly increased the total polyphenols content in the assessed samples in comparison to plain wheat-corn bases. Antioxidant activity was also noted to be elevated with increasing cricket flour content. These new types of snack pellets with cricket flour addition may be interesting products with high nutritional value and pro-health properties.
Full article
(This article belongs to the Special Issue Antioxidants in Nutraceuticals and Functional Foods: Challenges and Perspectives on Future Nutrition)
►
Show Figures
Open AccessArticle
Impact of Processing Method and Storage Time on Phytochemical Concentrations in an Antioxidant-Rich Food Mixture
Antioxidants 2023, 12(6), 1252; https://doi.org/10.3390/antiox12061252 (registering DOI) - 10 Jun 2023
Abstract
Foods high in phytochemicals are known for their role in the prevention of chronic disease development, but after processing and storage, such food products may lose part of their functionality as these compounds are sensitive to the impact of processing temperature and the
[...] Read more.
Foods high in phytochemicals are known for their role in the prevention of chronic disease development, but after processing and storage, such food products may lose part of their functionality as these compounds are sensitive to the impact of processing temperature and the type of methods applied. Therefore, we measured the levels of vitamin C, anthocyanins, carotenoids, catechins, chlorogenic acid, and sulforaphane in a complex blend of fruits and vegetables, and when applied to a dry food product, after exposure to different processing methods. These levels were compared between pasteurized, pascalized (high-pressure processing), and untreated conditions. Furthermore, we established the effect of freezing and storage time on the stability of these compounds. The results showed that pascalization better preserved vitamin C and sulforaphane, whereas pasteurization resulted in higher concentrations of chlorogenic acid, carotenoids, and catechins. For samples which were frozen and thawed immediately after processing, pascalization was the optimal treatment for higher contents of lutein, cyanidin-3-glucoside, quercetin-3-glucoside, delphinidin-3-glucoside, peonidin-3-glucoside, and epicatechin gallate. Ultimately, the optimal processing method to preserve phytochemicals in fruit and vegetable products is as complex as the blend of compounds, and this decision-making would best be led by the prioritized nutrient aim of an antioxidant food product.
Full article
(This article belongs to the Special Issue Impact of Processing on Antioxidant Rich Foods - 2nd Edition)
►▼
Show Figures

Figure 1
Open AccessReview
Metallothioneins, a Part of the Retinal Endogenous Protective System in Various Ocular Diseases
by
, , , , and
Antioxidants 2023, 12(6), 1251; https://doi.org/10.3390/antiox12061251 (registering DOI) - 10 Jun 2023
Abstract
Metallothioneins are the metal-rich proteins that play important roles in metal homeostasis and detoxification. Moreover, these proteins protect cells against oxidative stress, inhibit proapoptotic mechanisms and enhance cell differentiation and survival. Furthermore, MTs, mainly MT-1/2 and MT-3, play a vital role in protecting
[...] Read more.
Metallothioneins are the metal-rich proteins that play important roles in metal homeostasis and detoxification. Moreover, these proteins protect cells against oxidative stress, inhibit proapoptotic mechanisms and enhance cell differentiation and survival. Furthermore, MTs, mainly MT-1/2 and MT-3, play a vital role in protecting the neuronal retinal cells in the eye. Expression disorders of these proteins may be responsible for the development of various age-related eye diseases, including glaucoma, age-related macular degeneration, diabetic retinopathy and retinitis pigmentosa. In this review, we focused on the literature reports suggesting that these proteins may be a key component of the endogenous protection system of the retinal neurons, and, when the expression of MTs is disrupted, this system becomes inefficient. Moreover, we described the location of different MT isoforms in ocular tissues. Then we discussed the changes in MT subtypes’ expression in the context of the common eye diseases. Finally, we highlighted the possibility of the use of MTs as biomarkers for cancer diagnosis.
Full article
(This article belongs to the Section ROS, RNS and RSS)
►▼
Show Figures

Figure 1
Open AccessReview
Oxidative Stress-Induced Cellular Senescence: Is Labile Iron the Connecting Link?
Antioxidants 2023, 12(6), 1250; https://doi.org/10.3390/antiox12061250 (registering DOI) - 10 Jun 2023
Abstract
Cellular senescence, a cell state characterized by a generally irreversible cell cycle arrest, is implicated in various physiological processes and a wide range of age-related pathologies. Oxidative stress, a condition caused by an imbalance between the production and the elimination of reactive oxygen
[...] Read more.
Cellular senescence, a cell state characterized by a generally irreversible cell cycle arrest, is implicated in various physiological processes and a wide range of age-related pathologies. Oxidative stress, a condition caused by an imbalance between the production and the elimination of reactive oxygen species (ROS) in cells and tissues, is a common driver of cellular senescence. ROS encompass free radicals and other molecules formed as byproducts of oxygen metabolism, which exhibit varying chemical reactivity. A prerequisite for the generation of strong oxidizing ROS that can damage macromolecules and impair cellular function is the availability of labile (redox-active) iron, which catalyzes the formation of highly reactive free radicals. Targeting labile iron has been proven an effective strategy to counteract the adverse effects of ROS, but evidence concerning cellular senescence is sparse. In the present review article, we discuss aspects of oxidative stress-induced cellular senescence, with special attention to the potential implication of labile iron.
Full article
(This article belongs to the Special Issue Implication of Oxidative Stress in Promoting Cell Senescence and Associated Pathologies)
►▼
Show Figures

Figure 1
Open AccessArticle
Biomarkers of Oxidative Stress in Healthy Infants within the First Three Days after Birth
by
, , , , and
Antioxidants 2023, 12(6), 1249; https://doi.org/10.3390/antiox12061249 - 09 Jun 2023
Abstract
The clinical relevance of stress biomarkers in newborns is well established. Currently, oxidative stress (OS) parameters are seen to play an important role in neonatal resuscitation guidelines, and a link has been observed between the amount of oxygen delivered and the level of
[...] Read more.
The clinical relevance of stress biomarkers in newborns is well established. Currently, oxidative stress (OS) parameters are seen to play an important role in neonatal resuscitation guidelines, and a link has been observed between the amount of oxygen delivered and the level of OS and the development of various pathologies. The aim of the current study was to investigate changes in neonatal plasma and urine OS status during the first hours after birth. A lower antioxidant capacity (TAC) and higher levels of malondialdehyde in blood were observed in newborns at the time of birth compared with results 48 h postnatally. The urine revealed a significant and progressive increase in TAC and creatinine during the first 36 h of life, with a progressive decline thereafter. Meanwhile, malondialdehyde in urine samples showed no significant differences over time. Overall, the correlation between blood and urine parameters was poor, except for the relationship between umbilical vein glutathione reduced/oxidized ratio and urine malondialdehyde (r = 0.7; p = 0.004) and between TAC in the umbilical artery and urine (r = −0.547; p = 0.013). The biomarkers evaluated in this study could be established as reference values for neonatal OS.
Full article
(This article belongs to the Special Issue 10th Anniversary of Antioxidants-Advances in Health Outcomes of Oxidative Stress)
►▼
Show Figures

Figure 1
Open AccessArticle
Resveratrol Mitigates Metabolism in Human Microglia Cells
by
, , , , , , , and
Antioxidants 2023, 12(6), 1248; https://doi.org/10.3390/antiox12061248 - 09 Jun 2023
Abstract
The recognition of the role of microglia cells in neurodegenerative diseases has steadily increased over the past few years. There is growing evidence that the uncontrolled and persisting activation of microglial cells is involved in the progression of diseases such as Alzheimer’s or
[...] Read more.
The recognition of the role of microglia cells in neurodegenerative diseases has steadily increased over the past few years. There is growing evidence that the uncontrolled and persisting activation of microglial cells is involved in the progression of diseases such as Alzheimer’s or Parkinson’s disease. The inflammatory activation of microglia cells is often accompanied by a switch in metabolism to higher glucose consumption and aerobic glycolysis. In this study, we investigate the changes induced by the natural antioxidant resveratrol in a human microglia cell line. Resveratrol is renowned for its neuroprotective properties, but little is known about its direct effect on human microglia cells. By analyzing a variety of inflammatory, neuroprotective, and metabolic aspects, resveratrol was observed to reduce inflammasome activity, increase the release of insulin-like growth factor 1, decrease glucose uptake, lower mitochondrial activity, and attenuate cellular metabolism in a 1H NMR-based analysis of whole-cell extracts. To this end, studies were mainly performed by analyzing the effect of exogenous stressors such as lipopolysaccharide or interferon gamma on the metabolic profile of microglial cells. Therefore, this study focuses on changes in metabolism without any exogenous stressors, demonstrating how resveratrol might provide protection from persisting neuroinflammation.
Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
►▼
Show Figures

Graphical abstract
Open AccessArticle
The Effect of Astaxanthin on Mitochondrial Dynamics in Rat Heart Mitochondria under ISO-Induced Injury
by
, , , , and
Antioxidants 2023, 12(6), 1247; https://doi.org/10.3390/antiox12061247 - 09 Jun 2023
Abstract
Mitochondria are dynamic organelles that produce ATP in the cell and are sensitive to oxidative damage that impairs mitochondrial function in pathological conditions. Mitochondria are involved not only in a healthy heart but also in the development of heart disease. Therefore, attempts should
[...] Read more.
Mitochondria are dynamic organelles that produce ATP in the cell and are sensitive to oxidative damage that impairs mitochondrial function in pathological conditions. Mitochondria are involved not only in a healthy heart but also in the development of heart disease. Therefore, attempts should be made to enhance the body’s defense response against oxidative stress with the help of various antioxidants in order to decrease mitochondrial damage and reduce mitochondrial dysfunction. Mitochondrial fission and fusion play an important role in the quality control and maintenance of mitochondria. The ketocarotenoid astaxanthin (AX) is an antioxidant able to maintain mitochondrial integrity and prevent oxidative stress. In the present study, we investigated the effect of the protective effect of AX on the functioning of rat heart mitochondria (RHM). Changes in the content of proteins responsible for mitochondrial dynamics, prohibitin 2 (PHB2) as a protein that performs the function of quality control of mitochondrial proteins and participates in the stabilization of mitophagy, and changes in the content of cardiolipin (CL) in rat heart mitochondria after isoproterenol (ISO)-induced damage were examined. AX improved the respiratory control index (RCI), enhanced mitochondrial fusion, and inhibited mitochondrial fission in RHM after ISO injury. Rat heart mitochondria (RHM) were more susceptible to Ca2+-induced mitochondrial permeability pore (mPTP) opening after ISO injection, while AX abolished the effect of ISO. AX is able to perform a protective function in mitochondria, improving their efficiency. Therefore, AX can be considered an important ingredient in the diet for the prevention of cardiovascular disease. Therefore, AX can be examined as an important component of the diet for the prevention of heart disease.
Full article
(This article belongs to the Special Issue Carotenoids: A Potential Mitochondrial-Targeted Antioxidant Treatment in Diseases)
►▼
Show Figures

Figure 1
Open AccessArticle
The Impact of Nigella sativa Essential Oil on T Cells in Women with Hashimoto’s Thyroiditis
by
, , , , , and
Antioxidants 2023, 12(6), 1246; https://doi.org/10.3390/antiox12061246 - 09 Jun 2023
Abstract
Background: Hashimoto’s thyroiditis (HT) is an autoimmune disease mediated by T cells. It is characterized by the presence of thyroid autoantibodies in the serum, such as anti-thyroid peroxidase antibodies (TPO-Ab) and anti-thyroglobulin antibodies (TG-Ab). The essential oil extracted from Nigella sativa seeds is
[...] Read more.
Background: Hashimoto’s thyroiditis (HT) is an autoimmune disease mediated by T cells. It is characterized by the presence of thyroid autoantibodies in the serum, such as anti-thyroid peroxidase antibodies (TPO-Ab) and anti-thyroglobulin antibodies (TG-Ab). The essential oil extracted from Nigella sativa seeds is rich in bioactive substances, such as thymoquinone and cymene. Methods: Therefore, we examined the effect of essential oil from Nigella sativa (NSEO) on T cells from HT patients, especially their proliferation capacity, ability to produce cytokines, and susceptibility to apoptosis. Results: The lowest ethanol (EtOH) dilution (1:10) of NSEO significantly inhibited the proliferation of CD4+ and CD8+ T cells from HT patients and healthy women by affecting the percentage of dividing cells and the number of cell divisions. In addition, 1:10 and 1:50 NSEO dilutions induced cell death. Different dilutions of NSEO also reduced the concentration of IL-17A and IL-10. In healthy women, the level of IL-4 and IL-2 significantly increased in the presence of 1:10 and 1:50 NSEO dilutions. NSEO did not influence the concentration of IL-6 and IFN-γ. Conclusions: Our study demonstrates that NSEO has a strong immunomodulatory effect on the lymphocytes of HT patients.
Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
►▼
Show Figures

Figure 1
Open AccessArticle
Hydrogen-Rich Water Ameliorates Metabolic Disorder via Modifying Gut Microbiota in Impaired Fasting Glucose Patients: A Randomized Controlled Study
by
, , , , , , , , , , , , and
Antioxidants 2023, 12(6), 1245; https://doi.org/10.3390/antiox12061245 - 09 Jun 2023
Abstract
Objective: Molecular hydrogen (H2) exhibits antioxidant, anti-inflammatory and anti-apoptotic effects, and has shown benefits in glucose and lipid metabolism in certain animal metabolic disorder models. However, the potential benefits of H2 treatment in individuals with impaired fasting glucose (IFG) has
[...] Read more.
Objective: Molecular hydrogen (H2) exhibits antioxidant, anti-inflammatory and anti-apoptotic effects, and has shown benefits in glucose and lipid metabolism in certain animal metabolic disorder models. However, the potential benefits of H2 treatment in individuals with impaired fasting glucose (IFG) has seldom been studied. This randomized controlled study (RCT) aims to investigate the effects of hydrogen-rich water (HRW) on IFG subjects and explore the underlying mechanism involved. Methods: Seventy-three patients with IFG were enrolled in a randomized, double-blind, placebo-controlled clinical study. These patients were assigned to receive either 1000 mL per day of HRW or placebo pure water (no H2 infusion) for a duration of eight weeks. Metabolic parameters and fecal gut microbiota were assessed at baseline (week 0) and at week 8. A combined analysis of metabolomics and intestinal microbiota was conducted to investigate the correlation between the effect of H2 on the metabolisms and the diversity of intestinal flora in the IGF patients. Results: Both pure water and HRW demonstrated a significant reduction in fasting blood glucose in IFG patients, with a significant difference between pure water and HRW after eight weeks. Among IFG patients with abnormal pre-experimental fatty liver, 62.5% (10/16) in the HRW group and 31.6% (6/19) in the pure water group achieved remission. Furthermore, 16S RNA analysis revealed HRW-modified gut microbiota dysbiosis in the fecal samples of IGF patients. Through Pearson correlation analysis, the differential gut microbiota obtained by 16S analysis was found to be highly correlated with nine metabolites. Conclusion: H2 slightly improved metabolic abnormalities and gut microbiota dysbiosis, providing a novel target and theoretical basis for the prevention and treatment of blood glucose regulation in patients with IFG.
Full article
(This article belongs to the Special Issue Novel Advances on Gut Microbiota Dysbiosis, Neurodegenerative and Cardiovascular Diseases: Connecting Dots and Antioxidant Strategies)
►▼
Show Figures

Figure 1
Open AccessArticle
Caffeine Inhibits Oxidative Stress- and Low Dose Endotoxemia-Induced Senescence—Role of Thioredoxin-1
by
, , , , , , , , , and
Antioxidants 2023, 12(6), 1244; https://doi.org/10.3390/antiox12061244 - 09 Jun 2023
Abstract
The maintenance of Thioredoxin-1 (Trx-1) levels, and thus of cellular redox homeostasis, is vital for endothelial cells (ECs) to prevent senescence induction. One hallmark of EC functionality, their migratory capacity, which depends on intact mitochondria, is reduced in senescence. Caffeine improves the migratory
[...] Read more.
The maintenance of Thioredoxin-1 (Trx-1) levels, and thus of cellular redox homeostasis, is vital for endothelial cells (ECs) to prevent senescence induction. One hallmark of EC functionality, their migratory capacity, which depends on intact mitochondria, is reduced in senescence. Caffeine improves the migratory capacity and mitochondrial functionality of ECs. However, the impact of caffeine on EC senescence has never been investigated. Moreover, a high-fat diet, which can induce EC senescence, results in approximately 1 ng/mL lipopolysaccharide (LPS) in the blood. Therefore, we investigated if low dose endotoxemia induces EC senescence and concomitantly reduces Trx-1 levels, and if caffeine prevents or even reverses senescence. We show that caffeine precludes H2O2-triggered senescence induction by maintaining endothelial NO synthase (eNOS) levels and preventing the elevation of p21. Notably, 1 ng/mL LPS also increases p21 levels and reduces eNOS and Trx-1 amounts. These effects are completely blocked by co-treatment with caffeine. This prevention of senescence induction is similarly accomplished by the permanent expression of mitochondrial p27, a downstream effector of caffeine. Most importantly, after senescence induction by LPS, a single bolus of caffeine inhibits the increase in p21. This treatment also blocks Trx-1 degradation, suggesting that the reversion of senescence is intimately associated with a normalized redox balance.
Full article
(This article belongs to the Special Issue Thioredoxin)
►▼
Show Figures

Figure 1
Open AccessArticle
Innovative Fibrous Materials Loaded with 5-Nitro-8-hydroxyquinoline via Electrospinning/Electrospraying Demonstrate Antioxidant, Antimicrobial and Anticancer Activities
by
, , , , , , , and
Antioxidants 2023, 12(6), 1243; https://doi.org/10.3390/antiox12061243 - 09 Jun 2023
Abstract
A new type of fibrous mat based on a cellulose derivative—cellulose acetate (CA) or CA and water-soluble polymers (polyvinylpyrrolidone, PVP or poly(vinyl alcohol), PVA)—loaded with the model drug 5-nitro-8-hydroxyquinoline (5N) was fabricated via electrospinning or electrospinning in conjunction with electrospraying. Scanning electron microscopy
[...] Read more.
A new type of fibrous mat based on a cellulose derivative—cellulose acetate (CA) or CA and water-soluble polymers (polyvinylpyrrolidone, PVP or poly(vinyl alcohol), PVA)—loaded with the model drug 5-nitro-8-hydroxyquinoline (5N) was fabricated via electrospinning or electrospinning in conjunction with electrospraying. Scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), Fourier-transform infrared spectroscopy (FTIR), water contact angle measurements and ultraviolet-visible spectroscopy (UV-Vis) were used for the complex characterization of the obtained novel material. The decoration of CA fibers with a water-soluble polymer containing the drug resulted in the facilitation of wetting and fast drug release. The 5N-containing fibrous material showed antioxidant activity. Moreover, the proposed materials’ antibacterial and antifungal properties were tested against S. aureus, E. coli, P. aeruginosa and C. albicans. Well-distinguished, sterile zones with diameters above 3.5 cm were observed around all 5N-containing mats. The mats’ cytotoxicity toward HeLa carcinoma cells and normal mouse BALB/c 3T3 fibroblasts was assessed. The 5N-in-CA, PVP,5N-on-(5N-in-CA) and PVA,5N-on-(5N-in-CA) fibrous mats possessed anticancer efficacies and much lower levels of toxicity against normal cells. Therefore, the as-created novel electrospun materials, which are based on polymers loaded with the drug 5N via electrospinning/electrospraying, can potentially be applied for topical wound healing and for local cancer therapy.
Full article
(This article belongs to the Special Issue Applications and Health Benefits of Novel Antioxidant Biomaterials)
►▼
Show Figures

Figure 1
Open AccessArticle
Different Extraction Procedures Revealed the Anti-Proliferation Activity from Vegetable Semi-Purified Sources on Breast Cancer Cell Lines
by
, , , , , and
Antioxidants 2023, 12(6), 1242; https://doi.org/10.3390/antiox12061242 - 09 Jun 2023
Abstract
Breast cancer (BC) remains the leading cause of mortality in women, despite significant advancements in diagnosis. Thus, the identification of new compounds for its treatment is critical. Phytochemicals are known to exhibit anti-cancer properties. Here, we investigated the anti-proliferation potential of extracts from
[...] Read more.
Breast cancer (BC) remains the leading cause of mortality in women, despite significant advancements in diagnosis. Thus, the identification of new compounds for its treatment is critical. Phytochemicals are known to exhibit anti-cancer properties. Here, we investigated the anti-proliferation potential of extracts from carrot, Calendula officinalis flower, and Aloe vera on breast cancer vs. epithelial cell lines. Various extraction methods were used, and the proliferative effect of the resulting extracts was assessed by proliferation assay on breast cancer and epithelial cell lines. Carrot, Aloe leaf, and Calendula flower extracts were extracted by hexane and methanol methods, and their semi-purified extracts were able to specifically inhibit the proliferation of breast cancer cell lines. The extract composition was investigated by colorimetric assays, UHPLC-HRMS, and MS/MS analysis. All the extracts contained monogalactosyl-monoacylglycerol (MGMG), while digalactosyl-monoacylglycerol (DGMG) and aloe-emodin were found in Aloe, and glycerophosphocholine (GPC) derivatives were identified in Calendula, except for the isomer 2 detected in carrot, suggesting that their observed different anti-proliferative properties may be associated with the different lipid compounds. Interestingly, Calendula extract was able to strongly inhibit the triple negative breast cancer MDA-MB-231 cell line proliferation (about 20% cell survival), supporting MGMG and GPC derivatives as potential drugs for this BC subtype treatment.
Full article
(This article belongs to the Special Issue Natural Products: Biological-, Antioxidant Properties and Health Effects - 2nd Edition)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Effects of Hydrogen Gas Inhalation on Community-Dwelling Adults of Various Ages: A Single-Arm, Open-Label, Prospective Clinical Trial
by
, , , , , , and
Md. Habibur Rahman
Antioxidants 2023, 12(6), 1241; https://doi.org/10.3390/antiox12061241 - 08 Jun 2023
Abstract
Molecular hydrogen (H2) is a versatile therapeutic agent. H2 gas inhalation is reportedly safe and has a positive impact on a range of illnesses, including Alzheimer’s disease (AD). Herein, we investigated the effects of 4 weeks of H2 gas
[...] Read more.
Molecular hydrogen (H2) is a versatile therapeutic agent. H2 gas inhalation is reportedly safe and has a positive impact on a range of illnesses, including Alzheimer’s disease (AD). Herein, we investigated the effects of 4 weeks of H2 gas inhalation on community-dwelling adults of various ages. Fifty-four participants, including those who dropped out (5%), were screened and enrolled. The selected participants were treated as a single group without randomization. We evaluated the association between total and differential white blood cell (WBC) counts and AD risk at individual levels after 4 weeks of H2 gas inhalation treatment. The total and differential WBC counts were not adversely affected after H2 gas inhalation, indicating that it was safe and well tolerated. Investigation of oxidative stress markers such as reactive oxygen species and nitric oxide showed that their levels decreased post-treatment. Furthermore, evaluation of dementia-related biomarkers, such as beta-site APP cleaving enzyme 1 (BACE-1), amyloid beta (Aβ), brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor A (VEGF-A), T-tau, monocyte chemotactic protein-1 (MCP-1), and inflammatory cytokines (interleukin-6), showed that their cognitive condition significantly improved after treatment, in most cases. Collectively, our results indicate that H2 gas inhalation may be a good candidate for improving AD with cognitive dysfunction in community-dwelling adults of different ages.
Full article
(This article belongs to the Special Issue Redox Effects of Molecular Hydrogen and Its Potential for Preventive and Therapeutic Applications)
►▼
Show Figures

Figure 1
Open AccessArticle
Long-Term Supplementation of Ozonated Sunflower Oil Improves Dyslipidemia and Hepatic Inflammation in Hyperlipidemic Zebrafish: Suppression of Oxidative Stress and Inflammation against Carboxymethyllysine Toxicity
Antioxidants 2023, 12(6), 1240; https://doi.org/10.3390/antiox12061240 - 08 Jun 2023
Abstract
Ozonated sunflower oil (OSO) is a well-known functional oil with antioxidant, antimicrobial, anti-allergic, and skin-moisturizing properties. However, studies on the effects of OSO on high-cholesterol diet (HCD)-induced metabolic disorders have been scarce. In the current study, we aimed to determine the anti-inflammatory effects
[...] Read more.
Ozonated sunflower oil (OSO) is a well-known functional oil with antioxidant, antimicrobial, anti-allergic, and skin-moisturizing properties. However, studies on the effects of OSO on high-cholesterol diet (HCD)-induced metabolic disorders have been scarce. In the current study, we aimed to determine the anti-inflammatory effects of OSO on lipid metabolism in adult hypercholesterolemic zebrafish and its embryos. Microinjection of OSO (final 2%, 10 nL) into zebrafish embryos under the presence of carboxymethyllysine (CML, 500 ng) protected acute embryo death up to 61% survival, while sunflower oil (final 2%) showed much less protection at around 42% survival. The microinjection of OSO was more effective than SO to inhibit reactive oxygen species (ROS) production and apoptosis in the CML induced embryo toxicity. Intraperitoneal injection of OSO under the presence of CML protected acute death from CML-induced neurotoxicity with improved hepatic inflammation, less detection of ROS and interleukin (IL)-6, and lowering blood total cholesterol (TC) and triglyceride (TG), while the SO-injected group did not protect the CML-toxicity. Long-term supplementation of OSO (final 20%, wt/wt) with HCD for 6 months resulted in higher survivability than the HCD alone group or HCD + SO group (final 20%, wt/wt) with significant lowering of plasma TC and TG levels. The HCD + OSO group showed the least hepatic inflammation, fatty liver change, ROS, and IL-6 production. In conclusion, short-term treatment of OSO by injection exhibited potent anti-inflammatory activity against acute neurotoxicity of CML in zebrafish and their embryo. Long-term supplementation of OSO in the diet also revealed the highest survivability and blood lipid-lowering effect through potent antioxidant and anti-inflammatory activity.
Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
►▼
Show Figures

Figure 1
Open AccessFeature PaperArticle
Anti-Inflammatory and Antioxidant Effects of Leaves and Sheath from Bamboo (Phyllostacys edulis J. Houz)
by
, , , , , and
Antioxidants 2023, 12(6), 1239; https://doi.org/10.3390/antiox12061239 - 08 Jun 2023
Abstract
Bamboo (Phyllostacys edulis J. Houz) has become an emerging forest resource of economic and ecological significance with health benefits. Since the beneficial effects of the non-edible parts of bamboo have not been thoroughly explored, we characterized in this study bamboo leaf (BL)
[...] Read more.
Bamboo (Phyllostacys edulis J. Houz) has become an emerging forest resource of economic and ecological significance with health benefits. Since the beneficial effects of the non-edible parts of bamboo have not been thoroughly explored, we characterized in this study bamboo leaf (BL) and sheath (BS) extracts. The total phenol and flavonoid content (TPC and TFC), antioxidant activity (ABTS, DPPH, FRAP and β-carotene bleaching test) and anti-inflammatory properties were determined. Leaves exhibited a TPC value of 73.92 mg equivalent (eq) gallic acid/g fresh weight (FW) and a TFC value of 56.75 mg eq quercetin/g FW. Ultra-High-Performance Liquid Chromatography (UHPLC) coupled with photo diode array detector (PDA) analysis revealed evidence for the presence of protocatechuic acid, isoorientin, orientin and isovitexin in BL, whereas BS was rich in phenolic acids. Both samples demonstrated a significant ability to scavenge radicals against ABTS·+, with an inhibitory concentration of 50% of 3.07 μg/mL for BL and 6.78 μg/mL for BS. At a concentration of 0.1 and 0.2 mg/mL, BS decreased reactive oxygen species production without hampering cell viability in HepG2 liver cells, while at the same concentrations, BL exhibited cytotoxicity in HepG2 cells. In addition, 0.1 and 0.2 mg/mL BS and BL reduced Interleukin-6 and Monocyte Chemoattractant Protein-1 production in human lipopolysaccharide-stimulated THP-1 macrophages, without affecting cell viability. These findings highlight the anti-inflammatory and antioxidant properties of BL and BS, corroborating their different potential applications in the nutraceutical, cosmetic and pharmaceutical industries.
Full article
(This article belongs to the Special Issue Plant Materials and Their Antioxidant Potential)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Waste Citrus limon Leaves as Source of Essential Oil Rich in Limonene and Citral: Chemical Characterization, Antimicrobial and Antioxidant Properties, and Effects on Cancer Cell Viability
by
, , , , , , , , and
Antioxidants 2023, 12(6), 1238; https://doi.org/10.3390/antiox12061238 - 08 Jun 2023
Abstract
This study investigated chemical composition, cytotoxicity in normal and cancer cells, and antimicrobial and antioxidant activity of the essential oil (EO) isolated by hydrodistillation from the discarded leaves of lemon (Citrus limon) plants cultivated in Sardinia (Italy). The volatile chemical composition
[...] Read more.
This study investigated chemical composition, cytotoxicity in normal and cancer cells, and antimicrobial and antioxidant activity of the essential oil (EO) isolated by hydrodistillation from the discarded leaves of lemon (Citrus limon) plants cultivated in Sardinia (Italy). The volatile chemical composition of lemon leaf EO (LLEO) was analyzed with gas chromatography-mass spectrometry combined with flame ionization detection (GC/MS and GC/FID). The most abundant component of LLEO was limonene (260.7 mg/mL), followed by geranial (102.6 mg/mL) and neral (88.3 mg/mL). The antimicrobial activity of LLEO was tested using eight bacterial strains and two types of yeasts by a microdilution broth test. Candida albicans showed the greatest susceptibility (MIC = 0.625 μL/mL) and Listeria monocytogenes and Staphylococcus aureus were inhibited at low LLEO concentration (MIC values from 2.5 to 5 μL/mL). The C. limon leaf EO displayed radical scavenging ability (IC50 value of 10.24 mg/mL) in the 2,2-diphenyl-1-picryl-hydrazylhydrate (DPPH) assay. Furthermore, the LLEO impact on cell viability was explored by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in cancer HeLa cells, A375 melanoma cell line, normal fibroblasts (3T3 cells), and keratinocytes (HaCaT cells). LLEO, at 24 h of incubation, significantly reduced viability from 25 μM in Hela cells (33% reduction) and A375 cells (27%), greatly affecting cell morphology, whereas this effect was found from 50 μM on 3T3 fibroblasts and keratinocytes. LLEO’s pro-oxidant effect was also established in HeLa cells by 2′,7′-dichlorodihydrofluorescein diacetate assay.
Full article
(This article belongs to the Special Issue Antioxidant Activity of Essential Oils, 2nd Edition)
►▼
Show Figures

Graphical abstract
Open AccessReview
New Insights on Dietary Polyphenols for the Management of Oxidative Stress and Neuroinflammation in Diabetic Retinopathy
by
, , , , , , , , and
Antioxidants 2023, 12(6), 1237; https://doi.org/10.3390/antiox12061237 - 08 Jun 2023
Abstract
Diabetic retinopathy (DR) is a neurodegenerative and vascular pathology that is considered one of the leading causes of blindness worldwide, resulting from complications of advanced diabetes mellitus (DM). Current therapies consist of protocols aiming to alleviate the existing clinical signs associated with microvascular
[...] Read more.
Diabetic retinopathy (DR) is a neurodegenerative and vascular pathology that is considered one of the leading causes of blindness worldwide, resulting from complications of advanced diabetes mellitus (DM). Current therapies consist of protocols aiming to alleviate the existing clinical signs associated with microvascular alterations limited to the advanced disease stages. In response to the low resolution and limitations of the DR treatment, there is an urgent need to develop more effective alternative therapies to optimize glycemic, vascular, and neuronal parameters, including the reduction in the cellular damage promoted by inflammation and oxidative stress. Recent evidence has shown that dietary polyphenols reduce oxidative and inflammatory parameters of various diseases by modulating multiple cell signaling pathways and gene expression, contributing to the improvement of several chronic diseases, including metabolic and neurodegenerative diseases. However, despite the growing evidence for the bioactivities of phenolic compounds, there is still a lack of data, especially from human studies, on the therapeutic potential of these substances. This review aims to comprehensively describe and clarify the effects of dietary phenolic compounds on the pathophysiological mechanisms involved in DR, especially those of oxidative and inflammatory nature, through evidence from experimental studies. Finally, the review highlights the potential of dietary phenolic compounds as a prophylactic and therapeutic strategy and the need for further clinical studies approaching the efficacy of these substances in DR management.
Full article
(This article belongs to the Special Issue Oxidative Stress in Retinal Degeneration)
►▼
Show Figures

Figure 1
Open AccessArticle
Functional Analysis of GSTK1 in Peroxisomal Redox Homeostasis in HEK-293 Cells
by
, , , , , and
Antioxidants 2023, 12(6), 1236; https://doi.org/10.3390/antiox12061236 - 07 Jun 2023
Abstract
Peroxisomes serve as important centers for cellular redox metabolism and communication. However, fundamental gaps remain in our understanding of how the peroxisomal redox equilibrium is maintained. In particular, very little is known about the function of the nonenzymatic antioxidant glutathione in the peroxisome
[...] Read more.
Peroxisomes serve as important centers for cellular redox metabolism and communication. However, fundamental gaps remain in our understanding of how the peroxisomal redox equilibrium is maintained. In particular, very little is known about the function of the nonenzymatic antioxidant glutathione in the peroxisome interior and how the glutathione antioxidant system balances with peroxisomal protein thiols. So far, only one human peroxisomal glutathione-consuming enzyme has been identified: glutathione S-transferase 1 kappa (GSTK1). To study the role of this enzyme in peroxisomal glutathione regulation and function, a GSTK1-deficient HEK-293 cell line was generated and fluorescent redox sensors were used to monitor the intraperoxisomal GSSG/GSH and NAD+/NADH redox couples and NADPH levels. We provide evidence that ablation of GSTK1 does not change the basal intraperoxisomal redox state but significantly extends the recovery period of the peroxisomal glutathione redox sensor po-roGFP2 upon treatment of the cells with thiol-specific oxidants. Given that this delay (i) can be rescued by reintroduction of GSTK1, but not its S16A active site mutant, and (ii) is not observed with a glutaredoxin-tagged version of po-roGFP2, our findings demonstrate that GSTK1 contains GSH-dependent disulfide bond oxidoreductase activity.
Full article
(This article belongs to the Special Issue Glutathione and GSH-Related Enzymes in the Oxidative and Reductive Stresses)
►▼
Show Figures

Figure 1
Open AccessArticle
An Ethyl Acetate Extract of Eryngium carlinae Inflorescences Attenuates Oxidative Stress and Inflammation in the Liver of Streptozotocin-Induced Diabetic Rats
by
, , , , , , , , , and
Antioxidants 2023, 12(6), 1235; https://doi.org/10.3390/antiox12061235 - 07 Jun 2023
Abstract
Secondary metabolites such as flavonoids are promising in the treatment of non-alcoholic fatty liver disease (NAFLD), which is one of the complications of diabetes due to oxidative stress and inflammation. Some plants, such as Eryngium carlinae, have been investigated regarding their medicinal
[...] Read more.
Secondary metabolites such as flavonoids are promising in the treatment of non-alcoholic fatty liver disease (NAFLD), which is one of the complications of diabetes due to oxidative stress and inflammation. Some plants, such as Eryngium carlinae, have been investigated regarding their medicinal properties in in vitro and in vivo assays, showing favorable results for the treatment of various diseases such as diabetes and obesity. The present study examined the antioxidant and anti-inflammatory effects of the phenolic compounds present in an ethyl acetate extract of the inflorescences of Eryngium carlinae on liver homogenates and mitochondria from streptozotocin (STZ)-induced diabetic rats. Phenolic compounds were identified and quantified by UHPLC-MS. In vitro assays were carried out to discover the antioxidant potential of the extract. Male Wistar rats were administered with a single intraperitoneal injection of STZ (45 mg/kg) and were given the ethyl acetate extract at a level of 30 mg/kg for 60 days. Phytochemical assays showed that the major constituents of the extract were flavonoids; in addition, the in vitro antioxidant activity was dose dependent with IC50 = 57.97 mg/mL and IC50 = 30.90 mg/mL in the DPPH and FRAP assays, respectively. Moreover, the oral administration of the ethyl acetate extract improved the effects of NAFLD, decreasing serum and liver triacylglycerides (TG) levels and oxidative stress markers and increasing the activity of the antioxidant enzymes. Likewise, it attenuated liver damage by decreasing the expression of NF-κB and iNOS, which lead to inflammation and liver damage. We hypothesize that solvent polarity and consequently chemical composition of the ethyl acetate extract of E. carlinae, exert the beneficial effects due to phenolic compounds. These results suggest that the phenolic compounds of the ethyl acetate extract of E. carlinae have antioxidant, anti-inflammatory, hypolipidemic, and hepatoprotective activity.
Full article
(This article belongs to the Special Issue Role of Oxidative Stress in Mitochondrial Function: Relevance for Liver Function)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Sour Cherry Pomace Valorization as a Bakery Fruit Filling: Chemical Composition, Bioactivity, Quality and Sensory Properties
by
, , , , , and
Antioxidants 2023, 12(6), 1234; https://doi.org/10.3390/antiox12061234 - 07 Jun 2023
Abstract
Sour cherry pomace filling (SCPF) and commercial sour cherry filling (CSCF) produced on a semi-industrial scale were tested and compared in terms of food safety, chemical composition, bioactivity, quality, sensory properties and thermal stability. Both samples were safe for human consumption, thermally stable
[...] Read more.
Sour cherry pomace filling (SCPF) and commercial sour cherry filling (CSCF) produced on a semi-industrial scale were tested and compared in terms of food safety, chemical composition, bioactivity, quality, sensory properties and thermal stability. Both samples were safe for human consumption, thermally stable and there was a lack of syneresis. SCPF had a significantly higher fiber concentration (3.79 g/100 g) due to higher skin fraction and is considered a “source of fibers”. The higher skin fraction in SCPF also resulted in a higher mineral quantity (Fe—3.83 mg/kg fw) in comparison to CSCF (Fe—2.87 mg/kg fw). Anthocyanins concentration was lower in SCPF (7.58 mg CGE/100 g fw), suggesting that a significant amount of anthocyanins was removed from SC skin during juice extraction. However, there was a lack of statistical differences in antioxidant activity between the two fillings. CSCF was more spreadable, not as firm and less sticky, with lower storage and loss modulus values than SCPF. However, both fillings exhibited acceptable rheological and textural behaviour for fruit fillings. According to the consumer pastry test, 28 participants preferred each pastry; thus, there was a lack of preference toward any of the tested samples. SCP could be used as a raw material for the bakery fruit fillings industry, which leads to the valorization of food industry by-products.
Full article
(This article belongs to the Special Issue Natural Antioxidants: Advances and Opportunities for Healthy and Sustainable Food Systems)
►▼
Show Figures

Graphical abstract

Journal Menu
► ▼ Journal Menu-
- Antioxidants Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Antioxidants, BioChem, Biomolecules, IJMS, Marine Drugs, Molecules
Antioxidant Activity of Natural Products
Topic Editors: José Virgílio Santulhão Pinela, Maria Inês Moreira Figueiredo Dias, Carla Susana Correia Pereira, Alexandra PlácidoDeadline: 30 June 2023
Topic in
Antioxidants, Foods, Molecules, Oxygen, Plants
Antioxidant Activity in Plants, Plant-Derived Bioactive Compounds and Foods
Topic Editors: Andrei Mocan, Simone CarradoriDeadline: 31 July 2023
Topic in
Antioxidants, Foods, IJERPH, Processes, Energies
Advances in Hydrodynamic Cavitation Applications for Environment and Human Health
Topic Editors: Federica Zabini, Francesco MeneguzzoDeadline: 30 September 2023
Topic in
Analytica, Antioxidants, Applied Sciences, Molecules, Separations
New Analytical Methods in Plant Active Components Analysis
Topic Editors: Filomena Lelario, Giuliana Bianco, Radosław KowalskiDeadline: 31 October 2023

Conferences
Special Issues
Special Issue in
Antioxidants
A Lesson from Microorganisms: How to Counteract Oxidative Stress
Guest Editors: Danila Limauro, Emilia PedoneDeadline: 15 June 2023
Special Issue in
Antioxidants
Antioxidant Therapy for Management of Oxidative Stress Induced Hypertension
Guest Editors: Daniele Tomassoni, Seyed Khosrow TayebatiDeadline: 20 June 2023
Special Issue in
Antioxidants
NADPH Oxidases in Health and Aging
Guest Editors: Marschall S. Runge, Nageswara R. MadamanchiDeadline: 15 July 2023
Special Issue in
Antioxidants
Targeting Antioxidants to Mitochondria: A Novel Therapeutic Direction
Guest Editors: Mariano Stornaiuolo, Giuseppe AnnunziataDeadline: 20 July 2023
Topical Collections
Topical Collection in
Antioxidants
Advances in Antioxidant Ingredients from Natural Products
Collection Editors: Carla Susana Correia Pereira, Lillian Barros