This study systematically investigates the dynamic evolution of chemical regimes in pulsed coaxial dielectric barrier discharge (DBD) plasma under atmospheric pressure using mass spectrometry. An innovative real-time mass spectrometric monitoring methodology was established, enabling the dynamic tracking of the formation and consumption processes
[...] Read more.
This study systematically investigates the dynamic evolution of chemical regimes in pulsed coaxial dielectric barrier discharge (DBD) plasma under atmospheric pressure using mass spectrometry. An innovative real-time mass spectrometric monitoring methodology was established, enabling the dynamic tracking of the formation and consumption processes of key reactive species such as ozone (O
3) and nitrogen oxides (NO
x). Energy density was the critical parameter governing the evolution of gaseous chemical components, with a quantitative elucidation of the regulatory mechanisms of air flow rate and control voltage on plasma chemical regime transition kinetics. Experimental results revealed significant parametric correlations: Under a constant control voltage of 140 V, increasing the gas flow rate from 0.5 to 5.5 L/min prolonged the transition duration from O
3-NO
x coexistence regime to a NO
x-dominant regime from 408 s to 1210 s. Conversely, at a fixed flow rate of 3.5 L/min, elevating the control voltage from 120 V to 140 V accelerated this transition, reducing the required time from 2367 s to 718 s. Parametric sensitivity analysis demonstrated that control voltage exerts approximately 3.3 times greater influence on transition kinetics than flow rate variation. Through comprehensive analysis of the formation and consumption mechanisms of N, O, O
3, and NO
x species, we established a complete plasma chemical reaction network. This scheme provides fundamental insights into reaction pathways while offering practical optimization strategies for DBD systems. For aerospace applications, this work holds particular significance by demonstrating that the identified control parameters can be directly applied to plasma-assisted treatment of propellant wastewater at launch sites, where the efficient removal of nitrogen-containing pollutants is crucial. These findings advance both the fundamental understanding of atmospheric-pressure plasma chemistry and the engineering applications of plasma-based environmental remediation technologies in aerospace operations.
Full article