- Article
Roasting of Spodumene with Calcite at Atmospheric Pressure—Implications of Trace Potassium
- Enrique Garcia-Franco,
- María-Pilar Martínez-Hernando and
- Roberto Paredes
- + 3 authors
Lithium is an essential material for lightweight batteries. Traditional mining of soluble salts expanded to include the extraction of hard rocks, which requires their solubilization through roasting. Among hard lithium rocks, spodumene has recently received attention from the scientific community. Its metallurgical processing can be classified according to the type of reagents, as well as the operating temperature and pressure. The use of calcium carbonate as a natural alkali avoids aggressive chemicals such as sulfuric acid or caustic soda. In this article, 0.5 g of jewelry-grade spodumene was loaded into a ceramic crucible with 2.5 g of reducing agent in a tandem of roasting at 1050 °C-1 bar-30 min and leaching with neutral water at 90 °C-1 bar-20 min at a water/clinker mass ratio of 25. Measurements by XRD, ICP-OES, and SEM-EDX suggest a pathway of spodumene cracking because of poor contact with the reductant. Potassium present in the crucible acts as a flux and encapsulates spodumene crystals, causing lithium to end up bound to silica. While lithium metasilicate is barely soluble in water, leaching potassium aluminate hoards in the liquid. The empirical observations were supported with thermodynamic spontaneity studies, which required compiling the mineral properties based on open reference tabulations.
2 January 2026







