- Article
Linking Microstructural Evolution to Magnetic Response for Damage Assessment in In-Service 321 Stainless Steel
- Shengzhong Hu,
- Yunrong Lyu and
- Fuping Guo
- + 1 author
This study evaluated the damage behavior of 321 austenitic stainless steel under tensile loading by measuring its magnetic properties. The results indicate that, at room temperature, the magnetic properties of 321 stainless steel respond distinctly to mechanical loading. Changes under external stress are primarily attributed to the phase transformation from austenite to martensite. Both coercive force and magnetic Barkhausen noise effectively characterize this material’s deformation and phase transformation processes: the coercive force dynamics curve exhibits an initial rise, followed by a decline with a decrease during the specimen’s necking stage. Magnetic Barkhausen noise is highly sensitive to stress changes, especially during the elastic stage. In situ measurements show that, at a stress of 300 MPa, the magnetic Barkhausen noise peak voltage signal reaches 0.060 V, which is a 100.0% increase compared to the original specimen (0.030 V). Therefore, when assessing the stress state and damage of stainless steel using coercive force and magnetic Barkhausen noise techniques, attention should be paid to the inflection characteristics of the coercive force dynamic curve and the inflection points in the peak values of the magnetic Barkhausen noise voltage signal. These features can be used to effectively monitor crack initiation and propagation in austenitic stainless steel.
23 January 2026







