- Article
Influence of Post-Processing Temperatures on Microstructure and Hardness of PBF-LB Ti-6Al-4V
- Trung Van Trinh,
- Trang Huyen Dang and
- Ulrich E. Klotz
- + 2 authors
This study investigates the effects of post-build heat treatments—such as annealing, quenching, and aging—on the microstructure and hardness of Laser Powder Bed Fusion (PBF-LB) Ti-6Al-4V. Specimens were subjected to annealing (950 °C, 1010 °C) or solution treatment/quenching (950 °C, 1010 °C), followed by aging (350–550 °C). Microstructural evolution was analyzed using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD), electron backscatter diffraction (EBSD), and Vickers hardness testing. Results showed that the as-built sample exhibited high hardness (365.2 HV0.1) due to fine α′ martensite. Sub-β-transus annealing at 950 °C decomposed α′ into equilibrium α + 1.25% β (329 HV0.1), while super-β-transus annealing at 1010 °C formed coarse lamellar structures of α + 1.5% β, yielding the lowest hardness (319 HV0.1). Quenching from 1010 °C produced dominant α′ martensite with high hardness (371.6 HV0.1). Notably, aging samples quenched from 950 °C increased hardness, peaking at 382.6 HV0.1 at 450 °C due to precipitation, before decreasing to 364.4 HV0.1 at 550 °C due to coarsening. These findings demonstrate that optimizing heat treatment temperatures is critical for controlling phase transformations and tailoring mechanical properties in additively manufactured Ti-6Al-4V components.
20 January 2026







