-
Degradable Plasma-Polymerized Poly(Ethylene Glycol)-Like Coating as a Matrix for Food-Packaging Applications
-
Super-High-Frequency Bulk Acoustic Resonators Based on Aluminum Scandium Nitride for Wideband Applications
-
Multiscale Porous Carbon Materials by In Situ Growth of Metal–Organic Framework in the Micro-Channel of Delignified Wood for High-Performance Water Purification
-
Forensic Analysis of Synthetic Cathinones on Nanomaterials-Based Platforms: Chemometric-Assisted Voltametric and UPLC-MS/MS Investigation
-
Recent Advances on the Design and Applications of Antimicrobial Nanomaterials
Journal Description
Nanomaterials
Nanomaterials
is an international, peer-reviewed, open access journal published semimonthly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, PMC, CAPlus / SciFinder, Inspec, and other databases.
- Journal Rank: JCR - Q1 (Physics, Applied) / CiteScore - Q1 (General Chemical Engineering)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 11.7 days after submission; acceptance to publication is undertaken in 2.6 days (median values for papers published in this journal in the first half of 2023).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
- Companion journals for Nanomaterials include: Nanomanufacturing and Applied Nano.
Impact Factor:
5.3 (2022);
5-Year Impact Factor:
5.4 (2022)
Latest Articles
Evaluating Gelatin-Based Films with Graphene Nanoparticles for Wound Healing Applications
Nanomaterials 2023, 13(23), 3068; https://doi.org/10.3390/nano13233068 (registering DOI) - 02 Dec 2023
Abstract
In this study, gelatin-based films containing graphene nanoparticles were obtained. Nanoparticles were taken from four chosen commercial graphene nanoplatelets with different surface areas, such as 150 m2/g, 300 m2/g, 500 m2/g, and 750 m2/g, obtained
[...] Read more.
In this study, gelatin-based films containing graphene nanoparticles were obtained. Nanoparticles were taken from four chosen commercial graphene nanoplatelets with different surface areas, such as 150 m2/g, 300 m2/g, 500 m2/g, and 750 m2/g, obtained in different conditions. Their morphology was observed using SEM with STEM mode; porosity, Raman spectra and elemental analysis were checked; and biological properties, such as hemolysis and cytotoxicity, were evaluated. Then, the selected biocompatible nanoparticles were used as the gelatin film modification with 10% concentration. As a result of solvent evaporation, homogeneous thin films were obtained. The surface’s properties, mechanical strength, antioxidant activity, and water vapor permeation rate were examined to select the appropriate film for biomedical applications. We found that the addition of graphene nanoplatelets had a significant effect on the properties of materials, improving surface roughness, surface free energy, antioxidant activity, tensile strength, and Young’s modulus. For the most favorable candidate for wound dressing applications, we chose a gelatin film containing nanoparticles with a surface area of 500 m2/g.
Full article
(This article belongs to the Special Issue Advances in Polymer Nanocomposite Films)
►
Show Figures
Open AccessArticle
Microparticles as BDMDAC (Quaternary Ammonium Compound) Carriers for Water Disinfection: A Layer-by-Layer Approach without Biocide Release
Nanomaterials 2023, 13(23), 3067; https://doi.org/10.3390/nano13233067 (registering DOI) - 02 Dec 2023
Abstract
This work studies the antimicrobial activity of benzyldimethyldodecyl ammonium chloride (BDMDAC)-coated microparticles with distinct morphological structures. Functionalized microparticles were prepared by the layer-by-layer (LbL) self-assembly technique on hydroxyapatite (Hap), calcium carbonate (CaCO3) and glass beads (GB) cores. All particles were characterized,
[...] Read more.
This work studies the antimicrobial activity of benzyldimethyldodecyl ammonium chloride (BDMDAC)-coated microparticles with distinct morphological structures. Functionalized microparticles were prepared by the layer-by-layer (LbL) self-assembly technique on hydroxyapatite (Hap), calcium carbonate (CaCO3) and glass beads (GB) cores. All particles were characterized, before and after functionalization, by Fourier-Transform Infrared Spectroscopy (FTIR), Brunner–Emmett–Teller (BET) and Scanning Electron Microscopy (SEM) analyses. Antimicrobial activity was tested against planktonic Pseudomonas fluorescens. Planktonic bacteria were exposed to 100 mg/L, 200 mg/L and 400 mg/L of BDMDAC-coated microparticles for 240 min. This strategy promoted a complete bacteria reduction at 200 mg/L for Hap microparticles after 240 min. No release of biocide was detected through HPLC analyses during 2 weeks, suggesting that bacteria inactivation may be attributed to a contact killing mechanism.
Full article
Open AccessReview
Recent Advances in LDH/g-C3N4 Heterojunction Photocatalysts for Organic Pollutant Removal
by
, , , , , , and
Nanomaterials 2023, 13(23), 3066; https://doi.org/10.3390/nano13233066 - 01 Dec 2023
Abstract
Environmental pollution has been decreased by using photocatalytic technology in conjunction with solar energy. An efficient method to obtain highly efficient photocatalysts is to build heterojunction photocatalysts by combining graphitic carbon nitride (g-C3N4) with layered double hydroxides (LDHs). In
[...] Read more.
Environmental pollution has been decreased by using photocatalytic technology in conjunction with solar energy. An efficient method to obtain highly efficient photocatalysts is to build heterojunction photocatalysts by combining graphitic carbon nitride (g-C3N4) with layered double hydroxides (LDHs). In this review, recent developments in LDH/g-C3N4 heterojunctions and their applications for organic pollutant removal are systematically exhibited. The advantages of LDH/g-C3N4 heterojunction are first summarized to provide some overall understanding of them. Then, a variety of approaches to successfully assembling LDH and g-C3N4 are simply illustrated. Last but not least, certain unmet research needs for the LDH/g-C3N4 heterojunction are suggested. This review can provide some new insights for the development of high-performance LDH/g-C3N4 heterojunction photocatalysts. It is indisputable that the LDH/g-C3N4 heterojunctions can serve as high-performance photocatalysts to make new progress in organic pollutant removal.
Full article
(This article belongs to the Special Issue Photocatalytic Engineering Nanomaterials in the Environment and Energy Fields)
►▼
Show Figures

Figure 1
Open AccessArticle
The Effect of Conductive Additive Morphology and Crystallinity on the Electrochemical Performance of Ni-Rich Cathodes for Sulfide All-Solid-State Lithium-Ion Batteries
by
, , , , , , , , , , , and
Nanomaterials 2023, 13(23), 3065; https://doi.org/10.3390/nano13233065 - 01 Dec 2023
Abstract
Sulfide electrolyte all-solid-state lithium-ion batteries (ASSLBs) that have inherently nonflammable properties have improved greatly over the past decade. However, determining both the stable and functional electrode components to pair with these solid electrolytes requires significant investigation. Solid electrolyte comprises 20–40% of the composite
[...] Read more.
Sulfide electrolyte all-solid-state lithium-ion batteries (ASSLBs) that have inherently nonflammable properties have improved greatly over the past decade. However, determining both the stable and functional electrode components to pair with these solid electrolytes requires significant investigation. Solid electrolyte comprises 20–40% of the composite cathode electrode, which improves the ionic conductivity. However, this results in thick electrolyte that blocks the electron pathways in the electrode, significantly lowering the electrochemical performance. The application of conductive carbon material is required to overcome this issue, and, hence, determining the carbon properties that result in the most stable performance in the sulfide solid electrolyte is vital. This study analyzes the effect of the cathode conductive additive’s morphology on the electrochemical performance of sulfide electrolyte-based ASSLBs. Carbon black (CB) and carbon nanotubes (CNTs), which provide electron pathways at the nanoscale and sub-micron scale, and carbon nanofiber (CNF), which provides electron pathways at the tens-of-microns scale, are all tested individually as potential conductive additives. When the CNF, with its high crystallinity, is used as a conductive material, the electrochemical performance shows an excellent initial discharge capacity of 191.78 mAh/g and a 50-cycle capacity retention of 83.9%. Conversely, the CB and the CNTs, with their shorter pathways and significantly increased surface area, show a relatively low electrochemical performance. By using the CNF to provide excellent electrical conductivity to the electrode, the polarization is suppressed. Furthermore, the interfacial impedance across the charge transfer region is also reduced over 50 cycles compared with the CB and CNT composite cells. These findings stringently analyze and emphasize the importance of the morphology of the carbon conductive additives in the ASSLB cathode electrodes, with improvements in the electrochemical performance being realized through the application of long-form two-dimensional crystalline CNFs.
Full article
(This article belongs to the Special Issue Advances in Nanomaterials for Energy Conversion and Environmental Catalysis)
►▼
Show Figures

Figure 1
Open AccessArticle
Maximizing Roughness Factors in Oxide-Derived Copper Coatings through Electrodeposition Parameters for Enhanced Electrocatalytic Performance
Nanomaterials 2023, 13(23), 3064; https://doi.org/10.3390/nano13233064 - 01 Dec 2023
Abstract
The pursuit of novel techniques for obtaining dispersed copper-based catalysts is crucial in addressing environmental issues like decarbonization. One method for producing nanostructured metals involves the reduction of their oxides, a technique that has found widespread use in CO2 electroreduction. Currently, the
[...] Read more.
The pursuit of novel techniques for obtaining dispersed copper-based catalysts is crucial in addressing environmental issues like decarbonization. One method for producing nanostructured metals involves the reduction of their oxides, a technique that has found widespread use in CO2 electroreduction. Currently, the intrinsic activities of oxide-derived copper electrocatalysts produced via different routes cannot be compared effectively due to the lack of information on electrochemically active surface area values, despite the availability of electrochemical methods that enable estimation of surface roughness for highly dispersed copper coatings. In this study, we aim to explore the potential of oxide-derived copper to achieve a high electrochemically active surface area by examining samples obtained from acetic and lactic acid deposition solutions. Our results revealed that Cu2O oxides had distinct morphologies depending on the electrodeposition solution used; acetate series samples were dense films with a columnar structure, while electrodeposition from lactic acid yielded a fine-grained, porous coating. The roughness factors of the electroreduced films followed linear relationships with the deposition charge, with significantly different slopes between the two solutions. Notably, a high roughness factor of 650 was achieved for samples deposited from lactic acid solution, which represents one of the highest estimates of electrochemically active surface area for oxide-derived copper catalysts. Our results highlight the importance of controlling the microstructure of the electrodeposited oxide electrocatalysts to maximize surface roughness.
Full article
(This article belongs to the Section Energy and Catalysis)
►▼
Show Figures

Figure 1
Open AccessArticle
Effect of Domain Structure and Dielectric Interlayer on Switching Speed of Ferroelectric Hf0.5Zr0.5O2 Film
by
, , , , , , , , , and
Nanomaterials 2023, 13(23), 3063; https://doi.org/10.3390/nano13233063 - 01 Dec 2023
Abstract
►▼
Show Figures
The nanosecond speed of information writing and reading is recognized as one of the main advantages of next-generation non-volatile ferroelectric memory based on hafnium oxide thin films. However, the kinetics of polarization switching in this material have a complex nature, and despite the
[...] Read more.
The nanosecond speed of information writing and reading is recognized as one of the main advantages of next-generation non-volatile ferroelectric memory based on hafnium oxide thin films. However, the kinetics of polarization switching in this material have a complex nature, and despite the high speed of internal switching, the real speed can deteriorate significantly due to various external reasons. In this work, we reveal that the domain structure and the dielectric layer formed at the electrode interface contribute significantly to the polarization switching speed of 10 nm thick Hf0.5Zr0.5O2 (HZO) film. The mechanism of speed degradation is related to the generation of charged defects in the film which accompany the formation of the interfacial dielectric layer during oxidization of the electrode. Such defects are pinning centers that prevent domain propagation upon polarization switching. To clarify this issue, we fabricate two types of similar W/HZO/TiN capacitor structures, differing only in the thickness of the electrode interlayer, and compare their ferroelectric (including local ferroelectric), dielectric, structural (including microstructural), chemical, and morphological properties, which are comprehensively investigated using several advanced techniques, in particular, hard X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, and electron beam induced current technique.
Full article

Figure 1
Open AccessEditorial
Editorial of Special Issue “Functional Nanomaterials Based on Self-Assembly”
by
Nanomaterials 2023, 13(23), 3062; https://doi.org/10.3390/nano13233062 - 01 Dec 2023
Abstract
In recent years, the design and creation of new functional nanosystems and nanomaterials similar in their properties to biological systems showed remarkable progress as an interdisciplinary field of research combining chemistry, biology, and physics [...]
Full article
(This article belongs to the Special Issue Functional Nanomaterials Based on Self-Assembly)
Open AccessArticle
Comparative Evaluation of TiO2 Nanoparticle Addition and Postcuring Time on the Flexural Properties and Hardness of Additively Fabricated Denture Base Resins
by
, , , , , , , and
Nanomaterials 2023, 13(23), 3061; https://doi.org/10.3390/nano13233061 - 30 Nov 2023
Abstract
Three-dimensionally (3D)-printed fabricated denture bases have shown inferior strength to conventional and subtractively fabricated ones. Several factors could significantly improve the strength of 3D-printed denture base resin, including the addition of nanoparticles and post-curing factors. This study evaluated the effect of TiO2
[...] Read more.
Three-dimensionally (3D)-printed fabricated denture bases have shown inferior strength to conventional and subtractively fabricated ones. Several factors could significantly improve the strength of 3D-printed denture base resin, including the addition of nanoparticles and post-curing factors. This study evaluated the effect of TiO2 nanoparticle (TNP) addition and the post-curing time (PCT) on the flexural properties and hardness of three-dimensionally (3D)-printed denture base resins. A total of 360 specimens were fabricated, with 180 specimens from each type of resin. For evaluating the flexural properties, bar-shaped specimens measuring 64 × 10 × 3.3 mm were used, while, for the hardness testing, disc-shaped specimens measuring 15 × 2 mm were employed. The two 3D-printed resins utilized in this study were Asiga (DentaBASE) and NextDent (Vertex Dental B.V). Each resin was modified by adding TNPs at 1% and 2% concentrations, forming two groups and an additional unmodified group. Each group was divided into three subgroups according to the PCT (15, 60, and 90 min). All the specimens were subjected to artificial aging (5000 cycles), followed by testing of the flexural strength and elastic modulus using a universal testing machine, and the hardness using the Vickers hardness test. A three-way ANOVA was used for the data analysis, and a post hoc Tukey’s test was used for the pairwise comparisons (α = 0.05). Scanning electron microscopy (SEM) was used for the fracture surface analysis. The addition of the TNPs increased the flexural strength in comparison to the unmodified groups (p < 0.001), while there was no significant difference in the elastic modulus and hardness with the 1% TNP concentration. Among the TNP groups, the 2% TNP concentration significantly decreased the elastic modulus and hardness (p < 0.001). The SEM showed a homogenous distribution of the TNPs, and the more irregular fracture surface displayed ductile fractures. The PCT significantly increased the flexural strength, elastic modulus, and hardness (p < 0.001), and this increase was time-dependent. The three-way ANOVA results revealed a significant difference between the material types, TNP concentrations, and PCT interactions (p < 0.001). Both concentrations of the TNPs increased the flexural strength, while the 2% TNP concentration decreased the elastic modulus and hardness of the 3D-printed nanocomposites. The flexural strength and hardness increased as the PCT increased. The material type, TNP concentration, and PCT are important factors that affect the strength of 3D-printed nanocomposites and could improve their mechanical performance.
Full article
(This article belongs to the Special Issue Functional Nanocomposites: From Strategic Design to Applications)
►▼
Show Figures

Figure 1
Open AccessReview
NanoBubble-Mediated Oxygenation: Elucidating the Underlying Molecular Mechanisms in Hypoxia and Mitochondrial-Related Pathologies
Nanomaterials 2023, 13(23), 3060; https://doi.org/10.3390/nano13233060 - 30 Nov 2023
Abstract
►▼
Show Figures
Worldwide, hypoxia-related conditions, including cancer, COVID-19, and neuro-degenerative diseases, often lead to multi-organ failure and significant mortality. Oxygen, crucial for cellular function, becomes scarce as levels drop below 10 mmHg (<2% O2), triggering mitochondrial dysregulation and activating hypoxia-induced factors (HiFs). Herein,
[...] Read more.
Worldwide, hypoxia-related conditions, including cancer, COVID-19, and neuro-degenerative diseases, often lead to multi-organ failure and significant mortality. Oxygen, crucial for cellular function, becomes scarce as levels drop below 10 mmHg (<2% O2), triggering mitochondrial dysregulation and activating hypoxia-induced factors (HiFs). Herein, oxygen nanobubbles (OnB), an emerging versatile oxygen delivery platform, offer a novel approach to address hypoxia-related pathologies. This review explores OnB oxygen delivery strategies and systems, including diffusion, ultrasound, photodynamic, and pH-responsive nanobubbles. It delves into the nanoscale mechanisms of OnB, elucidating their role in mitochondrial metabolism (TFAM, PGC1alpha), hypoxic responses (HiF-1alpha), and their interplay in chronic pathologies including cancer and neurodegenerative disorders, amongst others. By understanding these dynamics and underlying mechanisms, this article aims to contribute to our accruing knowledge of OnB and the developing potential in ameliorating hypoxia- and metabolic stress-related conditions and fostering innovative therapies.
Full article

Figure 1
Open AccessArticle
Nanoscale Insights into the Mechanical Behavior of Interfacial Composite Structures between Calcium Silicate Hydrate/Calcium Hydroxide and Silica
Nanomaterials 2023, 13(23), 3059; https://doi.org/10.3390/nano13233059 - 30 Nov 2023
Abstract
The failure of the interfacial transition zone has been identified as the primary cause of damage and deterioration in cement-based materials. To further understand the interfacial failure mechanism, interfacial composite structures between the main hydration products of ordinary Portland cement (OPC), calcium silicate
[...] Read more.
The failure of the interfacial transition zone has been identified as the primary cause of damage and deterioration in cement-based materials. To further understand the interfacial failure mechanism, interfacial composite structures between the main hydration products of ordinary Portland cement (OPC), calcium silicate hydrate (CSH) and calcium hydroxide (Ca(OH)2), and silica (SiO2) were constructed while considering their anisotropy. Afterwards, uniaxial tensile tests were conducted using molecular dynamics (MD) simulations. Our results showed that the interfacial zones (IZs) of interfacial composite structures tended to have relatively lower densities than those of the bulk, and the anisotropy of the hydration products had almost no effect on the IZ being a low-density zone. Interfacial composite structures with different configurations exhibited diverse nanomechanical behaviors in terms of their ultimate strength, stress–strain relationship and fracture evaluation. A higher strain rate contributed to a higher ultimate strength and a more prolonged decline in the residual strength. In the interfacial composite structures, both CSH and Ca(OH)2 exhibited ruptures of the Ca-O bond as the primary atomic pair during the tensile process. The plastic damage characteristics of the interfacial composite structures during the tensile process were assessed by analyzing the normalized number of broken Ca-O bonds, which also aligned with the atomic chain break characteristics evident in the per-atom stress map.
Full article
(This article belongs to the Special Issue Mechanics of Micro/Nano Structures and Materials, Volume II)
►▼
Show Figures

Figure 1
Open AccessArticle
Zero- to One-Dimensional Zn24 Supraclusters: Synthesis, Structures and Detection Wavelength
Nanomaterials 2023, 13(23), 3058; https://doi.org/10.3390/nano13233058 - 30 Nov 2023
Abstract
A zinc supracluster [Zn24(ATZ)18(AcO)30(H2O)1.5]·(H2O)3.5 (Zn24), and a 1D zinc supracluster chain {[Zn24(ATZ)18(AcO)30(C2H5OH)2(H2O)3
[...] Read more.
A zinc supracluster [Zn24(ATZ)18(AcO)30(H2O)1.5]·(H2O)3.5 (Zn24), and a 1D zinc supracluster chain {[Zn24(ATZ)18(AcO)30(C2H5OH)2(H2O)3]·(H2O)2.5}n (1-D⊂Zn24) with molecular diameters of 2 nm were synthesized under regulatory solvothermal conditions or the micro bottle method. In an N,N-dimethylformamide solution of Zn24, Fe3+, Ni2+, Cu2+, Cr2+ and Co2+ ions exhibited fluorescence-quenching effects, while the rare earth ions Ce3+, Dy3+, Er3+, Eu3+, Gd3+, Ho3+, La3+, Nd3+, Sm3+, and Tb3+showed no obvious fluorescence quenching. In ethanol solution, the Zn24 supracluster can be used to selectively detect Ce3+ ions with excellent efficiency (limit of detection (LOD) = 8.51 × 10−7 mol/L). The Zn24 supracluster can also detect wavelengths between 302 and 332 nm using the intensity of the emitted light.
Full article
(This article belongs to the Topic Interfacial Bonding Design and Applications in Structural and Functional Materials)
►▼
Show Figures

Figure 1
Open AccessArticle
Optimization Mechanism of Nozzle Parameters and Characterization of Nanofibers in Centrifugal Spinning
Nanomaterials 2023, 13(23), 3057; https://doi.org/10.3390/nano13233057 - 30 Nov 2023
Abstract
►▼
Show Figures
Nanofibers are an emerging kind of nano-material, widely used in several application domains such as biomedicine, high-efficiency filtration media, precision electronics, and optical devices. Centrifugal spinning, which is a novel nanofiber production technology, has been widely studied. This paper proposes a structural parameter
[...] Read more.
Nanofibers are an emerging kind of nano-material, widely used in several application domains such as biomedicine, high-efficiency filtration media, precision electronics, and optical devices. Centrifugal spinning, which is a novel nanofiber production technology, has been widely studied. This paper proposes a structural parameter optimization design method of a bent-tube nozzle. The mathematical model of the spinning solution motion in the nozzle is first developed. The optimization function of the structure parameters of the bent-tube nozzle is then obtained by calculation. Afterwards, these parameters are optimized using a neural network algorithm. The obtained results show that, when the bending angle is 15°, the curvature radius is 10 mm, the outlet radius is 0.205 mm, and the head loss of the solution can be minimized. Finally, centrifugal spinning experiments are conducted and the influence of the centrifugal spinning parameters on the nanofibers is analyzed. In addition, the optimized bent-tube nozzle improves the surface morphology of the nanofibers as their diameter distribution becomes more uniform.
Full article

Figure 1
Open AccessCommunication
Impact of Sapphire Step Height on the Growth of Monolayer Molybdenum Disulfide
Nanomaterials 2023, 13(23), 3056; https://doi.org/10.3390/nano13233056 - 30 Nov 2023
Abstract
Although the synthesis of molybdenum disulfide (MoS2) on sapphire has made a lot of progress, how the substrate surface affects the growth still needs to be further studied. Herein, the impact of the sapphire step height on the growth of monolayer
[...] Read more.
Although the synthesis of molybdenum disulfide (MoS2) on sapphire has made a lot of progress, how the substrate surface affects the growth still needs to be further studied. Herein, the impact of the sapphire step height on the growth of monolayer MoS2 through chemical vapor deposition (CVD) is studied. The results show that MoS2 exhibits a highly oriented triangular grain on a low-step (0.44–1.54 nm) substrate but nanoribbons with a consistent orientation on a high-step (1.98–3.30 nm) substrate. Triangular grains exhibit cross-step growth, with one edge parallel to the step edge, while nanoribbons do not cross steps and possess the same orientation as the step. Scanning electron microscopy (SEM) reveals that nanoribbons are formed by splicing multiple grains, and the consistency of the orientation of these grains is demonstrated with a transmission electron microscope (TEM) and second-harmonic generation (SHG). Furthermore, our CP2K calculations, conducted using the generalized gradient approximation and the Perdew–Burke–Ernzerhof (PBE) functional with D3 (BJ) correction, show that MoS2 domains prefer to nucleate at higher steps, while climbing across a higher step is more difficult. This work not only sheds light on the growth mechanism of monolayer MoS2 but also promotes its applications in electrical, optical, and energy-related devices.
Full article
(This article belongs to the Special Issue 2D Structured Materials: Synthesis, Properties and Applications)
►▼
Show Figures

Figure 1
Open AccessArticle
Visible-Light-Driven Semiconductor–Metal Transition in Electron Gas at the (100) Surface of KTaO3
by
, , , , , , , , and
Nanomaterials 2023, 13(23), 3055; https://doi.org/10.3390/nano13233055 - 30 Nov 2023
Abstract
Two-dimensional electron gas (2DEG) at the (100) KTaO3(KTO) surface and interfaces has attracted extensive interest because of its abundant physical properties. Here, light illumination-induced semiconductor–metal transition in the 2DEG at the KTO surface was investigated. 2DEG was formed at the surface
[...] Read more.
Two-dimensional electron gas (2DEG) at the (100) KTaO3(KTO) surface and interfaces has attracted extensive interest because of its abundant physical properties. Here, light illumination-induced semiconductor–metal transition in the 2DEG at the KTO surface was investigated. 2DEG was formed at the surface of KTO by argon ion bombardment. The 2DEG prepared with a shorter bombardment time (300 s) exhibits semiconducting behavior in the range of 20~300 K in the dark. However, it shows a different resistance behavior, namely, a metallic state above ~55 K and a semiconducting state below ~55 K when exposed to visible light (405 nm) with a giant conductivity increase of about eight orders of magnitude at 20 K. The suppression of the semiconducting behavior is found to be more pronounced with increasing light power. After removing the illumination, the resistance cannot recover quickly, exhibiting persistent photoconductivity. More interestingly, the photoresponse of the 2DEG below 50 K was almost independent of the laser wavelength, although the photon energy is lower than the band gap of KTO. The present results provide experimental support for tuning oxide 2DEG by photoexcitation, suggesting promising applications of KTO-based 2DEG in future electronic and optoelectronic devices.
Full article
(This article belongs to the Special Issue Nanoelectronics: Materials, Devices and Applications)
►▼
Show Figures

Figure 1
Open AccessEditorial
Synthesis of Nanocomposites and Catalysis Applications II
Nanomaterials 2023, 13(23), 3054; https://doi.org/10.3390/nano13233054 - 30 Nov 2023
Abstract
Nanocomposites, which refer to materials composed of nanoparticles dispersed in a matrix, have gained significant attention in various fields due to their unique properties and potential applications [...]
Full article
(This article belongs to the Special Issue Synthesis of Nanocomposites and Catalysis Applications II)
Open AccessArticle
Precise Confinement and Position Distribution of Atomic Cu and Zn in ZSM-5 for CO2 Hydrogenation to Methanol
by
, , , , , , , and
Nanomaterials 2023, 13(23), 3053; https://doi.org/10.3390/nano13233053 - 29 Nov 2023
Abstract
CuZn-based catalysts are widely used in CO2 hydrogenation, which may effectively convert CO2 to methanol and alleviate CO2 emission issues. The precise design of a model catalyst with a clear atomic structure is crucial in studying the relationship between structure
[...] Read more.
CuZn-based catalysts are widely used in CO2 hydrogenation, which may effectively convert CO2 to methanol and alleviate CO2 emission issues. The precise design of a model catalyst with a clear atomic structure is crucial in studying the relationship between structure and catalytic activity. In this work, a one-pot strategy was used to synthesize CuZn@ZSM-5 catalysts with approximately two Cu atoms and one Zn atom per unit cell. Atomic Cu and Zn species are confirmed to be located in the [54.6.102] and [62.104] tilings, respectively, by using magic-angle spinning nuclear magnetic resonance spectroscopy (MAS NMR), synchrotron X-ray powder diffraction (SXRD) and high-signal-to-noise-ratio annular dark field scanning transmission electron microscopy (High SNR ADF-STEM). Catalytic hydrogenation of CO2 to methanol was used as a model reaction to investigate the activity of the catalyst with confined active species. Compared to the Cu@ZSM-5, Zn@ZSM-5 and their mixture, the CuZn@ZSM-5 catalyst with a close Cu–Zn distance of 4.5 Å achieves a comparable methanol space–time yield (STY) of 92.0 mgmethanol·gcatal−1·h−1 at 533 K and 4 MPa with high stability. This method is able to confine one to three metal atoms in the zeolite channel and avoid migration and agglomeration of the atoms during the reaction, which maintains the stability of the catalyst and provides an efficient way for adjustment of the type and number of metal atoms along with the distances between them in zeolites.
Full article
(This article belongs to the Section Physical Chemistry at Nanoscale)
►▼
Show Figures

Figure 1
Open AccessArticle
Highly Efficient Liquid-Phase Exfoliation of Layered Perovskite-like Titanates HLnTiO4 and H2Ln2Ti3O10 (Ln = La, Nd) into Nanosheets
Nanomaterials 2023, 13(23), 3052; https://doi.org/10.3390/nano13233052 - 29 Nov 2023
Abstract
Nanosheets of layered perovskite-like oxides attract researchers as building blocks for the creation of a wide range of demanded nanomaterials. However, Ruddlesden–Popper phases are difficult to separate into nanosheets quantitatively via the conventional liquid-phase exfoliation procedure in aqueous solutions of bulky organic bases.
[...] Read more.
Nanosheets of layered perovskite-like oxides attract researchers as building blocks for the creation of a wide range of demanded nanomaterials. However, Ruddlesden–Popper phases are difficult to separate into nanosheets quantitatively via the conventional liquid-phase exfoliation procedure in aqueous solutions of bulky organic bases. The present study has considered systematically a relatively novel and efficient approach to a high-yield preparation of concentrated suspensions of perovskite nanosheets. For this, the Ruddlesden–Popper titanates HLnTiO4 and H2Ln2Ti3O10 (Ln = La, Nd) have been intercalated by n-alkylamines with various chain lengths, exposed to sonication in aqueous tetrabutylammonium hydroxide (TBAOH) and centrifuged to separate the nanosheet-containing supernatant. The experiments included variations of a wide range of conditions, which allowed for the achievement of impressive nanosheet concentrations in suspensions up to 2.1 g/L and yields up to 95%. The latter were found to strongly depend on the length of intercalated n-alkylamines. Despite the less expanded interlayer space, the titanates modified with short-chain amines demonstrated a much higher completeness of liquid-phase exfoliation as compared to those with long-chain ones. It was also shown that the exfoliation efficiency depends more on the sample stirring time in the TBAOH solution than on the sonication duration. Analysis of the titanate nanosheets obtained by means of dynamic light scattering, electron and atomic force microscopy revealed their lateral sizes of 30–250 nm and thickness of 2–4 nm. The investigated exfoliation strategy appears to be convenient for the high-yield production of perovskite nanosheet-based materials for photocatalytic hydrogen production, environmental remediation and other applications.
Full article
(This article belongs to the Special Issue 2D and Carbon Nanomaterials for Energy Conversion and Storage)
►▼
Show Figures

Figure 1
Open AccessArticle
PbSe/PbS Core/Shell Nanoplatelets with Enhanced Stability and Photoelectric Properties
by
, , , , , , , and
Nanomaterials 2023, 13(23), 3051; https://doi.org/10.3390/nano13233051 - 29 Nov 2023
Abstract
Lead chalcogenide nanoplatelets (NPLs) have emerged as a promising material for devices operating in the near IR and IR spectrum region. Here, we first apply the cation exchange method to PbSe/PbS core/shell NPL synthesis. The shell growth enhances NPL colloidal and environmental stability,
[...] Read more.
Lead chalcogenide nanoplatelets (NPLs) have emerged as a promising material for devices operating in the near IR and IR spectrum region. Here, we first apply the cation exchange method to PbSe/PbS core/shell NPL synthesis. The shell growth enhances NPL colloidal and environmental stability, and passivates surface trap states, preserving the main core physical properties. To prove the great potential for optoelectrical applications, we fabricate a photoconductor using PbSe/PbS NPLs. The device demonstrates enhanced conductivity and responsivity with fast rise and fall times, resulting in a 13 kHz bandwidth. The carrier transport was investigated with the field effect transistor method, showing p-type conductivity with charge mobility of 1.26 × 10−2 cm2·V−1·s−1.
Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
►▼
Show Figures

Figure 1
Open AccessCommunication
Symmetry-Engineering-Induced In-Plane Polarization Enhancement in Ta2NiS5/CrOCl van der Waals Heterostructure
Nanomaterials 2023, 13(23), 3050; https://doi.org/10.3390/nano13233050 - 29 Nov 2023
Abstract
Van der Waals (vdW) interfaces can be formed via layer stacking regardless of the lattice constant or symmetry of the individual building blocks. Herein, we constructed a vdW interface of layered Ta2NiS5 and CrOCl, which exhibited remarkably enhanced in-plane anisotropy
[...] Read more.
Van der Waals (vdW) interfaces can be formed via layer stacking regardless of the lattice constant or symmetry of the individual building blocks. Herein, we constructed a vdW interface of layered Ta2NiS5 and CrOCl, which exhibited remarkably enhanced in-plane anisotropy via polarized Raman spectroscopy and electrical transport measurements. Compared with pristine Ta2NiS5, the anisotropy ratio of the Raman intensities for the B2g, 2Ag, and 3Ag modes increased in the heterostructure. More importantly, the anisotropy ratios of conductivity and mobility in the heterostructure increased by one order of magnitude. Specifically speaking, the conductivity ratio changed from ~2.1 (Ta2NiS5) to ~15 (Ta2NiS5/CrOCl), while the mobility ratio changed from ~2.7 (Ta2NiS5) to ~32 (Ta2NiS5/CrOCl). Such prominent enhancement may be attributed to the symmetry reduction caused by lattice mismatch at the heterostructure interface and the introduction of strain into the Ta2NiS5. Our research provides a new perspective for enhancing artificial anisotropy physics and offers feasible guidance for future functionalized electronic devices.
Full article
(This article belongs to the Special Issue 2D Layered Nanomaterials and Heterostructures for Electronics, Optoelectronics and Sensing)
►▼
Show Figures

Figure 1
Open AccessArticle
Achieving Order in Disorder: Stabilizing Red Light-Emitting α-Phase Formamidinium Lead Iodide
by
, , , , and
Nanomaterials 2023, 13(23), 3049; https://doi.org/10.3390/nano13233049 - 29 Nov 2023
Abstract
►▼
Show Figures
While formamidinium lead iodide (FAPbI3) halide perovskite (HP) exhibits improved thermal stability and a wide band gap, its practical applicability is chained due to its room temperature phase transition from pure black (α-phase) to a non-perovskite yellow (δ-phase) when exposed to
[...] Read more.
While formamidinium lead iodide (FAPbI3) halide perovskite (HP) exhibits improved thermal stability and a wide band gap, its practical applicability is chained due to its room temperature phase transition from pure black (α-phase) to a non-perovskite yellow (δ-phase) when exposed to humidity. This phase transition is due to the fragile ionic bonding between the cationic and anionic parts of HPs during their formation. Herein, we report the synthesis of water-stable, red-light-emitting α-phase FAPbI3 nanocrystals (NCs) using five different amines to overcome these intrinsic phase instabilities. The structural, morphological, and electronic characterization were obtained using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), and X-ray photoelectron spectroscopy (XPS), respectively. The photoluminescence (PL) emission and single-particle imaging bear the signature of dual emission in several amines, indicating a self-trapped excited state. Our simple strategy to stabilize the α-phase using various amine interfacial interactions could provide a better understanding and pave the way for a novel approach for the stabilization of perovskites for prolonged durations and their multifunctional applications.
Full article

Figure 1

Journal Menu
► ▼ Journal Menu-
- Nanomaterials Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Macromol, Materials, Nanomaterials, Polymers
Exploring the Structure and Polymer Dynamics at Various Interaction Scales
Topic Editors: Maricel Agop, Stefan-Andrei Irimiciuc, Luminita MarinDeadline: 30 December 2023
Topic in
Designs, Energies, Materials, Nanomaterials, Sustainability
Thermal Energy Transfer and Storage
Topic Editor: Xiaohu YangDeadline: 31 December 2023
Topic in
Energies, Materials, Molecules, Nanomaterials, Solids
Computational Chemistry in Metallurgy, Materials and Energy
Topic Editors: Kejiang Li, Guangyue Li, Qifan ZhongDeadline: 10 January 2024
Topic in
Catalysts, Materials, Nanomaterials, Water, Applied Sciences
Emerging Materials in Water and Waste Remediation Processes
Topic Editors: Juan García Rodríguez, Silvia Álvarez-TorrellasDeadline: 31 January 2024

Conferences
Special Issues
Special Issue in
Nanomaterials
Nanomaterials for Electron Devices
Guest Editors: Yung-Hsien Wu, Albert ChinDeadline: 10 December 2023
Special Issue in
Nanomaterials
Moving toward Biomimetic Tissue Engineered Scaffolds
Guest Editors: Costantino Del Gaudio, Silvia Baiguera, Lucy Di SilvioDeadline: 25 December 2023
Special Issue in
Nanomaterials
Pulsed Laser Deposited Nanostructures
Guest Editor: Catalin ConstantinescuDeadline: 31 December 2023
Special Issue in
Nanomaterials
Research and Application of Flexible Sensors Based on Micro/Nano Materials and Structures
Guest Editors: Shuang Li, Yewang SuDeadline: 1 January 2024
Topical Collections
Topical Collection in
Nanomaterials
Applications of Magnetic Nanomaterials
Collection Editor: Yurii Gun'ko
Topical Collection in
Nanomaterials
Toxicity of Nanoparticles in the Lung: Environmental and Medical Aspects
Collection Editor: Eleonore Fröhlich
Topical Collection in
Nanomaterials
The Fourth State of Engineering: Nanoengineered Materials and Coatings Facilitated by Plasma Techniques
Collection Editors: Krasimir Vasilev, Kostya (Ken) Ostrikov, Thomas Michl, Akash Bachhuka
Topical Collection in
Nanomaterials
Metallic and Metal Oxide Nanohybrids and Their Applications
Collection Editor: Alexandru Grumezescu