-
Laser-Induced Au Catalyst Generation for Tailored ZnO Nanostructure Growth
-
Development of pH-Sensitive Magnetoliposomes Containing Shape Anisotropic Nanoparticles for Potential Application in Combined Cancer Therapy
-
Nanoscale Phase Change Material Array by Sub-Resolution Assist Feature for Storage Class Memory Application
-
Laser-Induced Graphene Microsupercapacitors: Structure, Quality, and Performance
-
Thymol-Nanoparticles as Effective Biocides against the Quarantine Pathogen Xylella fastidiosa
Journal Description
Nanomaterials
Nanomaterials
is an international, peer-reviewed, open access journal published semimonthly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubMed, PMC, CAPlus / SciFinder, Inspec, and other databases.
- Journal Rank: JCR - Q1 (Physics, Applied) / CiteScore - Q1 (General Chemical Engineering)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 12.7 days after submission; acceptance to publication is undertaken in 2.9 days (median values for papers published in this journal in the second half of 2022).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
- Companion journals for Nanomaterials include: Nanomanufacturing and Applied Nano.
Impact Factor:
5.719 (2021);
5-Year Impact Factor:
5.810 (2021)
Latest Articles
Colloidal 2D Lead Chalcogenide Nanocrystals: Synthetic Strategies, Optical Properties, and Applications
Nanomaterials 2023, 13(11), 1797; https://doi.org/10.3390/nano13111797 (registering DOI) - 03 Jun 2023
Abstract
Lead chalcogenide nanocrystals (NCs) are an emerging class of photoactive materials that have become a versatile tool for fabricating new generation photonics devices operating in the near-IR spectral range. NCs are presented in a wide variety of forms and sizes, each of which
[...] Read more.
Lead chalcogenide nanocrystals (NCs) are an emerging class of photoactive materials that have become a versatile tool for fabricating new generation photonics devices operating in the near-IR spectral range. NCs are presented in a wide variety of forms and sizes, each of which has its own unique features. Here, we discuss colloidal lead chalcogenide NCs in which one dimension is much smaller than the others, i.e., two-dimensional (2D) NCs. The purpose of this review is to present a complete picture of today’s progress on such materials. The topic is quite complicated, as a variety of synthetic approaches result in NCs with different thicknesses and lateral sizes, which dramatically change the NCs photophysical properties. The recent advances highlighted in this review demonstrate lead chalcogenide 2D NCs as promising materials for breakthrough developments. We summarized and organized the known data, including theoretical works, to highlight the most important 2D NC features and give the basis for their interpretation.
Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
►
Show Figures
Open AccessArticle
Laser–Metal Interaction with a Pulse Shorter than the Ion Period: Ablation Threshold, Electron Emission and Ion Explosion
Nanomaterials 2023, 13(11), 1796; https://doi.org/10.3390/nano13111796 (registering DOI) - 03 Jun 2023
Abstract
The laser energy per unit surface, necessary to trigger material removal, decreases with the pulse shortening, becoming pulse–time independent in the sub-picosecond range. These pulses are shorter than the electron-to-ion energy transfer time and electronic heat conduction time, minimising the energy losses. Electrons
[...] Read more.
The laser energy per unit surface, necessary to trigger material removal, decreases with the pulse shortening, becoming pulse–time independent in the sub-picosecond range. These pulses are shorter than the electron-to-ion energy transfer time and electronic heat conduction time, minimising the energy losses. Electrons receiving an energy larger than the threshold drag the ions off the surface in the mode of electrostatic ablation. We show that a pulse shorter than the ion period (Shorter-the-Limit (StL)) ejects conduction electrons with an energy larger than the work function (from a metal), leaving the bare ions immobile in a few atomic layers. Electron emission is followed by the bare ion’s explosion, ablation, and THz radiation from the expanding plasma. We compare this phenomenon to the classic photo effect and nanocluster Coulomb explosions, and show differences and consider possibilities for detecting new modes of ablation experimentally via emitted THz radiation. We also consider the applications of high-precision nano-machining with this low intensity irradiation.
Full article
(This article belongs to the Special Issue Synthesis and Application of Optical Nanomaterials)
Open AccessArticle
Zinc Oxide Nanoparticles—Solution-Based Synthesis and Characterizations
by
, , , and
Nanomaterials 2023, 13(11), 1795; https://doi.org/10.3390/nano13111795 - 02 Jun 2023
Abstract
Zinc oxide (ZnO) nanoparticles have shown great potential because of their versatile and promising applications in different fields, including solar cells. Various methods of synthesizing ZnO materials have been reported. In this work, controlled synthesis of ZnO nanoparticles was achieved via a simple,
[...] Read more.
Zinc oxide (ZnO) nanoparticles have shown great potential because of their versatile and promising applications in different fields, including solar cells. Various methods of synthesizing ZnO materials have been reported. In this work, controlled synthesis of ZnO nanoparticles was achieved via a simple, cost-effective, and facile synthetic method. Using transmittance spectra and film thickness of ZnO, the optical band gap energies were calculated. For as-synthesized and annealed ZnO films, the bandgap energies were found to be 3.40 eV and 3.30 eV, respectively. The nature of the optical transition indicates that the material is a direct bandgap semiconductor. Spectroscopic ellipsometry (SE) analysis was used to extract dielectric functions where the onset of optical absorption of ZnO was observed at lower photon energy due to annealing of the nanoparticle film. Similarly, X-ray diffraction (XRD) and scanning electron microscopy (SEM) data revealed that the material is pure and crystalline in nature, with the average crystallite size of ~9 nm.
Full article
(This article belongs to the Topic Nanomaterials for Energy and Environmental Applications)
►▼
Show Figures

Figure 1
Open AccessArticle
Comparative Study of the U(VI) Adsorption by Hybrid Silica-Hyperbranched Poly(ethylene imine) Nanoparticles and Xerogels
by
, , , , , , , , , and
Nanomaterials 2023, 13(11), 1794; https://doi.org/10.3390/nano13111794 - 02 Jun 2023
Abstract
Two different silica conformations (xerogels and nanoparticles), both formed by the mediation of dendritic poly (ethylene imine), were tested at low pHs for problematic uranyl cation sorption. The effect of crucial factors, i.e., temperature, electrostatic forces, adsorbent composition, accessibility of the pollutant to
[...] Read more.
Two different silica conformations (xerogels and nanoparticles), both formed by the mediation of dendritic poly (ethylene imine), were tested at low pHs for problematic uranyl cation sorption. The effect of crucial factors, i.e., temperature, electrostatic forces, adsorbent composition, accessibility of the pollutant to the dendritic cavities, and MW of the organic matrix, was investigated to determine the optimum formulation for water purification under these conditions. This was attained with the aid of UV-visible and FTIR spectroscopy, dynamic light scattering (DLS), ζ-potential, liquid nitrogen (LN2) porosimetry, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Results highlighted that both adsorbents have extraordinary sorption capacities. Xerogels are cost-effective since they approximate the performance of nanoparticles with much less organic content. Both adsorbents could be used in the form of dispersions. The xerogels, though, are more practicable materials since they may penetrate the pores of a metal or ceramic solid substrate in the form of a precursor gel-forming solution, producing composite purification devices.
Full article
(This article belongs to the Special Issue Nanoscale Materials for Water Purification and Catalysis)
►▼
Show Figures

Figure 1
Open AccessArticle
Calculation of Self, Corrected, and Transport Diffusivities of Isopropyl Alcohol in UiO-66
Nanomaterials 2023, 13(11), 1793; https://doi.org/10.3390/nano13111793 - 02 Jun 2023
Abstract
The UiO-6x family of metal-organic frameworks has been extensively studied for applications in chemical warfare agent (CWA) capture and destruction. An understanding of intrinsic transport phenomena, such as diffusion, is key to understanding experimental results and designing effective materials for CWA capture. However,
[...] Read more.
The UiO-6x family of metal-organic frameworks has been extensively studied for applications in chemical warfare agent (CWA) capture and destruction. An understanding of intrinsic transport phenomena, such as diffusion, is key to understanding experimental results and designing effective materials for CWA capture. However, the relatively large size of CWAs and their simulants makes diffusion in the small-pored pristine UiO-66 very slow and hence impractical to study directly with direct molecular simulations because of the time scales required. We used isopropanol (IPA) as a surrogate for CWAs to investigate the fundamental diffusion mechanisms of a polar molecule within pristine UiO-66. IPA can form hydrogen bonds with the -OH groups bound to the metal oxide clusters in UiO-66, similar to some CWAs, and can be studied by direct molecular dynamics simulations. We report self, corrected, and transport diffusivities of IPA in pristine UiO-66 as a function of loading. Our calculations highlight the importance of the accurate modeling of the hydrogen bonding interactions on diffusivities, with about an order of magnitude decrease in diffusion coefficients when the hydrogen bonding between IPA and the -OH groups is included. We found that a fraction of the IPA molecules have very low mobility during the course of a simulation, while a small fraction are highly mobile, exhibiting mean square displacements far greater than the ensemble average.
Full article
(This article belongs to the Topic Metal Organic Frameworks and Derived Materials for Advanced Applications)
►▼
Show Figures

Figure 1
Open AccessArticle
Preparation of Hybrid Nanopigments with Excellent Environmental Stability, Antibacterial and Antioxidant Properties Based on Monascus Red and Sepiolite by One-Step Grinding Process
Nanomaterials 2023, 13(11), 1792; https://doi.org/10.3390/nano13111792 - 02 Jun 2023
Abstract
►▼
Show Figures
This study is focused on the preparation, characterization, and multifunctional properties of intelligent hybrid nanopigments. The hybrid nanopigments with excellent environmental stability and antibacterial and antioxidant properties were fabricated based on natural Monascus red, surfactant, and sepiolite via a facile one-step grinding process.
[...] Read more.
This study is focused on the preparation, characterization, and multifunctional properties of intelligent hybrid nanopigments. The hybrid nanopigments with excellent environmental stability and antibacterial and antioxidant properties were fabricated based on natural Monascus red, surfactant, and sepiolite via a facile one-step grinding process. The density functional theory calculations demonstrated that the surfactants loaded on sepiolite were in favor of enhancing the electrostatic, coordination, and hydrogen bonding interactions between Monascus red and sepiolite. Thus, the obtained hybrid nanopigments exhibited excellent antibacterial and antioxidant properties, with an inhibition effect on Gram-positive bacteria that was superior to that of Gram-negative bacteria. In addition, the scavenging activity on DPPH and hydroxyl free radicals as well as the reducing power of hybrid nanopigments were higher than those of hybrid nanopigments prepared without the addition of the surfactant. Inspired by nature, gas-sensitive reversible alochroic superamphiphobic coatings with excellent thermal and chemical stability were successfully designed by combining hybrid nanopigments and fluorinated polysiloxane. Therefore, intelligent multifunctional hybrid nanopigments have great application foreground in related fields.
Full article

Figure 1
Open AccessArticle
Bioinspired Hierarchical Carbon Structures as Potential Scaffolds for Wound Healing and Tissue Regeneration Applications
by
, , , and
Nanomaterials 2023, 13(11), 1791; https://doi.org/10.3390/nano13111791 - 02 Jun 2023
Abstract
Engineered bio-scaffolds for wound healing provide an attractive treatment option for tissue engineering and traumatic skin injuries since they can reduce dependence on donors and promote faster repair through strategic surface engineering. Current scaffolds present limitations in handling, preparation, shelf life, and sterilization
[...] Read more.
Engineered bio-scaffolds for wound healing provide an attractive treatment option for tissue engineering and traumatic skin injuries since they can reduce dependence on donors and promote faster repair through strategic surface engineering. Current scaffolds present limitations in handling, preparation, shelf life, and sterilization options. In this study, bio-inspired hierarchical all-carbon structures comprising carbon nanotube (CNT) carpets covalently bonded to flexible carbon fabric have been investigated as a platform for cell growth and future tissue regeneration applications. CNTs are known to provide guidance for cell growth, but loose CNTs are susceptible to intracellular uptake and are suspected to cause in vitro and in vivo cytotoxicity. This risk is suppressed in these materials due to the covalent attachment of CNTs on a larger fabric, and the synergistic benefits of nanoscale and micro-macro scale architectures, as seen in natural biological materials, can be obtained. The structural durability, biocompatibility, tunable surface architecture, and ultra-high specific surface area of these materials make them attractive candidates for wound healing. In this study, investigations of cytotoxicity, skin cell proliferation, and cell migration were performed, and results indicate promise in both biocompatibility and directed cell growth. Moreover, these scaffolds provided cytoprotection against environmental stressors such as Ultraviolet B (UVB) rays. It was seen that cell growth could also be tailored through the control of CNT carpet height and surface wettability. These results support future promise in the design of hierarchical carbon scaffolds for strategic wound healing and tissue regeneration applications.
Full article
(This article belongs to the Special Issue Micro- and Nanostructured Biomaterials for Biomedical Applications and Regenerative Medicine)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Illuminating and Radiosensitizing Tumors with 2DG-Bound Gold-Based Nanomedicine for Targeted CT Imaging and Therapy
by
, , , , , , , , , and
Nanomaterials 2023, 13(11), 1790; https://doi.org/10.3390/nano13111790 - 02 Jun 2023
Abstract
Although radiotherapy is one of the most important curative treatments for cancer, its clinical application is associated with undesired therapeutic effects on normal or healthy tissues. The use of targeted agents that can simultaneously achieve therapeutic and imaging functions could constitute a potential
[...] Read more.
Although radiotherapy is one of the most important curative treatments for cancer, its clinical application is associated with undesired therapeutic effects on normal or healthy tissues. The use of targeted agents that can simultaneously achieve therapeutic and imaging functions could constitute a potential solution. Herein, we developed 2-deoxy-d-glucose (2DG)-labeled poly(ethylene glycol) (PEG) gold nanodots (2DG-PEG-AuD) as a tumor-targeted computed tomography (CT) contrast agent and radiosensitizer. The key advantages of the design are its biocompatibility and targeted AuD with excellent sensitivity in tumor detection via avid glucose metabolism. As a consequence, CT imaging with enhanced sensitivity and remarkable radiotherapeutic efficacy could be attained. Our synthesized AuD displayed linear enhancement of CT contrast as a function of its concentration. In addition, 2DG-PEG-AuD successfully demonstrated significant augmentation of CT contrast in both in vitro cell studies and in vivo tumor-bearing mouse models. In tumor-bearing mice, 2DG-PEG-AuD showed excellent radiosensitizing functions after intravenous injection. Results from this work indicate that 2DG-PEG-AuD could greatly potentiate theranostic capabilities by providing high-resolution anatomical and functional images in a single CT scan and therapeutic capability.
Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Biophotonics: Prognosis and Therapeutics)
►▼
Show Figures

Graphical abstract
Open AccessReview
A Review of the Relationship between Gel Polymer Electrolytes and Solid Electrolyte Interfaces in Lithium Metal Batteries
Nanomaterials 2023, 13(11), 1789; https://doi.org/10.3390/nano13111789 - 01 Jun 2023
Abstract
►▼
Show Figures
Lithium metal batteries (LMBs) are a dazzling star in electrochemical energy storage thanks to their high energy density and low redox potential. However, LMBs have a deadly lithium dendrite problem. Among the various methods for inhibiting lithium dendrites, gel polymer electrolytes (GPEs) possess
[...] Read more.
Lithium metal batteries (LMBs) are a dazzling star in electrochemical energy storage thanks to their high energy density and low redox potential. However, LMBs have a deadly lithium dendrite problem. Among the various methods for inhibiting lithium dendrites, gel polymer electrolytes (GPEs) possess the advantages of good interfacial compatibility, similar ionic conductivity to liquid electrolytes, and better interfacial tension. In recent years, there have been many reviews of GPEs, but few papers discussed the relationship between GPEs and solid electrolyte interfaces (SEIs). In this review, the mechanisms and advantages of GPEs in inhibiting lithium dendrites are first reviewed. Then, the relationship between GPEs and SEIs is examined. In addition, the effects of GPE preparation methods, plasticizer selections, polymer substrates, and additives on the SEI layer are summarized. Finally, the challenges of using GPEs and SEIs in dendrite suppression are listed and a perspective on GPEs and SEIs is considered.
Full article

Figure 1
Open AccessArticle
CoNi Alloys Encapsulated in N-Doped Carbon Nanotubes for Stabilizing Oxygen Electrocatalysis in Zinc–Air Battery
by
, , , , , , , , and
Nanomaterials 2023, 13(11), 1788; https://doi.org/10.3390/nano13111788 - 01 Jun 2023
Abstract
Alloy-based catalysts with high corrosion resistance and less self-aggregation are essential for oxygen reduction/evolution reactions (ORR/OER). Here, via an in situ growth strategy, NiCo alloy-inserted nitrogen-doped carbon nanotubes were assembled on a three-dimensional hollow nanosphere ([email protected]/HN) using dicyandiamide. [email protected]/HN exhibited better ORR activity
[...] Read more.
Alloy-based catalysts with high corrosion resistance and less self-aggregation are essential for oxygen reduction/evolution reactions (ORR/OER). Here, via an in situ growth strategy, NiCo alloy-inserted nitrogen-doped carbon nanotubes were assembled on a three-dimensional hollow nanosphere ([email protected]/HN) using dicyandiamide. [email protected]/HN exhibited better ORR activity (half-wave potential (E1/2) of 0.87 V) and stability (E1/2 shift of only −13 mV after 5000 cycles) than commercial Pt/C. [email protected]/HN displayed a lower OER overpotential (330 mV) than RuO2 (390 mV). The [email protected]/HN-assembled zinc–air battery exhibited high specific-capacity (847.01 mA h g−1) and cycling-stability (291 h). Synergies between NiCo alloys and NCNTs facilitated the charge transfer to promote 4e− ORR/OER kinetics. The carbon skeleton inhibited the corrosion of NiCo alloys from surface to subsurface, while inner cavities of CNTs confined particle growth and the aggregation of NiCo alloys to stabilize bifunctional activity. This provides a viable strategy for the design of alloy-based catalysts with confined grain-size and good structural/catalytic stabilities in oxygen electrocatalysis.
Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Plasmonic Cu2−xSe Mediated Colorimetric/Photothermal Dual-Readout Detection of Glutathione
Nanomaterials 2023, 13(11), 1787; https://doi.org/10.3390/nano13111787 - 01 Jun 2023
Abstract
Plasmonic nanomaterials have attracted great attention in the field of catalysis and sensing for their outstanding electrical and optical properties. Here, a representative type of nonstoichiometric Cu2−xSe nanoparticles with typical near-infrared (NIR) localized surface plasma resonance (LSPR) properties originating from their
[...] Read more.
Plasmonic nanomaterials have attracted great attention in the field of catalysis and sensing for their outstanding electrical and optical properties. Here, a representative type of nonstoichiometric Cu2−xSe nanoparticles with typical near-infrared (NIR) localized surface plasma resonance (LSPR) properties originating from their copper deficiency was applied to catalyze the oxidation of colorless TMB into their blue product in the presence of H2O2, indicating they had good peroxidase-like activity. However, glutathione (GSH) inhibited the catalytic oxidation of TMB, as it can consume the reactive oxygen species. Meanwhile, it can induce the reduction of Cu(II) in Cu2−xSe, resulting in a decrease in the degree of copper deficiency, which can lead to a reduction in the LSPR. Therefore, the catalytic ability and photothermal responses of Cu2−xSe were decreased. Thus, in our work, a colorimetric/photothermal dual-readout array was developed for the detection of GSH. The linear calibration for GSH concentration was in the range of 1–50 μM with the LOD as 0.13 μM and 50–800 μM with the LOD as 39.27 μM. To evaluate the practicability of the assay, tomatoes and cucumbers were selected as real samples, and good recoveries indicated that the developed assay had great potential in real applications.
Full article
(This article belongs to the Special Issue Nanostructure-Based Plasmonic Sensing and Devices)
►▼
Show Figures

Figure 1
Open AccessArticle
Investigation on Recrystallization Channel for Vertical C-Shaped-Channel Nanosheet FETs by Laser Annealing
by
, , , , , , , , , , , , , and
Nanomaterials 2023, 13(11), 1786; https://doi.org/10.3390/nano13111786 - 01 Jun 2023
Abstract
Transistor scaling has become increasingly difficult in the dynamic random access memory (DRAM). However, vertical devices will be good candidates for 4F2 DRAM cell transistors (F = pitch/2). Most vertical devices are facing some technical challenges. For example, the gate length cannot
[...] Read more.
Transistor scaling has become increasingly difficult in the dynamic random access memory (DRAM). However, vertical devices will be good candidates for 4F2 DRAM cell transistors (F = pitch/2). Most vertical devices are facing some technical challenges. For example, the gate length cannot be precisely controlled, and the gate and the source/drain of the device cannot be aligned. Recrystallization-based vertical C-shaped-channel nanosheet field-effect transistors (RC-VCNFETs) were fabricated. The critical process modules of the RC-VCNFETs were developed as well. The RC-VCNFET with a self-aligned gate structure has excellent device performance, and its subthreshold swing (SS) is 62.91 mV/dec. Drain-induced barrier lowering (DIBL) is 6.16 mV/V.
Full article
(This article belongs to the Special Issue Memory Nanomaterials: Growth, Characterization and Device Fabrication)
►▼
Show Figures

Figure 1
Open AccessArticle
Preparation of Remote Plasma Atomic Layer-Deposited HfO2 Thin Films with High Charge Trapping Densities and Their Application in Nonvolatile Memory Devices
by
, , , , , , and
Nanomaterials 2023, 13(11), 1785; https://doi.org/10.3390/nano13111785 - 01 Jun 2023
Abstract
Optimization of equipment structure and process conditions is essential to obtain thin films with the required properties, such as film thickness, trapped charge density, leakage current, and memory characteristics, that ensure reliability of the corresponding device. In this study, we fabricated metal–insulator–semiconductor (MIS)
[...] Read more.
Optimization of equipment structure and process conditions is essential to obtain thin films with the required properties, such as film thickness, trapped charge density, leakage current, and memory characteristics, that ensure reliability of the corresponding device. In this study, we fabricated metal–insulator–semiconductor (MIS) structure capacitors using HfO2 thin films separately deposited by remote plasma (RP) atomic layer deposition (ALD) and direct-plasma (DP) ALD and determined the optimal process temperature by measuring the leakage current and breakdown strength as functions of process temperature. Additionally, we analyzed the effects of the plasma application method on the charge trapping properties of HfO2 thin films and properties of the interface between Si and HfO2. Subsequently, we synthesized charge-trapping memory (CTM) devices utilizing the deposited thin films as charge-trapping layers (CTLs) and evaluated their memory properties. The results indicated excellent memory window characteristics of the RP-HfO2 MIS capacitors compared to those of the DP-HfO2 MIS capacitors. Moreover, the memory characteristics of the RP-HfO2 CTM devices were outstanding as compared to those of the DP-HfO2 CTM devices. In conclusion, the methodology proposed herein can be useful for future implementations of multiple levels of charge-storage nonvolatile memories or synaptic devices that require many states.
Full article
(This article belongs to the Special Issue Ferroelectric Nanostructures and Thin Films)
►▼
Show Figures

Figure 1
Open AccessArticle
Synthesis of Metal/SU-8 Nanocomposites through Photoreduction on SU-8 Substrates
Nanomaterials 2023, 13(11), 1784; https://doi.org/10.3390/nano13111784 - 01 Jun 2023
Abstract
The paper presents a simple, fast, and cost-effective method for creating metal/SU-8 nanocomposites by applying a metal precursor drop onto the surface or nanostructure of SU-8 and exposing it to UV light. No pre-mixing of the metal precursor with the SU-8 polymer or
[...] Read more.
The paper presents a simple, fast, and cost-effective method for creating metal/SU-8 nanocomposites by applying a metal precursor drop onto the surface or nanostructure of SU-8 and exposing it to UV light. No pre-mixing of the metal precursor with the SU-8 polymer or pre-synthesis of metal nanoparticles is required. A TEM analysis was conducted to confirm the composition and depth distribution of the silver nanoparticles, which penetrate the SU-8 film and uniformly form the Ag/SU-8 nanocomposites. The antibacterial properties of the nanocomposites were evaluated. Moreover, a composite surface with a top layer of gold nanodisks and a bottom layer of Ag/SU-8 nanocomposites was produced using the same photoreduction process with gold and silver precursors, respectively. The reduction parameters can be manipulated to customize the color and spectrum of various composite surfaces.
Full article
(This article belongs to the Special Issue Synthesis and Applications of Gold Nanoparticles)
►▼
Show Figures

Figure 1
Open AccessArticle
Titanium Dioxide Nanoparticles: Effects on Development and Male Reproductive System
by
, , , , , , and
Nanomaterials 2023, 13(11), 1783; https://doi.org/10.3390/nano13111783 - 31 May 2023
Abstract
Titanium dioxide nanoparticles (TiO2-NPs) are used intensively. Thanks to their extremely small size (1–100 nm), TiO2-NPs are more absorbable by living organisms; consequently, they can cross the circulatory system and then be distributed in various organs including the reproductive
[...] Read more.
Titanium dioxide nanoparticles (TiO2-NPs) are used intensively. Thanks to their extremely small size (1–100 nm), TiO2-NPs are more absorbable by living organisms; consequently, they can cross the circulatory system and then be distributed in various organs including the reproductive organs. We have evaluated the possible toxic effect of TiO2-NPs on embryonic development and the male reproductive system using Danio rerio as an organism model. TiO2-NPs (P25, Degussa) were tested at concentrations of 1 mg/L, 2 mg/L, and 4 mg/L. TiO2-NPs did not interfere with the embryonic development of Danio rerio, however, in the male gonads the TiO2-NPs caused an alteration of the morphological/structural organization. The immunofluorescence investigation showed positivity for biomarkers of oxidative stress and sex hormone binding globulin (SHBG), both confirmed by the results of qRT-PCR. In addition, an increased expression of the gene responsible for the conversion of testosterone to dihydrotestosterone was found. Since Leydig cells are mainly involved in this activity, an increase in gene activity can be explained by the ability of TiO2-NPs to act as endocrine disruptors, and, therefore, with androgenic activity.
Full article
(This article belongs to the Special Issue Toxicity Evaluation of Nanoparticles)
►▼
Show Figures

Figure 1
Open AccessArticle
Tailoring Magnetite-Nanoparticle-Based Nanocarriers for Gene Delivery: Exploiting CRISPRa Potential in Reducing Conditions
by
, , , , , , , , and
Nanomaterials 2023, 13(11), 1782; https://doi.org/10.3390/nano13111782 - 31 May 2023
Abstract
Gene delivery has emerged as a promising alternative to conventional treatment approaches, allowing for the manipulation of gene expression through gene insertion, deletion, or alteration. However, the susceptibility of gene delivery components to degradation and challenges associated with cell penetration necessitate the use
[...] Read more.
Gene delivery has emerged as a promising alternative to conventional treatment approaches, allowing for the manipulation of gene expression through gene insertion, deletion, or alteration. However, the susceptibility of gene delivery components to degradation and challenges associated with cell penetration necessitate the use of delivery vehicles for effective functional gene delivery. Nanostructured vehicles, such as iron oxide nanoparticles (IONs) including magnetite nanoparticles (MNPs), have demonstrated significant potential for gene delivery applications due to their chemical versatility, biocompatibility, and strong magnetization. In this study, we developed an ION-based delivery vehicle capable of releasing linearized nucleic acids (tDNA) under reducing conditions in various cell cultures. As a proof of concept, we immobilized a CRISPR activation (CRISPRa) sequence to overexpress the pink1 gene on MNPs functionalized with polyethylene glycol (PEG), 3-[(2-aminoethyl)dithio]propionic acid (AEDP), and a translocating protein (OmpA). The nucleic sequence (tDNA) was modified to include a terminal thiol group and was conjugated to AEDP’s terminal thiol via a disulfide exchange reaction. Leveraging the natural sensitivity of the disulfide bridge, the cargo was released under reducing conditions. Physicochemical characterizations, including thermogravimetric analysis (TGA) and Fourier-transform infrared (FTIR) spectroscopy, confirmed the correct synthesis and functionalization of the MNP-based delivery carriers. The developed nanocarriers exhibited remarkable biocompatibility, as demonstrated by the hemocompatibility, platelet aggregation, and cytocompatibility assays using primary human astrocytes, rodent astrocytes, and human fibroblast cells. Furthermore, the nanocarriers enabled efficient cargo penetration, uptake, and endosomal escape, with minimal nucleofection. A preliminary functionality test using RT-qPCR revealed that the vehicle facilitated the timely release of CRISPRa vectors, resulting in a remarkable 130-fold overexpression of pink1. We demonstrate the potential of the developed ION-based nanocarrier as a versatile and promising gene delivery vehicle with potential applications in gene therapy. The developed nanocarrier is capable of delivering any nucleic sequence (up to 8.2 kb) once it is thiolated using the methodology explained in this study. To our knowledge, this represents the first MNP-based nanocarrier capable of delivering nucleic sequences under specific reducing conditions while preserving functionality.
Full article
(This article belongs to the Topic Nanomaterials and Polymers in Controlled Drug Delivery)
►▼
Show Figures

Figure 1
Open AccessArticle
Environmentally Benign pSOFC for Emissions-Free Energy: Assessment of Nickel Network Resistance in Anodic Ni/BCY15 Nanocatalyst
by
, , , , , , , and
Nanomaterials 2023, 13(11), 1781; https://doi.org/10.3390/nano13111781 - 31 May 2023
Abstract
Yttrium-doped barium cerate (BCY15) was used as ceramic matrix to obtain Ni/BCY15 anode cermet for application in proton-conducting solid oxide fuel cells (pSOFC). Ni/BCY15 cermets were prepared in two different types of medium, namely deionized water (W) and anhydrous ethylene glycol (EG) using
[...] Read more.
Yttrium-doped barium cerate (BCY15) was used as ceramic matrix to obtain Ni/BCY15 anode cermet for application in proton-conducting solid oxide fuel cells (pSOFC). Ni/BCY15 cermets were prepared in two different types of medium, namely deionized water (W) and anhydrous ethylene glycol (EG) using wet chemical synthesis by hydrazine. An in-depth analysis of anodic nickel catalyst was made aiming to elucidate the effect of anode tablets’ preparation by high temperature treatment on the resistance of metallic Ni in Ni/BCY15-W and Ni/BCY15-EG anode catalysts. On purpose reoxidation upon high-temperature treatment (1100 °C for 1 h) in air ambience was accomplished. Detailed characterization of reoxidized Ni/BCY15-W-1100 and Ni/BCY15-EG-1100 anode catalysts by means of surface and bulk analysis was performed. XPS, HRTEM, TPR, and impedance spectroscopy measurements experimentally confirmed the presence of residual metallic Ni in the anode catalyst prepared in ethylene glycol medium. These findings were evidence of strong metal Ni network resistance to oxidation in anodic Ni/BCY15-EG. Enhanced resistance of the metal Ni phase contributed to a new microstructure of the Ni/BCY15-EG-1100 anode cermet getting more stable to changes that cause degradation during operation.
Full article
(This article belongs to the Special Issue Environmental Risk Assessments and Characterization of Nanomaterials)
►▼
Show Figures

Figure 1
Open AccessArticle
Substrate Dependence of CdSe/ZnS Quantum-Dot Light-Emitting Diodes: A Comparative Study between Rigid Glass and Flexible Plastic Substrates
Nanomaterials 2023, 13(11), 1780; https://doi.org/10.3390/nano13111780 - 31 May 2023
Abstract
The purpose of this study was to investigate the effect of substrate characteristics on the performance of quantum-dot light-emitting diodes (QLEDs) with the aim of developing high-performance flexible QLEDs. Specifically, we compared QLEDs made with a flexible polyethylene naphthalate (PEN) substrate to those
[...] Read more.
The purpose of this study was to investigate the effect of substrate characteristics on the performance of quantum-dot light-emitting diodes (QLEDs) with the aim of developing high-performance flexible QLEDs. Specifically, we compared QLEDs made with a flexible polyethylene naphthalate (PEN) substrate to those made with a rigid glass substrate, using the same materials and structure except for the substrates. Our findings indicate that the PEN QLED had a 3.3 nm wider full width at half maximum and a 6 nm redshifted spectrum in comparison to the glass QLED. Additionally, the PEN QLED exhibited a 6% higher current efficiency, a flatter current efficiency curve, and a 2.25-V lower turn-on voltage, indicating superior overall characteristics. We attribute the spectral difference to the optical properties of the PEN substrate, such as light transmittance and refractive index. Our study also revealed that the electro-optical properties of the QLEDs were consistent with the electron-only device and transient electroluminescence results, which suggests that the improved charge injection properties of the PEN QLED were responsible. Overall, our study provides valuable insights into the relationship between substrate characteristics and QLED performance, which can be used to develop high-performance QLEDs.
Full article
(This article belongs to the Special Issue Applications of Advanced Nanomaterials in Display)
►▼
Show Figures

Figure 1
Open AccessArticle
Zeolitic Imidazolate Framework-8 (ZIF-8) as a Drug Delivery Vehicle for the Transport and Release of Telomerase Inhibitor BIBR 1532
by
, , , , , , , , , and
Nanomaterials 2023, 13(11), 1779; https://doi.org/10.3390/nano13111779 - 31 May 2023
Abstract
Telomerase is constitutively overexpressed in the majority of human cancers and telomerase inhibition provides a promising broad-spectrum anticancer therapeutic strategy. BIBR 1532 is a well-known synthetic telomerase inhibitor that blocks the enzymatic activity of hTERT, the catalytic subunit of telomerase. However, water insolubility
[...] Read more.
Telomerase is constitutively overexpressed in the majority of human cancers and telomerase inhibition provides a promising broad-spectrum anticancer therapeutic strategy. BIBR 1532 is a well-known synthetic telomerase inhibitor that blocks the enzymatic activity of hTERT, the catalytic subunit of telomerase. However, water insolubility of BIBR 1532 leads to low cellular uptake and inadequate delivery and thus, limits its anti-tumor effects. Zeolitic imidazolate framework-8 (ZIF-8) is considered as an attractive drug delivery vehicle for improved transport, release and anti-tumor effects of BIBR 1532. Herein, ZIF-8 and BIBR [email protected] were synthesized, respectively, and the physicochemical characterizations confirmed the successful encapsulation of BIBR 1532 in ZIF-8 coupled with an improved stability of BIBR 1532. ZIF-8 could alter the permeability of lysosomal membrane probably by the imidazole ring-dependent protonation. Moreover, ZIF-8 encapsulation facilitated the cellular uptake and release of BIBR 1532 with more accumulation in the nucleus. BIBR 1532 encapsulation with ZIF-8 triggered a more obvious growth inhibition of cancer cells as compared with free BIBR 1532. A more potent inhibition on hTERT mRNA expression, aggravated G0/G1 arrest accompanied with an increased cellular senescence were detected in BIBR [email protected] cancer cells. Our work has provided preliminary information on improving the transport, release and efficacy of water-insoluble small molecule drugs by using ZIF-8 as a delivery vehicle.
Full article
(This article belongs to the Special Issue Metal Organic Framework (MOF)-Based Micro/Nanoscale Materials)
►▼
Show Figures

Figure 1
Open AccessArticle
Nanostructured Thermoelectric Films Synthesised by Spark Ablation and Their Oxidation Behaviour
by
, , , , and
Nanomaterials 2023, 13(11), 1778; https://doi.org/10.3390/nano13111778 - 31 May 2023
Abstract
Reducing the thermal conductivity of thermoelectric materials has been a field of intense research to improve the efficiency of thermoelectric devices. One approach is to create a nanostructured thermoelectric material that has a low thermal conductivity due to its high number of grain
[...] Read more.
Reducing the thermal conductivity of thermoelectric materials has been a field of intense research to improve the efficiency of thermoelectric devices. One approach is to create a nanostructured thermoelectric material that has a low thermal conductivity due to its high number of grain boundaries or voids, which scatter phonons. Here, we present a new method based on spark ablation nanoparticle generation to create nanostructured thermoelectric materials, demonstrated using Bi2Te3. The lowest achieved thermal conductivity was <0.1 W m K at room temperature with a mean nanoparticle size of nm and a porosity of 44%. This is comparable to the best published nanostructured Bi2Te3 films. Oxidation is also shown to be a major issue for nanoporous materials such as the one here, illustrating the importance of immediate, air-tight packaging of such materials after synthesis and deposition.
Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
►▼
Show Figures

Figure 1

Journal Menu
► ▼ Journal Menu-
- Nanomaterials Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Conferences
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
25 May 2023
Meet Us at the 7th Scientific Meeting of Ph.D. Students (JPhD2023), 7–9 June 2023, Barcelona, Spain
Meet Us at the 7th Scientific Meeting of Ph.D. Students (JPhD2023), 7–9 June 2023, Barcelona, Spain

12 May 2023
Meet Us at the 2020-2023 China Mass Spectrometry Conference, 9–13 June 2023, Hangzhou, China
Meet Us at the 2020-2023 China Mass Spectrometry Conference, 9–13 June 2023, Hangzhou, China

Topics
Topic in
Chemosensors, Foods, Molecules, Nanomaterials, Toxics
Advances in Chemistry, XXVIth International Galician Portuguese Conference on Chemistry
Topic Editors: Jose Manuel Andrade, Luis Cuadros-RodríguezDeadline: 15 June 2023
Topic in
Catalysts, ChemEngineering, Energies, Materials, Nanomaterials
Materials and Catalysts for Pollutants and CO2 Capture and Transformation
Topic Editors: Vicente Montes, Rafael Estevez, Manuel ChecaDeadline: 30 June 2023
Topic in
Micromachines, Nanomanufacturing, Nanomaterials, Polymers, Sensors
Micro/Nanofluidics and Structures Based Sensing, Material Processing and Energy Conversion
Topic Editors: Yi-Je Juang, Yan-Cheng Lin, Li-Hsien Yeh, Yen-Wen LuDeadline: 20 July 2023
Topic in
Biomolecules, IJMS, Nanomaterials, Viruses
Fibrous Proteins and Self-Assembling Peptides: From Structure and Assembly to Applications
Topic Editors: Anna Mitraki, Chrysoula Kokotidou, Vagelis Harmandaris, Anastassia RissanouDeadline: 31 July 2023

Conferences
27 October–10 November 2023
The 4th International Electronic Conference on Applied Sciences (ASEC2023)

Special Issues
Special Issue in
Nanomaterials
Graphene-Based Materials for Cancer Therapy
Guest Editors: Daniela Iannazzo, Alessandro PistoneDeadline: 15 June 2023
Special Issue in
Nanomaterials
Characterization of Quantum Effects in Nanomaterials, Nano-Devices, and Nanophotonics
Guest Editor: Jeong Ryeol ChoiDeadline: 30 June 2023
Special Issue in
Nanomaterials
Nanomaterials in Water Applications
Guest Editors: Lei Huang, Junye Cheng, Hongguo Zhang, Zhenxing WangDeadline: 12 July 2023
Special Issue in
Nanomaterials
Biobased Nanoscale Drug Delivery Systems
Guest Editor: Helena P. FelgueirasDeadline: 25 July 2023
Topical Collections
Topical Collection in
Nanomaterials
Process Intensification, Process Design and Green Techniques for Nanomaterials Production and Applications
Collection Editors: Marco Stoller, Giorgio Vilardi
Topical Collection in
Nanomaterials
Editorial Board Members’ Collection Series: New Trends in Inorganic Nanoparticles and Composites from Preparation to Applications
Collection Editors: Félix Zamora, Edward H. Lester
Topical Collection in
Nanomaterials
Editorial Board Members’ Collection Series: Synthesis and Applications of Nanomaterials for Renewable Energies
Collection Editors: Efrat Lifshitz, David Marrero-López
Topical Collection in
Nanomaterials
Magnetic Nanostructured Materials: Synthesis, Characterization and Their Cutting-Edge Applications
Collection Editors: Vasileios Tzitzios, Georgia Basina