Anatomical Barriers to Impregnation in Hybrid Poplar: A Comparative Study of Pit Characteristics in Normal and Tension Wood
Abstract
1. Introduction
2. Materials and Methods
2.1. Vessel–Ray Pits and Intervessel Pits
2.2. Pits of Libriform Fibres
2.3. Statistics
3. Results and Discussion
3.1. Vessel–Ray Pits
3.2. Intervessel Pits
3.3. Pits in Libriform Fibres
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NW | normal wood |
TW | tension wood |
EW | earlywood |
LW | latewood |
TLM | transmitted light microscope |
SEM | scanning electron microscope |
References
- Eriksson, K.-E.L.; Blanchette, R.A.; Ander, P. Microbial and Enzymatic Degradation of Wood and Wood Components; Springer Series in Wood Science; Springer: Berlin/Heidelberg, Germany, 1990; ISBN 978-3-642-46689-2. [Google Scholar]
- Wood and Tree Fungi: Biology, Damage, Protection, and Use; Schmidt, O., Ed.; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 978-3-540-32138-5. [Google Scholar]
- Tsoumis, G. Science and Technology of Wood: Structure, Properties, Utilization; Reprint of the ed. New York 1991; Verlag Kessel: Remagen-Oberwinter, Germany, 2009; ISBN 978-3-941300-22-4. [Google Scholar]
- Van Acker, J.; Van Den Bulcke, J.; Forsthuber, B.; Grüll, G. Wood Preservation and Wood Finishing. In Springer Handbook of Wood Science and Technology; Niemz, P., Teischinger, A., Sandberg, D., Eds.; Springer Handbooks; Springer International Publishing: Cham, Germany, 2023; pp. 793–871. ISBN 978-3-030-81314-7. [Google Scholar]
- De Boever, L.; Van Acker, J.; Vansteenkiste, D.; Stevens, M. Preservative Treatment of Willow Wood (Salix Alba): Product Retention and Spatial Distribution. Wood Res. 2008, 53, 29–41. [Google Scholar]
- Murphy, R.J.; Din, S.U.; Stone, M.J. Observations on Preservative Penetration in Poplar. In Proceedings of the Proceedings IRG Annual Meeting, Kyoto, Japan, 20–24 May 1991; p. 7, IRG/WP 3662. [Google Scholar]
- Van Acker, J.; Stevens, M.; De Haas, C. Influence of Clonal Variability on the Impregnability of Poplar Hybrids. In Proceedings of the Proceedings IRG Annual Meeting, Rotorua, New Zealand, 13–19 May 1990; p. 8, IRG/WP 3614. [Google Scholar]
- Van Acker, J.; Stevens, M. Investigation into the Heterogeneous Nature of the Impregnability of Some Poplar Hybrids. In Proceedings of the Proceedings IRG Annual Meeting, Helsingør, Denmark, 11–16 June 1995; p. 12, IRG/WP 95-40052. [Google Scholar]
- Emaminasab, M.; Tarmian, A.; Pourtahmasi, K. Permeability of Poplar Normal Wood and Tension Wood Bioincised by Physisporinus Vitreus and Xylaria Longipes. Int. Biodeterior. Biodegrad. 2015, 105, 178–184. [Google Scholar] [CrossRef]
- Olaniran, S.O.; Löning, S.; Buschalsky, A.; Militz, H. Impregnation Properties of Nigerian-Grown Gmelina Arborea Roxb. Wood. Forests 2022, 13, 2036. [Google Scholar] [CrossRef]
- Olaniran, S.O.; Militz, H. Modification of Gmelina Arborea Wood for Utilization in Nigeria. In Proceedings of the Proceedings IRG Annual Meeting, Cairns, Australia, 28 May–1 June 2023; p. 8. [Google Scholar]
- Buschalsky, A.; Löning, S.; Siegel, K.; Militz, H.; Koddenberg, T. Macroscopic and Microscopic Investigations of the Inhomogeneous Distribution of Impregnating Agents in Poplar Wood (Populus × Canadensis Moench). Wood Mater. Sci. Eng. 2025, 1–13. [Google Scholar] [CrossRef]
- Acosta, A.P.; De Avila Delucis, R.; Santos, O.L.; Amico, S.C. A Review on Wood Permeability: Influential Factors and Measurement Technologies. J. Indian Acad. Wood Sci. 2024, 21, 175–191. [Google Scholar] [CrossRef]
- Zhao, J.; Li, L.; Lv, P.; Sun, Z.; Cai, Y. A Comprehensive Evaluation of Axial Gas Permeability in Wood Using XCT Imaging. Wood Sci. Technol. 2023, 57, 33–50. [Google Scholar] [CrossRef]
- Schmitt, U.; Koch, G.; Hietz, P.; Tholen, D. Wood Biology. In Springer Handbook of Wood Science and Technology; Niemz, P., Teischinger, A., Sandberg, D., Eds.; Springer Handbooks; Springer International Publishing: Cham, Germany, 2023; pp. 41–138. ISBN 978-3-030-81314-7. [Google Scholar]
- Cǒté, W.A. Structural Factors Affecting the Permeability of Wood. J. Polym. Sci. Part C Polym. Symp. 1963, 2, 231–242. [Google Scholar] [CrossRef]
- Siau, J.F. Transport Processes in Wood; Springer: Berlin/Heidelberg, Germany, 1984; ISBN 978-3-642-69213-0. [Google Scholar]
- Ai, W.; Duval, H.; Pierre, F.; Perré, P. A Novel Device to Measure Gaseous Permeability over a Wide Range of Pressures: Characterisation of Slip Flow for Norway Spruce, European Beech, and Wood-Based Materials. Holzforschung 2017, 71, 147–162. [Google Scholar] [CrossRef]
- Chun, S.K.; Ahmed, S.A. Permeability and Meniscus Phenomenon in Four Korean Softwood Species. For. Stud. China 2006, 8, 56–60. [Google Scholar] [CrossRef]
- Taghiyari, H.R.; Abbasi, H.; Militz, H.; Papadopoulos, A.N. Fluid Flow of Polar and Less Polar Liquids through Modified Poplar Wood. Forests 2021, 12, 482. [Google Scholar] [CrossRef]
- Hansmann, C.; Gindl, W.; Wimmer, R.; Teischinger, A. Permeability of Wood—A Review. Wood Res. 2002, 47, 1–16. [Google Scholar]
- Thybring, E.E.; Fredriksson, M. Wood and Moisture. In Springer Handbook of Wood Science and Technology; Niemz, P., Teischinger, A., Sandberg, D., Eds.; Springer Handbooks; Springer International Publishing: Cham, Germany, 2023; pp. 355–397. ISBN 978-3-030-81314-7. [Google Scholar]
- Wardrop, A.B.; Davies, G.W. Morphological Factors Relating to the Penetration of Liquids into Wood. Holzforschung 1961, 15, 129–141. [Google Scholar] [CrossRef]
- Silva, M.R.; Machado, G.; Deiner, J.; Calil Junior, C. Permeability Measuremens of Brazilian Eucalyptus. Mat. Res. 2010, 13, 281–286. [Google Scholar] [CrossRef]
- Taghiyari, H.R.; Karimi, A.-N.; Parsapajouh, D.; Pourtahmasi, K. Study on the Longitudinal Gas Permeability of Juvenile Wood and Mature Wood. Spec. Top. Rev. Porous Media 2010, 1, 31–38. [Google Scholar] [CrossRef]
- Buschalsky, A.; Löning, S.; Militz, H.; Koddenberg, T. Structural Characterisation of the Variable Impregnation of Poplar Wood. In Proceedings of the Hardwood Conference Proceedings, Sopron, Hungary, 12–14 October 2022; University of Sopron Press: Sopron, Hungary, 2022; pp. 28–36. [Google Scholar]
- Cuenderlik, I.; Kudela, J.; Molinski, W. Reaction Beech Wood in Drying Process. In Proceedings of the 3rd IUFRO International Wood Drying Conference, Vienna, Austria, 18–21 August 1992; pp. 350–353. [Google Scholar]
- Ruelle, J. Morphology, Anatomy and Ultrastructure of Reaction Wood. In The Biology of Reaction Wood; Gardiner, B., Barnett, J., Saranpää, P., Gril, J., Eds.; Springer Series in Wood Science; Springer: Berlin/Heidelberg, Germany, 2014; pp. 13–35. ISBN 978-3-642-10813-6. [Google Scholar]
- Scurfield, G. Reaction Wood: Its Structure and Function: Lignification May Generate the Force Active in Restoring the Trunks of Leaning Trees to the Vertical. Science 1973, 179, 647–655. [Google Scholar] [CrossRef]
- Tan, Y.; Hu, J.; Chang, S.; Wei, Y.; Liu, G.; Wang, Q.; Liu, Y. Relationship between Pore Structure and Gas Permeability in Poplar (Populus Deltoides CL.’55/65’) Tension Wood. Ann. For. Sci. 2020, 77, 88. [Google Scholar] [CrossRef]
- The Biology of Reaction Wood; Gardiner, B., Barnett, J., Saranpää, P., Gril, J., Eds.; Springer Series in Wood Science; Springer: Berlin/Heidelberg, Germany, 2014; ISBN 978-3-642-10813-6. [Google Scholar]
- Tarmian, A.; Perré, P. Air Permeability in Longitudinal and Radial Directions of Compression Wood of Picea abies L. and Tension Wood of Fagus sylvatica L. Holzforschung 2009, 63, 352–356. [Google Scholar] [CrossRef]
- Emaminasab, M.; Tarmian, A.; Oladi, R.; Pourtahmasi, K.; Avramidis, S. Fluid Permeability in Poplar Tension and Normal Wood in Relation to Ray and Vessel Properties. Wood Sci. Technol. 2017, 51, 261–272. [Google Scholar] [CrossRef]
- Gerlach, D. Botanische Mikrotechnik, 3rd ed.; Thieme: Stuttgart, Germany, 1984; ISBN 978-3-13-444903-7. [Google Scholar]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef]
- De Micco, V.; Balzano, A.; Wheeler, E.A.; Baas, P. Tyloses and Gums: A Review of Structure, Function and Occurrence of Vessel Occlusions. IAWA J. 2016, 37, 186–205. [Google Scholar] [CrossRef]
- Foster, R.C. Fine Structure of Tyloses. Nature 1964, 204, 494–495. [Google Scholar] [CrossRef]
- Czaninski, Y. Vessel-Associated Cells. IAWA Bull. 1977, 3, 51–55. [Google Scholar]
- Van Bel, A.J.E.; Van Der Schoot, C. Primary Function of the Protective Layer in Contact Cells: Buffer against Oscillations in Hydrostatic Pressure in the Vessels? IAWA J. 1988, 9, 285–288. [Google Scholar] [CrossRef]
- Evert, R.F. Esau’s Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body: Their Structure, Function, and Development, 1st ed.; Wiley: Hoboken, NJ, USA, 2006; ISBN 978-0-471-73843-5. [Google Scholar]
- Schaffer, K.; Wisniewski, M. Development of the Amorphous Layer (Protective Layer) in Xylem Parenchyma of Cv. Golden Delicious Apple, Cv. Loring Peach, and Willow. Amer. J. Bot. 1989, 76, 1569–1582. [Google Scholar] [CrossRef]
- Ahmed, S.A.; Chun, S.K. Observation of Liquid Permeability Related to Anatomical Characteristics in Samanea Saman. Turk. J. Agric. For. 2009, 33, 155–163. [Google Scholar] [CrossRef]
- Ahmed, S.A.; Chun, S.K. Permeability of Tectona Grandis L. as Affected by Wood Structure. Wood Sci. Technol. 2011, 45, 487–500. [Google Scholar] [CrossRef]
- Tarmian, A.; Remond, R.; Faezipour, M.; Karimi, A.; Perré, P. Reaction Wood Drying Kinetics: Tension Wood in Fagus Sylvatica and Compression Wood in Picea Abies. Wood Sci. Technol. 2009, 43, 113–130. [Google Scholar] [CrossRef]
- Stamm, A.J. Maximum Effective Pit Pore Radius of the Heartwood and Sapwood of Six Softwoods Affected by Drying and Soaking. Wood Fiber Sci. 1970, 1, 263–269. [Google Scholar]
- Sano, Y. Intervascular Pitting across the Annual Ring Boundary in Betula Platyphylla Var. Japonica and Fraxinus Mandshurica Var. Japonica. IAWA J. 2004, 25, 129–140. [Google Scholar] [CrossRef]
- Gale, R. Some Pitfalls in Wood Identification, with Reference to Nothofagus. IAWA J. 1982, 3, 179–184. [Google Scholar] [CrossRef]
- Thomas, R.J. Anatomical Features Affecting Liquid Penetrability in Three Hardwood Species. Wood Fiber Sci. 1976, 7, 256–263. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buschalsky, A.; Militz, H.; Koddenberg, T. Anatomical Barriers to Impregnation in Hybrid Poplar: A Comparative Study of Pit Characteristics in Normal and Tension Wood. Forests 2025, 16, 1151. https://doi.org/10.3390/f16071151
Buschalsky A, Militz H, Koddenberg T. Anatomical Barriers to Impregnation in Hybrid Poplar: A Comparative Study of Pit Characteristics in Normal and Tension Wood. Forests. 2025; 16(7):1151. https://doi.org/10.3390/f16071151
Chicago/Turabian StyleBuschalsky, Andreas, Holger Militz, and Tim Koddenberg. 2025. "Anatomical Barriers to Impregnation in Hybrid Poplar: A Comparative Study of Pit Characteristics in Normal and Tension Wood" Forests 16, no. 7: 1151. https://doi.org/10.3390/f16071151
APA StyleBuschalsky, A., Militz, H., & Koddenberg, T. (2025). Anatomical Barriers to Impregnation in Hybrid Poplar: A Comparative Study of Pit Characteristics in Normal and Tension Wood. Forests, 16(7), 1151. https://doi.org/10.3390/f16071151