Cyber-Physical Systems for Smart Farming: A Systematic Review
Abstract
1. Introduction
- Comprehensive Literature Review: A systematic analysis of existing research, including methodologies, bibliometric data, application areas, and current debates, is conducted.
- CPS Technique Taxonomy: A classification system for common CPS techniques is developed, supported by illustrative research examples.
- Practical Research Framework: A standardized framework is proposed to guide researchers in conducting applicable studies and sharing their CPS-based solutions.
2. Origin and Fundamentals of CPSs
- Physical layer. In this layer, we find sensors (temperature, humidity, pressure, light, movement) and actuators (motors, luminaries, valves) according to their application (purple layer).
- Communication layer. This layer serves as a means of information exchange for the different devices that make up the system. Additionally, it allows elements of the perception layer to access the data generated by the sensors in the physical layer (blue layer).
- Perception Layer.
- −
- Management Sub-layer. This part of the architecture is responsible for supervision (assisted, artificial, hybrid). Within this sub-layer are the HMIs, data managers (big data), and virtual observers (AI, ML) (green sub-layer).
- −
- Control Sub-layer. This layer can also be called the control layer. Generally, in this layer, decisions are made based on the results obtained from the physical layer (yellow sub-layer).
3. Methodology of the Systematic Literature Review (SLR)
4. Bibliometric Analysis
4.1. Co-Word Analysis
4.2. Thematic Evolution
4.3. Thematic Map
5. CPS in Smart Agriculture
APPLICATION | |
---|---|
Greenhouse | [7,12,13,14,16,17,18,40,44,54,58,59,79,80] |
Smart Farming | [42,53,60,61,66,67,68,81,82,83,84,85,86,87,88] [62,63,64,65,69,70,72,89,90,91,92,93,94,95,96] [36,37,38,41,43,71,97,98,99,100,101,102,103,104] [6,55,105,106,107,108,109,110] |
Industry 4.0 | [111,112,113,114,115,116,117,118,119,120,121] [22,26,27] |
Cyber Security | [73,75,76,78,122,123,124,125,126,127,128] [41,74,77,94,95,96,100,129,130,131,132] |
6. Some Remarks
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
CPS | Cyber-physical systems |
DT | Digital twins |
HMI | Human–machine interface |
ML | Machine learning |
SAN | Sensor–actuator network |
WSAN | Wireless sensor–actuator network |
References
- FAO. The Future of the Food and Agriculture: Trends and Challenges; FAO: Roma, Italy, 2017. [Google Scholar]
- de la Salud, O.P. Nuevo Informe de la ONU: El Hambre en América Latina y el Caribe Aumentó en 13,8 Millones de Personas en solo Un Año. 2021. Available online: https://www.ifad.org/es/w/noticias/nuevo-informe-de-la-onu-el-hambre-en-america-latina-y-el-caribe-aumento-en-13-8-millones-de-personas-en-solo-un-ano (accessed on 8 February 2025).
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2021: Transforming Food Systems for Food Security, Improved Nutrition and Affordable Healthy Diets for All; Food & Agriculture Org.: Rome, Italy, 2021; Volume 2021. [Google Scholar]
- Micha, R.; Di Cesare, M.; Ghosh, S.; Zanello, G. Global Nutrition Report 2022: Stronger Commitments for Greater Action; Development Initiatives Poverty Research Ltd.: Bristol, UK, 2022. [Google Scholar]
- FAO. Una Introducción a los Conceptos Básicos de la Seguridad Alimentaria; FAO: Rome, Italy, 2011. [Google Scholar]
- Idoje, G.; Dagiuklas, T.; Iqbal, M. Survey for smart farming technologies: Challenges and issues. Comput. Electr. Eng. 2021, 92, 107104. [Google Scholar] [CrossRef]
- Bersani, C.; Ruggiero, C.; Sacile, R.; Soussi, A.; Zero, E. Internet of Things Approaches for Monitoring and Control of Smart Greenhouses in Industry 4.0. Energies 2022, 15, 3834. [Google Scholar] [CrossRef]
- Zhang, K.; Shi, Y.; Karnouskos, S.; Sauter, T.; Fang, H.; Colombo, A.W. Advancements in industrial cyber-physical systems: An overview and perspectives. IEEE Trans. Ind. Inform. 2022, 19, 716–729. [Google Scholar] [CrossRef]
- Sharma, V.; Tripathi, A.K.; Mittal, H. Technological revolutions in smart farming: Current trends, challenges & future directions. Comput. Electron. Agric. 2022, 201, 107217. [Google Scholar]
- Sarkar, S.; Ganapathysubramanian, B.; Singh, A.; Fotouhi, F.; Kar, S.; Nagasubramanian, K.; Chowdhary, G.; Das, S.K.; Kantor, G.; Krishnamurthy, A.; et al. Cyber-agricultural systems for crop breeding and sustainable production. Trends Plant Sci. 2024, 29, 130–149. [Google Scholar] [CrossRef]
- Dhatterwal, J.S.; Kaswan, K.S.; Chithaluru, P. Agricultural cyber-physical systems: Evolution, basic, and fundamental concepts. In Agri 4.0 and the Future of Cyber-Physical Agricultural Systems; Elsevier: Amsterdam, The Netherlands, 2024; pp. 19–35. [Google Scholar]
- Zhang, S.; Guo, Y.; Zhao, H.; Wang, Y.; Chow, D.; Fang, Y. Methodologies of control strategies for improving energy efficiency in agricultural greenhouses. J. Clean. Prod. 2020, 274, 122695. [Google Scholar] [CrossRef]
- Rodríguez, F.; Berenguel, M.; Guzmán, J.L.; Ramírez-Arias, A. Modeling and Control of Greenhouse Crop Growth; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Fitz-Rodríguez, E.; Kubota, C.; Giacomelli, G.A.; Tignor, M.E.; Wilson, S.B.; McMahon, M. Dynamic modeling and simulation of greenhouse environments under several scenarios: A web-based application. Comput. Electron. Agric. 2010, 70, 105–116. [Google Scholar] [CrossRef]
- Bot, G.P. Greenhouse Climate: From Physical Processes to a Dynamic Model; Wageningen University and Research: Wageningen, The Netherlands, 1983. [Google Scholar]
- Chen, L.; Du, S.; Xu, D.; He, Y.; Liang, M. Sliding mode control based on disturbance observer for greenhouse climate systems. Math. Probl. Eng. 2018, 2018, 2071585. [Google Scholar] [CrossRef]
- Potdar, S.R.; Patil, C.B.; Mudholkar, R.R. Greenhouse Air-Temperature Modelling and Fuzzy Logic Control. Int. J. Electron. Eng. Res. 2017, 9, 727–734. [Google Scholar]
- Briceño-Medina, L.Y.; Ávila-Marroquín, M.V.; Jaimez-Arellano, R.E. SIMICROC: Greenhouse microclimate simulation model. Agrociencia 2011, 45, 801–813. [Google Scholar]
- Cevallos, G.; Herrera, M.; Jaimez, R.; Aboukheir, H.; Camacho, O. A practical hybrid control approach for a greenhouse microclimate: A hardware-in-the-loop implementation. Agriculture 2022, 12, 1916. [Google Scholar] [CrossRef]
- Jacquez-Hernández, M.V.; Torre, V.G.L. Modelos de evaluación de la madurez y preparación hacia la Industria 4.0: Una revisión de literatura. Ing. Ind. Actual. Nuevas Tendencias 2018, 6, 61–78. [Google Scholar]
- Wang, S.; Wan, J.; Li, D.; Zhang, C. Implementing smart factory of industrie 4.0: An outlook. Int. J. Distrib. Sens. Netw. 2016, 12, 3159805. [Google Scholar] [CrossRef]
- Gunes, V.; Peter, S.; Givargis, T.; Vahid, F. A survey on concepts, applications, and challenges in cyber-physical systems. KSII Trans. Internet Inf. Syst. (TIIS) 2014, 8, 4242–4268. [Google Scholar]
- Burg, A.; Chattopadhyay, A.; Lam, K.Y. Wireless communication and security issues for cyber–physical systems and the Internet-of-Things. Proc. IEEE 2017, 106, 38–60. [Google Scholar] [CrossRef]
- Dumitrache, I.; Sacala, I.S.; Moisescu, M.A.; Caramihai, S.I. A conceptual framework for modeling and design of Cyber-Physical Systems. Stud. Inform. Control 2017, 26, 325–334. [Google Scholar] [CrossRef]
- Rajkumar, R.; Lee, I.; Sha, L.; Stankovic, J. Cyber-physical systems: The next computing revolution. In Proceedings of the Design Automation Conference, Anaheim, CA, USA, 13–18 June 2010; pp. 731–736. [Google Scholar]
- Zhou, Y.; Yu, F.R.; Chen, J.; Kuo, Y. Cyber-physical-social systems: A state-of-the-art survey, challenges and opportunities. IEEE Commun. Surv. Tutor. 2019, 22, 389–425. [Google Scholar] [CrossRef]
- Khaitan, S.K.; McCalley, J.D. Design techniques and applications of cyberphysical systems: A survey. IEEE Syst. J. 2014, 9, 350–365. [Google Scholar] [CrossRef]
- Tan, Y.; Vuran, M.C.; Goddard, S. Spatio-temporal event model for cyber-physical systems. In Proceedings of the 2009 29th IEEE International Conference on Distributed Computing Systems Workshops, Montreal, QC, Canada, 22–26 June 2009; pp. 44–50. [Google Scholar]
- Rajhans, A.; Cheng, S.W.; Schmerl, B.; Garlan, D.; Krogh, B.; Agbi, C.; Bhave, A. An architectural approach to the design and analysis of cyber-physical systems. Electron. Commun. EASST 2009, 21, 1–10. [Google Scholar] [CrossRef]
- Mo, L.; Cao, X.; Chen, J.; Sun, Y. Collaborative estimation and actuation for wireless sensor and actuator networks. IFAC Proc. Vol. 2014, 47, 5544–5549. [Google Scholar] [CrossRef]
- Dalzochio, J.; Kunst, R.; Pignaton, E.; Binotto, A.; Sanyal, S.; Favilla, J.; Barbosa, J. Machine learning and reasoning for predictive maintenance in Industry 4.0: Current status and challenges. Comput. Ind. 2020, 123, 103298. [Google Scholar] [CrossRef]
- Kitchenham, B.; Pretorius, R.; Budgen, D.; Brereton, O.P.; Turner, M.; Niazi, M.; Linkman, S. Systematic literature reviews in software engineering—A tertiary study. Inf. Softw. Technol. 2010, 52, 792–805. [Google Scholar] [CrossRef]
- Kitchenham, B.; Charters, S.M. Guidelines for Performing Systematic Literature Reviews in Software Engineering; Technical Report, Ver. 2.3 ebse Technical Report. ebse; Keele University: Durham, UK, 9 July 2007; Volume 5. [Google Scholar]
- Martín-Martín, A.; Thelwall, M.; Orduna-Malea, E.; Delgado López-Cózar, E. Google Scholar, Microsoft Academic, Scopus, Dimensions, Web of Science, and OpenCitations’ COCI: A multidisciplinary comparison of coverage via citations. Scientometrics 2021, 126, 871–906. [Google Scholar] [CrossRef] [PubMed]
- Marín-Rodríguez, N.J.; González-Ruiz, J.D.; Botero Botero, S. Dynamic co-movements among oil prices and financial assets: A scientometric analysis. Sustainability 2022, 14, 12796. [Google Scholar] [CrossRef]
- Puangpontip, S.; Hewett, R. Energy-Aware Deep Learning for Green Cyber-Physical Systems. In Proceedings of the SMARTGREENS, Online, 27–29 April 2022; pp. 32–43. [Google Scholar]
- Sahi, M.; Auluck, N. An IoT-Based Intelligent Irrigation Management System. In Proceedings of the Edge Analytics: Select Proceedings of 26th International Conference—ADCOM, Silchar, India, 16–18 December 2020; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–16. [Google Scholar]
- Radini, S.; Marinelli, E.; Akyol, Ç.; Eusebi, A.L.; Vasilaki, V.; Mancini, A.; Frontoni, E.; Bischetti, G.B.; Gandolfi, C.; Katsou, E.; et al. Urban water-energy-food-climate nexus in integrated wastewater and reuse systems: Cyber-physical framework and innovations. Appl. Energy 2021, 298, 117268. [Google Scholar] [CrossRef]
- Inderwildi, O.; Zhang, C.; Wang, X.; Kraft, M. The impact of intelligent cyber-physical systems on the decarbonization of energy. Energy Environ. Sci. 2020, 13, 744–771. [Google Scholar] [CrossRef]
- Zamora-Izquierdo, M.A.; Santa, J.; Martínez, J.A.; Martínez, V.; Skarmeta, A.F. Smart farming IoT platform based on edge and cloud computing. Biosyst. Eng. 2019, 177, 4–17. [Google Scholar] [CrossRef]
- Agarwal, S.; Rashid, A.; Gardiner, J. Old MacDonald had a smart farm: Building a testbed to study cybersecurity in smart dairy farming. In Proceedings of the 15th Workshop on Cyber Security Experimentation and Test, Virtual, 8 August 2022; pp. 1–9. [Google Scholar]
- Haris, I.; Fasching, A.; Punzenberger, L.; Grosu, R. CPS/IoT ecosystem: Indoor vertical farming system. In Proceedings of the 2019 IEEE 23rd International Symposium on Consumer Technologies (ISCT), Ancona, Italy, 19–21 June 2019; pp. 47–52. [Google Scholar]
- Dineva, K.; Atanasova, T. Design of Scalable IoT Architecture Based on AWS for Smart Livestock. Animals 2021, 11, 2697. [Google Scholar] [CrossRef]
- Kang, M.; Weng, Y.; Pang, H.; Li, L.; Fan, X.R.; Hua, J.; Chang, F.; Wang, X.; Ma, L. Semi-autonomous greenhouse environment control by combining expert knowledge and machine learning. In Proceedings of the 2020 Chinese Automation Congress (CAC), Shanghai, China, 6–8 November 2020; pp. 7500–7504. [Google Scholar]
- Duarte-Galvan, C.; Torres-Pacheco, I.; Guevara-Gonzalez, R.; Romero-Troncoso, R.; Contreras-Medina, L.; Rios-Alcaraz, M.; Millan-Almaraz, J. Advantages and disadvantages of control theories applied in greenhouse climate control systems. Span. J. Agric. Res. 2012, 10, 926–938. [Google Scholar] [CrossRef]
- Ciapponi, A. Herramientas ROBINS para evaluar el riesgo de sesgo de estudios no aleatorizados. Evid. Actual. Prác. Ambulatoria 2022, 25, e007024. [Google Scholar] [CrossRef]
- Chen, H. Applications of cyber-physical system: A literature review. J. Ind. Integr. Manag. 2017, 2, 1750012. [Google Scholar] [CrossRef]
- Sisyanto, R.E.N.; Suhardi; Kurniawan, N.B. Hydroponic smart farming using cyber physical social system with telegram messenger. In Proceedings of the 2017 International Conference on Information Technology Systems and Innovation (ICITSI), Bandung, Indonesia, 23–24 October 2017; pp. 239–245. [Google Scholar]
- Mehdipour, F. Smart field monitoring: An application of cyber-physical systems in agriculture (work in progress). In Proceedings of the 2014 IIAI 3rd International Conference on Advanced Applied Informatics, Kokura, Japan, 31 August–4 September 2014; pp. 181–184. [Google Scholar]
- Ahmad, I.; Pothuganti, K. Smart Field Monitoring using ToxTrac: A Cyber-Physical System Approach in Agriculture. In Proceedings of the 2020 International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 10–12 September 2020; pp. 723–727. [Google Scholar]
- Antonopoulos, K.; Panagiotou, C.; Antonopoulos, C.P.; Voros, N.S. A-FARM precision farming CPS platform. In Proceedings of the 2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA), Patras, Greece, 15–17 July 2019; pp. 1–3. [Google Scholar]
- Rad, C.R.; Hancu, O.; Takacs, I.A.; Olteanu, G. Smart monitoring of potato crop: A cyber-physical system architecture model in the field of precision agriculture. Agric. Agric. Sci. Procedia 2015, 6, 73–79. [Google Scholar] [CrossRef]
- Et-taibi, B.; Abid, M.R.; Boumhidi, I.; Benhaddou, D. Smart agriculture as a cyber physical system: A real-world deployment. In Proceedings of the 2020 Fourth International Conference on Intelligent Computing in Data Sciences (ICDS), Fez, Morocco, 21–23 October 2020; pp. 1–7. [Google Scholar]
- Dusadeerungsikul, P.O.; Nof, S.Y.; Bechar, A.; Tao, Y. Collaborative control protocol for agricultural cyber-physical system. Procedia Manuf. 2019, 39, 235–242. [Google Scholar] [CrossRef]
- Dumitrache, I.; Caramihai, S.I.; Sacala, I.S.; Moisescu, M.A. A cyber physical systems approach for agricultural enterprise and sustainable agriculture. In Proceedings of the 2017 21st International Conference on Control Systems and Computer Science (CSCS), Bucarest, Romania, 29–31 May 2017; pp. 477–484. [Google Scholar]
- Yahata, S.; Onishi, T.; Yamaguchi, K.; Ozawa, S.; Kitazono, J.; Ohkawa, T.; Yoshida, T.; Murakami, N.; Tsuji, H. A hybrid machine learning approach to automatic plant phenotyping for smart agriculture. In Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; pp. 1787–1793. [Google Scholar]
- Liu, Z.; Jiao, X.; Zhu, C.; Katul, G.G.; Ma, J.; Guo, W. Micro-climatic and crop responses to micro-sprinkler irrigation. Agric. Water Manag. 2021, 243, 106498. [Google Scholar] [CrossRef]
- Garro, R.; Ordinez, L.; Alimenti, O. Design patterns for cyber-physical systems: The case of a robotic greenhouse. In Proceedings of the 2011 Brazilian Symposium on Computing System Engineering, Florianópolis, Brazil, 7–11 November 2011; pp. 15–20. [Google Scholar]
- Guo, P.; Dusadeerungsikul, P.O.; Nof, S.Y. Agricultural cyber physical system collaboration for greenhouse stress management. Comput. Electron. Agric. 2018, 150, 439–454. [Google Scholar] [CrossRef]
- Morimoto, E. What is cyber-physical system driven agriculture?-Redesign of big data for outstanding farmer management. In Proceedings of the 2018 ASABE Annual International Meeting. American Society of Agricultural and Biological Engineers, Detroit, MI, USA, 29 July–1 August 2018; p. 1. [Google Scholar]
- Glushkova, T.; Stoyanov, S.; Rusev, K.; Krasteva, I.; Moraliyska, N. Ambient-oriented CCA Modeling in Agriculture. In Proceedings of the 2021 International Conference Automatics and Informatics (ICAI), Online, 30 September–3 October 2021; pp. 310–313. [Google Scholar]
- Glushkova, T.; Stoyanova-Doycheva, A. An approach to modeling of smart agricultural services and scenarious. In Proceedings of the 2022 IEEE 11th International Conference on Intelligent Systems (IS), Warsaw, Poland, 12–14 October 2022; pp. 1–8. [Google Scholar]
- Stoyanov, S.; Tabakova-Komsalova, V.; Doukovska, L.; Stoyanov, I.; Dukovski, A. An Event-Based Platform Supporting Smart Agriculture Applications. In Proceedings of the 2022 IEEE 11th International Conference on Intelligent Systems (IS), Warsaw, Poland, 12–14 October 2022; pp. 1–5. [Google Scholar]
- Stoyanov, S.; Kumurdjieva, M.; Tabakova-Komsalova, V.; Doukovska, L. Using LLMs in Cyber-Physical Systems for Agriculture-ZEMELA. In Proceedings of the 2023 International Conference on Big Data, Knowledge and Control Systems Engineering (BdKCSE), Sofia, Bulgaria, 2–3 November 2023; pp. 1–6. [Google Scholar]
- Oluwayemi, A.T.; Rother, K.; Henkler, S. A Prototype for Lab-Based System Testing of Cyber Physical Systems for Smart Farming. In Proceedings of the 2023 IEEE 21st International Conference on Industrial Informatics (INDIN), Lemgo, Germany, 17–20 July 2023; pp. 1–5. [Google Scholar]
- Sharma, R.; Parhi, S.; Shishodia, A. Industry 4.0 applications in agriculture: Cyber-physical agricultural systems (CPASs). In Advances in Mechanical Engineering: Select Proceedings of ICAME 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 807–813. [Google Scholar]
- Sivakumar, E.; Ganesan, G.; Ragavi. Harnessing I4. 0 technologies for climate smart agriculture and food security. In Proceedings of the 5th International Conference on Future Networks & Distributed Systems, Dubai, United Arab Emirates, 15–16 December 2021; pp. 504–510. [Google Scholar]
- Martin, D.; Reynolds, J.; Daniele, M.; Lobaton, E.; Bozkurt, A. Towards continuous plant bioimpedance fitting and parameter estimation. In Proceedings of the 2021 IEEE Sensors, Da Nang, Vietman, 1–3 November 2021; pp. 1–4. [Google Scholar]
- Kethineni, K.K.; Mohanty, S.P.; Kougianos, E. Stimator: A Method in Agriculture CPS Framework to Estimate Severity of Plant Diseases using Graph Neural Network. In Proceedings of the 2023 OITS International Conference on Information Technology (OCIT), Raipur, India, 13–15 December 2023; pp. 462–467. [Google Scholar]
- Kethineni, K.K.; Mohanty, S.P.; Kougianos, E. HIdentifier: A Method in Agriculture CPS Framework to Automatically Identify Disease Hotspots Using Message Passing in Graph. In Proceedings of the 2023 IEEE International Symposium on Smart Electronic Systems (iSES), Ahmedabad, India, 18–20 December 2023; pp. 212–217. [Google Scholar] [CrossRef]
- Udutalapally, V.; Mohanty, S.P.; Pallagani, V.; Khandelwal, V. sCrop: A novel device for sustainable automatic disease prediction, crop selection, and irrigation in Internet-of-Agro-Things for smart agriculture. IEEE Sens. J. 2020, 21, 17525–17538. [Google Scholar] [CrossRef]
- Herabad, M.G.; Afshar, N.P. Fuzzy-based Deep Reinforcement Learning for Frost Forecasting in IoT Edge-enabled Agriculture. In Proceedings of the 2022 8th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS), Online, 28–29 December 2022; pp. 1–5. [Google Scholar]
- Bui, H.T.; Aboutorab, H.; Mahboubi, A.; Gao, Y.; Sultan, N.H.; Chauhan, A.; Parvez, M.Z.; Bewong, M.; Islam, R.; Islam, Z.; et al. Agriculture 4.0 and beyond: Evaluating cyber threat intelligence sources and techniques in smart farming ecosystems. Comput. Secur. 2024, 140, 103754. [Google Scholar] [CrossRef]
- Khalil, U.; Mueen-Uddin; Malik, O.A.; Hussain, S. A blockchain footprint for authentication of IoT-enabled smart devices in smart cities: State-of-the-art advancements, challenges and future research directions. IEEE Access 2022, 10, 76805–76823. [Google Scholar] [CrossRef]
- Snehi, M.; Bhandari, A. An SDN/NFV based intelligent fog architecture for DDoS defense in cyber physical systems. In Proceedings of the 2021 10th International Conference on System Modeling & Advancement in Research Trends (SMART), Moradabad, India, 10–11 December 2021; pp. 229–234. [Google Scholar]
- Barrère, M.; Hankin, C.; O’Reilly, D. Cyber-physical attack graphs (CPAGs): Composable and scalable attack graphs for cyber-physical systems: Cyber-physical attack graphs (CPAGs). Comput. Secur. 2023, 132, 103348. [Google Scholar] [CrossRef]
- Caviglia, R.; Gaggero, G.B.; Portomauro, G.; Patrone, F.; Marchese, M. An SDR-Based Cybersecurity Verification Framework for Smart Agricultural Machines. IEEE Access 2023, 11, 54210–54220. [Google Scholar] [CrossRef]
- Alatalo, J.; Sipola, T.; Kokkonen, T. Food Supply Chain Cyber Threats: A Scoping Review. Lect. Notes Netw. Syst. 2024, 801, 94–104. [Google Scholar] [CrossRef]
- Temelkova, M.; Bakalov, N. A model of a cyber-physical installation for smart greenhouse agriculture. In Proceedings of the E3S Web of Conferences. EDP Sciences, Kavala, Greece, 21–23 June 2023; Volume 404, p. 02004. [Google Scholar]
- Gkoulis, D.; Bardaki, C.; Politi, E.; Routis, I.; Nikolaidou, M.; Dimitrakopoulos, G.; Anagnostopoulos, D. An event-based microservice platform for autonomous cyber-physical systems: The case of smart farming. In Proceedings of the 2021 16th International Conference of System of Systems Engineering (SoSE), Västerås, Sweden, 14–18 June 2021; pp. 31–36. [Google Scholar]
- Chukkapalli, S.S.L.; Mittal, S.; Gupta, M.; Abdelsalam, M.; Joshi, A.; Sandhu, R.; Joshi, K. Ontologies and artificial intelligence systems for the cooperative smart farming ecosystem. IEEE Access 2020, 8, 164045–164064. [Google Scholar] [CrossRef]
- Gnauer, C.; Pichler, H.; Tauber, M.; Schmittner, C.; Christl, K.; Knapitsch, J.; Parapatits, M. Towards a secure and self-adapting smart indoor farming framework. e i Elektrotech. Informationstech. 2019, 136, 341–344. [Google Scholar]
- Alves, R.G.; Souza, G.; Maia, R.F.; Tran, A.L.H.; Kamienski, C.; Soininen, J.P.; Aquino, P.T.; Lima, F. A digital twin for smart farming. In Proceedings of the 2019 IEEE Global Humanitarian Technology Conference (GHTC), Seattle, WA, USA, 17–20 October 2019; pp. 1–4. [Google Scholar]
- Pandey, A.; Tiwary, P.; Kumar, S.; Das, S.K. A hybrid classifier approach to multivariate sensor data for climate smart agriculture cyber-physical systems. In Proceedings of the 20th International Conference on Distributed Computing and Networking, Bangalore, India, 4–7 January 2019; pp. 337–341. [Google Scholar]
- De Vita, F.; Nocera, G.; Bruneo, D.; Tomaselli, V.; Giacalone, D.; Das, S.K. Quantitative analysis of deep leaf: A plant disease detector on the smart edge. In Proceedings of the 2020 IEEE International Conference on Smart Computing (SMARTCOMP), Bologna, Italy, 14–17 September 2020; pp. 49–56. [Google Scholar]
- Sri Heera, S.; Suganthan, P.; Athreya, S.S.; Narasimman, S.S.; Rakesh, M. Automated irrigation and smart farming. Int. J. Eng. Adv. Technol. 2019, 8, 1450–1452. [Google Scholar] [CrossRef]
- Stoyanov, S.; Stoyanova-Doycheva, A.; Ivanova, V.; Tabakova-Komsalova, V.; Monov, V.; Radeva, Z. An Event Model for Smart Agriculture. In Proceedings of the 2021 International Conference Automatics and Informatics (ICAI), Varna, Bulgaria, 30 September–2 October 2021; pp. 314–317. [Google Scholar] [CrossRef]
- Bourr, K.; Corradini, F.; Pettinari, S.; Re, B.; Rossi, L.; Tiezzi, F. Disciplined use of BPMN for mission modeling of Multi-Robot Systems. In Proceedings of the Forum at the International Conference on The Practice of Enterprise Modeling, Riga, Latvia, 24–26 November 2021; Volume 1613, p. 0073. [Google Scholar]
- Nnoli, K.P.; Benyeogor, M.S.; Olakanmi, O.O.; Umanah, D.A. The Computer Farmer Concept: Human-cyberphysical Systems for Monitoring and Improving Agricultural Productivity in Nigeria. In Proceedings of the 2022 IEEE Nigeria 4th International Conference on Disruptive Technologies for Sustainable Development (NIGERCON), Abuja, Nigeria, 17–19 May 2022; pp. 1–8. [Google Scholar]
- Giua, C.; Materia, V.C.; Camanzi, L. Smart farming technologies adoption: Which factors play a role in the digital transition? Technol. Soc. 2022, 68, 101869. [Google Scholar] [CrossRef]
- Moses, D.; Kumar, T.P.; Varalakshmi, S.; Pamulaparty, L. A Cyber Physical System Enabled Intelligent Farming System with Artificial Intelligence, Machine Learning and Cloud Computing. In Proceedings of the 21st International Conference on Artificial Intelligence and Soft Computing (ICAISC 2022), Zakopane, Poland, 19–23 June 2022; Springer: Zakopane, Poland, 2022; Volume 13588. [Google Scholar]
- Xu, L.; Yu, H.; Qin, H.; Chai, Y.; Yan, N.; Li, D.; Chen, Y. Digital Twin for Aquaponics Factory: Analysis, Opportunities, and Research Challenges. IEEE Trans. Ind. Infor. 2024, 20, 5060–5073. [Google Scholar] [CrossRef]
- Chukkapalli, S.S.L.; Ranade, P.; Mittal, S.; Joshi, A. A privacy preserving anomaly detection framework for cooperative smart farming ecosystem. In Proceedings of the 2021 Third IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA), Online, 13–15 December 2021; pp. 340–347. [Google Scholar]
- Al Asif, M.R.; Hasan, K.F.; Islam, M.Z.; Khondoker, R. STRIDE-based cyber security threat modeling for IoT-enabled precision agriculture systems. In Proceedings of the 2021 3rd International Conference on Sustainable Technologies for Industry 4.0 (STI), Dhaka, Bangladesh, 18–19 December 2021; pp. 1–6. [Google Scholar]
- Chukkapalli, S.S.L.; Pillai, N.; Mittal, S.; Joshi, A. Cyber-physical system security surveillance using knowledge graph based digital twins-a smart farming usecase. In Proceedings of the 2021 IEEE International Conference on Intelligence and Security Informatics (ISI), San Antonio, TX, USA, 2–3 November 2021; pp. 1–6. [Google Scholar]
- Chukkapalli, S.S.L.; Piplai, A.; Mittal, S.; Gupta, M.; Joshi, A. A smart-farming ontology for attribute based access control. In Proceedings of the 2020 IEEE 6th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS), Baltimore, MD, USA, 25–27 May 2020; pp. 29–34. [Google Scholar]
- Abdulghani, A.M.; Abdulghani, M.M.; Walters, W.L.; Abed, K.H. Cyber-Physical System Based Data Mining and Processing Toward Autonomous Agricultural Systems. In Proceedings of the 2022 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 14–16 December 2022; pp. 719–723. [Google Scholar]
- De Vita, F.; Nocera, G.; Bruneo, D.; Tomaselli, V.; Giacalone, D.; Das, S.K. Porting deep neural networks on the edge via dynamic K-means compression: A case study of plant disease detection. Pervasive Mob. Comput. 2021, 75, 101437. [Google Scholar] [CrossRef]
- Majore, G.; Majors, I. Digital twin modelling for eco-cyber-physical systems: In the case of A smart agriculture living lab. In Proceedings of the PPoEM Forum, London, UK, 23–25 November 2022; Volume 22, pp. 98–112. [Google Scholar]
- Verma, A.; Bhattacharya, P.; Madhani, N.; Trivedi, C.; Bhushan, B.; Tanwar, S.; Sharma, G.; Bokoro, P.N.; Sharma, R. Blockchain for industry 5.0: Vision, opportunities, key enablers, and future directions. IEEE Access 2022, 10, 69160–69199. [Google Scholar] [CrossRef]
- Dimitrov, K.; Chivarov, S.; Chivarov, N. Cost Oriented Cyber-Physical System algorithm for pig farm microclimate and air quality control. IFAC-PapersOnLine 2022, 55, 336–341. [Google Scholar] [CrossRef]
- Chivarov, S.; Dimitrov, K.; Chivarov, N. Algorithms for Cost Oriented Cyber Physical System (COCPS) for intelligent control of animal husbandry farms. IFAC-PapersOnLine 2022, 55, 31–36. [Google Scholar] [CrossRef]
- Mitra, A.; Singhal, A.; Mohanty, S.P.; Kougianos, E.; Ray, C. eCrop: A novel framework for automatic crop damage estimation in smart agriculture. SN Comput. Sci. 2022, 3, 319. [Google Scholar] [CrossRef]
- Holzinger, A.; Saranti, A.; Angerschmid, A.; Retzlaff, C.O.; Gronauer, A.; Pejakovic, V.; Medel-Jimenez, F.; Krexner, T.; Gollob, C.; Stampfer, K. Digital transformation in smart farm and forest operations needs human-centered AI: Challenges and future directions. Sensors 2022, 22, 3043. [Google Scholar] [CrossRef] [PubMed]
- Zarembo, I.; Kodors, S.; Apeināns, I.; Lācis, G.; Feldmane, D.; Rubauskis, E. Digital Twin: Orchard Management using UAV. In Proceedings of the 2023 European Conference on the Application of Artificial Intelligence (ETR 2023), Kraków, Poland, 30 September–4 October 2023; Volume 1, pp. 247–251. [Google Scholar]
- Ciolofan, S.N.; Drăgoicea, M.; Popeangă, D.C. Enhanced cyber-physical system with semantic technologies and machine learning to support smart farming. In Proceedings of the 2023 24th International Conference on Control Systems and Computer Science (CSCS), Bucharest, Romania, 24–26 May 2023; pp. 56–60. [Google Scholar]
- Afrin, M.; Jin, J.; Rahman, A.; Li, S.; Tian, Y.C.; Li, Y. Dynamic Task Allocation for Robotic Edge System Resilience Using Deep Reinforcement Learning. IEEE Trans. Syst. Man Cybern. Syst. 2023, 54, 1438–1450. [Google Scholar] [CrossRef]
- Chivarov, N.; Dimitrov, K.; Chivarov, S. Algorithm for Autonomous Management of a Poultry Farm by a Cyber-Physical System. Animals 2023, 13, 3252. [Google Scholar] [CrossRef]
- Navarro, E.; Costa, N.; Pereira, A. A systematic review of IoT solutions for smart farming. Sensors 2020, 20, 4231. [Google Scholar] [CrossRef]
- Chivarov, S.; Chivarov, N.; Chikurtev, D.; Pleva, M. Cost oriented software system for animal husbandry smart automation. In Proceedings of the 2021 International Conference Automatics and Informatics (ICAI), Varna, Bulgaria, 30 September–2 October 2021; pp. 256–261. [Google Scholar]
- Schoitsch, E. Beyond smart systems-Creating a society of the future (5.0) resolving disruptive changes and social challenges. In Proceedings of the Innovation and Transformation in a Digital World: 27th Interdisciplinary Information Management Talks (IDIMT 2019), Kutná Hora, Czech Republic, 6 September 2019; pp. 4–7. [Google Scholar]
- Gorodetsky, V.; Kozhevnikov, S.; Novichkov, D.; Skobelev, P.O. The framework for designing autonomous cyber-physical multi-agent systems for adaptive resource management. In Proceedings of the Industrial Applications of Holonic and Multi-Agent Systems: 9th International Conference, HoloMAS 2019, Linz, Austria, 26–29 August 2019; Proceedings 9. Springer: Berlin/Heidelberg, Germany, 2019; pp. 52–64. [Google Scholar]
- Yaqot, M.; Menezes, B.C. Unmanned aerial vehicle (UAV) in precision agriculture: Business information technology towards farming as a service. In Proceedings of the 2021 1st International Conference on Emerging Smart Technologies and Applications (eSmarTA), Sana’a, Yemen, 10–12 August 2021; pp. 1–7. [Google Scholar]
- Tabakova-Komsalova, V.; Stoyanov, S.; Doukovska, L.; Stoyanov, I.; Cherecharov, S. Personal Assistant Supporting Diagnosis of Livestock Poisoning. In Proceedings of the 2022 International Conference Automatics and Informatics (ICAI), Mumbai, India, 21–22 January 2022; pp. 189–192. [Google Scholar]
- Bernhardt, H.; Treiber, M.; Flores, P.; Sun, X.; Schumacher, L. Opportunities for Agriculture through Industrial Internet of Things/Industry 4.0-A comparison between US and Europe. In Proceedings of the 2022 ASABE Annual International Meeting. American Society of Agricultural and Biological Engineers, Houston, TX, USA, 17–20 July 2022; p. 1. [Google Scholar]
- Lestari, N.; Badri, D.A.; Khadafi, A.; Munastha, K.A.; Sarief, I.; Wijaya, W. An Automatic Sorting Machine Using Weight Sensor and Moisture Content Measurement for Sweet Potatoes. In Proceedings of the 2022 16th International Conference on Telecommunication Systems, Services, and Applications (TSSA), Bali, Indonesia, 13–14 October 2022; pp. 1–5. [Google Scholar]
- Bapatla, A.K.; Gupta, A.; Mohanty, S.P.; Kougianos, E. SmartInsure: Blockchain and CNN Leveraged Secure and Efficient Cattle Insurance. In Proceedings of the 2023 OITS International Conference on Information Technology (OCIT), Raipur, India, 13–15 December 2023; pp. 432–437. [Google Scholar]
- Vangipuram, S.L.T.; Mohanty, S.P.; Kougianos, E. W-DaM: Weather Data Management in Smart Agriculture using Blockchain-as-a-Service. In Proceedings of the 2023 IEEE International Symposium on Smart Electronic Systems (iSES), Ahmedabad, India, 18–20 December 2023; pp. 433–436. [Google Scholar] [CrossRef]
- Bulej, L.; Bureš, T.; Filandr, A.; Hnětynka, P.; Hnětynková, I.; Pacovskỳ, J.; Sandor, G.; Gerostathopoulos, I. Managing latency in edge–cloud environment. J. Syst. Softw. 2021, 172, 110872. [Google Scholar] [CrossRef]
- Habib, M.K.; Chimsom, C. CPS: Role, characteristics, architectures and future potentials. Procedia Comput. Sci. 2022, 200, 1347–1358. [Google Scholar] [CrossRef]
- Eastwood, C.; Dela Rue, B.; Edwards, J.; Jago, J. Responsible robotics design–A systems approach to developing design guides for robotics in pasture-grazed dairy farming. Front. Robot. AI 2022, 9, 914850. [Google Scholar] [CrossRef]
- Luqman, A.; Chattopadhyay, A.; Lam, K.Y. Membership Inference Vulnerabilities in Peer-to-Peer Federated Learning. In Proceedings of the 2023 Secure and Trustworthy Deep Learning Systems Workshop, Melbourne, Australia, 10 July 2023; pp. 1–5. [Google Scholar]
- Bodkhe, U.; Tanwar, S.; Parekh, K.; Khanpara, P.; Tyagi, S.; Kumar, N.; Alazab, M. Blockchain for industry 4.0: A comprehensive review. IEEE Access 2020, 8, 79764–79800. [Google Scholar] [CrossRef]
- Gupta, M.; Abdelsalam, M.; Khorsandroo, S.; Mittal, S. Security and privacy in smart farming: Challenges and opportunities. IEEE Access 2020, 8, 34564–34584. [Google Scholar] [CrossRef]
- Tariq, N.; Khan, F.A.; Asim, M. Security challenges and requirements for smart internet of things applications: A comprehensive analysis. Procedia Comput. Sci. 2021, 191, 425–430. [Google Scholar] [CrossRef]
- Abed, A.Z.M.; Abdelkader, T.; Hashem, M. A Review on Cyber-Physical-Social Systems. In Proceedings of the 2023 Eleventh International Conference on Intelligent Computing and Information Systems (ICICIS), Cairo, Egypt, 21–23 November 2023; pp. 306–314. [Google Scholar] [CrossRef]
- Ramachandran, K.; Nagarjuna, B.; Akram, S.V.; Bhalani, J.; Raju, A.M.; Ponnusamy, R. Innovative Cyber Security Solutions built on block chain technology for Industrial 5.0 applications. In Proceedings of the 2023 International Conference on Artificial Intelligence and Smart Communication (AISC), Greater Noida, India, 27–29 January 2023; pp. 643–650. [Google Scholar]
- Dockendorf, C.; Mohanty, S.P.; Mitra, A.; Kougianos, E. Lite-Agro 2.0: Integrating Federated and TinyML in Pear Disease Classification IoAT-Edge AI. In Proceedings of the 2023 IEEE International Symposium on Smart Electronic Systems (iSES), Ahmedabad, India, 18–20 December 2023; pp. 429–432. [Google Scholar] [CrossRef]
- Kloibhofer, R.; Kristen, E.; Davoli, L. LoRaWAN with HSM as a security improvement for agriculture applications. In Proceedings of the Computer Safety, Reliability, and Security. SAFECOMP 2020 Workshops: DECSoS 2020, DepDevOps 2020, USDAI 2020, and WAISE 2020, Lisbon, Portugal, 15 September 2020; Proceedings 39. Springer: Berlin/Heidelberg, Germany, 2020; pp. 176–188. [Google Scholar]
- Zhang, C.; Liu, X.; Zheng, X.; Li, R.; Liu, H. Fenghuolun: A federated learning based edge computing platform for cyber-physical systems. In Proceedings of the 2020 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Austin, TX, USA, 23–27 March 2020; pp. 1–4. [Google Scholar]
- Kariri, E. IoT powered agricultural cyber-physical system: Security issue assessment. IETE J. Res. 2022, 1–11. [Google Scholar] [CrossRef]
- Vangipuram, S.L.; Mohanty, S.P.; Kougianos, E.; Ray, C. agroString: Visibility and provenance through a private blockchain platform for agricultural dispense towards consumers. Sensors 2022, 22, 8227. [Google Scholar] [CrossRef] [PubMed]
- Darwish, A.; Hassanien, A.E. Cyber physical systems design, methodology, and integration: The current status and future outlook. J. Ambient. Intell. Humaniz. Comput. 2018, 9, 1541–1556. [Google Scholar] [CrossRef]
Description | Results |
---|---|
MAIN INFORMATION | |
Timespan | 2008:2024 |
Sources (journals, books, etc.) | 86 |
Documents | 108 |
Annual growth rate % | 9.05 |
Document average age | 3.81 |
Average citations per doc | 53.01 |
References | 5061 |
DOCUMENTS TYPES | |
Articles | 35 |
Conference paper | 68 |
Review | 5 |
DOCUMENTS CONTENTS | |
KeyWords Plus (ID) | 989 |
Author’s keywords (DE) | 367 |
AUTHORS | |
Authors | 401 |
Authors of single-authored docs | 5 |
AUTHORS COLLABORATION | |
Single-authored docs | 5 |
Co-authors per doc | 4.34 |
International co-authorships % | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montalvo, A.; Camacho, O.; Chavez, D. Cyber-Physical Systems for Smart Farming: A Systematic Review. Sustainability 2025, 17, 6393. https://doi.org/10.3390/su17146393
Montalvo A, Camacho O, Chavez D. Cyber-Physical Systems for Smart Farming: A Systematic Review. Sustainability. 2025; 17(14):6393. https://doi.org/10.3390/su17146393
Chicago/Turabian StyleMontalvo, Alexis, Oscar Camacho, and Danilo Chavez. 2025. "Cyber-Physical Systems for Smart Farming: A Systematic Review" Sustainability 17, no. 14: 6393. https://doi.org/10.3390/su17146393
APA StyleMontalvo, A., Camacho, O., & Chavez, D. (2025). Cyber-Physical Systems for Smart Farming: A Systematic Review. Sustainability, 17(14), 6393. https://doi.org/10.3390/su17146393