Annual Achievements Report
Available Now
 
13 pages, 3410 KiB  
Article
Monitoring of Layered Thermoplastic Composites Using Shape Memory Alloys as Integrated Sensors for Multifunctional Lightweight Structures
by Michael Schwarz, Marius Weiler, Saravanan Palaniyappan, Steven Quirin, Maik Trautmann, Guntram Wagner and Hans-Georg Herrmann
Materials 2025, 18(13), 3193; https://doi.org/10.3390/ma18133193 (registering DOI) - 6 Jul 2025
Abstract
Since lightweight design and construction safety is a crucial element in different sectors of industry, the use of SMA wires in composites could improve the monitoring and adjustment of mechanical properties starting from the product development process through to field use. This work [...] Read more.
Since lightweight design and construction safety is a crucial element in different sectors of industry, the use of SMA wires in composites could improve the monitoring and adjustment of mechanical properties starting from the product development process through to field use. This work shows how embedded SMA wires can lead to a better understanding of applied forces to a composite structure made of GFRP laminates. To achieve this, different methods will be addressed. Besides mechanical testing of the GFRP-samples with embedded SMA wires, NDT-methods like active thermography, high-frequency ultrasonic testing, and computer tomography are used to detect the SMA wires, whereby thermography and computer tomography are best suited. In this study, the location and the amount of the applied force on GFRP composites with embedded SMA wires could be characterized with relative resistance changes. It is shown that SMA wires with a diameter of 250 µm are preferred to wires with a diameter of 100 µm due to production process and better performance under load (4N force plateau for 100 µm in contrast to 25N force plateau for 250 µm wires). Furthermore, Young’s modulus of the GFRP composites with embedded SMA wires was measured and is similar for various samples with 30.8 GPa on average. Full article
(This article belongs to the Special Issue Technology and Applications of Shape Memory Materials)
Show Figures

Figure 1

35 pages, 4380 KiB  
Article
Investigation of the Influence of Deformation, Force, and Geometric Factors on the Roll Gripping Capacity and Stability of the Rolling Process
by Valeriy Chigirinsky, Irina Volokitina, Abdrakhman Naizabekov, Sergey Lezhnev and Sergey Kuzmin
Symmetry 2025, 17(7), 1074; https://doi.org/10.3390/sym17071074 (registering DOI) - 6 Jul 2025
Abstract
This research developed a complex physical and mathematical model of the flat rolling theory problem. This model takes into account the influence of many parameters affecting the roll’s gripping capacity and the overall stability of the entire rolling process. It is important to [...] Read more.
This research developed a complex physical and mathematical model of the flat rolling theory problem. This model takes into account the influence of many parameters affecting the roll’s gripping capacity and the overall stability of the entire rolling process. It is important to emphasize that the method of the argument of functions of a complex variable does not rely on simplifying assumptions commonly associated with: the linearized theory of plasticity; or the decoupled solution of stress and strain fields. Furthermore, it does not utilize the rigid-plastic material model. Within this method, solutions are developed based on the complete formulation of the system of equations in terms of stresses and strains, incorporating constitutive relations, thermal effects, and boundary conditions that define a well-posed problem in the theory of plasticity. The presented applied problem is closed in nature, yet it accounts for the effects of mechanical loading and satisfies the system of equation. For this purpose, such factors as roll geometry, physical and mechanical properties of the rolled metal (including its fluidity, hardness, plasticity, and structure heterogeneity), rolling speed, metal temperature, roll lubrication, and many other parameters that can influence the process have been taken into account. Based on the developed mathematical model, a new, previously undescribed force factor significantly affecting the capture of metal by rolls and the stability of the rolling process was identified and investigated in detail. This factor is associated with force stretching of metal in the lagging zone—the area behind the rolls, where the metal has already left the deformation zone, but continues to experience residual stress. It was shown that this stretching, depending on the process parameters, can both contribute to the rolling stability and, on the contrary, destabilize it, causing oscillations and non-uniformity of deformation. The qualitative indicators of transient regime stability have been determined for various values of the parameter α. Specifically, for α = 0.077, the ratio f/α ranges from 1.10 to 1.95; for α = 0.129, the ratio f/α ranges from 1.19 to 1.95; and for α = 0.168, the ratio f/α ranges from 1.28 to 1.95. Full article
(This article belongs to the Special Issue Symmetry Problems in Metal Forming)
Show Figures

Figure 1

24 pages, 8671 KiB  
Review
Tactile Interaction with Socially Assistive Robots for Children with Physical Disabilities
by Leila Mouzehkesh Pirborj, Caroline Mills, Robert Gorkin III and Karthick Thiyagarajan
Sensors 2025, 25(13), 4215; https://doi.org/10.3390/s25134215 (registering DOI) - 6 Jul 2025
Abstract
Children with physical disabilities are increasingly using socially assistive robots (SARs) as part of therapy to enhance motivation, engagement, enjoyment, and adherence. Research on SARs in rehabilitation has primarily focused on verbal and visual interaction, but little is known about tactile interaction (physical [...] Read more.
Children with physical disabilities are increasingly using socially assistive robots (SARs) as part of therapy to enhance motivation, engagement, enjoyment, and adherence. Research on SARs in rehabilitation has primarily focused on verbal and visual interaction, but little is known about tactile interaction (physical touch). The objective of this scoping review was to examine empirical studies published between 2010 and 2024 focusing on tactile interaction between SARs and children with physical disabilities, such as cerebral palsy (CP). Nine studies were identified as being eligible after a rigorous selection process, showing that although touch-based SAR interventions have been used in pediatric rehabilitation, structured methodologies and standardized tools are lacking for measuring tactile engagement. In light of the studies’ findings, it is evident that few studies evaluate the therapeutic effects of touch-sensitive SARs, underscoring the need for validated frameworks to assess their efficacy. In this review, SAR and tactile sensing researchers, rehabilitation specialists, and designers are given critical insights into how tactile interaction can enhance the role of SARs in physical therapy. Full article
(This article belongs to the Special Issue Advanced Sensors for Human Health Management)
Show Figures

Figure 1

14 pages, 4488 KiB  
Article
Exploring Intensity-Dependent Echogenic Response to Percutaneous Electrolysis in Tendon Tissue: A Cadaveric Study
by Miguel Malo-Urriés, Jacobo Rodríguez-Sanz, Sergio Borrella-Andrés, Isabel Albarova-Corral, Juan Carlos Martínez-Zamorano and Carlos López-de-Celis
J. Clin. Med. 2025, 14(13), 4772; https://doi.org/10.3390/jcm14134772 (registering DOI) - 6 Jul 2025
Abstract
Background: Percutaneous electrolysis (PE) is an emerging therapeutic approach for tendinopathies, applying a galvanic current through a dry-needling needle to induce regenerative tissue responses. However, current dosing strategies are often empirical and lack objective physiological feedback. Objective: This study aimed to [...] Read more.
Background: Percutaneous electrolysis (PE) is an emerging therapeutic approach for tendinopathies, applying a galvanic current through a dry-needling needle to induce regenerative tissue responses. However, current dosing strategies are often empirical and lack objective physiological feedback. Objective: This study aimed to evaluate the echogenic effects of different galvanic current intensities on cadaveric tendon tissue using quantitative ultrasound. Methods: An ex vivo study was conducted on 29 cadaveric patellar tendon samples, each exposed to a single intensity (0–10 mA for 1 s). Quantitative ultrasound analysis was performed post-intervention, and echogenic variables were extracted using UZ eDosifier software. A composite variable, Electrolysis_UZ_Dose, was created via multiple regression to capture the overall ultrasound-visible changes. Data were analyzed using correlation, regression models, and dose–range comparisons. Results: An intensity-dependent response was observed in key echogenic parameters. Minimal changes occurred at low intensities (0–2 mA), whereas a progressive response emerged between 2 and 6 mA. Beyond 6 mA, a plateau effect suggested either tissue saturation or imaging limitations due to gas-induced acoustic shadowing. The Electrolysis_UZ_Dose variable strongly correlated with applied intensity (R2 = 0.732). Conclusions: This study suggests an intensity-dependent echogenic effect of PE on tendon tissue in key ultrasound-derived parameters (A_Number, A_Area, A_Perimeter, A_Homogeneity, and A_ASM). However, as this study was conducted under experimental conditions with a single 1 s application per sample, the results should not be extrapolated to clinical practice without further validation. Full article
(This article belongs to the Section Nuclear Medicine & Radiology)
Show Figures

Figure 1

15 pages, 1259 KiB  
Article
Exploring the Potential of Biocontrol Agent Against Root and Stem Rot Disease in Durian (Durio zibethinus)
by Ponchanok Datmanee, Nattarika Jitfour, Dusit Athinuwat and Wilawan Chuaboon
Int. J. Plant Biol. 2025, 16(3), 75; https://doi.org/10.3390/ijpb16030075 (registering DOI) - 6 Jul 2025
Abstract
The study of antagonistic bacterial strains isolated from the soil around durian tree roots demonstrated their ability to inhibit the growth of Phytophthora palmivora. The pathogens were screened from 30 samples collected around durian trees (leaves, soil around the roots, and debris [...] Read more.
The study of antagonistic bacterial strains isolated from the soil around durian tree roots demonstrated their ability to inhibit the growth of Phytophthora palmivora. The pathogens were screened from 30 samples collected around durian trees (leaves, soil around the roots, and debris under the tree) showing symptoms of root and stem rot disease. A total of 17 pathogen strains were isolated and grouped into 3 groups, TNP05, MNP13, and KNP21, originating from Chanthaburi province, Thailand. When P. palmivora isolates were tested for pathogenicity on leaves and durian trees, it was found that the strain MNP13 had the highest capacity to cause root and stem rot disease. A total of 196 beneficial bacteria isolates were collected from several samples around durian trees. The samples included leaves, soil surrounding the roots, and organic debris beneath the trees. Based on their colony characteristics on nutrient glucose agar (NGA), these isolates were divided into 8 groups. The efficacy of the beneficial bacteria against root and stem rot disease was tested using the Dual culture method and arranged in a Completely Randomized Design (CRD) with 5 replications. The experiment showed that bacterial isolates NJTU05, NJTU10, and NJTU13 effectively inhibited the growth of P. palmivora isolate MNP13, with inhibition rates of 76.66, 67.59, and 69.07%, respectively, compared to chemical control using metalaxyl 80% WP. Among the tested strains, NJTU05 was identified as the most effective bacterial strain for controlling major durian diseases. Biochemical identification and 16S rRNA sequencing revealed that bacterial strain NJTU05 was closely related to Brevibacillus formosus with a 99.70% identity. Full article
(This article belongs to the Section Plant–Microorganisms Interactions)
19 pages, 4947 KiB  
Article
Injection Molding Simulation of Polycaprolactone-Based Carbon Nanotube Nanocomposites for Biomedical Implant Manufacturing
by Krzysztof Formas, Jarosław Janusz, Anna Kurowska, Aleksandra Benko, Wojciech Piekarczyk and Izabella Rajzer
Materials 2025, 18(13), 3192; https://doi.org/10.3390/ma18133192 (registering DOI) - 6 Jul 2025
Abstract
This study consisted of the injection molding simulation of polycaprolactone (PCL)-based nanocomposites reinforced with multi-walled carbon nanotubes (MWCNTs) for biomedical implant manufacturing. The simulation was additionally supported by experimental validation. The influence of varying MWCNT concentrations (0.5%, 5%, and 10% by weight) on [...] Read more.
This study consisted of the injection molding simulation of polycaprolactone (PCL)-based nanocomposites reinforced with multi-walled carbon nanotubes (MWCNTs) for biomedical implant manufacturing. The simulation was additionally supported by experimental validation. The influence of varying MWCNT concentrations (0.5%, 5%, and 10% by weight) on key injection molding parameters, i.e., melt flow behavior, pressure distribution, temperature profiles, and fiber orientation, was analyzed with SolidWorks Plastics software. The results proved the low CNT content (0.5 wt.%) to be endowed with stable filling times, complete mold cavity filling, and minimal frozen regions. Thus, this formulation produced defect-free modular filament sticks suitable for subsequent 3D printing. In contrast, higher CNT loadings (particularly 10 wt.%) led to longer fill times, incomplete cavity filling, and early solidification due to increased melt viscosity and thermal conductivity. Experimental molding trials with the 0.5 wt.% CNT composites confirmed the simulation findings. Following minor adjustments to processing parameters, high-quality, defect-free sticks were produced. Overall, the PCL/MWCNT composites with 0.5 wt.% nanotube content exhibited optimal injection molding performance and functional properties, supporting their application in modular, patient-specific biomedical 3D printing. Full article
Show Figures

Graphical abstract

23 pages, 12934 KiB  
Article
Chinese Muslims and Religious Encounters in the “Chinatown” of Dakar, Senegal
by Zheyuan Deng
Religions 2025, 16(7), 875; https://doi.org/10.3390/rel16070875 (registering DOI) - 6 Jul 2025
Abstract
This paper investigates religious encounters between Chinese and Senegalese Muslims in the relatively new Chinatown of Dakar. Chinese Muslims from Kaifeng City, Henan Province first arrived in Senegal in the 1990s following the Henan provincial state-owned construction company. They started a wholesale business [...] Read more.
This paper investigates religious encounters between Chinese and Senegalese Muslims in the relatively new Chinatown of Dakar. Chinese Muslims from Kaifeng City, Henan Province first arrived in Senegal in the 1990s following the Henan provincial state-owned construction company. They started a wholesale business mainly of clothing and shoes and brought their relatives and family members to Dakar. However, scholars studying the Chinese community in Dakar have largely ignored their Muslim identity and its significance. Moving beyond the conventional focus on tensions between Muslim and Chinese identities in the study of overseas Chinese Muslims, this paper turns to religious encounters in everyday life. Based on field research and interviews both in Dakar and Henan, this paper argues that for these Chinese Muslim businesspersons in Dakar, Islam as a shared religious identity sometimes provides opportunities to connect with their fellow Muslims in a foreign country. However, differences in religious practices can also lead to misconceptions between them and other Senegalese Muslims. This paper thus contributes to Islamic studies and the study of global China, particularly in relation to overseas Chinese Muslims, China–Africa encounters, and global Chinatowns. Full article
Show Figures

Figure 1

24 pages, 3627 KiB  
Article
Andrographolide Mitigates Inflammation and Reverses UVB-Induced Metabolic Reprogramming in HaCaT Cells
by Carolina Manosalva, Pablo Alarcón, Lucas Grassau, Carmen Cortés, Juan L. Hancke and Rafael A. Burgos
Int. J. Mol. Sci. 2025, 26(13), 6508; https://doi.org/10.3390/ijms26136508 (registering DOI) - 6 Jul 2025
Abstract
Andrographolide (AP), a bioactive compound from Andrographis paniculata, is known for its anti-inflammatory and antioxidant properties, both essential for wound healing. However, its effects on energy metabolism during tissue repair and its role in UVB-induced photoaging remain poorly understood. This study explored [...] Read more.
Andrographolide (AP), a bioactive compound from Andrographis paniculata, is known for its anti-inflammatory and antioxidant properties, both essential for wound healing. However, its effects on energy metabolism during tissue repair and its role in UVB-induced photoaging remain poorly understood. This study explored AP’s multitarget therapeutic effects on wound healing under photoaging conditions (PhA/WH) using network pharmacology and experimental validation. Scratch wound assays showed that AP promoted keratinocyte migration in UVB-exposed HaCaT cells. Bioinformatic analysis identified 10 key targets in PhA/WH, including TNF-α, IL-1β, JUN, PPARγ, MAPK3, TP53, TGFB1, HIF-1α, PTGS2, and CTNNB1. AP suppressed UVB-induced pro-inflammatory gene expression (IL-1β, IL-6, IL-8, and COX-2) and inhibited the phosphorylation of ERK1/2 and P38, while enhancing Hypoxia-Inducible Factor-1alpha (HIF-1α) and peroxisome proliferator-activated receptors (PPARγ) expression. GC/MS-based metabolomics revealed that AP reversed UVB-induced disruptions in fatty acid metabolism, glycolysis/gluconeogenesis, and tricarboxylic acid (TCA) cycle, indicating its role in restoring the metabolic balance necessary for tissue regeneration. In conclusion, andrographolide modulates key inflammatory and metabolic pathways involved in wound repair and photoaging. These mechanistic insights contribute to a better understanding of the molecular processes underlying skin regeneration under photodamage and may inform future therapeutic strategies. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

12 pages, 568 KiB  
Article
Dietary Gluten-Free Regimen Does Not Affect the Suppression of the Inflammatory Response in the Arachidonic Acid Cascade in Hashimoto’s Disease
by Małgorzata Szczuko, Lidia Kwiatkowska, Urszula Szczuko, Leon Rudak, Karina Ryterska, Anhelli Syrenicz, Jakub Pobłocki and Arleta Drozd
Int. J. Mol. Sci. 2025, 26(13), 6507; https://doi.org/10.3390/ijms26136507 (registering DOI) - 6 Jul 2025
Abstract
The incidence of Hashimoto’s disease (HD) increases with age and in people who have other autoimmune diseases. It is characterized by lymphocytic infiltration, fibrosis, and atrophy of the thyroid parenchyma with the simultaneous presence of thyroid peroxidase antibodies (ATPO) and/or thyroglobulin antibodies (ATG). [...] Read more.
The incidence of Hashimoto’s disease (HD) increases with age and in people who have other autoimmune diseases. It is characterized by lymphocytic infiltration, fibrosis, and atrophy of the thyroid parenchyma with the simultaneous presence of thyroid peroxidase antibodies (ATPO) and/or thyroglobulin antibodies (ATG). Eicosanoids are formed via the cyclooxygenase (COX), lipoxygenase (LOX), and monooxygenase (CYP450) pathways with arachidonic acid (ARA), resulting in the production of epoxyeicosatrienoic acids (EETs) or hydroxyeicosatetraenoic acids (HETEs). These eicosanoids can act in an autocrine or paracrine manner on target cells. This study aimed to examine whether a gluten-free diet (GFD) can modulate the enzymatic pathways of the pro-inflammatory ARA cascade. The study material consisted of serum samples from Caucasian female patients with HD aged 18–55 years. Participants were enrolled in the study based on the presence of an ultrasound characteristic of HD, and elevated serum levels of anti-thyroid peroxidase antibodies and anti-thyroglobulin antibodies. Patients with confirmed celiac disease did not participate in the study. A total of 78 samples were analyzed, with 39 collected after 3 months of following a GFD. Eicosanoids (thromboxane B2, prostaglandin E2, leukotriene B4, and 16R-hydroxy-5Z,8Z,11Z,14Z-eicosatetraenoic acid (16-RS HETE)) were extracted using high-performance liquid chromatography. The contribution of leukotriene (LTB) was analyzed in the LOX pathway, prostaglandins (PGE2) and thromboxane (TXB2) were selected for the involvement of the COX pathway, and 16RS HETE was used for the CYP450 pathway. All parameters were analyzed before and after a 3-month dietary intervention that included a gluten-free diet. In the obtained results, only one mediator, leukotriene B4, was significant (p < 0.05). The mean level on the initial visit was 0.202 ± 0.11 (SD), while it was 0.421 ± 0.27 (SD) on the subsequent visit, indicating a significant increase in its level after implementing a GFD. Although there was a trend in the CYP 450 pathway of decreased 16-RS HETE, the presented correlations show that thromboxane B4 and 16RS-HETE were positively correlated with the body mass and body fat mass of the examined patients. There was a trend in the CYP 450 pathway of decreased 16-RS HETE after GFD. Thromboxane B4 and 16RS-HETE levels before GFD were positively correlated with the body mass and body fat mass of the examined patients. A gluten-free diet in HD does not suppress the synthetic pathways of LOX, COX, or cytochrome P450 (CYP450). The level of adipose tissue has a greater impact on the inflammatory processes in HD than a gluten-free diet. This study does not confirm the suppressive effect of a gluten-free diet on the pro-inflammatory arachidonic acid cascade in any of the three analyzed mediator synthesis LOX, COX, CYP450 pathways. Full article
24 pages, 2447 KiB  
Article
Pilot Study: Effects of High-Intensity Training on Gait Symmetry and Locomotor Performance in Neurodivergent Children
by Noah D. Chernik, Melody W. Young, Reuben N. Jacobson, Stratos J. Kantounis, Samantha K. Lynch, James Q. Virga, Matthew J. Cannata, Hannah M. English, Pranav Krish, Anand Kanumuru, Alexander Lopez and Michael C. Granatosky
Symmetry 2025, 17(7), 1073; https://doi.org/10.3390/sym17071073 (registering DOI) - 6 Jul 2025
Abstract
Neuromuscular gait deficits in children with autism spectrum disorder (ASD) are often overlooked. High-intensity training protocols may improve running performance, but their efficacy in pediatric populations is underexplored. This study evaluates the impact of a high-intensity running protocol on locomotor performance in neurotypical [...] Read more.
Neuromuscular gait deficits in children with autism spectrum disorder (ASD) are often overlooked. High-intensity training protocols may improve running performance, but their efficacy in pediatric populations is underexplored. This study evaluates the impact of a high-intensity running protocol on locomotor performance in neurotypical and neurodivergent children (children with ASD). Spatiotemporal gait characteristics (speed, stride frequency, stride length, and duty factor), gait symmetry (symmetry ratio), and kinematics were assessed for ten neurodivergent children (10–15 years old) during a 15 m sprint. Locomotor costs (cost of locomotion, transport, and locomotion per stride) were analyzed in six neurodivergent participants (11–14 years old) via open-flow respirometry during treadmill running. Participants completed a 5–12 week, twice-weekly program; neurotypical participants served as a control group. Neurodivergent and neurotypical children exhibited baseline differences in spatiotemporal variables. Following training, neurodivergent participants demonstrated statistically significant improvements in spatiotemporal metrics and locomotor costs. Differences in symmetry between the two groups were not present pre- or post-program. These findings highlight the efficacy of high-intensity running programs in improving sensorimotor function and coordination in children with ASD. This program provides valuable insights into gross motor rehabilitation for neurodivergent children, supporting its potential as an effective intervention. Full article
(This article belongs to the Special Issue Symmetry and Asymmetry in Biomechanics and Gait Mechanics)
Show Figures

Figure 1

16 pages, 1364 KiB  
Article
Enhancing Hydrophobicity of Nanocellulose-Based Films by Coating with Natural Wax from Halimium viscosum
by Ana Ramos, Jesus M. Rodilla, Rodrigo Ferreira and Ângelo Luís
Appl. Sci. 2025, 15(13), 7576; https://doi.org/10.3390/app15137576 (registering DOI) - 6 Jul 2025
Abstract
This study aimed to improve the hydrophobicity of cellulose nanofibril (CNF) films using a natural wax coating. For this purpose, firstly, the selection, extraction and characterization of a natural wax and fatty acids were carried out. These compounds were extracted from the aerial [...] Read more.
This study aimed to improve the hydrophobicity of cellulose nanofibril (CNF) films using a natural wax coating. For this purpose, firstly, the selection, extraction and characterization of a natural wax and fatty acids were carried out. These compounds were extracted from the aerial part of the Halimium viscosum plant. The chromatogram resulting from the chemical analysis of the extract revealed the presence of 15 compounds, with nonacosane being the major compound present. For film production, two different chemical pulps gels (sulfite and sulfate) were first characterized in terms of solids content, rheology and Fourier transform infrared spectroscopy (FTIR). The CNF films were produced by the solvent casting method, coated on one side with the extracted wax and subsequently characterized by wettability, surface energy, differential scanning calorimetry (DSC), FTIR, structural properties and water vapor permeability. The results showed that the wax-coated films exhibited a significant increase in water resistance, with a water contact angle exceeding 100°, demonstrating improved hydrophobicity. Also, the water vapor transmission rate (WVTR) of the films was drastically reduced after wax coating. Furthermore, the coated films maintained good transparency, making them a viable alternative to synthetic plastic. This study highlights the potential of natural wax coatings to improve the moisture barrier properties of biodegradable CNF films, promoting their application in sustainable packaging solutions. Full article
Show Figures

Figure 1

15 pages, 3414 KiB  
Article
Dual Inhibition of SRC Family Kinases and Sorafenib Enhances Anti-Tumor Activity in Hepatocellular Carcinoma Cells
by Loraine Kay Cabral, Cyrollah Disoma, Paola Tarchi, Korri Elvanita El-Khobar, Agustiningsih Agustiningsih, Francesco Dituri, Claudio Tiribelli and Caecilia Sukowati
Int. J. Mol. Sci. 2025, 26(13), 6506; https://doi.org/10.3390/ijms26136506 (registering DOI) - 6 Jul 2025
Abstract
Hepatocellular carcinoma (HCC) remains a major clinical challenge due to its high recurrence rate and limited response to monotherapies, such as sorafenib—the standard first-line therapy for advanced HCC. This is partly attributed to its cellular heterogeneity. Increasing evidence implies SRC family kinase (SFK) [...] Read more.
Hepatocellular carcinoma (HCC) remains a major clinical challenge due to its high recurrence rate and limited response to monotherapies, such as sorafenib—the standard first-line therapy for advanced HCC. This is partly attributed to its cellular heterogeneity. Increasing evidence implies SRC family kinase (SFK) activation in HCC progression, highlighting the potential of SRC-targeted therapies. In this study, we observed that SRC and YES1 were significantly upregulated in clinical HCC specimens compared to its adjacent non-tumoral tissues (p < 0.001), suggesting relevance as therapeutic targets. High SRC expression was noticed in patients with poor prognosis, as confirmed in TCGA cohort. To evaluate the efficacy of dual targeting, we assessed the combination between SRC inhibitors, saracatinib and dasatinib, with sorafenib in six hepatic cell models, representing both S1 and S2 subtypes. Cytotoxicity assays demonstrated reduced cell viability with the combination therapies compared to either monotherapy, irrespective of the HCC subtype. Wound healing and Transwell migration assays revealed inhibition of cell migration and invasion following combination treatment, underscoring its potential to suppress metastatic behavior. RT-qPCR analysis further confirmed downregulation of the expression of MMP2 and MMP9, genes associated with HCC cell invasion. Additionally, combined therapies decreased VEGFA and HIF1A expression compared to sorafenib alone, suggesting a potential to counteract the adaptive resistance mechanisms of cells to sorafenib. In summary, the combination of SFK inhibitors with sorafenib significantly enhances anti-tumor activity, offering a promising strategy to address HCC cellular heterogeneity and improve treatment efficacy. Full article
Show Figures

Figure 1

32 pages, 4364 KiB  
Article
Predictive and Prognostic Relevance of ABC Transporters for Resistance to Anthracycline Derivatives
by Rümeysa Yücer, Rossana Piccinno, Ednah Ooko, Mona Dawood, Gerhard Bringmann and Thomas Efferth
Biomolecules 2025, 15(7), 971; https://doi.org/10.3390/biom15070971 (registering DOI) - 6 Jul 2025
Abstract
Anthracyclines have been clinically well established in cancer chemotherapy for decades. The main limitations of this drug class are the development of resistance and severe side effects. In the present investigation, we analyzed 30 anthracyclines in a panel of 59 cell lines of [...] Read more.
Anthracyclines have been clinically well established in cancer chemotherapy for decades. The main limitations of this drug class are the development of resistance and severe side effects. In the present investigation, we analyzed 30 anthracyclines in a panel of 59 cell lines of the National Cancer Institute, USA. The log10IC50 values varied from −10.49 M (3′-deamino-3′-(4″-(3″-cyano)morpholinyl)-doxorubicin, 1) to −4.93 M (N,N-dibenzyldaunorubicin hydrochloride, 30). Multidrug-resistant NCI-ADR-Res ovarian cancer cells revealed a high degree of resistance to established anthracyclines (between 18-fold to idarubicin (4) and 166-fold to doxorubicin (13) compared to parental, drug-sensitive OVCAR8 cells). The resistant cells displayed only low degrees of resistance (1- to 5-fold) to four other anthracyclines (7, 18, 28, 30) and were even hypersensitive (collaterally sensitive) to two compounds (1, 26). Live cell time-lapse microscopy proved the cross-resistance of the three chosen anthracyclines (4, 7, 9) on sensitive CCRF/CEM and multidrug-resistant CEM/ADR5000 cells. Structure–activity relationships showed that the presence of tertiary amino functions is helpful in avoiding resistance, while primary amines rather increased resistance development. An α-aminonitrile function as in compound 1 was favorable. Investigating the mRNA expression of 49 ATP-binding cassette (ABC) transporter genes showed that ABCB1/MDR1 encoding P-glycoprotein was the most important one for acquired and inherent resistance to anthracyclines. Molecular docking demonstrated that all anthracyclines bound to the same binding domain at the inner efflux channel side of P-glycoprotein with high binding affinities. Kaplan–Meier statistics of RNA sequencing data of more than 8000 tumor biopsies of TCGA database revealed that out of 23 tumor entities high ABCB1 expression was significantly correlated with worse survival times for acute myeloid leukemia, multiple myeloma, and hepatocellular carcinoma patients. This indicates that ABCB1 may serve as a prognostic marker in anthracycline-based chemotherapy regimens in these tumor types and a target for the development of novel anthracycline derivatives. Full article
(This article belongs to the Special Issue Current Advances in ABC Transporters in Physiology and Disease)
Show Figures

Graphical abstract

15 pages, 10576 KiB  
Article
Mapping the Distribution of Viruses in Wild Apple Populations in the Southeast Region of Kazakhstan
by Nazym Kerimbek, Marina Khusnitdinova, Aisha Taskuzhina, Anastasiya Kapytina, Alexandr Pozharskiy, Abay Sagitov and Dilyara Gritsenko
Forests 2025, 16(7), 1119; https://doi.org/10.3390/f16071119 (registering DOI) - 6 Jul 2025
Abstract
Kazakhstan is recognized as one of the primary centers of origin of the wild apple Malus sieversii, concentrated mainly in the mountains like Trans-Ile and Zhongar Alatau, as well as parts of the Tarbagatay, Talas Alatau, and Karatau ranges. As the wild [...] Read more.
Kazakhstan is recognized as one of the primary centers of origin of the wild apple Malus sieversii, concentrated mainly in the mountains like Trans-Ile and Zhongar Alatau, as well as parts of the Tarbagatay, Talas Alatau, and Karatau ranges. As the wild progenitor of Malus domestica, M. sieversii harbors a critical genetic diversity essential for apple breeding and conservation efforts. However, its natural populations are increasingly threatened by latent viral infection, which weakens trees, reduces reproduction, and hinders regeneration. In this study, the spread of apple chlorotic leaf spot virus (ACLSV) and apple stem pitting virus (ASPV) was documented in four wild apple populations, with detection rates of 50.2% and 42.2%, respectively. Mixed infections were observed in 28.8% of sampled trees. Apple stem grooving virus (ASGV) was detected exclusively in cultivated orchards, whereas apple mosaic virus (ApMV) and apple necrotic mosaic virus (ApNMV) were not found in either wild forests or cultivated orchards. Using Geographic Information System (GIS) technology, we developed the first spatial distribution maps of these viruses in wild apple forests in the Tian Shan region, revealing site-specific variation and infection rates. These results underscore the importance of monitoring viral infections in wild M. sieversii populations to preserve genetically valuable, virus-free germplasm critical for apple breeding, crop improvement, and sustainable orchard management. Full article
(This article belongs to the Special Issue Forest Pathogens: Detection, Diagnosis, and Control)
Show Figures

Figure 1

21 pages, 12768 KiB  
Article
Applicability Analysis with the Improved Spectral Unmixing Models Based on the Measured Hyperspectral Data of Mixed Minerals
by Haonan Zhang, Lizeng Duan, Yang Zhang, Huayu Li, Donglin Li and Yan Li
Minerals 2025, 15(7), 715; https://doi.org/10.3390/min15070715 (registering DOI) - 6 Jul 2025
Abstract
Hyperspectral technology can non-destructively identify and analyze minerals. However, the quantitative inversion of different components in mixed minerals remains difficult in mineral spectral analysis. A set of mineral samples was prepared from dolomite and gypsum, varying in their components. Three improved spectral decomposition [...] Read more.
Hyperspectral technology can non-destructively identify and analyze minerals. However, the quantitative inversion of different components in mixed minerals remains difficult in mineral spectral analysis. A set of mineral samples was prepared from dolomite and gypsum, varying in their components. Three improved spectral decomposition models were proposed: the Continuum Removal-Fully Constrained Linear Spectral Model (CR-FCLSM), the Natural Logarithm-Fully Constrained Linear Spectral Model (NL-FCLSM), and the Ratio Derivative Model (RDM). The unmixing Abundance Error (AE) was 0.161, 0.051, and 0.082 for CR-FCLSM, NL-FCLSM, and RDM. The results of the three improved linearized unmixing models are better than those of the traditional linear spectral unmixing model. The NL-FCLSM effectively enhanced the linear characteristics of the spectrum, making it more suitable for two mineral mixing scenarios. The systematic bias of CR-FCLSM may be due to its insufficient sensitivity to low-abundance signals. The stability of RDM depends on the selection of a strong linear band. The unmixing experiments of the measured spectra and the data from the USGS spectral library demonstrate that the improved linear unmixing model is more accurate than the traditional linear spectral model and simpler to calculate than the nonlinear spectral model, providing a new approach for demodulating hyperspectral images. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

12 pages, 242 KiB  
Article
Knowledge of Homosexuality and Attitudes Toward Lesbian and Gay Parenting Among Israeli Nurses in Mother-Child Health Clinics
by Eitan Gur, Oren Wacht, Dorit Segal-Engelchin and Orli Grinstein-Cohen
Societies 2025, 15(7), 189; https://doi.org/10.3390/soc15070189 (registering DOI) - 6 Jul 2025
Abstract
The growing number of lesbian and gay (LG) parent families in Israel, along with the increasing involvement of nurses in Mother-Child Health Clinics (MCHCs) in supporting them, served as the impetus for this study. The study aimed to examine (1) MCHC nurses’ knowledge [...] Read more.
The growing number of lesbian and gay (LG) parent families in Israel, along with the increasing involvement of nurses in Mother-Child Health Clinics (MCHCs) in supporting them, served as the impetus for this study. The study aimed to examine (1) MCHC nurses’ knowledge of homosexuality and attitudes toward LG parenting; (2) the association between their knowledge and attitudes; and (3) their association with socio-demographic, professional, and LG-related characteristics. Findings from 65 MCHC nurses revealed moderate levels of knowledge about homosexuality, low levels of negative attitudes, and moderate levels of positive attitudes toward LG parenting. Nurses who were Jewish, secular, or living in a city had greater knowledge about homosexuality and fewer negative beliefs about LG parenting. Acquaintance with LG individuals was associated with fewer negative beliefs about LG parenting. Greater knowledge about homosexuality correlated with fewer negative beliefs and more positive perceptions of LG parenting, suggesting that enhanced knowledge fosters more positive attitudes toward LG parenting. The findings emphasize the need for tailored, knowledge-based training in nursing education for MCHC settings, considering nurses’ diverse cultural backgrounds, level of religiosity, and familiarity with LG individuals. Incorporating content on homosexuality and LG parenting may promote more inclusive and supportive care practices. Full article
(This article belongs to the Special Issue Queer Care: Addressing LGBTQ+ Needs in Healthcare and Social Services)
11 pages, 301 KiB  
Article
AI as Sub-Symbolic Systems: Understanding the Role of AI in Higher Education Governance
by Xiaomin Li, David A. Turner and Baocun Liu
Educ. Sci. 2025, 15(7), 866; https://doi.org/10.3390/educsci15070866 (registering DOI) - 6 Jul 2025
Abstract
This paper develops the argument that, in the application of AI to improve the system of governance for higher education, machine learning will be more effective in some areas than others. To make that assertion more systematic, a classificatory taxonomy of types of [...] Read more.
This paper develops the argument that, in the application of AI to improve the system of governance for higher education, machine learning will be more effective in some areas than others. To make that assertion more systematic, a classificatory taxonomy of types of decisions is necessary. This paper draws upon the classification of decision processes as either symbolic or sub-symbolic. Symbolic approaches focus on whole system design and emphasise logical coherence across sub-systems, while sub-symbolic approaches emphasise localised decision making with distributed engagement, at the expense of overall coherence. AI, especially generative AI, is argued to be best suited to working at the sub-symbolic level, although there are exceptions when discriminative AI systems are designed symbolically. The paper then uses Beer’s Viable System Model to identify whether the decisions necessary for viability are best approached symbolically or sub-symbolically. The need for leadership to recognise when a sub-symbolic system is failing and requires symbolic intervention is a specific case where human intervention may be necessary to override the conclusions of an AI system. The paper presents an initial analysis of which types of AI would support which functions of governance best, and explains why ultimate control must always rest with human leaders. Full article
(This article belongs to the Special Issue Higher Education Governance and Leadership in the Digital Era)
Show Figures

Figure 1

27 pages, 2898 KiB  
Review
A Review on Augmented Reality in Education and Geography: State of the Art and Perspectives
by Bogdan-Alexandru Rus and Ioan Valentin Sita
Appl. Sci. 2025, 15(13), 7574; https://doi.org/10.3390/app15137574 (registering DOI) - 6 Jul 2025
Abstract
Augmented Reality (AR) is an innovative tool in education, enhancing learning experiences across multiple domains. This literature review explores the application of AR in education, with a particular focus on geographical learning. The study begins by tracing the historical development of AR, distinguishing [...] Read more.
Augmented Reality (AR) is an innovative tool in education, enhancing learning experiences across multiple domains. This literature review explores the application of AR in education, with a particular focus on geographical learning. The study begins by tracing the historical development of AR, distinguishing it from Virtual Reality (VR) and highlighting its advantages in an educational context. The integration of AR into learning environments has been shown to improve engagement, comprehension of abstract concepts, and collaboration among students. The use of AR in geographical education through interactive applications, such as GeoAR and AR Sandbox, improves the exploration of spatial relationships, topographic maps, and environmental changes. Studies demonstrate that AR enhances students’ ability to recall information and understand geographical processes more effectively than with traditional methods. Furthermore, AR Sandbox implementations, including Illuminating Clay, SandScape, and AR Sandbox, are analyzed and compared. The paper also discusses future developments in AR for geography education for AR Sandbox, such as the integration of a mobile application for extended learning and improving computing solutions through Raspberry Pi. These advancements aim to make AR systems more accessible and to increase the benefits to both students and professors. Full article
Show Figures

Figure 1

24 pages, 2683 KiB  
Article
Zone-Wise Uncertainty Propagation and Dimensional Stability Assessment in CNC-Turned Components Using Manual and Automated Metrology Systems
by Mohammad S. Alsoufi, Saleh A. Bawazeer, Mohammed W. Alhazmi, Hani Alhazmi and Hasan H. Hijji
Machines 2025, 13(7), 585; https://doi.org/10.3390/machines13070585 (registering DOI) - 6 Jul 2025
Abstract
Accurate measurement uncertainty quantification and its propagation are critical for dimensional compliance in precision manufacturing. This study presents a novel framework that examines the evolution of measurement error along the axial length of CNC-turned components, focusing on spatial and material-specific factors. A systematic [...] Read more.
Accurate measurement uncertainty quantification and its propagation are critical for dimensional compliance in precision manufacturing. This study presents a novel framework that examines the evolution of measurement error along the axial length of CNC-turned components, focusing on spatial and material-specific factors. A systematic experimental comparison was conducted between a manual Digital Vernier Caliper (DVC) and an automated Coordinate Measuring Machine (CMM) using five engineering materials: Aluminum Alloy 6061, Brass C26000, Bronze C51000, Carbon Steel 1020 Annealed, and Stainless Steel 304 Annealed. Dimensional measurements were taken from five consecutive machining zones to capture localized metrological behaviors. The results indicated that the CMM consistently achieved lower expanded uncertainty (as low as 0.00166 mm) and minimal propagated uncertainties (≤0.0038 mm), regardless of material hardness or cutting position. In contrast, the DVC demonstrated significantly higher uncertainty (up to 0.03333 mm) and propagated errors exceeding 0.035 mm, particularly in harder materials and unsupported zones affected by surface degradation and fixture variability. Root-sum-square (RSS) modeling confirmed that manual measurements are more prone to operator-induced error amplification. While the DVC sometimes recorded lower absolute errors, its substantial uncertainty margins hampered measurement reliability. To statistically validate these findings, a two-way ANOVA was performed, confirming that both the measurement system and machining zone significantly impacted uncertainty, as well as their interaction. These results emphasize the importance of material-informed and zone-sensitive metrology, highlighting the advantages of automated systems in sustaining measurement repeatability and dimensional stability in high-precision applications. Full article
(This article belongs to the Section Automation and Control Systems)
26 pages, 2535 KiB  
Article
Uncertainty Analysis and Risk Assessment for Variable Settlement Properties of Building Foundation Soils
by Xudong Zhou and Tao Wang
Buildings 2025, 15(13), 2369; https://doi.org/10.3390/buildings15132369 (registering DOI) - 6 Jul 2025
Abstract
Settlement analyses of foundation soils are very important for the investigation, design, and construction of buildings. However, due to complex natural sedimentary processes, soil-forming environments, and geological tectonic stress histories, settlement properties show obvious spatial variability and autocorrelation. Moreover, measurement data on the [...] Read more.
Settlement analyses of foundation soils are very important for the investigation, design, and construction of buildings. However, due to complex natural sedimentary processes, soil-forming environments, and geological tectonic stress histories, settlement properties show obvious spatial variability and autocorrelation. Moreover, measurement data on the physical and mechanical parameters of building foundation soils are limited. This limits the accuracy of formation stability analyses and safety evaluations. In this study, a series of field tests of building foundation soils were carried out, and the statistical physical and mechanical properties of the clay strata were obtained. A random field method and copula functions of uncertain geotechnical properties with limited survey data are proposed. A dual-yield surface constitutive model of the soil properties and a stability analysis method for uncertain deformation were developed. The detailed analytical procedures for soil deformation and stratum settlement are presented. The reliability functions and failure probabilities of variable settlement processes are calculated and analyzed. The impact of the spatial variation and cross-correlation of geotechnical properties on the probabilistic stability of variable land subsidence is discussed. This work presents an innovative analysis approach for evaluating the variable settlement properties of building foundation soils. The results show that the four different mechanical parameters can be regressed to linear equations. The horizontal fluctuation scale is significantly larger than the vertical scale. Copula theory provides a powerful framework for modeling limited geotechnical parameters. The bootstrap approach avoids parametric assumptions, leveraging empirical data to enhance the reliability analysis of variable settlement. The variability parameter exerts a greater influence on land subsidence processes than the correlation structure. The failure probabilities of variable stratum settlement for different cross-correlations of building foundation soils are different. These results provide an important reference for the safety of building engineering. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

19 pages, 3678 KiB  
Article
Creation of Low-Loss Dual-Ring Optical Filter via Temporal Coupled Mode Theory and Direct Binary Search Inverse Design
by Yuchen Hu, Tong Wang, Wen Zhou and Bo Hu
Photonics 2025, 12(7), 681; https://doi.org/10.3390/photonics12070681 (registering DOI) - 6 Jul 2025
Abstract
We propose a dual-ring optical filter based on direct binary search inverse design. The proposed device comprises two cascaded rings in an add–drop configuration. A physical model was established using temporal coupled mode theory to derive theoretical spectra and analyze key parameters governing [...] Read more.
We propose a dual-ring optical filter based on direct binary search inverse design. The proposed device comprises two cascaded rings in an add–drop configuration. A physical model was established using temporal coupled mode theory to derive theoretical spectra and analyze key parameters governing transmission performance. Based on theoretical results, a direct binary search algorithm was implemented. The parameters of the proposed device were calculated using a three-dimensional finite-difference time-domain method for verification. The numerical results demonstrate a free spectral range of 86 nm, with insertion loss and extinction ratios of 0.3 dB and 22 dB, respectively. The proposed device has a narrow spectral linewidth of 0.3 nm within a compact footprint of 24 μm × 25.5 μm. The device shows significant application potential in laser external cavities and dense wavelength division multiplexing systems. Moreover, this work provides a novel methodology for precision design of photonic devices. Full article
12 pages, 3521 KiB  
Article
Effect of Alternating Magnetic Field Intensity on Microstructure and Corrosion Properties of Deposited Metal in 304 Stainless Steel TIG Welding
by Jinjie Wang, Jiayi Li, Haokai Wang, Zan Ju, Juan Fu, Yong Zhao and Qianhao Zang
Metals 2025, 15(7), 761; https://doi.org/10.3390/met15070761 (registering DOI) - 6 Jul 2025
Abstract
Stainless steel, due to its exceptional comprehensive properties, has been widely adopted as the primary material for liquid cargo tank containment systems and pipelines in liquefied natural gas (LNG) carriers. However, challenges such as hot cracking, excessive deformation, and the deterioration of welded [...] Read more.
Stainless steel, due to its exceptional comprehensive properties, has been widely adopted as the primary material for liquid cargo tank containment systems and pipelines in liquefied natural gas (LNG) carriers. However, challenges such as hot cracking, excessive deformation, and the deterioration of welded joint performance during stainless steel welding significantly constrain the construction quality and safety of LNG carriers. While conventional tungsten inert gas (TIG) welding can produce high-integrity welds, it is inherently limited by shallow penetration depth and low efficiency. Magnetic field-assisted TIG welding technology addresses these limitations by introducing an external magnetic field, which effectively modifies arc morphology, refines grain structure, enhances penetration depth, and improves corrosion resistance. In this study, TIG bead-on-plate welding was performed on 304 stainless steel plates, with a systematic investigation into the dynamic arc behavior during welding, as well as the microstructure and anti-corrosion properties of the deposited metal. The experimental results demonstrate that, in the absence of a magnetic field, the welding arc remains stable without deflection. As the intensity of the alternating magnetic field intensity increases, the arc exhibits pronounced periodic oscillations. At an applied magnetic field intensity of 30 mT, the maximum arc deflection angle reaches 76°. With increasing alternating magnetic field intensity, the weld penetration depth gradually decreases, while the weld width progressively expands. Specifically, at 30 mT, the penetration depth reaches a minimum value of 1.8 mm, representing a 44% reduction compared to the non-magnetic condition, whereas the weld width peaks at 9.3 mm, corresponding to a 9.4% increase. Furthermore, the ferrite grains in the weld metal are significantly refined at higher alternating magnetic field intensities. The weld metal subjected to a 30 mT alternating magnetic field exhibits the highest breakdown potential, the lowest corrosion rate, and the most protective passive film, indicating superior corrosion resistance compared to other tested conditions. Full article
(This article belongs to the Special Issue Advanced Metal Welding and Joining Technologies—2nd Edition)
Show Figures

Figure 1

21 pages, 1084 KiB  
Article
Modeling Hysteretically Nonlinear Piezoelectric Composite Beams
by Abdulaziz H. Alazemi and Andrew J. Kurdila
Vibration 2025, 8(3), 37; https://doi.org/10.3390/vibration8030037 (registering DOI) - 6 Jul 2025
Abstract
This paper presents a modeling framework for hysteretically nonlinear piezoelectric composite beams using functional differential equations (FDEs). While linear piezoelectric models are well established, they fail to capture the complex nonlinear behaviors that emerge at higher electric field strengths, particularly history-dependent hysteresis effects. [...] Read more.
This paper presents a modeling framework for hysteretically nonlinear piezoelectric composite beams using functional differential equations (FDEs). While linear piezoelectric models are well established, they fail to capture the complex nonlinear behaviors that emerge at higher electric field strengths, particularly history-dependent hysteresis effects. This paper develops a cascade model that integrates a high-dimensional linear piezoelectric composite beam representation with a nonlinear Krasnosel’skii–Pokrovskii (KP) hysteresis operator. The resulting system is formulated using a state-space model where the input voltage undergoes a history-dependent transformation. Through modal expansion and discretization of the Preisach plane, we derive a tractable numerical implementation that preserves essential nonlinear phenomena. Numerical investigations demonstrate how system parameters, including the input voltage amplitude, and hysteresis parameters significantly influence the dynamic response, particularly the shape and amplitude of limit cycles. The results reveal that while the model accurately captures memory-dependent nonlinearities, it depends on numerous real and distributed parameters, highlighting the need for efficient reduced-order modeling approaches. This work provides a foundation for understanding and predicting the complex behavior of piezoelectric systems with hysteresis, with potential applications in vibration control, energy harvesting, and precision actuation. Full article
(This article belongs to the Special Issue Nonlinear Vibration of Mechanical Systems)
17 pages, 1906 KiB  
Article
Effects of Psilocin and Psilocybin on Human 5-HT4 Serotonin and H2 Histamine Receptors in Perfused Hearts of Transgenic Mice
by Pauline Braekow, Joachim Neumann, Uwe Kirchhefer and Ulrich Gergs
Pharmaceuticals 2025, 18(7), 1009; https://doi.org/10.3390/ph18071009 (registering DOI) - 6 Jul 2025
Abstract
Background/Objectives: Hallucinogenic substances such as psilocybin, psilocin, ergometrine, ergotamine, and lysergic acid diethylamide (LSD) have been demonstrated to enhance the force of contraction (FOC), in part due to the phosphorylation of phospholamban in human atrial preparations via 5-HT4 serotonin receptors and/or [...] Read more.
Background/Objectives: Hallucinogenic substances such as psilocybin, psilocin, ergometrine, ergotamine, and lysergic acid diethylamide (LSD) have been demonstrated to enhance the force of contraction (FOC), in part due to the phosphorylation of phospholamban in human atrial preparations via 5-HT4 serotonin receptors and/or H2 histamine receptors. However, whether psilocybin or psilocin acts at isolated mammalian ventricular preparations and whether they increase protein phosphorylation in the mammalian ventricle remains to be elucidated. Methods: To this end, the FOC and phospholamban phosphorylation in isolated perfused hearts from transgenic mice with cardiomyocyte-specific overexpression of either human 5-HT4 receptors (5-HT4-TG) or human H2 receptors (H2-TG) and their wild-type littermates (WT) were examined. Furthermore, the ergot alkaloids ergometrine, ergotamine, and LSD were used as references. Results: Psilocybin and psilocin enhanced the FOC to 137% and to 152%, respectively, and elevated the phospholamban phosphorylation in isolated perfused hearts from 5-HT4-TG. In H2-TG hearts, psilocybin and psilocin increased the FOC to a much lesser extent but had no effect on the phospholamban phosphorylation. In contrast, LSD increased the FOC and phosphorylation state of phospholamban in isolated hearts of both 5-HT4-TG and H2-TG. On the other hand, ergometrine and ergotamine increased the FOC only in H2-TG. Ergometrine increased the phosphorylation state of phospholamban in perfused hearts from H2-TG, but not from 5-HT4-TG. Ergotamine failed to increase the phospholamban phosphorylation in both H2-TG and 5-HT4-TG. Psilocybin, psilocin, ergotamine, ergometrine, and LSD were unable to increase FOC and phospholamban phosphorylation in perfused hearts from WT. Conclusions: The increase in the phosphorylation state of phospholamban could provide a partial explanation for the positive inotropic effects and the relaxant effects of not only psilocybin and psilocin but also ergometrine and LSD in the isolated hearts of the animals used in this study. Full article
(This article belongs to the Special Issue Psychedelics: A New Drug Candidate for Treating Mental Illness)
Show Figures

Figure 1

16 pages, 1292 KiB  
Article
Compartmentalization of Free Fatty Acids in Blood-Feeding Tabanus bovinus Females
by Mikołaj Drozdowski and Mieczysława Irena Boguś
Insects 2025, 16(7), 696; https://doi.org/10.3390/insects16070696 (registering DOI) - 6 Jul 2025
Abstract
Lipids play vital roles in insect physiology, functioning as energy reserves, membrane constituents, and cuticular protectants. However, few studies have examined the anatomical distribution of lipids in blood-feeding Diptera and compared the compositions of the cuticular and internal compartments. This study analyzes the [...] Read more.
Lipids play vital roles in insect physiology, functioning as energy reserves, membrane constituents, and cuticular protectants. However, few studies have examined the anatomical distribution of lipids in blood-feeding Diptera and compared the compositions of the cuticular and internal compartments. This study analyzes the qualitative and quantitative profiles of free fatty acids (FFAs) in the female Tabanus bovinus, a hematophagous horsefly species, across different anatomical regions, including the head, wings, legs, thorax, and abdomen. The surface and internal lipid fractions were isolated using petroleum ether/dichloromethane extraction followed by sonication. GC-MS revealed the presence of 21 FFAs, including 16 saturated (C7:0, C8:0, C9:0, C10:0, C11:0, C12:0, C13:0, C14:0, C15:0, C16:0, C17:0, C18:0, C19:0, C20:0, C22:0, C24:0) and five unsaturated (C16:1, C18:2, C18:1, C20:5, C20:4). The head and wings showed the highest concentrations of cuticular FFAs. At the same time, internal lipid stores were most prominent in the thorax and abdomen (but four times lower than in the head cuticle), reflecting their role in energy storage and reproduction. All cuticular and internal extracts were dominated by C16:0, C18:0, and C18:1. Notably, several FFAs were undetected in specific compartments: C10:0 from inside the head, C11:0 and C13:0 from inside all examined body parts, C19:0 was absent from inside the head, wings and legs, while C20:5 and C20:4 were absent from both the cuticular and internal lipid pools of the wings. Interestingly, our analysis of the cuticle on the thorax and abdomen together revealed that both C13:0 and C19:0 were present only on the dorsal side, i.e., absent from the ventral side. These absences suggest a selective lipid metabolism tailored to the functional and ecological demands of T. bovinus females. Our findings suggest that the absence of specific compounds from individual body parts may serve as an indicator of physiological specialization. This work provides new insights into lipid compartmentalization in Tabanidae and offers a framework for future comparative and ecological lipidomics studies in insects. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

21 pages, 6884 KiB  
Review
Advanced Strategies for Suppressing the Self-Corrosion of the Anode in Al–Air Batteries
by Shenjia Li, Zhiqiang Liu, Xiangfeng Wei, Hao Wu, Haoyu Mei and Jiehua Liu
Metals 2025, 15(7), 760; https://doi.org/10.3390/met15070760 (registering DOI) - 6 Jul 2025
Abstract
Aluminum–air batteries are highly promising energy storage systems due to their high theoretical energy density, environmental friendliness, and cost-effectiveness. However, the self-corrosion of aluminum anodes in alkaline electrolytes remains a critical issue that significantly limits their practical application and commercialization. This review paper [...] Read more.
Aluminum–air batteries are highly promising energy storage systems due to their high theoretical energy density, environmental friendliness, and cost-effectiveness. However, the self-corrosion of aluminum anodes in alkaline electrolytes remains a critical issue that significantly limits their practical application and commercialization. This review paper comprehensively examined various advanced strategies aimed at suppressing the self-corrosion of anodes in Al–air batteries. We summarized the fundamental principles of these approaches, their advantages and disadvantages, and provided an in-depth analysis of their effectiveness, supported by experimental and theoretical evidence. Specifically, this review systematically analyzes six major strategies for suppressing anode self-corrosion: anode alloying, electrolyte additives, novel electrolytes, anode surface treatment, battery structural design, and computer-aided investigation. Furthermore, we proposed the challenges and future research directions in this field. Overall, this review aimed to offer valuable insights and guidance for the development of high-performance, long-lasting Al–air batteries. Full article
(This article belongs to the Section Corrosion and Protection)
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop