Source of Explant and Light Spectrum Influence in Adventitious Shoot Regeneration of Prunus salicina Lindl. (Japanese plum)
Abstract
1. Introduction
2. Results
2.1. Adventitious Shoot Regeneration from Calli
2.2. Adventitious Shoot Regeneration from Seed Explants
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Seed Material
4.3. Explant Preparation
4.4. Culture Conditions and De Novo Regeneration
4.5. Experimental Design and Data Collection
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petri, C.; Burgos, L. Transformation of fruit trees: Useful breeding tool or continued future prospect? Transgenic Res. 2005, 14, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Canli, F.A.; Tian, L. Regeneration of adventitious shoots from mature stored cotyledons of Japanese plum (Prunus salicina Lindl.). Sci. Hortic. 2009, 120, 64–69. [Google Scholar] [CrossRef]
- Pérez-Clemente, R.M.; Pérez-Sanjuán, A.; García-Férriz, L.; Beltrán, J.P.; Cañas, L.A. Transgenic peach plants (Prunus persica L.) produced by genetic transformation of embryo sections using the green fluorescent protein (GFP) as an in vivo marker. Mol. Breed. 2005, 14, 419–427. [Google Scholar] [CrossRef]
- González-Padilla, I.M.; Webb, K.; Scorza, R. Early antibiotic selection and efficient rooting and acclimatization improve the production of transgenic plum plants (Prunus domestica L.). Plant Cell Rep. 2003, 22, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Wen, Y.; Jayasankar, S.; Sibbald, S. Regeneration of Prunus salicina Lindl. (Japanese plum) from hypocotyls of mature seeds. Vitr. Cell. Dev. Biol. Plant 2007, 43, 343–347. [Google Scholar] [CrossRef]
- Pérez-Jiménez, M.; Cantero-Navarro, E.; Acosta, M.; Cos-Terrer, J. Relationships between endogenous hormonal content and direct somatic embryogenesis in Prunus persica L. Batsch cotyledons. Plant Growth Regul. 2013, 71, 219–224. [Google Scholar] [CrossRef]
- Pérez-Jiménez, M.; Carrillo Navarro, A.; Cos Terrer, J. Regeneration of peach (Prunus persica L. Batsch) cultivars and Prunus persica × Prunus dulcis rootstocks via organogenesis. Plant Cell Tissue Organ Cult. 2012, 108, 55–62. [Google Scholar] [CrossRef]
- Negri, P.; Savazzini, F.; Pereira da Silva, P.A.; Dondini, L.; Tartarini, S. Shoot organogenesis from apricot meristematic bulks. Acta Hortic. 2017, 1172, 95–98. [Google Scholar] [CrossRef]
- George, E.F. Plant Propagation by Tissue Culture. Part 1. The Technology, 2nd ed.; Exegetics Limited: Worcester, UK, 1993; pp. 435–445. [Google Scholar]
- Tang, H.; Ren, Z.L.; Reustle, G.; Krczal, G. Plant regeneration from leaves of sweet and sour cherry cultivars. Sci. Hortic. 2002, 93, 235–244. [Google Scholar] [CrossRef]
- Dutta Gupta, S.; Jatothu, B. Fundamentals and applications of light-emitting diodes (LEDs) in in vitro plant growth and morphogenesis. Plant Biotechnol. Rep. 2013, 7, 211–220. [Google Scholar] [CrossRef]
- Budiarto, K. Spectral quality affects morphogenesis on Anthurium plantlet during in vitro culture. Agrivita 2010, 32, 234–240. [Google Scholar]
- Lin, Y.; Li, J.; Li, B.; He, T.; Chun, Z. Effects of light quality on growth and development of protocorm-like bodies of Dendrobium officinale in vitro. Plant Cell Tissue Organ Cult. 2010, 105, 329–335. [Google Scholar] [CrossRef]
- Urtubia, C.; Carrasco, B.; Peña, L.; Almeyda, C.; Prieto, H. Agrobacterium-mediated genetic transformation of Prunus salicina. Plant Cell Rep. 2008, 27, 1333–1340. [Google Scholar] [CrossRef] [PubMed]
- Canli, F.A.; Tian, L. In vitro shoot regeneration from stored mature cotyledons of sweet cherry (Prunus avium L.) cultivars. Sci. Hortic. 2008, 116, 34–40. [Google Scholar] [CrossRef]
- Elmoreigi, R.A.; El-Maaty, S.A.; Hassanen, S.A.; El-Khateeb, M.A.; El-Morshedy, M.A. Effect of explant type and growth regulators on in vitro regeneration of apricot (Prunus armeniaca L.) Al-Amar rootstock. Plant Cell Tissue Organ Cult. 2025, 160, 1. [Google Scholar] [CrossRef]
- Ricci, A.; Sabbadini, S.; Mezzetti, B. Genetic Transformation in Peach (Prunus persica L.): Challenges and Ways Forward. Plants 2020, 9, 971. [Google Scholar] [CrossRef] [PubMed]
- Mezzetti, B.; Pandolfini, T.; Navacchi, O.; Landi, L. Genetic transformation of Vitis vinifera via organogenesis. BMC Biotechnol. 2002, 2, 18. [Google Scholar] [CrossRef] [PubMed]
- Sabbadini, S.; Ricci, A.; Limera, C.; Baldoni, E.; Mezzetti, B. Factors Affecting the Regeneration, via Organogenesis, and the Selection of Transgenic Calli in the Peach Rootstock Hansen 536 (Prunus persica × Prunus amygdalus) to Express an RNAi Construct against PPV Virus. Plants 2019, 8, 178. [Google Scholar] [CrossRef] [PubMed]
- Petri, C.; Scorza, R.; Srinivasan, C. Highly efficient transformation protocol for plum (Prunus domestica L.). Methods Mol. Biol. 2012, 847, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Mante, S.; Scorza, R.; Cordts, J.M. Plant regeneration from cotyledons of Prunus persica, Prunus domestica and Prunus cerasus. Plant Cell Tissue Organ Cult. 1989, 19, 171–184. [Google Scholar] [CrossRef]
- Tang, H.R.; Ren, Z.L.; Krczal, G. Somatic embryogenesis and organogenesis from immature embryo cotyledons of three sour cherry cultivars (Prunus cerasus L.). Sci. Hortic. 2000, 83, 109–126. [Google Scholar] [CrossRef]
- Larriba, E.; López-González, S.; Cano, A.; de la Cruz, J.; Cañamero, M.; Cano, E.; Ponce, M.R.; Micol, J.L. Dynamic Hormone Gradients Regulate Wound-Induced de novo Organ Formation in Tomato Hypocotyl Explants. Int. J. Mol. Sci. 2021, 22, 11843. [Google Scholar] [CrossRef] [PubMed]
- Batista, D.S.; Pasqual, M.; Pereira, G.M.; Duarte, C.V.; de Castro, E.M.; Chalfun-Junior, A. Light quality in plant tissue culture: Does it matter? Vitr. Cell. Dev. Biol. Plant 2018, 54, 195–215. [Google Scholar] [CrossRef]
- Zielinska, S.; Szopa, A.; Ekiert, H. LED illumination and plant growth regulators’ effects on growth and phenolic acids accumulation in Moluccella laevis L. in vitro cultures. Acta Physiol. Plant. 2020, 42, 72. [Google Scholar] [CrossRef]
- Wang, H.; Liu, H.; Wang, W.; Zu, Y. Effects of Thidiazuron, basal medium and light quality on adventitious shoot regeneration from in vitro cultured stem of Populus alba × P. berolinensis. J. For. Res. 2008, 19, 257–259. [Google Scholar] [CrossRef]
- Loshyna, L.; Bulko, O.; Kuchuk, M. Adventitious regeneration of blackberry and raspberry shoots and the assessment of the LED-lighting impact. Zemdirb.-Agric. 2022, 109, 49–54. [Google Scholar] [CrossRef]
- Espinosa, A.C.; Pijut, P.M.; Michler, C.H. Adventitious Shoot Regeneration and Rooting of Prunus serotina In Vitro Cultures. HortScience 2006, 41, 193–201. [Google Scholar] [CrossRef]
- Zhou, H.; Li, M.; Zhao, X.; Fan, X.; Guo, A. Plant regeneration from in vitro leaves of the peach rootstock ‘Nemaguard’ (Prunus persica × P. davidiana). Plant Cell Tissue Organ Cult. 2010, 101, 79–87. [Google Scholar] [CrossRef]
- Han, J.; Li, Y.; Zhao, Y.; Sun, Y.; Li, Y.; Peng, Z. How does light regulate plant regeneration? Front. Plant Sci. 2025, 15, 1474431. [Google Scholar] [CrossRef] [PubMed]
- Barceló-Muñoz, A.; Barceló-Muñoz, M.; Gago-Calderon, A. Effect of LED Lighting on Physical Environment and Microenvironment on In Vitro Plant Growth and Morphogenesis: The Need to Standardize Lighting Conditions and Their Description. Plants 2022, 11, 60. [Google Scholar] [CrossRef] [PubMed]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
FOC (%) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BA (mg mL−1) | Light | |||||||||||||||
Blue | Red | Mix | Control | |||||||||||||
1.5 | 76.30 | ± | 11.37 | ab | 100.00 | ± | 0.00 | a | 83.33 | ± | 11.67 | ab | 81.26 | ± | 11.67 | Ab |
2 | 51.20 | ± | 17.36 | b | 100.00 | ± | 0.00 | a | 76.67 | ± | 15.82 | ab | 83.33 | ± | 16.67 | Ab |
2.5 | 53.00 | ± | 13.90 | b | 100.00 | ± | 0.00 | a | 66.67 | ± | 16.08 | ab | 85.20 | ± | 3.45 | Ab |
FOSE (%) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BA (mg mL−1) | Light | |||||||||||||||
Blue | Red | Mix | Control | |||||||||||||
1.5 | 0.00 | ± | 0.00 | d | 20.00 | ± | 12.00 | d | 20.00 | ± | 12.00 | bc | 33.33 | ± | 13.30 | bc |
2 | 80.00 | ± | 20.00 | ab | 40.00 | ± | 14.50 | bc | 25.00 | ± | 8.00 | d | 50.00 | ± | 28.90 | abc |
2.5 | 66.67 | ± | 21.10 | abc | 80.00 | ± | 20.00 | ab | 0.00 | ± | 0.00 | d | 0.00 | ± | 0.00 | d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Sierra, C.; Cos-Terrer, J.E.; Romero-Muñoz, M.; Pérez-Jiménez, M. Source of Explant and Light Spectrum Influence in Adventitious Shoot Regeneration of Prunus salicina Lindl. (Japanese plum). Plants 2025, 14, 2230. https://doi.org/10.3390/plants14142230
López-Sierra C, Cos-Terrer JE, Romero-Muñoz M, Pérez-Jiménez M. Source of Explant and Light Spectrum Influence in Adventitious Shoot Regeneration of Prunus salicina Lindl. (Japanese plum). Plants. 2025; 14(14):2230. https://doi.org/10.3390/plants14142230
Chicago/Turabian StyleLópez-Sierra, Carmen, José E. Cos-Terrer, Miriam Romero-Muñoz, and Margarita Pérez-Jiménez. 2025. "Source of Explant and Light Spectrum Influence in Adventitious Shoot Regeneration of Prunus salicina Lindl. (Japanese plum)" Plants 14, no. 14: 2230. https://doi.org/10.3390/plants14142230
APA StyleLópez-Sierra, C., Cos-Terrer, J. E., Romero-Muñoz, M., & Pérez-Jiménez, M. (2025). Source of Explant and Light Spectrum Influence in Adventitious Shoot Regeneration of Prunus salicina Lindl. (Japanese plum). Plants, 14(14), 2230. https://doi.org/10.3390/plants14142230