The 2023 MDPI Annual Report has
been released!
 
16 pages, 8877 KiB  
Article
Deciphering Key microRNA Regulated Pathways in Tissue-Engineered Blood Vessels: Implications for Vascular Scaffold Production
by Lenize da Silva Rodrigues, Tainara Francini Felix, Iael Weissberg Minutentag, Patricia Pintor Reis and Matheus Bertanha
Int. J. Mol. Sci. 2024, 25(12), 6762; https://doi.org/10.3390/ijms25126762 (registering DOI) - 20 Jun 2024
Abstract
MicroRNAs (miRNAs) are non-coding RNAs involved in the regulation of gene expression associated with cell differentiation, proliferation, adhesion, and important biological functions such as inflammation. miRNAs play roles associated with the pathogenesis of chronic degenerative disorders including cardiovascular diseases. Understanding the influence of [...] Read more.
MicroRNAs (miRNAs) are non-coding RNAs involved in the regulation of gene expression associated with cell differentiation, proliferation, adhesion, and important biological functions such as inflammation. miRNAs play roles associated with the pathogenesis of chronic degenerative disorders including cardiovascular diseases. Understanding the influence of miRNAs and their target genes can effectively streamline the identification of key biologically active pathways that are important in the development of vascular grafts through the tissue engineering of blood vessels. To determine miRNA expression levels and identify miRNA target genes and pathways with biological roles in scaffolds that have been repopulated with adipose-derived stem cells (ASCs) generated through tissue engineering for the construction of blood vessels. miRNA quantification assays were performed in triplicate to determine miRNA expression in a total of 20 samples: five controls (natural inferior vena cava), five scaffolds recellularized with ASCs and differentiated into the endothelium (luminal layer), five samples of complete scaffolds seeded with ASCs differentiated into the endothelium (luminal layer) and smooth muscle (extraluminal layer), and five samples of ASC without cell differentiation. Several differentially expressed miRNAs were identified and predicted to modulate target genes with roles in key pathways associated with angiogenesis, vascular system control, and endothelial and smooth muscle regulation, including migration, proliferation, and growth. These findings underscore the involvement of these pathways in the regulatory mechanisms that are essential for vascular scaffold production through tissue engineering. Our research contributes to the knowledge of miRNA-regulated mechanisms, which may impact the design of vascular substitutes, and provide valuable insights for enhancing clinical practice. The molecular pathways regulated by miRNAs in tissue engineering of blood vessels (TEBV) allowed us to elucidate the main phenomena involved in cellular differentiation to constitute a blood vessel, with the main pathways being essential for angiogenesis, cellular differentiation, and differentiation into vascular smooth muscle. Full article
(This article belongs to the Special Issue Recent Development in Scaffolds for Tissue Engineering)
Show Figures

Figure 1

14 pages, 4181 KiB  
Article
Pullulan Production from Sugarcane Bagasse Hemicellulosic Hydrolysate by Aureobasidium pullulans ATCC 42023 inBubble Column Reactor
by Rufis Fregue Tiegam Tagne, Mónica María Cruz-Santos, Felipe Antonio Fernandes Antunes, Vinícius Pereira Shibukawa, Sara Barboza Miano, Junie Albine Atangana Kenfack, Silvio Silvério da Silva, Serges Bruno Lemoupi Ngomade and Júlio César Santos
Fermentation 2024, 10(6), 322; https://doi.org/10.3390/fermentation10060322 (registering DOI) - 20 Jun 2024
Abstract
Due to its unique physicochemical properties, Pullulan is an exopolysaccharide with many applications in the food, biomedical, and pharmaceutical industries. Aiming to reduce its production cost, an interesting alternative is to consider other possibilities of raw materials, including the production of this biopolymer [...] Read more.
Due to its unique physicochemical properties, Pullulan is an exopolysaccharide with many applications in the food, biomedical, and pharmaceutical industries. Aiming to reduce its production cost, an interesting alternative is to consider other possibilities of raw materials, including the production of this biopolymer in a lignocellulosic biorefinery concept. Xylose is the main sugar of hemicellulosic hydrolysates obtained from different biomasses, and it is a sugar still not extensively exploited regarding its potential for pullulan production. This study aimed to evaluate the production of pullulan from sugarcane bagasse hemicellulosic hydrolysate by cultivating Aureobasidium pullulans ATCC 42023 in a bubble column reactor. The hemicellulosic hydrolysate was obtained through dilute acid treatment carried out in a stirred tank reactor before being detoxified to remove microbial growth inhibitors. The maximum concentration of 28.62 ± 1.43 g/L of pullulan was obtained after 120 h of fermentation in a bubble column reactor in batch mode. Analysis of spectroscopic properties through FTIR of the obtained pullulan revealed α-(1→6)-linked maltosyl units, similar to those of commercial samples of the biopolymer. XRD analysis showed that the prepared pullulan is amorphous, and a homogeneous morphology with a smooth surface of the pullulan was observed in SEM analysis. This study showed the potential of the production of pullulan from sugarcane bagasse hemicellulosic hydrolysate in a bubble column bioreactor, an alternative strategy for the industrial production of this biopolymer. Full article
(This article belongs to the Section Industrial Fermentation)
Show Figures

Figure 1

14 pages, 4752 KiB  
Article
Human Skin as an Ex Vivo Model for Maintaining Mycobacterium leprae and Leprosy Studies
by Natália Aparecida de Paula, Marcel Nani Leite, Daniele Ferreira de Faria Bertoluci, Cleverson Teixeira Soares, Patrícia Sammarco Rosa and Marco Andrey Cipriani Frade
Trop. Med. Infect. Dis. 2024, 9(6), 135; https://doi.org/10.3390/tropicalmed9060135 (registering DOI) - 20 Jun 2024
Abstract
The in vitro cultivation of M. leprae has not been possible since it was described as causing leprosy, and the limitation of animal models for clinical aspects makes studies on leprosy and bacteria–human host interaction a challenge. Our aim was to standardize the [...] Read more.
The in vitro cultivation of M. leprae has not been possible since it was described as causing leprosy, and the limitation of animal models for clinical aspects makes studies on leprosy and bacteria–human host interaction a challenge. Our aim was to standardize the ex vivo skin model (hOSEC) to maintenance and study of M. leprae as an alternative animal model. Bacillary suspensions were inoculated into human skin explants and sustained in DMEM medium for 60 days. Explants were evaluated by RT-PCR-16SrRNA and cytokine gene expression. The viability and infectivity of bacilli recovered from explants (D28 and D60) were evaluated using the Shepard’s model. All explants were RT-PCR-16SrRNA positive. The viability and infectivity of recovered bacilli from explants, analyzed after 5 months of inoculation in mice, showed an average positivity of 31%, with the highest positivity in the D28 groups (80%). Furthermore, our work showed different patterns in cytokine gene expression (TGF-β, IL-10, IL-8, and TNF-α) in the presence of alive or dead bacilli. Although changes can be made to improve future experiments, our results have demonstrated that it is possible to use the hOSEC to maintain M. leprae for 60 days, interacting with the host system, an important step in the development of experimental models for studies on the biology of the bacillus, its interactions, and drug susceptibility. Full article
Show Figures

Figure 1

16 pages, 6214 KiB  
Article
The Effect of Carpinus betulus Ash on the Maize as an Energy Crop and the Enzymatic Soil Properties
by Edyta Boros-Lajszner, Jadwiga Wyszkowska and Jan Kucharski
Energies 2024, 17(12), 3031; https://doi.org/10.3390/en17123031 (registering DOI) - 20 Jun 2024
Abstract
Maize can easily adapt to changing weather conditions, has moderate soil requirements, and offers high green mass productivity. The goals of this study were to assess the possibility of using ash from Carpinus betulus aided by soil amendment with compost and HumiAgra in [...] Read more.
Maize can easily adapt to changing weather conditions, has moderate soil requirements, and offers high green mass productivity. The goals of this study were to assess the possibility of using ash from Carpinus betulus aided by soil amendment with compost and HumiAgra in Zea mays cultivation and to determine the energy potential of maize. Wood ash had a relatively minimal effect on the combustion heat and calorific value of maize biomass. It increased the contents of C, H, S, N, O, and ash in the aerial parts of the maize. In addition, it positively affected the contents of organic carbon, total nitrogen, soil pH, sum of exchangeable base cations, total exchangeable capacity of soil, and degree of soil saturation with alkaline cations. In contrast, it strongly decreased the yield of maize, negatively affected the biochemical activity of the soil, and reduced the hydrolytic acidity of the soil. Soil amendment with compost and HumiAgra had positive effects on the heat of combustion; calorific value; the contents of C, H, S, N, O, and ash in the aerial parts of maize; and on the properties of the soil. In addition, they mitigated the adverse effects of wood ash on maize biomass and the enzymatic properties of the soil. Full article
(This article belongs to the Collection Feature Papers in Energy, Environment and Well-Being)
Show Figures

Figure 1

17 pages, 2403 KiB  
Article
Estimating Pavement Condition by Leveraging Crowdsourced Data
by Yangsong Gu, Mohammad Khojastehpour, Xiaoyang Jia and Lee D. Han
Remote Sens. 2024, 16(12), 2237; https://doi.org/10.3390/rs16122237 (registering DOI) - 20 Jun 2024
Abstract
Monitoring pavement conditions is critical to pavement management and maintenance. Traditionally, pavement distress is mainly identified via accelerometers, videos, and laser scanning. However, the geographical coverage and temporal frequency are constrained by the limited amount of equipment and labor, which sometimes may delay [...] Read more.
Monitoring pavement conditions is critical to pavement management and maintenance. Traditionally, pavement distress is mainly identified via accelerometers, videos, and laser scanning. However, the geographical coverage and temporal frequency are constrained by the limited amount of equipment and labor, which sometimes may delay road maintenance. By contrast, crowdsourced data, in a manner of crowdsensing, can provide real-time and valuable roadway information for extensive coverage. This study exploited crowdsourced Waze pothole and weather reports for pavement condition evaluation. Two surrogate measures are proposed, namely, the Pothole Report Density (PRD) and the Weather Report Density (WRD). They are compared with the Pavement Quality Index (PQI), which is calculated using laser truck data from the Tennessee Department of Transportation (TDOT). A geographically weighted random forest (GWRF) model was developed to capture the complicated relationships between the proposed measures and PQI. The results show that the PRD is highly correlated with the PQI, and the correlation also varies across the routes. It is also found to be the second most important factor (i.e., followed by pavement age) affecting the PQI values. Although Waze weather reports contribute to PQI values, their impact is significantly smaller compared to that of pothole reports. This paper demonstrates that surrogate pavement condition measures aggregated by crowdsourced data could be integrated into the state decision-making process by establishing nuanced relationships between the surrogated performance measures and the state pavement condition indices. The endeavor of this study also has the potential to enhance the granularity of pavement condition evaluation. Full article
Show Figures

Figure 1

12 pages, 1047 KiB  
Article
Prediction of Cesarean Section for Intrapartum Fetal Compromise: A Multivariable Model from a Prospective Observational Approach
by Blanca Novillo-Del Álamo, Alicia Martínez-Varea, Mar Nieto-Tous, Carmen Padilla-Prieto, Fernando Modrego-Pardo, Silvia Bello-Martínez de Velasco, María Victoria García-Florenciano and José Morales-Roselló
J. Pers. Med. 2024, 14(6), 658; https://doi.org/10.3390/jpm14060658 (registering DOI) - 20 Jun 2024
Abstract
Objective: A cesarean section for intrapartum fetal compromise (IFC) is performed to avoid potential damage to the newborn. It is, therefore, crucial to develop an accurate prediction model that can anticipate, prior to labor, which fetus may be at risk of presenting this [...] Read more.
Objective: A cesarean section for intrapartum fetal compromise (IFC) is performed to avoid potential damage to the newborn. It is, therefore, crucial to develop an accurate prediction model that can anticipate, prior to labor, which fetus may be at risk of presenting this condition. Material and Methods: To calculate a prediction model for IFC, the clinical, epidemiological, and ultrasonographic variables of 538 patients admitted to the maternity of La Fe Hospital were studied and evaluated using univariable and multivariable logistic regression analysis, using the area under the curve (AUC) and the Akaike Information Criteria (AIC). Results: In the univariable analysis, CPR MoM was the best single parameter for the prediction of CS for IFC (OR 0.043, p < 0.0001; AUC 0.72, p < 0.0001). Concerning the multivariable analysis, for the general population, the best prediction model (lower AIC) included the CPR multiples of the median (MoM), the maternal age, height, and parity, the smoking habits, and the type of labor onset (spontaneous or induction) (AUC 0.80, p < 0.0001). In contrast, for the pregnancies undergoing labor induction, the best prediction model included the CPR MoM, the maternal height and parity, and the smoking habits (AUC 0.80, p < 0.0001). None of the models included estimated fetal weight (EFW). Conclusions: CS for IFC can be moderately predicted prior to labor using maternal characteristics and CPR MoM. A validation study is pending to apply these models in daily clinical practice. Full article
(This article belongs to the Section Methodology, Drug and Device Discovery)
Show Figures

Figure 1

16 pages, 5934 KiB  
Article
Modification of α-Fe2O3 Nanoparticles with Carbon Layer for Robust Photo-Fenton Catalytic Degradation of Methyl Orange
by Muhammad Qasim, Mohamed A. Ghanem, Xuecheng Cao and Xiaojie Li
Catalysts 2024, 14(6), 393; https://doi.org/10.3390/catal14060393 (registering DOI) - 20 Jun 2024
Abstract
The degradation of organic dyes poses a significant challenge in achieving sustainable environmental solutions, given their extensive usage across various industries. Iron oxide (Fe2O3) nanoparticles are studied as a reliable technique for remediating dye degradation. The objective of this [...] Read more.
The degradation of organic dyes poses a significant challenge in achieving sustainable environmental solutions, given their extensive usage across various industries. Iron oxide (Fe2O3) nanoparticles are studied as a reliable technique for remediating dye degradation. The objective of this research is to improve methods of nanomaterial-based environmental remediation. The solvothermal technique is used to synthesize carbon-modified Fe2O3 nanoparticles that exhibit the capability to modify their size morphology and increase reactivity, and stability for MO photodegradation. Their inherent qualities render them highly advantageous for biomedical applications, energy storage, environmental remediation, and catalysis. The mean crystallite size of the modified Fe2O3 nanoparticles is approximately 20 nm. These photocatalysts are tested for their ability to degrade methyl orange (MO) under Visible light radiation and in presence of hydrogen peroxide reagent. The optimal degradation efficiency (97%) is achieved with Fe2O3@C in the presence of H2O2 by meticulously controlling the pH, irradiation time, and photocatalyst dosage. The enhanced photocatalytic activity of the Fe2O3@C nanoparticles, compared to pure Fe2O3, is attributed to the conductive carbon layer, which significantly reduces electron-hole recombination rates. To summarize, Fe2O3@C nanoparticles not only offer a promising technique for the degradation of MO dye pollutants but also have an advantage for environmental remediation due to their increased stability and reactivity. Full article
(This article belongs to the Special Issue Cutting-Edge Photocatalysis)
Show Figures

Figure 1

16 pages, 1164 KiB  
Review
The Effects of Almond Consumption on Cardiovascular Health and Gut Microbiome: A Comprehensive Review
by Saiful Singar, Saurabh Kadyan, Cole Patoine, Gwoncheol Park, Bahram Arjmandi and Ravinder Nagpal
Nutrients 2024, 16(12), 1964; https://doi.org/10.3390/nu16121964 (registering DOI) - 20 Jun 2024
Abstract
The consumption of almonds has been associated with several health benefits, particularly concerning cardiovascular and intestinal health. In this comprehensive review, we compile and deliberate studies investigating the effects of almond consumption on cardiovascular disease (CVD) risk factors and gut health. Almonds are [...] Read more.
The consumption of almonds has been associated with several health benefits, particularly concerning cardiovascular and intestinal health. In this comprehensive review, we compile and deliberate studies investigating the effects of almond consumption on cardiovascular disease (CVD) risk factors and gut health. Almonds are rich in monounsaturated fats, fiber, vitamins, minerals, and polyphenols, which contribute to their health-promoting properties. Regular intake of almonds has been shown to improve lipid profiles by reducing LDL cholesterol and enhancing HDL functionality. Additionally, almonds aid in glycemic control, blood pressure reduction, and chronic inflammation amelioration, which are critical for cardiovascular health. The antioxidant properties of almonds, primarily due to their high vitamin E content, help in reducing oxidative stress markers. Furthermore, almonds positively influence body composition by reducing body fat percentage and central adiposity and enhancing satiety, thus aiding in weight management. Herein, we also contemplate the emerging concept of the gut–heart axis, where almond consumption appears to modulate the gut microbiome, promoting the growth of beneficial bacteria and increasing short-chain fatty acid production, particularly butyrate. These effects collectively contribute to the anti-inflammatory and cardioprotective benefits of almonds. By encompassing these diverse aspects, we eventually provide a systematic and updated perspective on the multifaceted benefits of almond consumption for cardiovascular health and gut microbiome, corroborating their broader consideration in dietary guidelines and public health recommendations for CVD risk reduction. Full article
(This article belongs to the Special Issue Mediterranean Diet and Metabolic Syndrome)
Show Figures

Figure 1

6 pages, 1915 KiB  
Case Report
Rupture of Mycotic Abdominal Aortic Aneurysm as a Result of Incompletely Treated Multiple Peripheral Mycotic Aneurysms
by Lee Chan Jang, Dae Hoon Kim and Kwon Cheol Yoo
Medicina 2024, 60(6), 1007; https://doi.org/10.3390/medicina60061007 (registering DOI) - 20 Jun 2024
Abstract
Background: A mycotic aortic aneurysm is a rare type of aortic aneurysm that can have disastrous outcomes. Most mycotic aneurysms originate from infectious sources, such as trauma, vegetation in the heart, and adjacent infectious sources. If a mycotic aneurysm is diagnosed, it [...] Read more.
Background: A mycotic aortic aneurysm is a rare type of aortic aneurysm that can have disastrous outcomes. Most mycotic aneurysms originate from infectious sources, such as trauma, vegetation in the heart, and adjacent infectious sources. If a mycotic aneurysm is diagnosed, it should be treated simultaneously with the primary source of the infection. Case Summary: Treatment was performed for a mycotic aneurysm of the brachial artery that occurred suddenly during treatment for a fever for which the primary source of infection had not been confirmed. The workup revealed that a mycotic aneurysm of the brachial artery was the cause of the fever, followed by aneurysms in the abdomen and lower extremities and even vegetation in the heart that was not initially present. The patient declined to undergo treatment for personal reasons. After 5 months, it was revealed that the abdominal aortic aneurysm, which was initially considered normal aorta, was ruptured; however, the aneurysm was successfully treated. Conclusions: A peripheral mycotic aneurysm may be associated with multiple aneurysms. Appropriate diagnosis and complete treatments are necessary to prevent fatal consequences. Full article
(This article belongs to the Section Surgery)
Show Figures

Figure 1

19 pages, 5696 KiB  
Article
Three-Degree-of-Freedom Cable-Driven Parallel Manipulator with Self-Sensing Nitinol Actuators
by Francesco Durante, Terenziano Raparelli and Pierluigi Beomonte Zobel
Robotics 2024, 13(6), 93; https://doi.org/10.3390/robotics13060093 (registering DOI) - 20 Jun 2024
Abstract
This paper presents the design and analysis of a novel 3-degree-of-freedom (3-DOF) parallel manipulator equipped with self-sensing Ni-Ti (Nitinol) actuators. The manipulator’s architecture and mechanical design are elucidated, emphasizing the integration of Nitinol actuators. The self-sensing technique implemented in a previous work was [...] Read more.
This paper presents the design and analysis of a novel 3-degree-of-freedom (3-DOF) parallel manipulator equipped with self-sensing Ni-Ti (Nitinol) actuators. The manipulator’s architecture and mechanical design are elucidated, emphasizing the integration of Nitinol actuators. The self-sensing technique implemented in a previous work was extended to a 20 mm actuator length, and the actuator was used to design the 3-DOF manipulator. Kinematic analyses were conducted to evaluate the manipulator’s performance under various operating conditions. A dynamic model was implemented for the dynamic dimensioning of the actuators, which work synergistically with a bias spring. The manipulator was realized, and a control strategy was implemented. Experimental tests, although documenting some positioning accuracy issues, show the efficacy and potential applications of the proposed manipulator in robotics and automation systems, highlighting the advantages of self-sensing Nitinol actuators in small parallel manipulator designs. Full article
(This article belongs to the Special Issue Robotics and Parallel Kinematic Machines)
Show Figures

Figure 1

13 pages, 828 KiB  
Article
Prolonged Consumption of A2 β-Casein Milk Reduces Symptoms Compared to A1 and A2 β-Casein Milk in Lactose Maldigesters: A Two-Week Adaptation Study
by Monica Ramakrishnan, Sindusha Mysore Saiprasad and Dennis A. Savaiano
Nutrients 2024, 16(12), 1963; https://doi.org/10.3390/nu16121963 (registering DOI) - 20 Jun 2024
Abstract
Approximately 30% of milk protein is β-casein. We aimed to determine whether lactose maldigesters who chronically consumed two cups of A1/A2 milk (containing 75% A1 β-casein and 25% A2 β-casein) would adapt to have fewer intolerance symptoms, lower serum inflammatory markers, and/or altered [...] Read more.
Approximately 30% of milk protein is β-casein. We aimed to determine whether lactose maldigesters who chronically consumed two cups of A1/A2 milk (containing 75% A1 β-casein and 25% A2 β-casein) would adapt to have fewer intolerance symptoms, lower serum inflammatory markers, and/or altered glutathione levels similar to those consuming A2 milk (containing 100% A2 β-casein). A double-blinded, randomized, crossover trial was conducted. Sixteen confirmed lactose maldigesters consumed 250 mL of A1/A2 milk and A2 milk twice daily with meals for two weeks. At the end of the adaptation period on day 15, lactose maldigestion was measured after a challenge with the same milk used for adaptation (0.5 g of lactose per kg of body weight) with a hydrogen breath test. Fecal urgency was higher during the two-week consumption of A1/A2 milk compared to A2 milk (p = 0.04, n = 16). Bloating (p = 0.03, n = 16) and flatulence (p = 0.02, n = 16) were also higher on the 15th day with A1/A2 milk compared to A2 milk challenge. However, day-to-day symptoms, hydrogen, serum inflammatory markers, and antioxidant concentrations were not different after A1/A2 and A2 milk consumption adaptation periods. Adaptation over two weeks did not improve lactose digestion or tolerance of A1/A2 milk to match that of A2 milk. Full article
(This article belongs to the Section Nutritional Immunology)
Show Figures

Figure 1

12 pages, 1390 KiB  
Article
Effects of Impurities and Deformations on Electronic Effective Mass in Quantum Revival Time within the Infinite Square Well
by Cleverson Filgueiras, Luiz H. C. Borges and Moises Rojas
Universe 2024, 10(6), 269; https://doi.org/10.3390/universe10060269 (registering DOI) - 20 Jun 2024
Abstract
Quantum revival phenomena, wherein the wave function of a quantum system periodically returns to its initial state after evolving in time, are investigated in this study. Focusing on electrons confined within a quantum box with an impurity, both weak- and strong-coupling regimes are [...] Read more.
Quantum revival phenomena, wherein the wave function of a quantum system periodically returns to its initial state after evolving in time, are investigated in this study. Focusing on electrons confined within a quantum box with an impurity, both weak- and strong-coupling regimes are explored, revealing intricate relationships between impurity parameters and temporal dynamics. This investigation considers the influence of impurity position, impurity strength, and external factors such as aluminum concentration, temperature and hydrostatic pressure on classical periods and revival times. Through analytical derivations and graphical analyses, this study elucidates the sensitivity of quantum revivals to these parameters, providing valuable insights into the fundamental aspects of quantum mechanics. While no specific physical applications are discussed, the findings offer implications for quantum heat engines and other quantum-based technologies, emphasizing the importance of understanding quantum revivals in confined quantum systems. Full article
(This article belongs to the Section Foundations of Quantum Mechanics and Quantum Gravity)
Show Figures

Figure 1

20 pages, 2140 KiB  
Article
Fact-Finding Survey and Exploration of Preventive Drugs for Antineoplastic Drug-Induced Oral Mucositis Using the Japanese Adverse Drug Event Report Database
by Hajime Matsuo, Kiri Endo, Hiroyuki Tanaka, Toshihisa Onoda and Toshihiro Ishii
Sci. Pharm. 2024, 92(2), 34; https://doi.org/10.3390/scipharm92020034 (registering DOI) - 20 Jun 2024
Abstract
Oral mucositis (OM) is one of the most common adverse events associated with antineoplastic drug treatment. Studies on the risk of antineoplastic drug-induced OM and its prevention are limited. We, therefore, conducted a disproportionality analysis of antineoplastic drug-induced OM and explored candidate preventive [...] Read more.
Oral mucositis (OM) is one of the most common adverse events associated with antineoplastic drug treatment. Studies on the risk of antineoplastic drug-induced OM and its prevention are limited. We, therefore, conducted a disproportionality analysis of antineoplastic drug-induced OM and explored candidate preventive drugs for OM using the Japanese Adverse Drug Event Report (JADER) database. The JADER database showed that between April 2004 and March 2022, antineoplastic drug-related adverse events were reported in 210,822 cases, of which 2922 were OM. Forty-two drugs appeared to be associated with OM. The weibull distribution showed different patterns of time-to-onset depending on the type of antineoplastic drug administered. Cluster analyses classified antineoplastic drugs according to the typical symptoms of OM. These findings suggest that antineoplastic drug-induced OM should be monitored based on expression patterns of symptoms. Upon analyzing the inverse association, several concomitant drugs, including lenalidomide hydrate and febuxostat, were expected to be candidate preventive drugs for antineoplastic drug-induced OM. Concomitant drugs that showed an inverse association with antineoplastic drug-induced OM differed within the Anatomical Therapeutic Chemical classification. These findings could serve as a reference when considering drugs that should be prioritized to validate their prophylactic effect against antineoplastic-induced OM in the future. Full article
Show Figures

Figure 1

8 pages, 294 KiB  
Case Report
Multiorgan Failure and Sepsis in an ICU Patient with Prolidase Enzyme Deficiency—The Specificity of Treatment and Care: A Case Report
by Katarzyna Wojnar-Gruszka, Ilona Nowak-Kózka, Jakub Cichoń, Aleksandra Ogryzek and Lucyna Płaszewska-Żywko
Medicina 2024, 60(6), 1006; https://doi.org/10.3390/medicina60061006 (registering DOI) - 20 Jun 2024
Abstract
Background and Objectives: Prolidase deficiency (PD) is a rare, life-threatening, genetically determined disease with an incidence of 1–2 cases per 1 million births. The disease inhibits collagen synthesis, which leads to organ and systems failure, including hepato- and splenomegaly, immune disorders, chronic [...] Read more.
Background and Objectives: Prolidase deficiency (PD) is a rare, life-threatening, genetically determined disease with an incidence of 1–2 cases per 1 million births. The disease inhibits collagen synthesis, which leads to organ and systems failure, including hepato- and splenomegaly, immune disorders, chronic ulcerative wounds, respiratory infections, and pulmonary fibrosis. The complexity of the problems associated with this disease necessitates a comprehensive approach and the involvement of an interdisciplinary team. The objective was to present the treatment and care plan, as well as complications of PD, in a young woman following admission to an intensive care unit (ICU). Materials and Methods: A retrospective observational single-case study. Results: A 26-year-old woman with PD was hospitalized in the ICU for acute respiratory failure. The presence of difficult-to-heal extensive leg ulcers and the patient’s immunocompromised condition resulted in the development of sepsis with multiple organ failure (respiratory and circulatory, liver and kidney failure). Complex specialized treatment consisting of wound preparation, limb amputation, the minimization of neuropathic pain, mechanical ventilation, renal replacement therapy, circulatory stabilization, and the prevention of complications of the disease and of therapy were applied. On the 83rd day of hospitalization, the patient expired. Conclusions: Despite the use of complex treatment and care, due to the advanced nature of the disease and the lack of therapies with proven efficacy, treatment was unsuccessful. There is a need for evidence-based research to develop effective treatment guidelines for PD. Full article
(This article belongs to the Section Intensive Care/ Anesthesiology)
26 pages, 5061 KiB  
Article
Systematic Mapping of Global Research on Disaster Damage Estimation for Buildings: A Machine Learning-Aided Study
by Dilum Rajapaksha, Chandana Siriwardana, Rajeev Ruparathna, Tariq Maqsood, Sujeeva Setunge, Lalith Rajapakse and Saman De Silva
Buildings 2024, 14(6), 1864; https://doi.org/10.3390/buildings14061864 (registering DOI) - 20 Jun 2024
Abstract
Research on disaster damage estimation for buildings has gained extensive attention due to the increased number of disastrous events, facilitating risk assessment, the effective integration of disaster resilience measures, and policy development. A systematic mapping study has been conducted, focusing on disaster damage [...] Read more.
Research on disaster damage estimation for buildings has gained extensive attention due to the increased number of disastrous events, facilitating risk assessment, the effective integration of disaster resilience measures, and policy development. A systematic mapping study has been conducted, focusing on disaster damage estimation studies to identify trends, relationships, and gaps in this large and exponentially growing subject area. A novel approach using machine learning algorithms to screen, categorise, and map the articles was adopted to mitigate the constraints of manual handling. Out of 8608 articles from major scientific databases, the most relevant 2186 were used in the analysis. These articles were classified based on the hazard, geographical location, damage function properties, and building properties. Key observations reveal an emerging trend in publications, with most studies concentrated in developed and severely disaster-affected countries in America, Europe, and Asia. A significant portion (68%) of the relevant articles focus on earthquakes. However, as the key research opportunities, a notable research gap exists in studies focusing on the African and South American continents despite the significant damage caused by disasters there. Additionally, studies on floods, hurricanes, and tsunamis are minimal compared to those on earthquakes. Further trends and relationships in current studies were analysed to convey insights from the literature, identifying research gaps in terms of hazards, geographical locations, and other relevant parameters. These insights aim to effectively guide future research in disaster damage estimation for buildings. Full article
Show Figures

Figure 1

15 pages, 10565 KiB  
Article
A Proteomics Approach Identifies RREB1 as a Crucial Molecular Target of Imidazo–Pyrazole Treatment in SKMEL-28 Melanoma Cells
by Erika Iervasi, Gabriela Coronel Vargas, Tiziana Bachetti, Kateryna Tkachenko, Andrea Spallarossa, Chiara Brullo, Camillo Rosano, Sonia Carta, Paola Barboro, Aldo Profumo and Marco Ponassi
Int. J. Mol. Sci. 2024, 25(12), 6760; https://doi.org/10.3390/ijms25126760 (registering DOI) - 20 Jun 2024
Abstract
Cutaneous melanoma is the most dangerous and deadly form of human skin malignancy. Despite its rarity, it accounts for a staggering 80% of deaths attributed to cutaneous cancers overall. Moreover, its final stages often exhibit resistance to drug treatments, resulting in unfavorable outcomes. [...] Read more.
Cutaneous melanoma is the most dangerous and deadly form of human skin malignancy. Despite its rarity, it accounts for a staggering 80% of deaths attributed to cutaneous cancers overall. Moreover, its final stages often exhibit resistance to drug treatments, resulting in unfavorable outcomes. Hence, ensuring access to novel and improved chemotherapeutic agents is imperative for patients grappling with this severe ailment. Pyrazole and its fused systems derived thereof are heteroaromatic moieties widely employed in medicinal chemistry to develop effective drugs for various therapeutic areas, including inflammation, pain, oxidation, pathogens, depression, and fever. In a previous study, we described the biochemical properties of a newly synthesized group of imidazo–pyrazole compounds. In this paper, to improve our knowledge of the pharmacological properties of these molecules, we conduct a differential proteomic analysis on a human melanoma cell line treated with one of these imidazo–pyrazole derivatives. Our results detail the changes to the SKMEL-28 cell line proteome induced by 24, 48, and 72 h of 3e imidazo–pyrazole treatment. Notably, we highlight the down-regulation of the Ras-responsive element binding protein 1 (RREB1), a member of the zinc finger transcription factors family involved in the tumorigenesis of melanoma. RREB1 is a downstream element of the MAPK pathway, and its activation is mediated by ERK1/2 through phosphorylation. Full article
Show Figures

Figure 1

8 pages, 4008 KiB  
Article
Evaluation of a Semi-Automated Wound-Halving Algorithm for Split-Wound Design Studies: A Step towards Enhanced Wound-Healing Assessment
by Paul Julius Georg, Meret Emily Schmid, Sofia Zahia, Sebastian Probst, Simone Cazzaniga, Robert Hunger and Simon Bossart
J. Clin. Med. 2024, 13(12), 3599; https://doi.org/10.3390/jcm13123599 (registering DOI) - 20 Jun 2024
Abstract
Background: Chronic leg ulcers present a global challenge in healthcare, necessitating precise wound measurement for effective treatment evaluation. This study is the first to validate the “split-wound design” approach for wound studies using objective measures. We further improved this relatively new approach [...] Read more.
Background: Chronic leg ulcers present a global challenge in healthcare, necessitating precise wound measurement for effective treatment evaluation. This study is the first to validate the “split-wound design” approach for wound studies using objective measures. We further improved this relatively new approach and combined it with a semi-automated wound measurement algorithm. Method: The algorithm is capable of plotting an objective halving line that is calculated by splitting the bounding box of the wound surface along the longest side. To evaluate this algorithm, we compared the accuracy of the subjective wound halving of manual operators of different backgrounds with the algorithm-generated halving line and the ground truth, in two separate rounds. Results: The median absolute deviation (MAD) from the ground truth of the manual wound halving was 2% and 3% in the first and second round, respectively. On the other hand, the algorithm-generated halving line showed a significantly lower deviation from the ground truth (MAD = 0.3%, p < 0.001). Conclusions: The data suggest that this wound-halving algorithm is suitable and reliable for conducting wound studies. This innovative combination of a semi-automated algorithm paired with a unique study design offers several advantages, including reduced patient recruitment needs, accelerated study planning, and cost savings, thereby expediting evidence generation in the field of wound care. Our findings highlight a promising path forward for improving wound research and clinical practice. Full article
Show Figures

Figure 1

13 pages, 3237 KiB  
Article
Derivatization of Hyaluronan to Target Neuroblastoma and Neuroglioma Expressing CD44
by Giau Van Vo, Kummara Madhusudana Rao, Ildoo Chung, Chang-Sik Ha, Seong Soo A. An and Yang H. Yun
Pharmaceutics 2024, 16(6), 836; https://doi.org/10.3390/pharmaceutics16060836 (registering DOI) - 20 Jun 2024
Abstract
Therapeutics for actively targeting over-expressed receptors are of great interest because the majority of diseased tissues originate from normal cells and do not possess a unique receptor from which they can be differentiated. One such receptor is CD44, which has been shown to [...] Read more.
Therapeutics for actively targeting over-expressed receptors are of great interest because the majority of diseased tissues originate from normal cells and do not possess a unique receptor from which they can be differentiated. One such receptor is CD44, which has been shown to be highly overexpressed in many breast cancers and other types of cancer cells. While CD44 has been documented to express low levels in normal adult neurons, astrocytes, and microglia, this receptor may be overexpressed by neuroblastoma and neuroglioma. If differential expression exists between normal and cancerous cells, hyaluronan (HA) could be a useful carrier that targets carcinomas. Thus, HA was conjugated with resveratrol (HA-R), and its efficacy was tested on cortical–neuroblastoma hybrid, neuroblastoma, and neuroglioma cells. Confocal and flow cytometry showed these cells express CD44 and are able to bind and uptake HA-R. The toxicity of HA-R correlated well with CD44 expression in this study. Therefore, conjugating resveratrol and other chemotherapeutics to HA could minimize the side effects for normal cells within the brain and nervous system and could be a viable strategy for developing targeted therapies. Full article
(This article belongs to the Special Issue Carbohydrate-Based Carriers for Drug Delivery)
Show Figures

Graphical abstract

15 pages, 3802 KiB  
Article
Magnetic Particle Imaging-Guided Thermal Simulations for Magnetic Particle Hyperthermia
by Hayden Carlton, Nageshwar Arepally, Sean Healy, Anirudh Sharma, Sarah Ptashnik, Maureen Schickel, Matt Newgren, Patrick Goodwill, Anilchandra Attaluri and Robert Ivkov
Nanomaterials 2024, 14(12), 1059; https://doi.org/10.3390/nano14121059 (registering DOI) - 20 Jun 2024
Abstract
Magnetic particle hyperthermia (MPH) enables the direct heating of solid tumors with alternating magnetic fields (AMFs). One challenge with MPH is the unknown particle distribution in tissue after injection. Magnetic particle imaging (MPI) can measure the nanoparticle content and distribution in tissue after [...] Read more.
Magnetic particle hyperthermia (MPH) enables the direct heating of solid tumors with alternating magnetic fields (AMFs). One challenge with MPH is the unknown particle distribution in tissue after injection. Magnetic particle imaging (MPI) can measure the nanoparticle content and distribution in tissue after delivery. The objective of this study was to develop a clinically translatable protocol that incorporates MPI data into finite element calculations for simulating tissue temperatures during MPH. To verify the protocol, we conducted MPH experiments in tumor-bearing mouse cadavers. Five 8–10-week-old female BALB/c mice bearing subcutaneous 4T1 tumors were anesthetized and received intratumor injections of Synomag®-S90 nanoparticles. Immediately following injection, the mice were euthanized and imaged, and the tumors were heated with an AMF. We used the Mimics Innovation Suite to create a 3D mesh of the tumor from micro-computerized tomography data and spatial index MPI to generate a scaled heating function for the heat transfer calculations. The processed imaging data were incorporated into a finite element solver, COMSOL Multiphysics®. The upper and lower bounds of the simulated tumor temperatures for all five cadavers demonstrated agreement with the experimental temperature measurements, thus verifying the protocol. These results demonstrate the utility of MPI to guide predictive thermal calculations for MPH treatment planning. Full article
Show Figures

Graphical abstract

15 pages, 2689 KiB  
Article
Sensor Fusion Architecture for Fault Diagnosis with a Predefined-Time Observer
by Ofelia Begovich, Adrián Lizárraga and Antonio Ramírez-Treviño
Algorithms 2024, 17(6), 270; https://doi.org/10.3390/a17060270 (registering DOI) - 20 Jun 2024
Abstract
This study focuses on generating reliable signals from measured noisy signals through an enhanced sensor fusion method. The main contribution of this research is the development of a novel sensor fusion architecture that creates virtual sensors, improving the system’s redundancy. This architecture utilizes [...] Read more.
This study focuses on generating reliable signals from measured noisy signals through an enhanced sensor fusion method. The main contribution of this research is the development of a novel sensor fusion architecture that creates virtual sensors, improving the system’s redundancy. This architecture utilizes an input observer to estimate the system input, then it is introduced to the system model, the output of which is the virtual sensor. Then, this virtual sensor includes two filtering stages, both derived from the system’s dynamics—the input observer and the system model—which effectively diminish noise in the virtual sensors. Afterwards, the same architecture includes a classical sensor fusion scheme and a voter to merge the virtual sensors with the real measured signals, enhancing the signal reliability. The effectiveness of this method is shown by applying merged signals to two distinct diagnosers: one utilizes a high-order sliding mode observer, while the other employs an innovative extension of a predefined-time observer. The findings indicate that the proposed architecture improves diagnostic results. Moreover, a three-wheeled omnidirectional mobile robot equipped with noisy sensors serves as a case study, confirming the approach’s efficacy in an actual noisy setting and highlighting its principal characteristics. Importantly, the diagnostic systems can manage several simultaneous actuator faults. Full article
Show Figures

Figure 1

11 pages, 222 KiB  
Article
Neurocognitive Function Domains Are Not Affected in Active Professional Male Footballers, but Attention Deficits and Impairments Are Associated with Concussion
by Lervasen Pillay, Dina Christa Janse van Rensburg, Steve den Hollander, Gopika Ramkilawon, Gino Kerkhoffs and Vincent Gouttebarge
Sports 2024, 12(6), 170; https://doi.org/10.3390/sports12060170 (registering DOI) - 20 Jun 2024
Abstract
Objective: To determine the neurocognitive function of active professional male footballers, determine whether deficits/impairments exist, and investigate the association between previous concussion(s) and neurocognitive function. Methods: An observational cross-sectional study conducted via electronic questionnaires. The CNS Vital Signs online testing system was used [...] Read more.
Objective: To determine the neurocognitive function of active professional male footballers, determine whether deficits/impairments exist, and investigate the association between previous concussion(s) and neurocognitive function. Methods: An observational cross-sectional study conducted via electronic questionnaires. The CNS Vital Signs online testing system was used to evaluate neurocognitive function. Results: Of the 101 participants, 91 completed the neurocognitive function testing. Neurocognitive function domain deficits or impairments were unlikely in 54.5–89.1%, slight in 5.9–21.8%, moderate in 1.0–9.9%, and likely in 4.0–14.9% of participants. A history of zero concussions found a significant association between the neurocognitive index (Odds Ratio [OR] 0.6; 95% CI 0.2–0.4) and complex attention domain (OR 0.3; 95% CI 0.1–0.9), with 40% and 70% less odds, respectively, of deficit/impairment. Among the 54.5% who reported any number of concussions, there were increased odds of neurocognitive domain deficits/impairments for complex attention (CA) [3.4 times more] and simple attention (SA) [3.1 times more]. Conclusion: In the active professional male footballer, most neurocognitive functions do not have significant deficits/impairments. The odds of neurocognitive function deficit/impairment were significantly increased threefold for CA and SA in those who reported a history of any concussion(s). Full article
13 pages, 9385 KiB  
Article
Yttria-Stabilized Zirconia Composite Coating as Barrier to Reduce Hydrogen Permeation into Steel
by Jianmeng Wu, Jiaqi Xie, Mengyuan He, Jingyi Zhang and Songjie Li
Materials 2024, 17(12), 3017; https://doi.org/10.3390/ma17123017 (registering DOI) - 20 Jun 2024
Abstract
Hydrogen atoms can enter into metallic materials through penetration and diffusion, leading to the degradation of the mechanical properties of the materials, and the application of hydrogen barrier coatings is an effective means to alleviate this problem. Zirconia coatings (ZrO2) have [...] Read more.
Hydrogen atoms can enter into metallic materials through penetration and diffusion, leading to the degradation of the mechanical properties of the materials, and the application of hydrogen barrier coatings is an effective means to alleviate this problem. Zirconia coatings (ZrO2) have been widely studied as a common hydrogen barrier coating, but zirconia undergoes a crystalline transition with temperature change, which can lead to volumetric changes in the coating and thus cause problems such as cracking and peeling of the coating. In this work, ZrO2 coating was prepared on a Q235 matrix using a sol-gel method, while yttria-stabilized zirconia (YSZ) coatings with different contents of rare earth elements were prepared in order to alleviate a series of problems caused by the crystal form transformation of ZrO2. The coating performances were evaluated by the electrochemical hydrogen penetration test, pencil hardness test, scratch test, and high-temperature oxidation test. The results show that yttrium can improve the stability of the high-temperature phase of ZrO2, alleviating the cracking problem of the coating due to the volume change triggered by the crystalline transition; improve the consistency of the coating; and refine the grain size of the oxide. The performance of YSZ coating was strongly influenced by the yttria doping mass, and the coating with 10 wt% yttria doping had the best hydrogen barrier performance, the best antioxidant performance, and the largest adhesion. Compared with the matrix, the steady-state hydrogen current density of the YSZ coating decreased by 72.3%, the antioxidant performance was improved by 65.8%, and the ZrO2 coating hardness and adhesion levels were B and 4B, respectively, while YSZ coating hardness and adhesion were upgraded to 2H and 5B. With the further increase in yttrium doping mass, the hardness of the coating continued to improve, but the defects of the coating increased, resulting in a decrease in the hydrogen barrier performance, antioxidant performance, and adhesion. In this work, the various performances of ZrO2 coating were significantly improved by doping with the rare earth element, which provides a reference for further development and application of oxide coatings. Full article
Show Figures

Figure 1

13 pages, 2782 KiB  
Article
Richardson–Lucy Iterative Blind Deconvolution with Gaussian Total Variation Constraints for Space Extended Object Images
by Shiping Guo, Yi Lu and Yibin Li
Photonics 2024, 11(6), 576; https://doi.org/10.3390/photonics11060576 (registering DOI) - 20 Jun 2024
Abstract
In ground-based astronomical observations or artificial space target detections, images obtained from a ground-based telescope are severely distorted due to atmospheric turbulence. The distortion can be partially compensated by employing adaptive optics (pre-detection compensation), image restoration techniques (post-detection compensation), or a combination of [...] Read more.
In ground-based astronomical observations or artificial space target detections, images obtained from a ground-based telescope are severely distorted due to atmospheric turbulence. The distortion can be partially compensated by employing adaptive optics (pre-detection compensation), image restoration techniques (post-detection compensation), or a combination of both (hybrid compensation). This paper focuses on the improvement of the most commonly used practical post-processing techniques, Richardson–Lucy (R–L) iteration blind deconvolution, which is studied in detail and improved as follows: First, the total variation (TV) norm is redefined using the Gaussian gradient magnitude and a set scheme for regularization parameter selection is proposed. Second, the Gaussian TV constraint is proposed to impose to the R–L algorithm. Last, the Gaussian TV R–L (GRL) iterative blind deconvolution method is finally presented, in which the restoration precision is visually increased and the convergence property is considerably improved. The performance of the proposed GRL method is tested by both simulation experiments and observed field data. Full article
(This article belongs to the Special Issue Adaptive Optics: Methods and Applications)
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop