- Article
Optimized Nitrogen Application Under Mulching Enhances Maize Yield and Water Productivity by Regulating Crop Growth and Water Use Dynamics
- Haoran Sun,
- Xufeng Wang and
- Yufang Shen
- + 5 authors
Surface mulching and nitrogen (N) application are widely used to enhance crop yield and water productivity (WP). However, their combined effects remain unclear. Here, a three-year field experiment was conducted to comprehensively assess the effects of surface mulching (no mulching, B; straw mulching, S; and plastic film mulching, F) and N fertilization (no N application, N0; split application of urea, N1; 1:2 mixture of controlled-release urea and urea, N2) on maize growth, yield, and WP on the Loess Plateau. Application of nitrogen (N) significantly increased evapotranspiration (ET), grain yield, and WP by 4.58%, 176% (from 5215.43 kg ha−1 in N0 to 14,548.21 kg ha−1 in N2), and 166% (from 11.36 kg ha−1 mm−1 in N0 to 30.63 kg ha−1 mm−1 in N2), respectively. Compared with B and S, F increased ET during the pre-silking stage by 16.75% and 23.99%, respectively, and shortened the vegetative period of maize by 3–9 days but extended the duration from the milky stage (R3) to physiological maturity (R6) in the reproductive period by 5–13 days. F significantly increased yield and WP by 9.18% and 8.26% compared with S. Under F combined with N application, deep soil water (100–200 cm) consumption during R1–R3 increased by 15.75 mm and 13.15 mm compared with B and S, respectively. The combination of F and N2 achieved the highest yield (15,648.28 kg ha−1) and WP (32.44 kg ha−1 mm−1) without causing detectable depletion of soil water within the 0–200 cm profile during the study period, providing an effective strategy for enhancing crop yield and improving water–fertilizer use efficiency in semi-arid regions.
Agronomy,
23 January 2026



