Annual Achievements Report
Available Now
 
22 pages, 2936 KiB  
Systematic Review
Surgical Management Strategies for Pericardial Effusion—A Systematic Review
by Ruman K. Qasba, Busra Cangut, Amnah Alhazmi, Javeria Naseer, Ayesha Mubasher, Sriharsha Talapaneni, Maurish Fatima, Afsheen Nasir, Shanzil Shafqat, Shreya Avilala and Irbaz Hameed
J. Clin. Med. 2025, 14(14), 4985; https://doi.org/10.3390/jcm14144985 (registering DOI) - 14 Jul 2025
Abstract
Objectives: Pericardial effusion is the accumulation of excess fluid in the pericardial sac. The etiology is multi-factorial and different techniques are used for management, including subxiphoid approaches, anterior and lateral thoracotomies, video-assisted thoracic surgery (VATS), and percutaneous pericardiocentesis. We evaluate the surgical [...] Read more.
Objectives: Pericardial effusion is the accumulation of excess fluid in the pericardial sac. The etiology is multi-factorial and different techniques are used for management, including subxiphoid approaches, anterior and lateral thoracotomies, video-assisted thoracic surgery (VATS), and percutaneous pericardiocentesis. We evaluate the surgical management strategies for pericardial effusion and their outcomes in this systematic review. Methods: A systematic literature review was performed to identify studies on the surgical management of pericardial effusion from inception to February 2024 using PubMed, Cochrane, and Scopus. Articles were independently assessed by two reviewers, with discrepancies resolved by the senior author. Articles were considered for inclusion if they described different pericardial effusion surgical management techniques. Baseline patient characteristics and procedural and outcome variables were extracted. Results: A total of 27 studies comprising 2773 patients were evaluated. The median age was 56.2 years (interquartile range 47–62.2). The most common etiologies of pericardial effusion were malignancy (31.0%), post-cardiac surgery (18.7%), and idiopathic (15.4%). Other causes included uremia (9.6%), infection (9.6%), and autoimmune disease (4.2%). The subxiphoid pericardial window was the most common approach (82.6%), followed by anterior and lateral thoracotomy (12.0%), and median sternotomy (0.6%). At median follow-up of 24 months, the most frequent post-procedural complications were recurrence of effusion (10.5%), arrhythmias (2.7%), and pneumonia (0.7%). Conclusions: Subxiphoid pericardial window is the most common approach for draining pericardial effusions. Prognosis depends on both the underlying etiology and the chosen drainage strategy. Treatment should be tailored to individual patients, considering patient comorbidities and the specific etiology. Full article
(This article belongs to the Special Issue Current Practices in Cardiovascular Perfusion and Recovery)
Show Figures

Figure 1

25 pages, 9005 KiB  
Review
Two Decades Later: A Bibliographic Revision of Menegazzia in Chile with New Identification Key and Phylogenetic Perspectives
by David Alors
Diversity 2025, 17(7), 483; https://doi.org/10.3390/d17070483 (registering DOI) - 14 Jul 2025
Abstract
This study presents a bibliographic review of the genus Menegazzia in Chile, the first in over two decades, updating new records, the taxonomic placement of the genus, and the synonymization of species. Up to twenty species have been cited in the country, considering [...] Read more.
This study presents a bibliographic review of the genus Menegazzia in Chile, the first in over two decades, updating new records, the taxonomic placement of the genus, and the synonymization of species. Up to twenty species have been cited in the country, considering that M. albida, M. hollermayeri, and M. norstictca are synonyms of the valid species M. wilsonii, M. dispora, and M sanguinascens. A fully revised dichotomous key and color photographs are included to facilitate accurate identification, especially given the genus’s morphological convergence and sparse reproductive structures. For the first time, the divergence times of Menegazzia lineages are discussed in relation to major Southern Hemisphere geologic events, suggesting a dispersal-driven distribution with a crown age of approximately 21.2 Ma. This review consolidates fragmented data, integrates recent molecular findings, and emphasizes the genus’s value as an ecological and biogeographic indicator in Chilean temperate forests. Full article
(This article belongs to the Section Microbial Diversity and Culture Collections)
Show Figures

Figure 1

26 pages, 1698 KiB  
Review
Research Progress on the Functional Regulation Mechanisms of ZKSCAN3
by Jianxiong Xu, Xinzhe Li, Jingjing Xia, Wenfang Li and Zhengding Su
Biomolecules 2025, 15(7), 1016; https://doi.org/10.3390/biom15071016 (registering DOI) - 14 Jul 2025
Abstract
The zinc finger protein with KRAB and SCAN domains 3 (ZKSCAN3) has emerged as a critical regulator of diverse cellular processes, including autophagy, cell cycle progression, and tumorigenesis. Structurally, ZKSCAN3 is characterized by its conserved DNA-binding zinc finger motifs, a SCAN domain mediating [...] Read more.
The zinc finger protein with KRAB and SCAN domains 3 (ZKSCAN3) has emerged as a critical regulator of diverse cellular processes, including autophagy, cell cycle progression, and tumorigenesis. Structurally, ZKSCAN3 is characterized by its conserved DNA-binding zinc finger motifs, a SCAN domain mediating protein–protein interaction, and a KRAB repression domain implicated in transcriptional regulation. Post-translational modifications, such as phosphorylation and ubiquitination, dynamically modulate its subcellular localization and activity, enabling context-dependent functional plasticity. Functionally, ZKSCAN3 acts as a master switch in autophagy by repressing the transcription of autophagy-related genes under nutrient-replete conditions, while its nuclear-cytoplasmic shuttling under stress conditions links metabolic reprogramming to cellular survival. Emerging evidence also underscores its paradoxical roles in cancer: it suppresses tumor initiation by maintaining genomic stability yet promotes metastasis through epithelial–mesenchymal transition induction. Furthermore, epigenetic mechanisms, including promoter methylation and non-coding RNA regulation, fine-tune ZKSCAN3 expression, contributing to tissue-specific outcomes. Despite these insights, gaps remain in understanding the structural determinants governing its interaction with chromatin-remodeling complexes and the therapeutic potential of targeting ZKSCAN3 in diseases. Future investigations should prioritize integrating multi-omics approaches to unravel context-specific regulatory networks and explore small-molecule modulators for translational applications. This comprehensive analysis provides a framework for advancing our mechanistic understanding of ZKSCAN3 and its implications in human health and disease. This review synthesizes recent advances in elucidating the regulatory networks and functional complexity of ZKSCAN3, highlighting its dual roles in physiological and pathological contexts. Full article
(This article belongs to the Special Issue Spotlight on Hot Cancer Biological Biomarkers)
Show Figures

Figure 1

14 pages, 4424 KiB  
Article
Electrochemical and Kinetic Performance of Low-Cobalt and Cobalt-Free Rare-Earth AB5-Type Hydrogen Storage Alloys
by Yingying Shen, Fengji Zhang, Hengyu Ma, Yun Zhao, Yong Wang, Xinfeng Wang, Xiuyan Li, Youcheng Luo and Bingang Lu
Materials 2025, 18(14), 3317; https://doi.org/10.3390/ma18143317 (registering DOI) - 14 Jul 2025
Abstract
To address the high cost of cobalt in rare-earth hydrogen storage alloys, this study developed cost-effective low-cobalt and cobalt-free AB5-type alloys. The results demonstrate that all synthesized alloys displayed a single-phase LaNi5 structure possessing a homogeneous elemental distribution. Low-cobalt (La, [...] Read more.
To address the high cost of cobalt in rare-earth hydrogen storage alloys, this study developed cost-effective low-cobalt and cobalt-free AB5-type alloys. The results demonstrate that all synthesized alloys displayed a single-phase LaNi5 structure possessing a homogeneous elemental distribution. Low-cobalt (La, Ce) (Ni, Co, Mn, Al)5 alloy 4SC and cobalt-free (La, Ce) (Ni, Mn, Al)5 alloy 7D exhibited similarly excellent electrochemical performance, including high discharge capacity, long cycle life, and superior high-rate discharge (HRD) capability. In addition, the kinetic test results show that the exchange current densities of these two alloys were quite similar, measuring 302.97 mA g−1 and 317.70 mA g−1, respectively. However, the hydrogen diffusion coefficient of 7D was significantly higher than that of 4SC, reaching 9.45 × 10−10 cm2 s−1, while that of 4SC was only 5.88 × 10−10 cm2/s. This work establishes a theoretical foundation for industrial-scale and cost-effective AB5-type hydrogen storage alloys, offering significant commercial potential. Full article
(This article belongs to the Special Issue Advances in Efficient Utilization of Metallurgical Solid Waste)
Show Figures

Figure 1

15 pages, 2573 KiB  
Article
Phylogenetic Analyses and Plastome Comparison to Confirm the Taxonomic Position of Ligusticum multivittatum (Apiaceae, Apioideae)
by Changkun Liu, Boni Song, Feng Yong, Chengdong Xu, Quanying Dong, Xiaoyi Wang, Chao Sun and Zhenji Wang
Genes 2025, 16(7), 823; https://doi.org/10.3390/genes16070823 (registering DOI) - 14 Jul 2025
Abstract
Background: Ligusticum L. plants exhibit significant morphological variation in leaves, flowers, bracteoles and mericarps, thus the classifications of members for the genus have always been controversial. Among them, the taxonomic problem of Ligusticum multivittatum Franch. is the most prominent, which has not been [...] Read more.
Background: Ligusticum L. plants exhibit significant morphological variation in leaves, flowers, bracteoles and mericarps, thus the classifications of members for the genus have always been controversial. Among them, the taxonomic problem of Ligusticum multivittatum Franch. is the most prominent, which has not been sufficiently resolved so far. Methods: to clarify the taxonomic position of Ligusticum multivittatum, we performed phylogenetic analyses based on plastome data and ITS sequences. Meanwhile, we conducted comprehensively comparative plastome analyses between Ligusticum multivittatum and fifteen Ligusticopsis species. Results: Both analyses robustly supported that Ligusticum multivittatum nested in genus Ligusticopsis Leute and formed a clade with fifteen Ligusticopsis species, belonged to the Selineae tribe, which was distant from the type species of Ligusticum (Ligusticum scoticum), located in the Acronema clade.The comparative results showed that sixteen plastomes were highly similar and conservative in genome structure, size, gene content and arrangement, codon bias, SSRs and SC/IR. These findings imply that Ligusticum multivittatum is a member of Ligusticopsis, which was further verified by their shared morphological characters: stem base clothed in fibrous remnant sheaths, white petals, pinnate bracteoles, dorsally compressed mericarps with slightly prominent dorsal ribs, winged lateral ribs and numerous vittae in the commissure and in each furrow. Therefore, combining with the evidences of phylogenetic analyses, plastome comparison and morphological features, we affirmed that Ligusticum multivittatum indeed belonged to Ligusticopsis and transformed it into Ligusticopsis conducted by Pimenov was reasonable. Conclusions: Our study not only confirms the classification of Ligusticum multivittatum by integrating evidences, but also provides a reference for resolving taxonomy of contentious taxa. Full article
(This article belongs to the Section Plant Genetics and Genomics)
18 pages, 2042 KiB  
Article
The Capacities of the Probiotic Strains L. helveticus MIMLh5 and L. acidophilus NCFM to Induce Th1-Stimulating Cytokines in Dendritic Cells Are Inversely Correlated with the Thickness of Their S-Layers
by Valentina Taverniti, Paolo D’Incecco, Stefano Farris, Peter Riber Jonsen, Helene Skovsted Eld, Juliane Sørensen, Laura Brunelli, Giacomo Mantegazza, Stefania Arioli, Diego Mora, Simone Guglielmetti and Hanne Frøkiær
Biomolecules 2025, 15(7), 1012; https://doi.org/10.3390/biom15071012 (registering DOI) - 14 Jul 2025
Abstract
The two probiotic bacteria Lactobacillus helveticus MIMLh5 and L. acidophilus NCFM exhibit homology, are both equipped with an S-layer made up of highly homologous proteins and are capable of stimulating Th1-inducing signals in dendritic cells. In this study, we aimed to compare the [...] Read more.
The two probiotic bacteria Lactobacillus helveticus MIMLh5 and L. acidophilus NCFM exhibit homology, are both equipped with an S-layer made up of highly homologous proteins and are capable of stimulating Th1-inducing signals in dendritic cells. In this study, we aimed to compare the two strains as regards the thickness of the S-layer and their capacity to induce the production of the two Th1-inducing cytokines IL-12 and IFN-β. For both bacteria, stimulation with an increasing number of bacteria led to the higher and prompter production of IL-12 and IFN-β, but at all MOIs tested, the IL-12 response induced by NCFM was always the strongest. For both bacteria, the induction of IL-12 peaked at a multiplicity of infection (MOI) of 2–5, while IL-10, known to inhibit the induction of IL-12 cytokines, was induced more slowly and continued to increase at a higher MOI. By employing specific inhibitors, MIMLh5 and NCFM were also shown to activate different MAP kinase pathways. Endocytosed MIMLh5 showed higher survival in the DCs compared to NCFM. In the presence of mannan, previously shown to accelerate endosomal killing of Gram-positive bacteria, the survival of MIMLh5 was strongly decreased, and IL-12 increased to a level close to that induced by NCFM without the addition of mannan, indicating the importance of rapid endosomal degradation for a strong IL-12 response. When measuring the S-layer thickness, MIMLh5’s S-layer appeared to be more than twice the thickness of NCFM and exhibited an elastic modulus approximately twice as high, which is a measure of a cell’s resistance to an applied mechanic stress. When the two strains were depleted of S-layer protein, the elastic modulus was comparable. Together, our data suggests that the thicker S-layer of MIMLh5 compared to NCFM may contribute to its endosomal survival, thus reducing its capacity to induce IL-12. This may constitute an important parameter in the selection of probiotic bacteria for specific purposes. Full article
(This article belongs to the Special Issue Diet and Immune Response)
Show Figures

Figure 1

20 pages, 5384 KiB  
Article
Integrated Water Resources Management in Response to Rainfall Change: A Runoff-Based Approach for Mixed Land-Use Catchments
by Jinsun Kim and Ok Yeon Choi
Environments 2025, 12(7), 241; https://doi.org/10.3390/environments12070241 (registering DOI) - 14 Jul 2025
Abstract
The U.S. Environmental Protection Agency (EPA) developed the concept of Water Quality Volume (WQv) as a Best Management Practice (BMP) to treat the first 25.4 mm of rainfall in urban areas, aiming to capture approximately 90% of annual runoff. However, applying this urban-based [...] Read more.
The U.S. Environmental Protection Agency (EPA) developed the concept of Water Quality Volume (WQv) as a Best Management Practice (BMP) to treat the first 25.4 mm of rainfall in urban areas, aiming to capture approximately 90% of annual runoff. However, applying this urban-based standard—designed for areas with over 50% imperviousness—to rural regions with higher infiltration and pervious surfaces may result in overestimated facility capacities. In Korea, a uniform WQv criterion of 5 mm is applied nationwide, regardless of land use or hydrological conditions. This study examines the suitability of this 5 mm standard in rural catchments using the Hydrological Simulation Program–Fortran (HSPF). Eight sub-watersheds in the target area were simulated under varying cumulative runoff depths (1–10 mm) to assess pollutant loads and runoff characteristics. First-flush effects were most evident below 5 mm, with variation depending on land cover. Nature-based treatment systems for constructed wetlands were modeled for each sub-watershed, and their effectiveness was evaluated using Flow Duration Curves (FDCs) and Load Duration Curves (LDCs). The findings suggest that the uniform 5 mm WQv criterion may result in overdesign in rural watersheds and highlight the need for region-specific standards that consider local land-use and hydrological variability. Full article
(This article belongs to the Special Issue Monitoring of Contaminated Water and Soil)
Show Figures

Figure 1

25 pages, 1304 KiB  
Article
Mobile Reading Attention of College Students in Different Reading Environments: An Eye-Tracking Study
by Siwei Xu, Mingyu Xu, Qiyao Kang and Xiaoqun Yuan
Behav. Sci. 2025, 15(7), 953; https://doi.org/10.3390/bs15070953 (registering DOI) - 14 Jul 2025
Abstract
With the widespread adoption of mobile reading across diverse scenarios, understanding environmental impacts on attention has become crucial for reading performance optimization. Building upon this premise, the study examined the impacts of different reading environments on attention during mobile reading, utilizing a mixed-methods [...] Read more.
With the widespread adoption of mobile reading across diverse scenarios, understanding environmental impacts on attention has become crucial for reading performance optimization. Building upon this premise, the study examined the impacts of different reading environments on attention during mobile reading, utilizing a mixed-methods approach that combined eye-tracking experiments with semi-structured interviews. Thirty-two college students participated in the study. Quantitative attention metrics, including total fixation duration and fixation count, were collected through eye-tracking, while qualitative data regarding perceived environmental influences were obtained through interviews. The results indicated that the impact of different environments on mobile reading attention varies significantly, as this variation is primarily attributable to environmental complexity and individual interest. Environments characterized by multisensory inputs or dynamic disturbances, such as fluctuating noise and visual motion, were found to induce greater attentional dispersion compared to monotonous, low-variation environments. Notably, more complex potential task-like disturbances (e.g., answering calls, conversations) were found to cause the greatest distraction. Moreover, stimuli aligned with an individual’s interests were more likely to divert attention compared to those that did not. These findings contribute methodological insights for optimizing mobile reading experiences across diverse environmental contexts. Full article
Show Figures

Figure 1

34 pages, 8495 KiB  
Review
Technology Landscape Review of In-Sensor Photonic Intelligence: From Optical Sensors to Smart Devices
by Hong Zhou, Dongxiao Li and Chengkuo Lee
AI Sens. 2025, 1(1), 5; https://doi.org/10.3390/aisens1010005 (registering DOI) - 14 Jul 2025
Abstract
Optical sensors have undergone significant evolution, transitioning from discrete optical microsystems toward sophisticated photonic integrated circuits (PICs) that leverage artificial intelligence (AI) for enhanced functionality. This review systematically explores the integration of optical sensing technologies with AI, charting the advancement from conventional optical [...] Read more.
Optical sensors have undergone significant evolution, transitioning from discrete optical microsystems toward sophisticated photonic integrated circuits (PICs) that leverage artificial intelligence (AI) for enhanced functionality. This review systematically explores the integration of optical sensing technologies with AI, charting the advancement from conventional optical microsystems to AI-driven smart devices. First, we examine classical optical sensing methodologies, including refractive index sensing, surface-enhanced infrared absorption (SEIRA), surface-enhanced Raman spectroscopy (SERS), surface plasmon-enhanced chiral spectroscopy, and surface-enhanced fluorescence (SEF) spectroscopy, highlighting their principles, capabilities, and limitations. Subsequently, we analyze the architecture of PIC-based sensing platforms, emphasizing their miniaturization, scalability, and real-time detection performance. This review then introduces the emerging paradigm of in-sensor computing, where AI algorithms are integrated directly within photonic devices, enabling real-time data processing, decision making, and enhanced system autonomy. Finally, we offer a comprehensive outlook on current technological challenges and future research directions, addressing integration complexity, material compatibility, and data processing bottlenecks. This review provides timely insights into the transformative potential of AI-enhanced PIC sensors, setting the stage for future innovations in autonomous, intelligent sensing applications. Full article
Show Figures

Figure 1

11 pages, 1778 KiB  
Communication
Ultra-Sensitive Detection of Chloramphenicol by CdS@NiMoS Nanorods-Based Photoelectrochemical Aptasensor
by Hebin Sun, Yimeng Sun, Tong Qi, Zhenyu Wang, Jianlong Zhao and Lijuan Liang
Biosensors 2025, 15(7), 454; https://doi.org/10.3390/bios15070454 (registering DOI) - 14 Jul 2025
Abstract
A novel nanomaterial photoelectrochemical aptamer sensor based on CdS@NiMoS heterojunction nanocomposites was constructed for highly sensitive detection of chloramphenicol (CAP) in antibiotic residues. Through optimization of the material synthesis process, the optimal doping ratio of MoS2 to Ni3+ (70% MoS2 [...] Read more.
A novel nanomaterial photoelectrochemical aptamer sensor based on CdS@NiMoS heterojunction nanocomposites was constructed for highly sensitive detection of chloramphenicol (CAP) in antibiotic residues. Through optimization of the material synthesis process, the optimal doping ratio of MoS2 to Ni3+ (70% MoS2 and 10% Ni3+) was identified, which significantly enhanced the photogenerated carrier separation efficiency. In thin-film preparation, comparative analysis of four film-forming methods led to the determination of an optimal process with stability. To achieve highly specific CAP detection, the nanocomposite chip was integrated with nucleic acid aptamer biorecognition elements within a standard three-electrode detection system. Experimental results demonstrated a linear response (R2 = 0.998) in the 0.1–2 μM concentration range, with a detection limit of 3.69 nM (3σ/S). Full article
(This article belongs to the Special Issue Nanotechnology Biosensing in Bioanalysis and Beyond)
Show Figures

Figure 1

20 pages, 2599 KiB  
Article
Simulation Investigation of Quantum FSO–Fiber System Using the BB84 QKD Protocol Under Severe Weather Conditions
by Meet Kumari and Satyendra K. Mishra
Photonics 2025, 12(7), 712; https://doi.org/10.3390/photonics12070712 (registering DOI) - 14 Jul 2025
Abstract
In response to the increasing demands for reliable, fast, and secure communications beyond 5G scenarios, the high-capacity networks have become a focal point. Quantum communication is at the forefront of this research, offering unmatched throughput and security. A free space optics (FSO) communication [...] Read more.
In response to the increasing demands for reliable, fast, and secure communications beyond 5G scenarios, the high-capacity networks have become a focal point. Quantum communication is at the forefront of this research, offering unmatched throughput and security. A free space optics (FSO) communication system integrated with fiber-end is designed and investigated using the Bennett–Brassard 1984 quantum key distribution (BB84-QKD) protocol. Simulation results show that reliable transmission can be achieved over a 10–15 km fiber length with a signal power of −19.54 dBm and high optical-to-signal noise of 72.28–95.30 dB over a 550 m FSO range under clear air, haze, fog, and rain conditions at a data rate of 1 Gbps. Also, the system using rectilinearly and circularly polarized signals exhibits a Stokes parameter intensity of −4.69 to −35.65 dBm and −7.7 to −35.66 dBm Stokes parameter intensity, respectively, over 100–700 m FSO range under diverse weather conditions. Likewise, for the same scenario, an FSO range of 100 m incorporating 2.5–4 mrad beam divergence provides the Stokes power intensity of −6.03 to −11.1 dBm and −9.04 to −14.12 dBm for rectilinearly and circularly polarized signals, respectively. Moreover, compared to existing works, this work allows faithful and secure signal transmission in free space, considering FSO–fiber link losses. Full article
(This article belongs to the Section Quantum Photonics and Technologies)
20 pages, 1588 KiB  
Article
A Type Ia Crustin from the Pacific White Shrimp Litopenaeus vannamei Exhibits Antimicrobial and Chemotactic Activities
by Xiuyan Gao, Yuan Liu, Xiaoyang Huang, Zhanyuan Yang, Mingzhe Sun and Fuhua Li
Biomolecules 2025, 15(7), 1015; https://doi.org/10.3390/biom15071015 (registering DOI) - 14 Jul 2025
Abstract
Crustins are a family of cysteine-rich antimicrobial peptides (AMPs), predominantly found in crustaceans, and play important roles in innate immunity. However, among the many reported crustins, few studies have explored their immunomodulatory functions. In this study, we investigated the immune function of a [...] Read more.
Crustins are a family of cysteine-rich antimicrobial peptides (AMPs), predominantly found in crustaceans, and play important roles in innate immunity. However, among the many reported crustins, few studies have explored their immunomodulatory functions. In this study, we investigated the immune function of a type I crustin (LvCrustinIa-2) in Litopenaeus vannamei, with particular emphasis on comparing the roles of its different domains. LvCrustinIa-2 possesses cationic patchy surface and amphipathic structure, and its expression was significantly induced in hemocytes after pathogen challenge. Both the recombinant LvCrustinIa-2 (rLvCrustinIa-2) and its whey acidic protein (WAP) domain (rLvCrustinIa-2-WAP) exhibited significant inhibitory activities against the tested Gram-positive bacteria. They also showed binding affinity not only for Gram-positive bacteria but also for Gram-negative bacteria. Furthermore, rLvCrustinIa-2 induced membrane leakage and structure damage in the target bacteria. Notably, chemotaxis assays revealed that rLvCrustinIa-2 and the synthetic cysteine-rich region (LvCrustinIa-2-CR) significantly enhanced the chemotactic activity of shrimp hemocytes in vitro. Knockdown of LvCrustinIa-2 triggered significant transcriptional activation of genes involved in calcium transport, inflammation, redox regulation, and NF-κB pathway. Taken together, these findings elucidate the distinct roles of the cysteine-rich region and WAP domain in type Ia crustin and provide the first evidence of a crustacean AMP with chemotactic and immunomodulatory activities. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
17 pages, 3483 KiB  
Article
A Feasibility Study of a Virtual Power Line Device to Improve Hosting Capacity in Renewable Energy Sources
by Seong-Eun Rho, Sung-Moon Choi, Joong-Seon Lee, Hyun-Sang You, Seung-Ho Lee and Dae-Seok Rho
Energies 2025, 18(14), 3714; https://doi.org/10.3390/en18143714 (registering DOI) - 14 Jul 2025
Abstract
As many renewable energy sources have been waiting to be interconnected with distribution systems due to the lack of power system infrastructure in Korea, studies to solve the delayed problem for renewable energy sources required. In order to overcome these problems, this paper [...] Read more.
As many renewable energy sources have been waiting to be interconnected with distribution systems due to the lack of power system infrastructure in Korea, studies to solve the delayed problem for renewable energy sources required. In order to overcome these problems, this paper presents an introduction model and optimal capacity algorithm of a VPL (virtual power line) device, which is a virtual power line operation technology to manage the power system by operating an ESS installed at the coupling point of renewable energy source without additionally expanding the power system infrastructure in a conventional way; this paper also proposes an economic evaluation method to assess the feasibility of the VPL device. The optimal capacity of the VPL device is determined by solving the over-voltage problem for the customer, and the economic evaluation method for the VPL device is considered by cost and benefit elements to evaluate the feasibility of introduction model for VPL device. From the simulation result of the proposed optimal capacity algorithm and economic evaluation method based on the introduction model in the VPL device, and it was confirmed that the optimal kW capacity of VPL device was selected as the maximum value in power control values, and the optimal kWh capacity was also determined by accumulating the power control values over the time intervals; also, the proper capacity of the VPL can be more economical than the investment cost of power system infrastructure expansion in the conventional method. Full article
(This article belongs to the Special Issue Stationary Energy Storage Systems for Renewable Energies)
Show Figures

Figure 1

17 pages, 1273 KiB  
Article
Methylated CpG ODNs from Bifidobacterium longum subsp. infantis Modulate Treg Induction and Suppress Allergic Response in a Murine Model
by Dongmei Li, Idalia Cruz, Samantha N. Peltak, Patricia L. Foley and Joseph A. Bellanti
Int. J. Mol. Sci. 2025, 26(14), 6755; https://doi.org/10.3390/ijms26146755 (registering DOI) - 14 Jul 2025
Abstract
In our previous studies, methylated CpG oligodeoxynucleotides (ODN) derived from Bifidobacterium longum subsp. infantis have demonstrated immunomodulatory effects through the induction of regulatory T cells (Tregs). To define the structural determinants underlying this effect, we synthesized four CpG ODNs varying in methylation degree, [...] Read more.
In our previous studies, methylated CpG oligodeoxynucleotides (ODN) derived from Bifidobacterium longum subsp. infantis have demonstrated immunomodulatory effects through the induction of regulatory T cells (Tregs). To define the structural determinants underlying this effect, we synthesized four CpG ODNs varying in methylation degree, CpG motif placement, and backbone length. These include (1) ODN-A (2m-V1), a 20-nucleotide CpG oligodeoxynucleotide incorporating two 5-methylcytosines at positions 4 and 12 within centrally placed CpG motifs; (2) ODN-B (um-V2), a 20-nucleotide CpG oligodeoxynucleotide with a backbone structure identical to ODN-A but unmethylated; (3) ODN-C (2m’-V3), a 20-nucleotide CpG oligodeoxynucleotide with a backbone structure identical to ODN-A, but with two 5-methylcytosines shifted to positions 7 and 15; (4) ODN-D (3m-V4), a 27-nucleotide CpG oligodeoxynucleotide with an extended backbone structure, this time with three 5-methylcytosines at positions 3, 11, and 19. Using a murine model of an OVA-induced allergy, we show that methylated ODN-A (2m-V1) and ODN-D (3m-V4) markedly reduce serum anti-OVA IgE, clinical symptoms, eosinophilic infiltration, and Th2/Th17 responses, while promoting splenic Treg expansion and IL-10 production. In contrast, unmethylated ODN-B (um-V2) and a positionally altered methylated ODN-C (2m’-V3) both failed to suppress allergic inflammation, and, in contrast, enhanced the Th2/Th17 response and induced robust in vitro Toll-like receptors TLR7/8/9 expression in native splenocytes. These findings suggest that both methylation and motif architecture critically influence the immunologic profile of CpG ODNs. Our results provide mechanistic insights into CpG ODN structure/function relationships and support the therapeutic potential of select methylated sequences for restoring immune tolerance in allergic diseases. Full article
23 pages, 3151 KiB  
Article
Operational Reliability of Steel Ropes in Terms of Mechanical Properties of Wires Using Control Charts
by Marcela Malindzakova and Pavel Peterka
Appl. Sci. 2025, 15(14), 7875; https://doi.org/10.3390/app15147875 (registering DOI) - 14 Jul 2025
Abstract
The objective of this paper is to evaluate the capability of various steel rope manufacturers to maintain the desired variability within the strength class of wires used in the production of steel ropes. From a service life perspective, it is optimal to achieve [...] Read more.
The objective of this paper is to evaluate the capability of various steel rope manufacturers to maintain the desired variability within the strength class of wires used in the production of steel ropes. From a service life perspective, it is optimal to achieve the narrowest possible strength class interval for wires integrated into steel ropes. However, the applicable EN 12385 standards permit a relatively wide interval of allowable strength class dispersion. The analysis encompasses 112 steel ropes tested over the period from 2000 to 2025. For the purpose of evaluating rope quality in terms of wire strength variability, the ropes were categorized into four quality classes. The assessment of wire strength was conducted using statistical quality control methods, specifically through the application of control charts. Based on these methods, the stability and capability of wire strength within each rope were verified. The results highlight the differences in wire strength performance across the evaluated quality classes. Full article
25 pages, 954 KiB  
Article
Synthesis and Cytotoxicity Evaluation of Denitroaristolochic Acids: Structural Insights and Mechanistic Implications in Nephrotoxicity
by Jianfei Gao, Mengtong Zhao, Jianhua Su, Yi Gao, Xiaofeng Zhang, Yongzhao Ding, Xiaoping Liu, Yang Luan and Chun Hu
Biomolecules 2025, 15(7), 1014; https://doi.org/10.3390/biom15071014 (registering DOI) - 14 Jul 2025
Abstract
The efficient synthetic routes and evaluates cytotoxic profiles of denitroaristolochic acids II-V (DAA-II-V) were demonstrated in this study. Based on retrosynthetic analysis, a modular synthetic strategy was developed through Suzuki–Miyaura coupling, Wittig reaction, and bismuth triflate-catalyzed intramolecular Friedel–Crafts cyclization to efficiently construct the [...] Read more.
The efficient synthetic routes and evaluates cytotoxic profiles of denitroaristolochic acids II-V (DAA-II-V) were demonstrated in this study. Based on retrosynthetic analysis, a modular synthetic strategy was developed through Suzuki–Miyaura coupling, Wittig reaction, and bismuth triflate-catalyzed intramolecular Friedel–Crafts cyclization to efficiently construct the phenanthrene core. Process optimization significantly improved yields: aryl bromide intermediate A reached 50.8% yield via bromination refinement, while arylboronic ester intermediate B overcame selectivity limitations. Combining Darzens condensation with Wittig reaction enhanced throughput, achieving 88.4% yield in the key cyclization. Structures were confirmed by NMR and mass spectra. CCK-8 cytotoxicity assays in human renal proximal tubular epithelial cells revealed distinct toxicological profiles: DAA-III and DAA-IV exhibited IC50 values of 371 μM and 515 μM, respectively, significantly higher than the nitro-containing prototype AA-I (270 μM), indicating that the absence of nitro group attenuates but does not eliminate toxicity, potentially via altered metabolic activation. DAA-II and DAA-V showed no detectable cytotoxicity within assay limits, suggesting reduced toxicological impact. Structure–activity analysis exhibited that the nitro group is not essential for cytotoxicity, with methoxy substituents exerting limited influence on potency. This challenges the conventional DNA adduct-dependent toxicity paradigm, implying alternative mechanisms like oxidative stress or mitochondrial dysfunction may mediate damage in denitro derivatives. These systematic findings provide new perspectives for AA analog research and a foundation for the rational use and safety assessment of Aristolochiaceae plants. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
29 pages, 8327 KiB  
Article
Fire Hazard Risk Grading of Timber Architectural Complexes Based on Fire Spreading Characteristics
by Chong Wang, Zhigang Song, Jian Zhang, Lijiao Liu, Feiyang Zheng and Siqi Cao
Buildings 2025, 15(14), 2472; https://doi.org/10.3390/buildings15142472 (registering DOI) - 14 Jul 2025
Abstract
Fire spread between buildings is the primary cause of extensive fire damage in traditional village timber structure clusters. Accurately assessing fire spread risk is crucial for the preservation of these architectural ensembles. During the development and conservation of traditional villages, fire risk dynamics [...] Read more.
Fire spread between buildings is the primary cause of extensive fire damage in traditional village timber structure clusters. Accurately assessing fire spread risk is crucial for the preservation of these architectural ensembles. During the development and conservation of traditional villages, fire risk dynamics may shift due to fire-resistant retrofits or layout modifications, necessitating repeated risk reevaluations. To address challenges such as the computational intensity of fire spread simulations, high costs, and data acquisition difficulties, this study proposes a directed graph-based method for fire spread risk analysis and risk level classification in timber structure clusters, accounting for their unique fire propagation characteristics. First, localized fire spread paths and propagation times between nodes (buildings) are determined through fire spread simulations, constructing an adjacency matrix for the directed graph of the building cluster. Path search algorithms then identify the spread range and velocity under specific fire scenarios. Subsequently, a zoned risk assessment model for individual buildings is developed based on critical fire spread loss and velocity, integrating each building’s fire resistance and its probability of exposure to different risk zones to determine the overall cluster’s fire spread risk level. The method is validated using a case study of a typical village in Yunnan Province. Results demonstrate that the approach efficiently computes fire spread characteristics across different scenarios and quantitatively evaluates risk levels, enabling targeted fire safety interventions based on village-specific spread patterns. Case analysis reveals significant variations in fire spread behavior: Village 1, Village 2, and Village 3 exhibit fire resistance indices of 0.59, 0.757, and 0.493, corresponding to high, moderate, and high fire spread risk levels, respectively. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

31 pages, 883 KiB  
Article
Pure Bayesian Nash Equilibria for Bayesian Games with Multidimensional Vector Types and Linear Payoffs
by Sébastien Huot and Abbas Edalat
Games 2025, 16(4), 37; https://doi.org/10.3390/g16040037 (registering DOI) - 14 Jul 2025
Abstract
In this work, we study n-agent Bayesian games with m-dimensional vector types and linear payoffs, also called linear multidimensional Bayesian games. This class of games is equivalent with n-agent, m-game uniform multigames. We distinguish between games that have a [...] Read more.
In this work, we study n-agent Bayesian games with m-dimensional vector types and linear payoffs, also called linear multidimensional Bayesian games. This class of games is equivalent with n-agent, m-game uniform multigames. We distinguish between games that have a discrete type space and those with a continuous type space. More specifically, we are interested in the existence of pure Bayesian Nash equilibriums for such games and efficient algorithms to find them. For continuous priors, we suggest a methodology to perform Nash equilibrium searches in simple cases. For discrete priors, we present algorithms that can handle two-action and two-player games efficiently. We introduce the core concept of threshold strategy and, under some mild conditions, we show that these games have at least one pure Bayesian Nash equilibrium. We illustrate our results with several examples like the double-game prisoner’s dilemma (DGPD), the game of chicken, and the sustainable adoption decision problem (SADP). Full article
Show Figures

Figure 1

25 pages, 1247 KiB  
Article
Defining Soilborne Pathogen Complexes Provides a New Foundation for the Effective Management of Faba Bean Root Diseases in Ethiopia
by Solomon Yilma, Berhanu Bekele, Joop Van Leur, Ming Pei You, Seid-Ahmed Kemal, Danièle Giblot-Ducray, Kelly Hill, Thangavel Selvaraji, Alemu Lencho, Lemma Driba and Martin J. Barbetti
Pathogens 2025, 14(7), 695; https://doi.org/10.3390/pathogens14070695 (registering DOI) - 14 Jul 2025
Abstract
Soilborne diseases cause losses of 45–70% in faba bean in Ethiopia. Studies were undertaken to define soilborne pathogens and their complexes in Ethiopia. First, the severity of root rot was assessed in 150 field sites across seven Ethiopian regions. Soil samples were collected, [...] Read more.
Soilborne diseases cause losses of 45–70% in faba bean in Ethiopia. Studies were undertaken to define soilborne pathogens and their complexes in Ethiopia. First, the severity of root rot was assessed in 150 field sites across seven Ethiopian regions. Soil samples were collected, and the DNA of 29 pests and pathogens was quantified using a commercial quantitative PCR (qPCR) soil testing service. There was a very high incidence rate of Macrophomina phaseolina, as well as Pythium clades F and I. The other detected species in order of incidence included Fusarium redolens, Rhizoctonia solani, Aphanomyces euteiches, Phytophthora megasperma, Sclerotinia sclerotiorum and S. minor, and Verticillium dahliae, as well as low levels of Thielaviopsis basicola. Five anastomosis groups (AG) of R. solani, namely AG2.1, AG2.2, AG3, AG4, and AG5, were detected, of which AG2.2 and AG4 were most prevalent. We believe this is the first report of occurrence for Ethiopia of A. euteiches, Ph. megasperma, T. basicola, and the five AGs for R. solani. There were very high incidence rates of the foliar pathogens Botrytis cinerea, B. fabae, Didymella pinodes, and Phoma pinodella and of the nematode Pratylenchus thornei, followed by P. neglectus and P. penetrans. The root rot severity and distribution varied significantly across regions, as well as with soil types, soil pH, and soil drainage. Subsequently, metabarcoding of the soil DNA was undertaken using three primer pairs targeting fungi (ITS2), Fusarium species (TEF1 α), and Oomycetes (ITS1Oo). The ITS2 and TEF1α primers emphasized F. oxysporum as the most abundant soilborne fungal pathogen and highlighted F. ananatum, F. brachygibbosum, F. brevicaudatum, F. clavum, F. flagelliforme, F. keratoplasticum, F. napiforme, F. nelsonii, F. neocosmosporiellum, F. torulosum, and F. vanettenii as first reports of occurrence for Ethiopia. The ITS1Oo primer confirmed Pythium spp. as the most prevalent of all Oomycetes. Full article
(This article belongs to the Special Issue An Update on Fungal Infections)
23 pages, 1345 KiB  
Article
Endophytic Bacterial Consortia Isolated from Disease-Resistant Pinus pinea L. Increase Germination and Plant Quality in Susceptible Pine Species (Pinus radiata D. Don)
by Frederico Leitão, Marta Alves, Isabel Henriques and Glória Pinto
Forests 2025, 16(7), 1161; https://doi.org/10.3390/f16071161 (registering DOI) - 14 Jul 2025
Abstract
The nursery phase is vital for forest regeneration, yet studies on plant growth-promoting (PGP) bacteria to enhance sustainable nursery production in forest species are scarce. This study explores whether endophytic bacteria from disease-resistant Pinus pinea L. can improve germination and seedling quality in [...] Read more.
The nursery phase is vital for forest regeneration, yet studies on plant growth-promoting (PGP) bacteria to enhance sustainable nursery production in forest species are scarce. This study explores whether endophytic bacteria from disease-resistant Pinus pinea L. can improve germination and seedling quality in susceptible Pinus radiata D. Don. Root endophytes were isolated, screened for PGP traits, and identified via 16S rRNA gene sequencing. Bacterial formulations were applied to P. radiata seeds to determine their impact on germination and plant quality indicators (photosynthetic pigments and other metabolites). Paenibacillaceae (19%) and Bacillaceae (13%) were predominant among 68 isolates, with 94% producing indole-3-acetic acid, and Burkholderiaceae showing the broadest PGP trait diversity. Seedlings inoculated with formulation C3 (Caballeronia R.M3R3, Rhodococcus T.M4R4, and Mesorhizobium R.M1R2) displayed an improved germination rate (89% compared to 71% from the uninoculated control), while those inoculated with formulation P4 (Paenibacillus T.M5R4, Bacillus R.M2R7, Acinetobacter T.M2R22, and Paraburkholderia R.M1R3) showed an improved germination rate (81%), increased amount of starch (0.4-fold), and free amino acids (1.5-fold). This study presents a comprehensive approach, from endophyte isolation to in vivo tests, highlighting two bacterial formulations as candidates for further proof-of-concept nursery trials. Ultimately, these bioinoculants represent eco-friendly strategies to enhance forest seedling establishment and support sustainable forest management. Full article
(This article belongs to the Section Forest Ecology and Management)
19 pages, 1413 KiB  
Article
Rubus caesius L. (European Dewberry) Extracts as a Novel Therapeutic Strategy Against MRSA Strains
by Yahor Ivashchanka, Anna Hering, Alina Kastsevich, Justyna Stefanowicz-Hajduk and Rafał Hałasa
Int. J. Mol. Sci. 2025, 26(14), 6754; https://doi.org/10.3390/ijms26146754 (registering DOI) - 14 Jul 2025
Abstract
Increased bacterial resistance to current antibiotics leads to a depletion of therapeutic options in medicine. One of the problems of current therapy is methicillin-resistant Staphylococcus aureus (MRSA), which, in addition to resistance to β-lactam antibiotics, is multidrug-resistant. Some strains can also produce biofilms, [...] Read more.
Increased bacterial resistance to current antibiotics leads to a depletion of therapeutic options in medicine. One of the problems of current therapy is methicillin-resistant Staphylococcus aureus (MRSA), which, in addition to resistance to β-lactam antibiotics, is multidrug-resistant. Some strains can also produce biofilms, a multicellular structure that is resistant or tolerant to various antibiotics. In hospitals worldwide, about 15% of invasive infections are caused by MRSA. Extracts of Rubus caesius (dewberry) contain high concentrations of compounds such as phenolic acids, flavonoids, tannins, and anthocyanins, which have potential antibacterial properties. This study is the first to demonstrate the activity of aqueous and ethanolic extracts of dewberry leaves (LH2O, LEtOH) and stems (SH2O, SEtOH) against S. aureus and Staphylococcus epidermidis. The most active extracts were LEtOH (MIC 0.16 ± 0.40–1.56 ± 0.23 mg/mL) and LH2O (MIC 0.16 ± 0.20–10 mg/mL). The study showed that LEtOH, SEtOH and LH2O extracts inhibited biofilm formation by clinical strains MRCN (methicillin-resistant coagulase-negative staphylococci) and MRSA (biofilm biomass reduction from 40 to 100%). Furthermore, 3,3′—dipropylthiacarbocyanine (DiSC3(5)) and N-phenyl-naphthylamine (NPN) were used to show that LEtOH and SEtOH caused the membrane depolarization of the strains studied. We also showed that the extracts acted synergistically and additively with cefoxitin and amikacin, reducing the MIC values of the antibiotics used by 8- to 16-fold and of the extracts tested by 4- to 8-fold. This study provides new data on potential antibacterial drugs of therapeutic importance. Full article
Show Figures

Figure 1

15 pages, 1431 KiB  
Article
Antimicrobial Efficacy of Impregnated Human Acellular Dermal Substitutes in Burn Wound Models
by Marianna Hajská, Elena Kurin, Silvia Bittner Fialová, Marian Vidiščák and Arpád Panyko
Antibiotics 2025, 14(7), 707; https://doi.org/10.3390/antibiotics14070707 (registering DOI) - 14 Jul 2025
Abstract
Burn wound infections remain a major clinical challenge due to delayed healing, scarring, and the risk of sepsis, especially when complicated by multidrug-resistant (MDR) Gram-negative pathogens and biofilm formation. Acellular dermal matrices (ADMs) are widely used in reconstructive and burn surgery, yet they [...] Read more.
Burn wound infections remain a major clinical challenge due to delayed healing, scarring, and the risk of sepsis, especially when complicated by multidrug-resistant (MDR) Gram-negative pathogens and biofilm formation. Acellular dermal matrices (ADMs) are widely used in reconstructive and burn surgery, yet they lack intrinsic antimicrobial activity, necessitating their combination with topical agents. Background/Objectives: This study investigates the antimicrobial and cytocompatibility profiles of ADMs impregnated with various antimicrobial agents, using in vitro planktonic and biofilm burn wound models. While the incorporation of antimicrobials into scaffolds has been previously explored, this study is, to our knowledge, the first to directly compare seven clinically relevant antimicrobial agents after they were impregnated into an ADM in a standardized in vitro model. Methods: Seven topical antimicrobials were tested against MDR Pseudomonas aeruginosa and Acinetobacter baumannii from burn patients. Results: The ADM with 1% acetic acid (AA) showed superior antimicrobial activity, achieving > 7 log10 reductions in planktonic assays and complete inhibition of P. aeruginosa biofilms. In NIH 3T3 fibroblast cytotoxicity assays, the 1% AA ADM maintained cell viability at control levels, indicating excellent biocompatibility. Compared with agents such as Betadine®, Octenilin®, and colistin, which showed cytotoxicity, and Prontosan®, which showed low efficacy, 1% AA uniquely combined potent antibacterial effects with minimal toxicity. Conclusions: Among the seven antimicrobial agents impregnated into ADMs, 1% AA demonstrated a unique efficacy and safety profile, supporting its potential for clinical application in integrated wound dressings and implantable biomaterials for infection control in burn care. Full article
(This article belongs to the Special Issue Antimicrobial Resistance and Therapy in Intensive Care Unit)
19 pages, 924 KiB  
Article
High-Density Lipoprotein Cholesterol and Cognitive Function in Older Korean Adults Without Dementia: Apolipoprotein E4 as a Moderating Factor
by Young Min Choe, Hye Ji Choi, Musung Keum, Boung Chul Lee, Guk-Hee Suh, Shin Gyeom Kim, Hyun Soo Kim, Jaeuk Hwang, Dahyun Yi and Jee Wook Kim
Nutrients 2025, 17(14), 2321; https://doi.org/10.3390/nu17142321 (registering DOI) - 14 Jul 2025
Abstract
Background: High-density lipoprotein cholesterol (HDL-C) is known for its cardiovascular and neuroprotective effects, but its association with cognitive function remains unclear, particularly in relation to genetic factors such as apolipoprotein E ε4 (APOE4). We aimed to investigate the association between serum HDL-C levels [...] Read more.
Background: High-density lipoprotein cholesterol (HDL-C) is known for its cardiovascular and neuroprotective effects, but its association with cognitive function remains unclear, particularly in relation to genetic factors such as apolipoprotein E ε4 (APOE4). We aimed to investigate the association between serum HDL-C levels and cognition and to examine the moderating effect of APOE4 on this relationship. Methods: This cross-sectional study included 196 dementia-free older adults (aged 65–90) recruited from a memory clinic and the community. Cognitive function was assessed across multiple domains using the Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) battery. Serum HDL-C levels were measured, and APOE4 genotyping was performed. Multiple linear regression analyses were conducted, adjusting for age, sex, APOE4 status, education, diagnosis, vascular risk, nutritional status, physical activity, and blood biomarkers. Results: Higher HDL-C levels were significantly associated with better episodic memory (B = 0.109, 95% confidence interval [CI]: 0.029–0.189, p = 0.008) and global cognition (B = 0.130, 95% CI: 0.001–0.261, p = 0.049). These associations were significantly moderated by APOE4 status. In APOE4-positive individuals, HDL-C was strongly associated with both episodic memory (B = 0.357, 95% CI: 0.138–0.575, p = 0.003) and global cognition (B = 0.519, 95% CI: 0.220–0.818, p = 0.002), but no such associations were observed in APOE4-negative participants. Conclusions: This study indicates a significant association between serum HDL-C levels and cognitive function, particularly in episodic memory and global cognition, with APOE4 status potentially moderating this relationship. While these findings may suggest a protective role of HDL-C in individuals at increased genetic risk due to APOE4, they should be interpreted with caution given the cross-sectional design. Future longitudinal and mechanistic studies are warranted to clarify causality and potential clinical implications. Full article
(This article belongs to the Section Geriatric Nutrition)
Show Figures

Figure 1

19 pages, 9458 KiB  
Article
YOLO-WAS: A Lightweight Apple Target Detection Method Based on Improved YOLO11
by Xinwu Du, Xiaoxuan Zhang, Tingting Li, Xiangyu Chen, Xiufang Yu and Heng Wang
Agriculture 2025, 15(14), 1521; https://doi.org/10.3390/agriculture15141521 (registering DOI) - 14 Jul 2025
Abstract
Target detection is the key technology of the apple-picking robot. To overcome the limitations of existing apple target detection methods, including low recognition accuracy of multi-species apples in complex orchard environments and a complex network architecture that occupies large memory, a lightweight apple [...] Read more.
Target detection is the key technology of the apple-picking robot. To overcome the limitations of existing apple target detection methods, including low recognition accuracy of multi-species apples in complex orchard environments and a complex network architecture that occupies large memory, a lightweight apple recognition model based on the improved YOLO11 model was proposed, named YOLO-WAS model. The model aims to achieve efficient and accurate automatic multi-species apple identification while reducing computational resource consumption and facilitating real-time applications on low-power devices. First, the study constructed a high-quality multi-species apple dataset and improved the complexity and diversity of the dataset through various data enhancement techniques. The YOLO-WAS model replaced the ordinary convolution module of YOLO11 with the Adown module proposed in YOLOv9, the backbone C3K2 module combined with Wavelet Transform Convolution (WTConv), and the spatial and channel synergistic attention module Self-Calibrated Spatial Attention (SCSA) combined with the C2PSA attention mechanism to form the C2PSA_SCSA module was also introduced. Through these improvements, the model not only ensured lightweight but also significantly improved performance. Experimental results show that the proposed YOLO-WAS model achieves a precision (P) of 0.958, a recall (R) of 0.921, and mean average precision at IoU threshold of 0.5 (mAP@50) of 0.970 and mean average precision from IoU threshold of 0.5 to 0.95 with step 0.05 (mAP@50:95) of 0.835. Compared to the baseline model, the YOLO-WAS exhibits reduced computational complexity, with the number of parameters and floating-point operations decreased by 22.8% and 20.6%, respectively. These results demonstrate that the model performs competitively in apple detection tasks and holds potential to meet real-time detection requirements in resource-constrained environments, thereby contributing to the advancement of automated orchard management. Full article
(This article belongs to the Section Digital Agriculture)
Show Figures

Figure 1

25 pages, 1657 KiB  
Review
Integrating New Technologies in Lipidology: A Comprehensive Review
by Carlos Escobar-Cervantes, Jesús Saldaña-García, Ana Torremocha-López, Cristina Contreras-Lorenzo, Alejandro Lara-García, Lucía Canales-Muñoz, Ricardo Martínez-González, Joaquín Vila-García and Maciej Banach
J. Clin. Med. 2025, 14(14), 4984; https://doi.org/10.3390/jcm14144984 (registering DOI) - 14 Jul 2025
Abstract
Cardiovascular disease remains the world’s leading cause of death, and even when patients reach guideline low-density lipoprotein cholesterol targets, a substantial “residual risk” persists, underscoring the need for more nuanced assessment and intervention. At the same time, rapid advances in high-resolution lipidomics, connected [...] Read more.
Cardiovascular disease remains the world’s leading cause of death, and even when patients reach guideline low-density lipoprotein cholesterol targets, a substantial “residual risk” persists, underscoring the need for more nuanced assessment and intervention. At the same time, rapid advances in high-resolution lipidomics, connected point-of-care diagnostics, and RNA- or gene-based lipid-modifying therapies are transforming what clinicians can measure, monitor, and treat. Integrating multimodal data through machine learning algorithms capable of handling high-dimensional datasets has the potential to improve cardiovascular risk prediction and re-stratification compared to traditional models. This narrative review therefore sets out to (i) trace how these emerging technologies expand our understanding of dyslipidemia beyond the traditional lipid panel, (ii) examine their potential to enable earlier, more personalized and durable cardiovascular risk reduction, and (iii) highlight the scientific, regulatory and ethical hurdles that must be cleared before such innovations can deliver widespread, equitable benefit. Full article
Show Figures

Figure 1

13 pages, 1018 KiB  
Article
Can the Accrual Anomaly Be Explained by Credit Risk?
by Foong Soon Cheong
Account. Audit. 2025, 1(2), 6; https://doi.org/10.3390/accountaudit1020006 - 14 Jul 2025
Abstract
Past studies have observed that the low (high) accrual portfolio in the accrual anomaly consists of firms with high (low) credit risk, and have suggested that the abnormal return in the accrual anomaly arises from buying (selling) stocks with high (low) credit risk. [...] Read more.
Past studies have observed that the low (high) accrual portfolio in the accrual anomaly consists of firms with high (low) credit risk, and have suggested that the abnormal return in the accrual anomaly arises from buying (selling) stocks with high (low) credit risk. In this paper, I first investigate whether the low accrual portfolio is indeed dominated by firms with higher credit risk. I find that this claim is not necessarily true. Next, I regress the abnormal return on both the level of accrual and credit risk. The regression is repeated using both decile ranking and actual values. In both cases, I find that the level of accrual is always statistically significant and negative. Finally, I investigate the claim that the abnormal return in the accrual anomaly is due to taking a long (short) position in stocks with high (low) credit risk. In each year, to control for credit risk, I first rank all firms by both their level of accrual and credit risk. The ranking for accrual and credit risk are independently determined. I require that in each year, the long position (in the low accrual decile) and short position (in high accrual decile) are equally weighted within each credit risk decile. After controlling for credit risk, I find that the abnormal return from Sloan’s accrual trading strategy is still positive, statistically significant and economically significant. I conclude that the accrual anomaly cannot be explained by credit risk. All findings in this paper are robust as to whether credit risk is measured using Altman’s z-score or the Standard & Poor’s credit rating. Full article
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop