All articles published by MDPI are made immediately available worldwide under an open access license. No special
permission is required to reuse all or part of the article published by MDPI, including figures and tables. For
articles published under an open access Creative Common CC BY license, any part of the article may be reused without
permission provided that the original article is clearly cited. For more information, please refer to
https://www.mdpi.com/openaccess.
Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature
Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for
future research directions and describes possible research applications.
Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive
positive feedback from the reviewers.
Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world.
Editors select a small number of articles recently published in the journal that they believe will be particularly
interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the
most exciting work published in the various research areas of the journal.
Recent studies have greatly furthered our understanding of the Southern Bantu languages, but questions about the internal relationships of the Southern Bantu language subgroups and the validity of the clade as a whole still remain. This study attempts to reconstruct the consonant inventory
[...] Read more.
Recent studies have greatly furthered our understanding of the Southern Bantu languages, but questions about the internal relationships of the Southern Bantu language subgroups and the validity of the clade as a whole still remain. This study attempts to reconstruct the consonant inventory of one proposed genetic clade, that of Tsonga-Copi (S50–S60). Using published dictionaries and reference works for each language of the subgrouping, a corpus of cognate vocabulary was assembled. Each term was then matched, where possible, to a reconstruction in the Bantu Lexical Reconstructions 3 (BLR3) database. Sound correspondences were identified and used to reconstruct the consonant inventory of Proto-Tsonga-Copi. In addition to the discovery of several typologically unusual sound changes, the results of this study also lend support to existing and developing hypotheses about both the internal relationships of Southern Bantu clades, as well as the nature of language contact in (pre)historic Southern Africa, particularly the influence of Khoisan and other Bantu languages.
Full article
T-bar penetrometers have been widely used to measure strength parameters of marine clay in laboratory and in situ tests. However, using the deep resistance factor derived from full-flow conditions to evaluate the undrained shear strength of shallow clay layers may lead to significant
[...] Read more.
T-bar penetrometers have been widely used to measure strength parameters of marine clay in laboratory and in situ tests. However, using the deep resistance factor derived from full-flow conditions to evaluate the undrained shear strength of shallow clay layers may lead to significant underestimation. Furthermore, the deep resistance factor is inherently influenced by the strain-softening behavior of clay rather than maintaining the constant value (typically 10.5) as conventionally assumed in practice. To address this issue, large-deformation finite element (LDFE) simulations incorporating an advanced exponential strain-softening constitutive model were performed to replicate the full T-bar penetration process—from shallow embedment to deeper depths below the mudline. A series of parametric studies were conducted to examine the influence of key parameters on the resistance factor and the associated failure mechanisms during penetration. Based on numerical results, empirical formulas were derived to predict critical penetration depths for both trapped cavity formation and full-flow mechanism initiation. For penetration depths shallower than the full-flow depth, an expression for the softening correction factor was developed to calibrate the shallow resistance factor. Finally, combined with global optimization algorithms, a computer-aided back-analysis procedure was established to estimate strain-softening parameters using resistance-penetration curves from initial penetration tests in marine clay. The reliability of the back-analysis procedure was validated through extensive comparisons with a series of numerical simulation results. This procedure can be applied to the interpretation of T-bar in situ test results in soft marine clay, enabling the evaluation of its strain-softening behavior.
Full article
In this paper, we investigate -optimal model reduction methods for discrete-time linear time-invariant systems. Similar to the continuous-time case, we will formulate this problem as an optimization problem over a Grassmann manifold. We consider constructing reduced systems by both one-sided and
[...] Read more.
In this paper, we investigate -optimal model reduction methods for discrete-time linear time-invariant systems. Similar to the continuous-time case, we will formulate this problem as an optimization problem over a Grassmann manifold. We consider constructing reduced systems by both one-sided and two-sided projections. For one-sided projection, by utilizing the principle of the Grassmann manifold, we propose a gradient flow method and a sequentially quadratic approximation approach to solve the optimization problem. For two-sided projection, we apply the strategies of alternating direction iteration and sequentially quadratic approximation to the minimization problem and develop a numerically efficient method. One main advantage of these methods, based on the formulation of optimization over a Grassmann manifold, is that stability can be preserved in the reduced system. Several numerical examples are provided to illustrate the effectiveness of the methods proposed in this paper.
Full article
by
Jonathan Raúl Garay-Martínez, Fernando Lucio-Ruíz, Juan Eduardo Godina-Rodríguez, Xochilt Militza Ochoa-Espinoza, Santiago Joaquín-Cancino and José Felipe Orzuna-Orzuna
The objective of this study was to evaluate the effect of various additives on the nutritional value and aerobic stability of safflower (Carthamus tinctorius L.) silages. Silages were prepared from whole safflower plants harvested 102 days after planting, which were chopped to
[...] Read more.
The objective of this study was to evaluate the effect of various additives on the nutritional value and aerobic stability of safflower (Carthamus tinctorius L.) silages. Silages were prepared from whole safflower plants harvested 102 days after planting, which were chopped to a particle size of 2.0 ± 0.5 cm and fermented for 120 days in polyvinyl chloride microsilos (6” × 46 cm), evaluating the following treatments: (1) safflower silage (SS) without additives, (2) SS supplemented with Guanacaste tree (Enterolobium cyclocarpum) pod meal, (3) SS supplemented with corn meal, (4) SS supplemented with sorghum meal, (5) SS supplemented with molasses, (6) SS supplemented with homofermentative inoculant, and (7) SS supplemented with fermentative inoculant + molasses. Compared with SS without additives, the addition of all the evaluated additives increased (p < 0.0001) the crude protein content and the relative forage value, while simultaneously decreasing the pH in SS. In contrast, the use of Guanacaste tree pod meal, corn, and sorghum decreased (p < 0.0001) the neutral detergent fiber and acid detergent fiber contents, while simultaneously increasing (p < 0.0001) the in vitro digestibility of dry matter in SS. All the evaluated additives increased (p < 0.05) the aerobic stability of the SS, which broke 42 h after opening the microsilos, whereas the silage without additives broke at 30 h. In conclusion, the use of Guanacaste tree pod meal, corn, and sorghum as additives improves the nutritive value and aerobic stability of safflower silage.
Full article
Background: Human Metapneumovirus (HMPV) is a respiratory virus in the Pneumoviridae family. HMPV is an enveloped, negative-sense RNA virus encoding three surface proteins: SH, G, and F. The highly immunogenic fusion (F) protein is essential for viral entry and a key target for
[...] Read more.
Background: Human Metapneumovirus (HMPV) is a respiratory virus in the Pneumoviridae family. HMPV is an enveloped, negative-sense RNA virus encoding three surface proteins: SH, G, and F. The highly immunogenic fusion (F) protein is essential for viral entry and a key target for vaccine development. The F protein exists in two conformations: prefusion and postfusion. The prefusion form is highly immunogenic and considered a potent vaccine antigen. However, this conformation needs to be stabilized to improve its immunogenicity for effective vaccine development. Specific mutations are necessary to maintain the prefusion state and prevent it from changing to the postfusion form. Methods: In silico mutagenesis was performed on the C-terminal domain of the pre-F protein, focusing on five amino acids at positions 469 to 473 (LVDQS), using the established pre-F structure (PDB: 8W3Q) as the reference. The amino acid sequence was sequentially mutated based on hydrophobicity, resulting in mutants M1 (IIFLL), M2 (LLIVL), M3 (WWVLL), and M4 (YMWLL). Increasing hydrophobicity was found to enhance protein stability and structural rigidity. Results: Epitope mapping revealed that all mutants displayed significant B and T cell epitopes similar to the reference protein. The structure and stability of all mutants were analyzed using molecular dynamics simulations, free energy calculations, and secondary structure analysis. Based on the lowest RMSD, clash score, MolProbity value, stable radius of gyration, and low RMSF, the M1 mutant demonstrated superior structural stability. Conclusions: Our findings indicate that the M1 mutant of the pre-F protein could be the most stable and structurally accurate candidate for vaccine development against HMPV.
Full article
Despite the remarkable success of Deep Neural Networks (DNNs) in Remote Sensing Image (RSI) object detection, they remain vulnerable to adversarial attacks. Numerous adversarial attack methods have been proposed for RSI; however, adding a single large-scale adversarial patch to certain high-value targets, which
[...] Read more.
Despite the remarkable success of Deep Neural Networks (DNNs) in Remote Sensing Image (RSI) object detection, they remain vulnerable to adversarial attacks. Numerous adversarial attack methods have been proposed for RSI; however, adding a single large-scale adversarial patch to certain high-value targets, which are typically large in physical scale and irregular in shape, is both costly and inflexible. To address this issue, we propose a strategy of using multiple compact patches. This approach introduces two fundamental challenges: (1) how to optimize patch placement for a synergistic attack effect, and (2) how to retain strong adversarial potency within size-constrained mini-patches. To overcome these challenges, we introduce the Spatially Adaptive and Distillation-Enhanced Mini-Patch Attack (SDMPA) framework, which consists of two key modules: (1) an Adaptive Sensitivity-Aware Positioning (ASAP) module, which resolves the placement challenge by fusing the model’s attention maps from both an explainable and an adversarial perspective to identify optimal patch locations, and (2) a Distillation-based Mini-Patch Generation (DMPG) module, which tackles the potency challenge by leveraging knowledge distillation to transfer adversarial information from large teacher patches to small student patches. Extensive experiments on the RSOD and MAR20 datasets demonstrate that SDMPA significantly outperforms existing patch-based attack methods. For example, against YOLOv5n on the RSOD dataset, SDMPA achieves an Attack Success Rate (ASR) of 88.3% using only three small patches, surpassing other patch attack methods.
Full article
Live bait fishing, which was initiated around the 1950s on the coast of Dakar for the exploitation of tropical tunas, remains poorly studied. This study aims to examine the ichthyological diversity in Hann Bay and analyze the seasonal variation in species used as
[...] Read more.
Live bait fishing, which was initiated around the 1950s on the coast of Dakar for the exploitation of tropical tunas, remains poorly studied. This study aims to examine the ichthyological diversity in Hann Bay and analyze the seasonal variation in species used as live bait. Ten experimental fishing campaigns were conducted between February and November 2023, using a beach seine and a purse seine. Captured individuals were sorted by species, counted, and weighed. Salinity and temperature drive seasonal changes in live bait fish communities in Hann Bay. Beach seine captured 389,171 individuals from 65 species, representing a biomass of 1743 kg. Purse seine yielded 9408 individuals from 62 species, representing a total of 306 kg. Ten species were identified as live bait, ten of which were caught with beach seine (Engraulis encrasicolus dominated) and eight with purse seine (Sardinella maderensis dominated). Eight of the ten live bait species were caught by both purse seine and beach seine. For beach seine, Shannon’s index was higher during the cold season, indicating a better distribution of species abundance. For purse seine, species abundance was lower in the cold season. Pielou’s evenness index indicated a more balanced assemblage in the cold season for beach seine (0.65) and in the warm season for purse seine (0.74). The number and weight of live baits did not vary significantly between seasons. These results may support the sustainable management of coastal small pelagics, whose juveniles are used as live bait.
Full article
A novel definition of volume dimension for a mass function based on a sigmoid asymptote is proposed; in particular, we extend the volume dimension of a mass function to define the volume dimensions for nodes and edges in complex networks. Furthermore, the relationship
[...] Read more.
A novel definition of volume dimension for a mass function based on a sigmoid asymptote is proposed; in particular, we extend the volume dimension of a mass function to define the volume dimensions for nodes and edges in complex networks. Furthermore, the relationship between the proposed volume dimension and the non-specificity term of the Deng entropy is shown, and the traditional volume dimension and volume dimension based on the node degree in complex networks are revisited. Our experiments show that in both real and synthetic complex networks, the volume dimension tends to follow a sigmoidal asymptote rather than the previously utilized power law asymptote.
Full article
by
Andrey P. Yurkov, Roman K. Puzanskiy, Alexey A. Kryukov, Tatyana R. Kudriashova, Anastasia I. Kovalchuk, Anastasia I. Gorenkova, Ekaterina M. Bogdanova, Yuri V. Laktionov, Daria A. Romanyuk, Vladislav V. Yemelyanov, Alexey L. Shavarda and Maria F. Shishova
The arbuscular mycorrhizal fungi (AMF) effect on the plant metabolome is an actual question of plant biology. Its alteration during host plant development and at different phosphorus supplies is of special interest. The aim of this study was to evaluate the effect of
[...] Read more.
The arbuscular mycorrhizal fungi (AMF) effect on the plant metabolome is an actual question of plant biology. Its alteration during host plant development and at different phosphorus supplies is of special interest. The aim of this study was to evaluate the effect of Rhizophagus irregularis (Błaszk., Wubet, Renker & Buscot) C. Walker & A. Schüßler inoculation and/or phosphorus treatment on the root metabolome of Medicago lupulina L. subsp. vulgaris Koch at the first true leaf, second leaf, third leaf development stages, the lateral branching initiation, the flowering and the mature fruit stages. The assessment of metabolic profiles was performed using GC-MS. In total, 327 metabolites were annotated: among them 20 carboxylic acids, 26 amino acids, 14 fatty acids and 58 sugars. The efficient AM was characterized by the upregulation of the metabolism of proteins, carbohydrates and lipids, as well as an increase in the content of phosphates. The tricarboxylic acid abundance was generally lower during mycorrhization. Fourteen metabolic markers of the efficient AM symbiosis were identified. The lateral branching initiation stage was shown to have key importance. Long-lasting metabolomic profiling indicated variances in mycorrhization and Pi supply effects at different key stages of host plant development.
Full article
by
Gianmarco Piccolino, Giulia Cardelli, Francesca Arienzo, Emanuele Zarba Meli, Elena Del Giudice, Leopoldo Costarelli, Rosalinda Rossi, Claudia Scaringi, Tiziana Mastropietro, Laura Broglia, Valeria Vitale, Federica Bergamo, Elena Manna, Massimo La Pinta, Lorenzo Palleschi, Andrea Loreti, Augusto Lombardi and Lucio Fortunato
Background: Breast cancer is frequently diagnosed in older women. However, the impact of surgery on survival is not well studied and prognosis for women ≥ 80 years of age is progressively depending on comorbidities. Methods: Medical records of consecutive women aged ≥ 80
[...] Read more.
Background: Breast cancer is frequently diagnosed in older women. However, the impact of surgery on survival is not well studied and prognosis for women ≥ 80 years of age is progressively depending on comorbidities. Methods: Medical records of consecutive women aged ≥ 80 years diagnosed with primary breast cancer treated with upfront surgery at two Breast Centers from 2011 to 2021 were retrospectively analyzed. Results: A total of 553 consecutive women with a median age of 83 years and a median tumor diameter of 21 mm were analyzed (574 lesions). Clinical Stages II or III were found in 263/574 (46%) and 101/574 cases (18%), respectively. Axillary staging was completely omitted for 94/542 invasive lesions (17%), and this increased over time from 2% to 33% (p < 0.001). Adjuvant hormone therapy and radiotherapy were omitted in 134/490 (27%) and in 122/420 patients (29%), respectively, while only 26/195 (13%) of patients with a clear clinical indication received adjuvant chemotherapy. At a median follow-up of 61 months (6–147) the 5- and 10-years overall survival (OS) were 64% and 21%, while breast cancer-specific survival (BCSS) at 5 and 10 years were 94% and 78%, respectively. Adjuvant therapies were not associated with a significant improvement in BCSS, while worse OS was associated with older age or more comorbidities as measured by the Charlson Comorbidity Index (CCI) (p < 0.001 and p = 0.012, respectively). Conclusions: Breast surgery, when possible, has a primary role even for women > 80 years of age, and it is associated with a reasonable BCSS. De-escalation of adjuvant therapies should be considered in this setting because survival is largely determined by age and co-morbidities.
Full article
Candida albicans is the primary etiological agent of vulvovaginal candidiasis (VVC), a widespread fungal infection affecting millions of women worldwide. Although often self-limiting, VVC can become recurrent or severe, significantly impacting quality of life. The pathogenesis of C. albicans is driven by key
[...] Read more.
Candida albicans is the primary etiological agent of vulvovaginal candidiasis (VVC), a widespread fungal infection affecting millions of women worldwide. Although often self-limiting, VVC can become recurrent or severe, significantly impacting quality of life. The pathogenesis of C. albicans is driven by key virulence factors, including hyphal transformation, biofilm formation, and immune evasion, which all facilitate persistence and resistance to host defenses. Epidemiological data indicate that up to 75% of women experience at least one episode of VVC, with 5–10% developing recurrent vulvovaginal candidiasis. The condition typically presents with vaginal itching, burning, erythema, edema, and an abnormal discharge. Diagnosis relies on both clinical presentation and microbiological confirmation; however, misdiagnosis remains common due to symptom overlap with other vaginal infections and conditions in general. Azole antifungals remain the cornerstone of treatment; however, increasing resistance (particularly in non-albicans Candida species) poses substantial therapeutic challenges. Consequently, the emergence of antifungal-resistant strains underscores the need for novel treatment strategies, including probiotics and natural antifungal agents. Preventive measures—including maintaining vaginal microbiota balance, avoiding unnecessary antibiotic usage, and improving hygiene practices—play a pivotal role in reducing disease burden due to C. albicans. Given the rising incidence of VVC and the burden of recurrent cases, further research is essential to develop targeted therapeutic interventions. This comprehensive review highlights the evolving epidemiology, pathogenesis, and clinical challenges of C. albicans-associated VVC, emphasizing the need for improved diagnostic strategies, alternative therapeutic approaches, and targeted preventive measures to reduce disease burden and enhance patient outcomes.Full article
Suction caisson anchor foundations have been widely applied in oil and gas platforms but remain in the exploratory stage for floating offshore wind power applications, where research on their anchor load-bearing characteristics is insufficient. This study focuses on the influence of length-to-diameter ratio,
[...] Read more.
Suction caisson anchor foundations have been widely applied in oil and gas platforms but remain in the exploratory stage for floating offshore wind power applications, where research on their anchor load-bearing characteristics is insufficient. This study focuses on the influence of length-to-diameter ratio, loading angle, and loading point depth on the anchor load-bearing characteristics of suction caisson anchor foundations. Through numerical simulation, the load–displacement curves, internal force distribution along the caisson body, movement mode transitions, and soil failure characteristics were obtained. The results indicate that loading point depth and loading angle alter the movement mode of the suction caisson anchor foundation, directly affecting its bearing capacity. Smaller loading angles result in higher bearing capacity, which initially increases with loading point depth, peaks at 0.6 L, and then decreases at 0.8 L due to a transition in the foundation’s movement mode. Similarly, as the length-to-diameter ratio decreases, the bearing capacity and overall movement amplitude of the foundation decrease, leading to a shift in the optimal loading point position. The circumferential soil pressure and horizontal soil resistance distributions vary significantly with loading angle and depth. The findings of this study provide valuable reference for the design and application of suction caisson anchor foundations.
Full article
by
Cristina Zubiria-Barrera, Malena Bos, Robert Neubert, Jenny Fiebig, Michael Lorenz, Michael Hartmann, Jochen G. Mainz, Hortense Slevogt and Tilman E. Klassert
J. Fungi2025, 11(9), 631; https://doi.org/10.3390/jof11090631 (registering DOI) - 28 Aug 2025
Patients with cystic fibrosis (CF) are frequently exposed to antibiotic treatments, which can alter the fungal communities (mycobiome) across their mucosal sites. This pilot study investigated the impact of antibiotic exposure on the mycobiome by analyzing fungal community dynamics in the upper respiratory-
[...] Read more.
Patients with cystic fibrosis (CF) are frequently exposed to antibiotic treatments, which can alter the fungal communities (mycobiome) across their mucosal sites. This pilot study investigated the impact of antibiotic exposure on the mycobiome by analyzing fungal community dynamics in the upper respiratory- (nasal lavage) and gastrointestinal- (stool samples) tracts of 12 patients with CF following (a) long-term antibiotic treatment over a three-year period and (b) short-term antibiotic therapy during acute pulmonary exacerbations. Mycobiome profiles of the samples obtained from 38 healthy individuals were also analyzed and used for comparison purposes. The ITS1 region of the fungal rRNA gene cluster was sequenced to characterize and quantify the fungal community composition in both cohorts. Compared to healthy controls, samples from the patients with CF who had undergone long-term antibiotic treatment revealed a significantly increased fungal biomass in both sino-nasal and stool samples. Moreover, diversity metrics revealed significant differences in nasal lavage samples, whereas the stool samples showed no significant variation. Candida spp. was significantly enriched in both nasal and stool samples from CF patients. Further analyses demonstrated a strong positive correlation between the relative abundance of Candida spp. and the cumulative antibiotic intake over the three-year period in sino-nasal samples, but not in stool samples. Acute antibiotic treatment during a pulmonary exacerbation episode also led to a marked increase in the abundance of Candida spp. in sino-nasal samples. These findings highlight the increased sensitivity of the sino-nasal mycobiome to both chronic and acute antibiotic exposure in CF patients, as characterized by a site-specific fungal overgrowth, particularly of Candida spp.
Full article
This study proposes a hardware-based approach to address agricultural water shortages by directly improving water supply operations, rather than estimating agricultural water demand or supply. Unlike previous studies that focus on evaluating water supply capacity or predicting reservoir inflows through modeling or data-driven
[...] Read more.
This study proposes a hardware-based approach to address agricultural water shortages by directly improving water supply operations, rather than estimating agricultural water demand or supply. Unlike previous studies that focus on evaluating water supply capacity or predicting reservoir inflows through modeling or data-driven methods, this work proposes an operational strategy involving the physical interconnection of reservoirs. Specifically, the study investigates the coordinated use of surplus storage capacity from reservoirs with high watershed ratios to support those with low watershed ratios, thereby enhancing overall water supply reliability. Reservoir inflows were estimated using the Hydrological Operation Model for Water Resources Systems (HOMWRS). The analysis was conducted on reservoirs managed by the Korea Rural Community Corporation (KRC), selected based on data accessibility and availability.
Full article
Phosphorus deficiency significantly limits soybean production across 74% of China’s arable land. This study investigated the molecular mechanisms enabling soybean to access insoluble phosphorus through transcriptome sequencing of the Heinong 48 variety across four developmental stages (Trefoil, Flower, Podding, and Post-podding). RNA-Seq analysis
[...] Read more.
Phosphorus deficiency significantly limits soybean production across 74% of China’s arable land. This study investigated the molecular mechanisms enabling soybean to access insoluble phosphorus through transcriptome sequencing of the Heinong 48 variety across four developmental stages (Trefoil, Flower, Podding, and Post-podding). RNA-Seq analysis identified 2755 differentially expressed genes (DEGs), with 2506 up-regulated and 249 down-regulated genes. Notably, early developmental stages showed the most substantial transcriptional reprogramming, with 3825 DEGs in the Trefoil stage and 10,660 DEGs in the Flower stage, compared to only 523 and 393 DEGs in the Podding and Post-podding stages, respectively. Functional enrichment analysis revealed 44 significantly enriched GO terms in the Trefoil stage and 137 in the Flower stage, with 13 GO terms shared between both stages. KEGG pathway analysis identified 8 significantly enriched pathways in the Trefoil stage and 21 in the Flower stage, including key pathways related to isoflavonoid biosynthesis, alpha-linolenic acid metabolism, and photosynthesis. Among 87 differentially expressed transcription factors from 31 families, bHLH (8.08%), bZIP (7.18%), and WRKY (5.94%) were most prevalent. These findings provide genetic targets for developing soybean varieties with improved phosphorus acquisition capacity, potentially reducing fertilizer requirements and supporting more sustainable agricultural practices.
Full article
Bees are vital pollinators that maintain plant populations by transporting pollen among individuals; however, bees are declining, and information on how habitat characteristics alter the catch of bees in traps is needed to better assess monitoring. Few studies have measured how catch in
[...] Read more.
Bees are vital pollinators that maintain plant populations by transporting pollen among individuals; however, bees are declining, and information on how habitat characteristics alter the catch of bees in traps is needed to better assess monitoring. Few studies have measured how catch in passive traps may be altered by floral resources despite the well-known dependence of pollinators on forbs. We investigated the degree to which pollinating insects were attracted to vane traps and bee bowls placed at sites that varied in flower densities (0–800 flowers/m2). We also assessed if the catch of bees was better explained by flower characteristics directly around traps (subsite) or average flower characteristics at a site. Floral density, richness and surface area were measured in 1 m2 quadrats at each subsite. The surface area of flowers explained more variance in bees captured compared to the density or richness of flowers. Traps placed in areas with lower flower surface area captured the more bees and a more diverse sample. Floral resources at the subsite and site explained a similar amount of variance in the number of bees captured, suggesting that pollinators respond to flowers at both scales. We provide a method of correcting pollinator abundance by flower surface area to make catch in passive traps more comparable among areas. We can select sites that minimize or maximize the catch of bees by understanding how floral resources change the effectiveness of passive traps.
Full article
by
Sadia Rehman, Muhammad Farhan, Muhammad Raza Sarfraz, Asma Naveed, Fahad Usman, Anila Bibi, Raheel Ahmed, Hiya Huq, Ali Hasan, Jarin Anzoom and Pobitro Kumar
Pharmaceutics2025, 17(9), 1128; https://doi.org/10.3390/pharmaceutics17091128 (registering DOI) - 28 Aug 2025
Background/Objectives: End-stage renal disease (ESRD) patients on maintenance hemodialysis (MHD) frequently develop L-carnitine (LC) deficiency, leading to dyslipidemia and increased cardiovascular risk. While LC supplementation may improve dyslipidemia, the optimal route of administration remains unclear. This study evaluates the effects of LC
[...] Read more.
Background/Objectives: End-stage renal disease (ESRD) patients on maintenance hemodialysis (MHD) frequently develop L-carnitine (LC) deficiency, leading to dyslipidemia and increased cardiovascular risk. While LC supplementation may improve dyslipidemia, the optimal route of administration remains unclear. This study evaluates the effects of LC on dyslipidemia in MHD patients and compares oral versus intravenous (IV) administration. Methods: In this dual-center randomized controlled trial (NCT05817799), 102 MHD patients aged 18–50 years were randomized to receive either oral (500 mg thrice daily) or IV LC (20 mg/kg post-dialysis thrice weekly for 23 weeks followed by 500 mg oral daily for 1 week) for 24 weeks, and blood samples were obtained to evaluate lipid profile parameters. Results: Eighty-three patients completed the study (oral n = 49, IV n = 34). Both groups demonstrated significant improvements in all lipid parameters (p < 0.0001). In the oral group, total cholesterol (TC) demonstrated a mean reduction of 15.04 ± 8.52, triglycerides (TG) decreased by 14.84 ± 13.20, and low-density lipoprotein cholesterol (LDL-C) declined by 9.87 ± 8.74, with a rise in high-density lipoprotein (HDL) of 5.34 ± 4.33. In contrast, the IV group showed greater improvement, with TC being reduced by 17.62 ± 8.98, TG reduced by 19.21 ± 11.33, and HDL-C elevated by 7.26 ± 4.35. Group comparison revealed significantly greater LDL reduction in the IV group (71.91 ± 14.37 mg/dL) versus oral group (79.04 ± 14.92 mg/dL, p = 0.03), whereas TC, TG, and HDL changes showed no significant differences (p > 0.05). Conclusions: Both oral and IV interventions effectively improved lipid profiles, and IV administration showed a more pronounced effect on LDL reduction, suggesting potentially greater efficacy of IV administration for LDL reduction.
Full article
Perfusion assessment is critical in clinical oncology, particularly in tumor characterization, intraoperative decision making, and postoperative outcome predictions. Hyperspectral imaging (HSI) has emerged as a promising, non-contact, non-invasive, and contrast-free modality capable of capturing spatial and spectral information related to tissue oxygenation and
[...] Read more.
Perfusion assessment is critical in clinical oncology, particularly in tumor characterization, intraoperative decision making, and postoperative outcome predictions. Hyperspectral imaging (HSI) has emerged as a promising, non-contact, non-invasive, and contrast-free modality capable of capturing spatial and spectral information related to tissue oxygenation and hemoglobin distribution. This study provides an up-to-date review of recent advances in the use of HSI for perfusion monitoring in clinical oncological applications, with a special focus on its adoption in laparoscopic surgeries, brain tumor delineation, and head and neck cancer interventions. The integration of HSI into surgical workflows and its potential to reduce complications are discussed. Overall, while HSI is emerging as an appealing, real-time, quantitative perfusion imaging modality, a lack of standardized protocols and interpretation guidelines pose the most significant challenges. Addressing these gaps through multicenter clinical trials is essential for advancing the routine use of HSI in oncological surgery.
Full article
Chimeric antigen receptor (CAR) T-cell infusion has led to improved outcomes in patients with B-lymphoblastic leukemia, B-cell lymphoma, and multiple myeloma. The spectrum of post-CAR T-cell hematolymphoid abnormalities is expanding, although they remain under-recognized. Pathologists play a key role in characterizing hematolymphoid proliferation
[...] Read more.
Chimeric antigen receptor (CAR) T-cell infusion has led to improved outcomes in patients with B-lymphoblastic leukemia, B-cell lymphoma, and multiple myeloma. The spectrum of post-CAR T-cell hematolymphoid abnormalities is expanding, although they remain under-recognized. Pathologists play a key role in characterizing hematolymphoid proliferation after CAR T-cell therapy. This review presents clinical and pathologic findings of common hematolymphoid proliferation after CAR T-cell therapy, illustrated by selected cases. A review of the literature is presented in the context of individual cases, and our current understanding of the pathomechanism is discussed. Infused CAR T-cells undergo a series of four phases: distribution, expansion, contraction, and persistence. In the expansion phase, transient peripheral blood lymphocytosis occurs, reaching a peak two weeks post-infusion. Delayed contraction of CAR T-cells may give rise to hemophagocytic lymphohistiocytosis-like syndrome. Immune effector cell-associated enterocolitis presents in the persistence phase, about 3–6 months after infusion. Pathologic findings include a T-cell infiltrate in the intestinal mucosa and changes resembling graft versus host disease (GVHD). This entity requires differentiation from infections and from T-cell neoplasms, including those derived from CAR T-cells. Secondary myeloid malignancies follow the same pathways as therapy-related myeloid neoplasm but present with a shorter median latency. It is essential for pathologists to recognize post-CAR T-cell hematolymphoid proliferation to support clinical decision making in a high-risk patient population.
Full article
Optical remote sensing images are often partially obscured by clouds due to the inability of visible light to penetrate cloud cover, which significantly limits their subsequent applications. Most existing cloud removal methods formulate the problem using low-rank and sparse priors within a discrete
[...] Read more.
Optical remote sensing images are often partially obscured by clouds due to the inability of visible light to penetrate cloud cover, which significantly limits their subsequent applications. Most existing cloud removal methods formulate the problem using low-rank and sparse priors within a discrete representation framework. However, these approaches typically rely on manually designed regularization terms, which fail to accurately capture the complex geostructural patterns in remote sensing imagery. In response to this issue, we develop a continuous blind cloud removal model. Specifically, the cloud-free component is represented using a continuous tensor function that integrates implicit neural representations with low-rank tensor decomposition. This representation enables the model to capture both global correlations and local smoothness. Furthermore, a band-wise sparsity constraint is employed to represent the cloud component. To preserve the information in regions not covered by clouds during reconstruction, a box constraint is incorporated. In this constraint, cloud detection is performed using an adaptive thresholding strategy, and a morphological erosion function is employed to ensure accurate detection of cloud boundaries. To efficiently handle the developed model, we formulate an alternating minimization algorithm that decouples the optimization into three interpretable subproblems: cloud-free reconstruction, cloud component estimation, and cloud detection. Our extensive evaluations on both synthetic and real-world data reveal that the proposed method performs competitively against state-of-the-art cloud removal methods.
Full article
by
Raminta Rodaitė, Laura Kairytė, Agnė Giedraitienė, Modestas Ružauskas, Rita Šiugždinienė, Ieva Čiapienė, Vacis Tatarūnas, Šarūnas Varnagiris and Darius Milčius
Molecules2025, 30(17), 3526; https://doi.org/10.3390/molecules30173526 (registering DOI) - 28 Aug 2025
The demand for antimicrobial and biocompatible materials in biomedical applications continues to grow, particularly in the context of wound care and textiles. This study explores the development of multifunctional coatings by applying magnesium (Mg) nanoparticles onto medical-grade cotton textiles using magnetron sputtering—a solvent-free
[...] Read more.
The demand for antimicrobial and biocompatible materials in biomedical applications continues to grow, particularly in the context of wound care and textiles. This study explores the development of multifunctional coatings by applying magnesium (Mg) nanoparticles onto medical-grade cotton textiles using magnetron sputtering—a solvent-free and environmentally sustainable technique. A comprehensive material characterization confirmed the formation of Mg, MgO and Mg(OH)2/MgH2 phases, along with generally consistent particle coverage and increased fiber surface roughness. The antibacterial testing revealed the effective inhibition of both Gram-positive and Gram-negative bacteria—except Enterococcus faecalis. Additionally, the growth of the fungus Candida albicans and the microalgae Prototheca spp. was reduced by over 80%. Importantly, a cytocompatibility evaluation using human umbilical vein endothelial cells (HUVECs) demonstrated not only non-toxicity but a significant increase in cell viability after 72 h, particularly in samples treated for 20 and 60 min, indicating a potential cytoprotective and proliferative effect. These findings highlight the dual functionality of plasma-sputtered Mg nanoparticle coatings, offering a promising strategy for the development of eco-friendly, antimicrobial and cell-supportive medical textiles.
Full article
Inflammatory bowel disease (IBD) is a chronic, heterogeneous condition characterized by recurrent intestinal inflammation and sustained mucosal barrier damage, profoundly impairing patients’ quality of life and imposing a considerable socioeconomic burden. Current therapeutic options are often constrained by low oral bioavailability, pronounced systemic
[...] Read more.
Inflammatory bowel disease (IBD) is a chronic, heterogeneous condition characterized by recurrent intestinal inflammation and sustained mucosal barrier damage, profoundly impairing patients’ quality of life and imposing a considerable socioeconomic burden. Current therapeutic options are often constrained by low oral bioavailability, pronounced systemic toxicity, and inadequate tissue specificity, limiting their ability to achieve precise and durable efficacy. In recent years, membrane vesicle-based drug delivery systems (MV-DDSs) have shown considerable promise for precision IBD therapy owing to their excellent biocompatibility, mucosal barrier-penetrating capacity, and low immunogenicity. Building upon a systematic discussion of the roles of MV-DDSs in suppressing inflammatory signaling, modulating oxidative stress, preserving barrier integrity, reshaping the gut microbiota, and regulating programmed cell death, this review further compares the differences in key molecular targets and functional outcomes among vesicles of diverse origins and carrying distinct therapeutic payloads. These insights provide a comprehensive strategic reference and theoretical foundation for the rational design, mechanistic optimization, and clinical translation of MV-DDSs in IBD therapy.
Full article
Background: Liver resection remains the gold standard treatment for colorectal cancer (CRC) liver metastases, while stereotactic body radiotherapy (SBRT) offers an alternative for patients with unresectable metastases. However, the precise indications for SBRT, optimal radiation doses, and treatment regimens have yet to be
[...] Read more.
Background: Liver resection remains the gold standard treatment for colorectal cancer (CRC) liver metastases, while stereotactic body radiotherapy (SBRT) offers an alternative for patients with unresectable metastases. However, the precise indications for SBRT, optimal radiation doses, and treatment regimens have yet to be definitively established. Methods: A total of 91 patients with 152 lesions underwent SBRT, receiving a total dose ranging from 40 to 60 Gy delivered in 4–5 fractions per lesion, with a median dose of 50 Gy. Results: The three-year local control (LC) and overall survival (OS) rates were 62.6% and 45.1%, respectively. No cases of Grade ≥ 3 toxicity were observed. Factors negatively affecting LC included metastasis diameter ≥ 2.7 cm and number of metastases ≥ 3, with hazard ratios (HR) of 2.73 and 2.24, respectively. A biologically effective dose (BED) of ≥ 137.7 Gy was associated with a significant improvement in local control (LC) (HR 0.25), a finding that was also confirmed by the inverse probability of treatment weighting (IPTW) analysis. Significant predictors for poorer OS included RAS gene mutations, metastasis diameter ≥ 2.6 cm, and synchronous metastases, with HRs of 2.27, 2.03, and 2.11, respectively. Landmark analysis demonstrated that local recurrence within 12 months after SBRT significantly reduced OS (HR 2.68). Conclusions: SBRT is a safe and effective method for achieving local control of CRC liver oligometastases. Further research is warranted to optimize treatment protocols and refine patient selection criteria.
Full article
Schwann cells (SCs) are the primary glial cells of the Peripheral Nervous System (PNS), which insulate and provide protection and nutrients to the axons. Technological and experimental advances in neuroscience, focusing on the biology of SCs, their interactions with other cells, and their
[...] Read more.
Schwann cells (SCs) are the primary glial cells of the Peripheral Nervous System (PNS), which insulate and provide protection and nutrients to the axons. Technological and experimental advances in neuroscience, focusing on the biology of SCs, their interactions with other cells, and their role in the pathogenesis of various diseases, have paved the way for exploring new treatment strategies that aim to harness the direct protective or causative properties of SCs in neurological disorders. SCs express cytokines, chemokines, neurotrophic growth factors, matrix metalloproteinases, extracellular matrix proteins, and extracellular vesicles, which promote the inherent potential of the injured neurons to survive and accelerate axonal elongation. The ability of SCs to support the development and functioning of neurons is lost in certain hereditary, autoimmune, metabolic, traumatic, and toxic conditions, suggesting their role in specific neurological diseases. Thus, targeting, modifying, and replacing SC strategies, as well as utilizing SC-derived factors and exosomes, have been considered novel therapeutic opportunities for neuropathological conditions. Preclinical and clinical data have demonstrated that SCs and SC-derived factors can serve as viable cell therapy for reconstructing the local tissue microenvironment and promoting nerve anatomical and functional recovery in both peripheral and central nerve injury repair, as well as in peripheral neuropathies. However, despite the promising successes of genetic engineering of SCs, which are now in preclinical and clinical trials, improving tactics to obtain ‘repair’ SCs and their products from different sources is the key goal for future clinical success. Finally, further development of innovative therapeutic approaches to target and modify SC survival and function in vivo is also urgently needed.
Full article
The spatial distribution traits of microtopography exert a profound influence on the generation of runoff and sediment. Nevertheless, the underlying mechanism through which microtopography alterations, triggered by diverse factors, impact soil erosion remains largely elusive. In light of that, this study simulated conventional
[...] Read more.
The spatial distribution traits of microtopography exert a profound influence on the generation of runoff and sediment. Nevertheless, the underlying mechanism through which microtopography alterations, triggered by diverse factors, impact soil erosion remains largely elusive. In light of that, this study simulated conventional farming practices on the Loess Plateau: artificial backhoe, artificial digging, and contour tillage (CT), with no tillage (CK) designated as the control group. The objective was to meticulously investigate the variations in microtopography, runoff, and sediment yield under disparate treatment conditions, rainfall intensities (60 mm/h and 90 mm/h), and slope gradients (5°, 10°, and 20°). The principal findings were as follows: With the amplification of rainfall intensity, the elevation change rate and fractal dimension of various treatments generally exhibited an upward trend, whereas the structural ratio showed a downward tendency. As the slope gradient increased, the elevation change rate and structural ratio of different treatments typically increased. However, the fractal dimension displayed no conspicuous alteration at a rainfall intensity of 60 mm/h and a decreasing trend at 90 mm/h. Under different rainfall intensity scenarios, a robust linear correlation existed between the fractal dimension and both runoff and sediment yield (R2 > 0.73), rendering it an outstanding parameter for estimating these variables within the scope of this research. Path analysis revealed that the indirect effect of microtopography on sediment yield, which was mediated by runoff, constituted 77.80–96.47% of the direct effect. Moreover, under different rainfall intensities, the alterations in runoff and sediment yield ensuing from unit-scale changes in the fractal dimension varied significantly. Specifically, at a rainfall intensity of 90 mm/h, these changes were 1.70-fold and 3.75-fold those at 60 mm/h, respectively. Overall, the CT treatment engendered the lowest runoff and sediment yield, along with the highest fractal dimension, thereby emerging as the most efficacious measure for soil and water conservation in this study. The research outcomes offer valuable perspectives for further elucidating the mechanisms through which tillage practices impinge upon soil erosion.
Full article
Acute myeloid leukemia (AML) is an aggressive hematologic malignancy characterized by the clonal proliferation of myeloid precursors and rapid progression. Historically consisting of intensive chemotherapy, AML management has evolved significantly due to advances in molecular diagnostics and risk stratification. This review discusses current
[...] Read more.
Acute myeloid leukemia (AML) is an aggressive hematologic malignancy characterized by the clonal proliferation of myeloid precursors and rapid progression. Historically consisting of intensive chemotherapy, AML management has evolved significantly due to advances in molecular diagnostics and risk stratification. This review discusses current therapeutic paradigms in AML, emphasizing the growing role of personalized medicine across age and risk groups. For younger, fit patients, intensive regimens such as the “7 + 3” protocol remain the standard, often enhanced by targeted agents like FMS-like tyrosine kinase 3 (FLT3) and IDH inhibitors. Older or unfit individuals benefit from low-intensity treatments such as hypomethylating agents combined with venetoclax, now considered a frontline standard of care. The use of liposomal chemotherapy (CPX-351), measurable residual disease (MRD) monitoring, and maintenance therapy further refine post-remission strategies. Emerging therapies, including menin inhibitors, antibody–drug conjugates, and immunotherapies like CAR-T cells and vaccines, offer additional options, especially in relapsed/refractory settings. This comprehensive review outlines the current landscape and future directions in AML therapy, emphasizing the transition toward individualized, mutation-driven treatment strategies.
Full article