Recent Advances in Perfusion Assessment in Clinical Oncology Using Hyperspectral Imaging
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Kidneys
3.2. Eye
3.3. Breasts
3.4. Female Reproductive System
3.5. Brain
3.6. Head and Neck
3.7. Lungs
3.8. Liver/Abdominal Organs
3.9. Skin
3.10. Gastrointestinal Tract
3.11. Cardiovascular System
3.12. Endocrine Glands
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AK | Actinic keratosis |
AL | Anastomotic leakage |
ALT | Alanine transaminase |
AR | Augmented reality |
ARD | Acute radiation dermatitis |
AUC | Area under the curve |
BCC | Basal cell carcinoma |
CNN | Convolutional neural network |
CTCAE | Common Terminology Criteria for Adverse Events |
DIEP | Deep inferior epigastric perforator |
HbH | Deoxygenated hemoglobin |
GNN | Graph neural network |
GPU | Graphics processing unit |
HbO2 | Oxygenated hemoglobin |
HSI | Hyperspectral imaging |
HSI-MIS | Hyperspectral imaging system for minimally invasive surgery |
HSI-Open | HyperSpectral imaging system for open surgery |
HSI-SCI | Hyperspectral imaging-based skin cancer index |
ICA | Independent component analysis |
ICG-FA | Indocyanine green fluorescence angiography |
IDH | Isocitrate dehydrogenase |
IH | Infantile hemangioma |
INN | Invertible neural network |
IoU | Intersection of union |
LiDAR | Light detection and ranging |
LSCI | Laser speckle contrast imaging |
MF | Mycosis fungoides |
MNF | Minimum noise fraction |
NCT | National Clinical Trial |
NIR | Near infrared |
NIR-PI | Near-Infrared Perfusion Index |
NSCLC | Non-small cell lung cancer |
OHI | Organ Hemoglobin Index |
PAI | Photoacoustic imaging |
PCA | Principal component analysis |
pCLE | Probe-based confocal laser endomicroscopy |
PpIX | Protoporphyrin IX |
RGB | Red–Green–Blue |
ROC | Receiver operating curve |
SAVE | Spectrum-Aided Vision Enhancer |
SCC | Squamous cell carcinoma |
SCLC | Small cell lung cancer |
SMF | Submucous fibrosis |
StO2 | Tissue oxygen saturation |
SVM | Support Vector Machine |
THI | Tissue Hemoglobin Index |
TI | Thermal imaging |
TWI | Tissue Water Index |
YOLO | You Only Look Once |
Appendix A. Literature Review Methodology
Appendix A.1. Research Question and Objective
Appendix A.2. Search Strategy
Appendix A.3. Screening Methods
- Title and abstract screening
- Non-English or no abstract/title;
- Non-human study;
- Not an oncological population;
- HSI not used as an in vivo perfusion tool;
- Not an original peer-reviewed article (e.g., conference abstract, review, editorial);
- Published before 3 October 2022 (outside update window).
- Full-text screening
- Not in English
- Non-human study
- Published before 3 October 2022
- Not an oncological population
- HSI not used as an in vivo perfusion tool in a clinical setting
- Not an original article
- Additional sources
- Data extraction
- Screening results
- Quality Assessment
References
- Kamruzzaman, M.; Sun, D.W. Introduction to Hyperspectral Imaging Technology. In Computer Vision Technology for Food Quality Evaluation; Elsevier: Amsterdam, The Netherlands, 2016; pp. 111–139. [Google Scholar] [CrossRef]
- Li, Q.; He, X.; Wang, Y.; Liu, H.; Xu, D.; Guo, F. Review of spectral imaging technology in biomedical engineering: Achievements and challenges. J. Biomed. Opt. 2013, 18, 100901. [Google Scholar] [CrossRef]
- Bhargava, A.; Sachdeva, A.; Sharma, K.; Alsharif, M.H.; Uthansakul, P.; Uthansakul, M. Hyperspectral imaging and its applications: A review. Heliyon 2024, 10, e33208. [Google Scholar] [CrossRef]
- Cheng, M.-F.; Mukundan, A.; Karmakar, R.; Valappil, M.A.E.; Jouhar, J.; Wang, H.-C. Modern Trends and Recent Applications of Hyperspectral Imaging: A Review. Technologies 2025, 13, 170. [Google Scholar] [CrossRef]
- Chang, C.-I. Hyperspectral Imaging; Springer: Boston, MA, USA, 2003. [Google Scholar] [CrossRef]
- Richards, J.A.; Jia, X. Remote Sensing Digital Image Analysis: An Introduction; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar] [CrossRef]
- Lu, G.; Fei, B. Medical hyperspectral imaging: A review. J. Biomed. Opt. 2014, 19, 010901. [Google Scholar] [CrossRef] [PubMed]
- Anichini, G.; Leiloglou, M.; Hu, Z.; O’Neill, K.; Elson, D. Hyperspectral and multispectral imaging in neurosurgery: A systematic literature review and meta-analysis. Eur. J. Surg. Oncol. 2025, 51, 108293. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, X.; He, L.; Meng, C.; Du, S.; Bao, J.; Zheng, Y. Applications of hyperspectral imaging in the detection and diagnosis of solid tumors. Transl. Cancer Res. TCR 2020, 9, 1265–1277. [Google Scholar] [CrossRef]
- Burström, G.; Amini, M.; El-Hajj, V.G.; Arfan, A.; Gharios, M.; Buwaider, A.; Losch, M.S.; Manni, F.; Edström, E.; Elmi-Terander, A. Optical Methods for Brain Tumor Detection: A Systematic Review. J. Clin. Med. 2024, 13, 2676. [Google Scholar] [CrossRef]
- Lai, C.-L.; Karmakar, R.; Mukundan, A.; Natarajan, R.K.; Lu, S.-C.; Wang, C.-Y.; Wang, H.-C. Advancing hyperspectral imaging and machine learning tools toward clinical adoption in tissue diagnostics: A comprehensive review. APL Bioeng. 2024, 8, 041504. [Google Scholar] [CrossRef]
- Kotwal, A.; Saragadam, V.; Bernstock, J.D.; Sandoval, A.; Veeraraghavan, A.; Valdés, P.A. Hyperspectral imaging in neurosurgery: A review of systems, computational methods, and clinical applications. J. Biomed. Opt. 2024, 30, 023512. [Google Scholar] [CrossRef]
- Gioux, S.; Stockdale, A.; Oketokoun, R.; Ashitate, Y.; Durr, N.J.; Moffitt, L.A.; Frangioni, J.V.; Mazhar, A.; Tromberg, B.J.; Durkin, A.J.; et al. First-in-human pilot study of a spatial frequency domain oxygenation imaging system. J. Biomed. Opt. 2011, 16, 1. [Google Scholar] [CrossRef]
- Holzer, M.S.; Best, S.L.; Jackson, N.; Thapa, A.; Raj, G.V.; Cadeddu, J.A.; Zuzak, K.J. Assessment of Renal Oxygenation During Partial Nephrectomy Using Hyperspectral Imaging. J. Urol. 2011, 186, 400–404. [Google Scholar] [CrossRef] [PubMed]
- Sucher, R.; Athanasios, A.; Köhler, H.; Wagner, T.; Brunotte, M.; Lederer, A.; Gockel, I.; Seehofer, D. Hyperspectral Imaging (HSI) in anatomic left liver resection. Int. J. Surg. Case Rep. 2019, 62, 108–111. [Google Scholar] [CrossRef] [PubMed]
- Noordmans, H.J.; Ferrier, C.; De Roode, R.; Leijten, F.; Van Rijen, P.; Gosselaar, P.; Klaessens, J.; Verdaasdonk, R. Imaging the seizure during surgery with a hyperspectral camera. Epilepsia 2013, 54, e150–e154. [Google Scholar] [CrossRef] [PubMed]
- Barberio, M.; Benedicenti, S.; Pizzicannella, M.; Felli, E.; Collins, T.; Jansen-Winkeln, B.; Marescaux, J.; Viola, M.G.; Diana, M. Intraoperative Guidance Using Hyperspectral Imaging: A Review for Surgeons. Diagnostics 2021, 11, 2066. [Google Scholar] [CrossRef]
- Shapey, J.; Xie, Y.; Nabavi, E.; Bradford, R.; Saeed, S.R.; Ourselin, S.; Vercauteren, T. Intraoperative multispectral and hyperspectral label-free imaging: A systematic review of in vivo clinical studies. J. Biophotonics 2019, 12, e201800455. [Google Scholar] [CrossRef]
- Olweny, E.O.; Faddegon, S.; Best, S.L.; Jackson, N.; Wehner, E.F.; Tan, Y.K.; Zuzak, K.J.; Cadeddu, J.A. First Place: Renal Oxygenation During Robot-Assisted Laparoscopic Partial Nephrectomy: Characterization Using Laparoscopic Digital Light Processing Hyperspectral Imaging. J. Endourol. 2013, 27, 265–269. [Google Scholar] [CrossRef]
- Liu, Z.-W.; Faddegon, S.; Olweny, E.O.; Best, S.L.; Jackson, N.; Raj, G.V.; Zuzak, K.J.; Cadeddu, J.A. Renal Oxygenation During Partial Nephrectomy: A Comparison Between Artery-Only Occlusion Versus Artery and Vein Occlusion. J. Endourol. 2013, 27, 470–474. [Google Scholar] [CrossRef]
- Mori, M.; Chiba, T.; Nakamizo, A.; Kumashiro, R.; Murata, M.; Akahoshi, T.; Tomikawa, M.; Kikkawa, Y.; Yoshimoto, K.; Mizoguchi, M.; et al. Intraoperative visualization of cerebral oxygenation using hyperspectral image data: A two-dimensional mapping method. Int. J. CARS 2014, 9, 1059–1072. [Google Scholar] [CrossRef]
- Ravi, D.; Fabelo, H.; Callic, G.M.; Yang, G.-Z. Manifold Embedding and Semantic Segmentation for Intraoperative Guidance With Hyperspectral Brain Imaging. IEEE Trans. Med. Imaging 2017, 36, 1845–1857. [Google Scholar] [CrossRef]
- Mangotra, H.; Srivastava, S.; Jaiswal, G.; Rani, R.; Sharma, A. Hyperspectral imaging for early diagnosis of diseases: A review. Expert Syst. 2023, 40, e13311. [Google Scholar] [CrossRef]
- Klaessens, J.H.G.M.; Nelisse, M.; Verdaasdonk, R.M.; Noordmans, H.J. Non-contact tissue perfusion and oxygenation imaging using a LED based multispectral and a thermal imaging system, first results of clinical intervention studies. In SPIE Proceedings; Mahadevan-Jansen, A., Vo-Dinh, T., Grundfest, W.S., Eds.; SPIE: San Francisco, CA, USA, 2013; Volume 8572, p. 857207. [Google Scholar]
- Ebner, M.; Nabavi, E.; Shapey, J.; Xie, Y.; Liebmann, F.; Spirig, J.M.; Hoch, A.; Farshad, M.; Saeed, S.R.; Bradford, R.; et al. Intraoperative hyperspectral label-free imaging: From system design to first-in-patient translation. J. Phys. D Appl. Phys. 2021, 54, 294003. [Google Scholar] [CrossRef]
- Regeling, B.; Thies, B.; Gerstner, A.; Westermann, S.; Müller, N.; Bendix, J.; Laffers, W. Hyperspectral Imaging Using Flexible Endoscopy for Laryngeal Cancer Detection. Sensors 2016, 16, 1288. [Google Scholar] [CrossRef] [PubMed]
- Clancy, N.T.; Soares, A.S.; Bano, S.; Lovat, L.B.; Chand, M.; Stoyanov, D. Intraoperative colon perfusion assessment using multispectral imaging. Biomed. Opt. Express 2021, 12, 7556. [Google Scholar] [CrossRef] [PubMed]
- Stergar, J.; Hren, R.; Milanič, M. Design and Validation of a Custom-Made Hyperspectral Microscope Imaging System for Biomedical Applications. Sensors 2023, 23, 2374. [Google Scholar] [CrossRef]
- Ma, L.; Halicek, M.; Zhou, X.; Dormer, J.D.; Fei, B. Hyperspectral microscopic imaging for automatic detection of head and neck squamous cell carcinoma using histologic image and machine learning. In Medical Imaging 2020: Digital Pathology; Tomaszewski, J.E., Ward, A.D., Eds.; SPIE: Houston, TX, USA, 2020; p. 31. [Google Scholar] [CrossRef]
- Cruz-Guerrero, I.A.; Campos-Delgado, D.U.; Mejía-Rodríguez, A.R.; Leon, R.; Ortega, S.; Fabelo, H.; Camacho, R.; Plaza, M.D.L.L.; Callico, G. Hybrid brain tumor classification of histopathology hyperspectral images by linear unmixing and an ensemble of deep neural networks. Healthc. Technol. Lett. 2024, 11, 240–251. [Google Scholar] [CrossRef]
- Kho, E.; Dashtbozorg, B.; De Boer, L.L.; Van De Vijver, K.K.; Sterenborg, H.J.C.M.; Ruers, T.J.M. Broadband hyperspectral imaging for breast tumor detection using spectral and spatial information. Biomed. Opt. Express 2019, 10, 4496. [Google Scholar] [CrossRef]
- Jong, L.-J.S.; Post, A.L.; Veluponnar, D.; Geldof, F.; Sterenborg, H.J.C.M.; Ruers, T.J.M.; Dashtbozorg, B. Tissue Classification of Breast Cancer by Hyperspectral Unmixing. Cancers 2023, 15, 2679. [Google Scholar] [CrossRef]
- Cinar, U.; Cetin Atalay, R.; Cetin, Y.Y. Human Hepatocellular Carcinoma Classification from H&E Stained Histopathology Images with 3D Convolutional Neural Networks and Focal Loss Function. J. Imaging 2023, 9, 25. [Google Scholar] [CrossRef]
- Giannoni, L.; Marradi, M.; Scibilia, K.; Ezhov, I.; Bonaudo, C.; Artemiou, A.; Toaha, A.; Lange, F.; Caredda, C.; Montcel, B.; et al. Transportable hyperspectral imaging setup based on fast, high-density spectral scanning for in situ quantitative biochemical mapping of fresh tissue biopsies. J. Biomed. Opt. 2024, 29, 093508. [Google Scholar] [CrossRef]
- Trajanovski, S.; Shan, C.; Weijtmans, P.J.C.; De Koning, S.G.B.; Ruers, T.J.M. Tongue Tumor Detection in Hyperspectral Images Using Deep Learning Semantic Segmentation. IEEE Trans. Biomed. Eng. 2021, 68, 1330–1340. [Google Scholar] [CrossRef]
- Halicek, M.; Fabelo, H.; Ortega, S.; Little, J.V.; Wang, X.; Chen, A.Y.; Callico, G.M.; Myers, L.; Sumer, B.D.; Fei, B. Hyperspectral imaging for head and neck cancer detection: Specular glare and variance of the tumor margin in surgical specimens. J. Med. Imaging 2019, 6, 1. [Google Scholar] [CrossRef]
- Halicek, M.; Fabelo, H.; Ortega, S.; Callico, G.M.; Fei, B. In-Vivo and Ex-Vivo Tissue Analysis through Hyperspectral Imaging Techniques: Revealing the Invisible Features of Cancer. Cancers 2019, 11, 756. [Google Scholar] [CrossRef] [PubMed]
- Halicek, M.; Shahedi, M.; Little, J.V.; Chen, A.Y.; Myers, L.L.; Sumer, B.D.; Fei, B. Head and Neck Cancer Detection in Digitized Whole-Slide Histology Using Convolutional Neural Networks. Sci. Rep. 2019, 9, 14043. [Google Scholar] [CrossRef]
- Ortega, S.; Halicek, M.; Fabelo, H.; Callico, G.M.; Fei, B. Hyperspectral and multispectral imaging in digital and computational pathology: A systematic review [Invited]. Biomed. Opt. Express 2020, 11, 3195. [Google Scholar] [CrossRef]
- Tran, M.H.; Ma, L.; Mubarak, H.; Gomez, O.; Yu, J.; Bryarly, M.; Fei, B. Detection and margin assessment of thyroid carcinoma with microscopic hyperspectral imaging using transformer networks. J. Biomed. Opt. 2024, 29, 093505. [Google Scholar] [CrossRef] [PubMed]
- Holmer, A.; Marotz, J.; Wahl, P.; Dau, M.; Kämmerer, P.W. Hyperspectral imaging in perfusion and wound diagnostics—Methods and algorithms for the determination of tissue parameters. Biomed. Eng./Biomed. Tech. 2018, 63, 547–556. [Google Scholar] [CrossRef]
- Stergar, J.; Hren, R.; Milanič, M. Design and Validation of a Custom-Made Laboratory Hyperspectral Imaging System for Biomedical Applications Using a Broadband LED Light Source. Sensors 2022, 22, 6274. [Google Scholar] [CrossRef]
- Gutiérrez-Gutiérrez, J.A.; Pardo, A.; Real, E.; López-Higuera, J.M.; Conde, O.M. Custom Scanning Hyperspectral Imaging System for Biomedical Applications: Modeling, Benchmarking, and Specifications. Sensors 2019, 19, 1692. [Google Scholar] [CrossRef]
- Hren, R.; Sersa, G.; Simoncic, U.; Milanic, M. Imaging perfusion changes in oncological clinical applications by hyperspectral imaging: A literature review. Radiol. Oncol. 2022, 56, 420–429. [Google Scholar] [CrossRef]
- Hren, R.; Stergar, J.; Simončič, U.; Serša, G.; Milanič, M. Assessing Perfusion Changes in Clinical Oncology Applications Using Hyperspectral Imaging. In 9th European Medical and Biological Engineering Conference Proceedings; Jarm, T., Šmerc, R., Mahnič-Kalamiza, S., Eds.; IFMBE Proceedings; Springer Nature: Cham, Switzerland, 2024; Volume 112, pp. 122–129. [Google Scholar] [CrossRef]
- Best, S.L.; Thapa, A.; Jackson, N.; Olweny, E.; Holzer, M.; Park, S.; Wehner, E.; Zuzak, K.; Cadeddu, J.A. Renal Oxygenation Measurement During Partial Nephrectomy Using Hyperspectral Imaging May Predict Acute Postoperative Renal Function. J. Endourol. 2013, 27, 1037–1040. [Google Scholar] [CrossRef] [PubMed]
- Rose, K.; Krema, H.; Durairaj, P.; Dangboon, W.; Chavez, Y.; Kulasekara, S.I.; Hudson, C. Retinal perfusion changes in radiation retinopathy. Acta Ophthalmol. 2018, 96, e727–e731. [Google Scholar] [CrossRef]
- Chin, M.S.; Siegel-Reamer, L.; FitzGerald, G.A.; Wyman, A.; Connor, N.M.; Lo, Y.-C.; Sioshansi, S.; Moni, J.; Giulia Cicchetti, M.; Lalikos, J.F.; et al. Association between cumulative radiation dose, adverse skin reactions, and changes in surface hemoglobin among women undergoing breast conserving therapy. Clin. Transl. Radiat. Oncol. 2017, 4, 15–23. [Google Scholar] [CrossRef]
- Pruimboom, T.; Lindelauf, A.A.M.A.; Felli, E.; Sawor, J.H.; Deliaert, A.E.K.; van der Hulst, R.R.W.J.; Al-Taher, M.; Diana, M.; Schols, R.M. Perioperative Hyperspectral Imaging to Assess Mastectomy Skin Flap and DIEP Flap Perfusion in Immediate Autologous Breast Reconstruction: A Pilot Study. Diagnostics 2022, 12, 184. [Google Scholar] [CrossRef] [PubMed]
- Fabelo, H.; Ortega, S.; Ravi, D.; Kiran, B.R.; Sosa, C.; Bulters, D.; Callicó, G.M.; Bulstrode, H.; Szolna, A.; Piñeiro, J.F.; et al. Spatio-spectral classification of hyperspectral images for brain cancer detection during surgical operations. PLoS ONE 2018, 13, e0193721. [Google Scholar] [CrossRef]
- Fabelo, H.; Halicek, M.; Ortega, S.; Shahedi, M.; Szolna, A.; Piñeiro, J.; Sosa, C.; O’Shanahan, A.; Bisshopp, S.; Espino, C.; et al. Deep Learning-Based Framework for In Vivo Identification of Glioblastoma Tumor using Hyperspectral Images of Human Brain. Sensors 2019, 19, 920. [Google Scholar] [CrossRef] [PubMed]
- Fabelo, H.; Ortega, S.; Szolna, A.; Bulters, D.; Pineiro, J.F.; Kabwama, S.; J-O’Shanahan, A.; Bulstrode, H.; Bisshopp, S.; Kiran, B.R.; et al. In-Vivo Hyperspectral Human Brain Image Database for Brain Cancer Detection. IEEE Access 2019, 7, 39098–39116. [Google Scholar] [CrossRef]
- Fabelo, H.; Ortega, S.; Lazcano, R.; Madroñal, D.; M. Callicó, G.; Juárez, E.; Salvador, R.; Bulters, D.; Bulstrode, H.; Szolna, A.; et al. An Intraoperative Visualization System Using Hyperspectral Imaging to Aid in Brain Tumor Delineation. Sensors 2018, 18, 430. [Google Scholar] [CrossRef]
- Jansen, S.M.; De Bruin, D.M.; Van Berge Henegouwen, M.I.; Bloemen, P.R.; Strackee, S.D.; Veelo, D.P.; Van Leeuwen, T.G.; Gisbertz, S.S. Effect of ephedrine on gastric conduit perfusion measured by laser speckle contrast imaging after esophagectomy: A prospective in vivo cohort study. Dis. Esophagus 2018, 31, doy031. [Google Scholar] [CrossRef]
- Jansen-Winkeln, B.; Maktabi, M.; Takoh, J.P.; Rabe, S.M.; Barberio, M.; Köhler, H.; Neumuth, T.; Melzer, A.; Chalopin, C.; Gockel, I. Hyperspektral-Imaging bei gastrointestinalen Anastomosen. Chirurg 2018, 89, 717–725. [Google Scholar] [CrossRef]
- Jansen-Winkeln, B.; Holfert, N.; Köhler, H.; Moulla, Y.; Takoh, J.P.; Rabe, S.M.; Mehdorn, M.; Barberio, M.; Chalopin, C.; Neumuth, T.; et al. Determination of the transection margin during colorectal resection with hyperspectral imaging (HSI). Int. J. Color. Dis. 2019, 34, 731–739. [Google Scholar] [CrossRef]
- Jansen-Winkeln, B.; Germann, I.; Köhler, H.; Mehdorn, M.; Maktabi, M.; Sucher, R.; Barberio, M.; Chalopin, C.; Diana, M.; Moulla, Y.; et al. Comparison of hyperspectral imaging and fluorescence angiography for the determination of the transection margin in colorectal resections—A comparative study. Int. J. Color. Dis. 2021, 36, 283–291. [Google Scholar] [CrossRef]
- Jansen-Winkeln, B.; Barberio, M.; Chalopin, C.; Schierle, K.; Diana, M.; Köhler, H.; Gockel, I.; Maktabi, M. Feedforward Artificial Neural Network-Based Colorectal Cancer Detection Using Hyperspectral Imaging: A Step towards Automatic Optical Biopsy. Cancers 2021, 13, 967. [Google Scholar] [CrossRef]
- Jansen-Winkeln, B.; Dvorak, M.; Köhler, H.; Maktabi, M.; Mehdorn, M.; Chalopin, C.; Diana, M.; Gockel, I.; Barberio, M. Border Line Definition Using Hyperspectral Imaging in Colorectal Resections. Cancers 2022, 14, 1188. [Google Scholar] [CrossRef]
- Hennig, S.; Jansen-Winkeln, B.; Köhler, H.; Knospe, L.; Chalopin, C.; Maktabi, M.; Pfahl, A.; Hoffmann, J.; Kwast, S.; Gockel, I.; et al. Novel Intraoperative Imaging of Gastric Tube Perfusion during Oncologic Esophagectomy—A Pilot Study Comparing Hyperspectral Imaging (HSI) and Fluorescence Imaging (FI) with Indocyanine Green (ICG). Cancers 2021, 14, 97. [Google Scholar] [CrossRef] [PubMed]
- Köhler, H.; Jansen-Winkeln, B.; Maktabi, M.; Barberio, M.; Takoh, J.; Holfert, N.; Moulla, Y.; Niebisch, S.; Diana, M.; Neumuth, T.; et al. Evaluation of hyperspectral imaging (HSI) for the measurement of ischemic conditioning effects of the gastric conduit during esophagectomy. Surg. Endosc. 2019, 33, 3775–3782. [Google Scholar] [CrossRef]
- Moulla, Y.; Reifenrath, M.; Rehmet, K.; Niebisch, S.; Jansen-Winkeln, B.; Sucher, R.; Hoffmeister, A.; Kreuser, N.; Köhler, H.; Gockel, I. Hybridösophagektomie mit intraoperativem Hyperspektral-Imaging: Videobeitrag. Chirurg 2020, 91, 1–12. [Google Scholar] [CrossRef]
- Pfahl, A.; Radmacher, G.K.; Köhler, H.; Maktabi, M.; Neumuth, T.; Melzer, A.; Gockel, I.; Chalopin, C.; Jansen-Winkeln, B. Combined indocyanine green and quantitative perfusion assessment with hyperspectral imaging during colorectal resections. Biomed. Opt. Express 2022, 13, 3145. [Google Scholar] [CrossRef] [PubMed]
- Schwandner, F.; Hinz, S.; Witte, M.; Philipp, M.; Schafmayer, C.; Grambow, E. Intraoperative Assessment of Gastric Sleeve Oxygenation Using Hyperspectral Imaging in Esophageal Resection: A Feasibility Study. Visc. Med. 2021, 37, 165–170. [Google Scholar] [CrossRef]
- Wagner, T.; Radunz, S.; Becker, F.; Chalopin, C.; Kohler, H.; Gockel, I.; Jansen-Winkeln, B. Hyperspectral imaging detects perfusion and oxygenation differences between stapled and hand-sewn intestinal anastomoses. Innov. Surg. Sci. 2022, 7, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Moulla, Y.; Buchloh, D.C.; Köhler, H.; Rademacher, S.; Denecke, T.; Meyer, H.-J.; Mehdorn, M.; Lange, U.G.; Sucher, R.; Seehofer, D.; et al. Hyperspectral Imaging (HSI)—A New Tool to Estimate the Perfusion of Upper Abdominal Organs during Pancreatoduodenectomy. Cancers 2021, 13, 2846. [Google Scholar] [CrossRef]
- Ayala, L.; Adler, T.J.; Seidlitz, S.; Wirkert, S.; Engels, C.; Seitel, A.; Sellner, J.; Aksenov, A.; Bodenbach, M.; Bader, P.; et al. Spectral imaging enables contrast agent–free real-time ischemia monitoring in laparoscopic surgery. Sci. Adv. 2023, 9, eadd6778. [Google Scholar] [CrossRef]
- Kleiss, S.F.; Michi, M.; Schuurman, S.N.; De Vries, J.-P.P.M.; Werker, P.M.N.; De Jongh, S.J. Tissue perfusion in DIEP flaps using Indocyanine Green Fluorescence Angiography, Hyperspectral imaging, and Thermal imaging. JPRAS Open 2024, 41, 61–74. [Google Scholar] [CrossRef]
- Kondziołka, J.; Michalecki, Ł.; Hajek, J.; Lebiedowska, A.; Hartman-Petrycka, M.; Koprowski, R.; Wilczyński, S. Hemoglobin Concentration as an Indicator of Skin Radiation Damage During Radiation Therapy Treatments. Int. J. Radiat. Oncol. Biol. Phys. 2024, 120, 1076–1083. [Google Scholar] [CrossRef]
- Schimunek, L.; Schöpp, K.; Wagner, M.; Brucker, S.Y.; Andress, J.; Weiss, M. Hyperspectral imaging as a new diagnostic tool for cervical intraepithelial neoplasia. Arch. Gynecol. Obstet. 2023, 308, 1525–1530. [Google Scholar] [CrossRef]
- Vega, C.; Medina, N.; Quintana-Quintana, L.; Leon, R.; Fabelo, H.; Rial, J.; Martín, A.; Callico, G.M. Feasibility study of hyperspectral colposcopy as a novel tool for detecting precancerous cervical lesions. Sci. Rep. 2025, 15, 820. [Google Scholar] [CrossRef]
- Marois, M.; Olson, J.D.; Wirth, D.J.; Elliott, J.T.; Fan, X.; Davis, S.C.; Paulsen, K.D.; Roberts, D.W. A birefringent spectral demultiplexer enables fast hyper-spectral imaging of protoporphyrin IX during neurosurgery. Commun. Biol. 2023, 6, 341. [Google Scholar] [CrossRef]
- Sancho, J.; Villa, M.; Chavarrías, M.; Juarez, E.; Lagares, A.; Sanz, C. SLIMBRAIN: Augmented reality real-time acquisition and processing system for hyperspectral classification mapping with depth information for in-vivo surgical procedures. J. Syst. Archit. 2023, 140, 102893. [Google Scholar] [CrossRef]
- Leon, R.; Fabelo, H.; Ortega, S.; Cruz-Guerrero, I.A.; Campos-Delgado, D.U.; Szolna, A.; Piñeiro, J.F.; Espino, C.; O’Shanahan, A.J.; Hernandez, M.; et al. Hyperspectral imaging benchmark based on machine learning for intraoperative brain tumour detection. npj Precis. Onc. 2023, 7, 119. [Google Scholar] [CrossRef]
- Giannantonio, T.; Alperovich, A.; Semeraro, P.; Atzori, M.; Zhang, X.; Hauger, C.; Freytag, A.; Luthman, S.; Vandebriel, R.; Jayapala, M.; et al. Intra-operative brain tumor detection with deep learning-optimized hyperspectral imaging. In Optical Biopsy XXI: Toward Real-Time Spectroscopic Imaging and Diagnosis; Alfano, R.R., Seddon, A.B., Eds.; SPIE: San Francisco, CA, USA, 2023; p. 5. [Google Scholar]
- Puustinen, S.; Vrzáková, H.; Hyttinen, J.; Rauramaa, T.; Fält, P.; Hauta-Kasari, M.; Bednarik, R.; Koivisto, T.; Rantala, S.; Von Und Zu Fraunberg, M.; et al. Hyperspectral Imaging in Brain Tumor Surgery—Evidence of Machine Learning-Based Performance. World Neurosurg. 2023, 175, e614–e635. [Google Scholar] [CrossRef] [PubMed]
- MacCormac, O.; Noonan, P.; Janatka, M.; Horgan, C.C.; Bahl, A.; Qiu, J.; Elliot, M.; Trotouin, T.; Jacobs, J.; Patel, S.; et al. Lightfield hyperspectral imaging in neuro-oncology surgery: An IDEAL 0 and 1 study. Front. Neurosci. 2023, 17, 1239764. [Google Scholar] [CrossRef] [PubMed]
- Kifle, N.; Teti, S.; Ning, B.; Donoho, D.A.; Katz, I.; Keating, R.; Cha, R.J. Pediatric Brain Tissue Segmentation Using a Snapshot Hyperspectral Imaging (sHSI) Camera and Machine Learning Classifier. Bioengineering 2023, 10, 1190. [Google Scholar] [CrossRef]
- Martín-Pérez, A.; Martinez De Ternero, A.; Lagares, A.; Juarez, E.; Sanz, C. Spectral analysis comparison of pushbroom and snapshot hyperspectral cameras for in vivo brain tissues and chromophore identification. J. Biomed. Opt. 2024, 29, 093510. [Google Scholar] [CrossRef]
- Pertzborn, D.; Nguyen, H.-N.; Hüttmann, K.; Prengel, J.; Ernst, G.; Guntinas-Lichius, O.; Von Eggeling, F.; Hoffmann, F. Intraoperative Assessment of Tumor Margins in Tissue Sections with Hyperspectral Imaging and Machine Learning. Cancers 2022, 15, 213. [Google Scholar] [CrossRef] [PubMed]
- Bali, A.; Bitter, T.; Mafra, M.; Ballmaier, J.; Kouka, M.; Schneider, G.; Mühlig, A.; Ziller, N.; Werner, T.; Von Eggeling, F.; et al. Endoscopic In Vivo Hyperspectral Imaging for Head and Neck Tumor Surgeries Using a Medically Approved CE-Certified Camera with Rapid Visualization During Surgery. Cancers 2024, 16, 3785. [Google Scholar] [CrossRef] [PubMed]
- Felicio-Briegel, A.; Linek, M.; Sroka, R.; Rühm, A.; Freymüller, C.; Stocker, M.; Baumeister, P.; Reichel, C.; Volgger, V. Hyperspectral imaging for monitoring of free flaps of the oral cavity: A feasibility study. Lasers Surg. Med. 2024, 56, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Thoenissen, P.; Heselich, A.; Al-Maawi, S.; Sader, R.; Ghanaati, S. Hyperspectral Imaging Allows Evaluation of Free Flaps in Craniomaxillofacial Reconstruction. J. Craniofacial Surg. 2023, 34, e212–e216. [Google Scholar] [CrossRef]
- Chand, S.; Namasivayam, K.; Dave, J.; Preejith, S.P.; Jayachandran, S.; Sivaprakasam, M. In-vivo non-contact multispectral oral disease image dataset with segmentation. Sci. Data 2024, 11, 1298. [Google Scholar] [CrossRef]
- Hoxha, D.; Krt, A.; Stergar, J.; Tomanič, T.; Grošelj, A.; Štajduhar, I.; Serša, G.; Milanič, M. Skin Lesion Classification in Head and Neck Cancers Using Tissue Index Images Derived from Hyperspectral Imaging. Cancers 2025, 17, 1622. [Google Scholar] [CrossRef]
- Ellebrecht, D.B.; Kugler, C. Intraoperative Determination of Bronchus Stump and Anastomosis Perfusion with Hyperspectral Imaging. Surg. Innov. 2023, 30, 314–323. [Google Scholar] [CrossRef]
- Felli, E.; Cinelli, L.; Bannone, E.; Giannone, F.; Muttillo, E.M.; Barberio, M.; Keller, D.S.; Rodríguez-Luna, M.R.; Okamoto, N.; Collins, T.; et al. Hyperspectral Imaging in Major Hepatectomies: Preliminary Results from the Ex-Machyna Trial. Cancers 2022, 14, 5591. [Google Scholar] [CrossRef]
- Bannone, E.; Collins, T.; Esposito, A.; Cinelli, L.; De Pastena, M.; Pessaux, P.; Felli, E.; Andreotti, E.; Okamoto, N.; Barberio, M.; et al. Surgical optomics: Hyperspectral imaging and deep learning towards precision intraoperative automatic tissue recognition—Results from the EX-MACHYNA trial. Surg. Endosc. 2024, 38, 3758–3772. [Google Scholar] [CrossRef]
- Calin, M.A.; Manea, D.; Dumitrescu, A.; Parasca, S.V. A hyperspectral index-based approach for in vivo automatic detection of skin tumors from hyperspectral images. Balneo PRM Res. J. 2023, 14, 640. [Google Scholar] [CrossRef]
- Stridh, M.; Dahlstrand, U.; Naumovska, M.; Engelsberg, K.; Gesslein, B.; Sheikh, R.; Merdasa, A.; Malmsjö, M. Functional and molecular 3D mapping of angiosarcoma tumor using non-invasive laser speckle, hyperspectral, and photoacoustic imaging. Orbit 2024, 43, 453–463. [Google Scholar] [CrossRef]
- Parasca, S.V.; Calin, M.A.; Manea, D.; Radvan, R. Hyperspectral imaging with machine learning for in vivo skin carcinoma margin assessment: A preliminary study. Phys. Eng. Sci. Med. 2024, 47, 1141–1152. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.-Y.; Nguyen, H.-T.; Lin, T.-L.; Saenprasarn, P.; Liu, P.-H.; Wang, H.-C. Identification of Skin Lesions by Snapshot Hyperspectral Imaging. Cancers 2024, 16, 217. [Google Scholar] [CrossRef] [PubMed]
- Courtenay, L.A.; Barbero-García, I.; Martínez-Lastras, S.; Del Pozo, S.; Corral De La Calle, M.; Garrido, A.; Guerrero-Sevilla, D.; Hernandez-Lopez, D.; González-Aguilera, D. Near-infrared hyperspectral imaging and robust statistics for in vivo non-melanoma skin cancer and actinic keratosis characterisation. PLoS ONE 2024, 19, e0300400. [Google Scholar] [CrossRef] [PubMed]
- Courtenay, L.A.; Barbero-García, I.; Martínez-Lastras, S.; Del Pozo, S.; Corral, M.; González-Aguilera, D. Using computational learning for non-melanoma skin cancer and actinic keratosis near-infrared hyperspectral signature classification. Photodiagnosis Photodyn. Ther. 2024, 49, 104269. [Google Scholar] [CrossRef]
- Zimmermann, A.; Köhler, H.; Chalopin, C.; Jansen-Winkeln, B.; Nowotny, R.; Schönherr, T.; Mehdorn, M.; Uttinger, K.L.; Thieme, R.; Gockel, I.; et al. The role of intraoperative hyperspectral imaging (HSI) in colon interposition after esophagectomy. BMC Surg. 2023, 23, 47. [Google Scholar] [CrossRef]
- Thomaßen, M.T.; Köhler, H.; Pfahl, A.; Stelzner, S.; Mehdorn, M.; Thieme, R.; Jansen-Winkeln, B.; Gockel, I.; Chalopin, C.; Moulla, Y. In vivo evaluation of a hyperspectral imaging system for minimally invasive surgery (HSI-MIS). Surg. Endosc. 2023, 37, 3691–3700. [Google Scholar] [CrossRef]
- Ilgen, A.; Köhler, H.; Pfahl, A.; Stelzner, S.; Mehdorn, M.; Jansen-Winkeln, B.; Gockel, I.; Moulla, Y. Intraoperative Laparoscopic Hyperspectral Imaging during Esophagectomy—A Pilot Study Evaluating Esophagogastric Perfusion at the Anastomotic Sites. Bioengineering 2024, 11, 69. [Google Scholar] [CrossRef]
- De Winne, J.; Babin, D.; Luong, H.; Luthman, S.; Van Daele, E.; Vanommeslaeghe, H.; Ceelen, W. Real-time assessment of graft oxygenation and perfusion using spectral imaging for improved outcome in esophageal cancer surgery. In Optical Biopsy XXIII: Toward Real-Time Spectroscopic Imaging and Diagnosis; Alfano, R.R., Seddon, A.B., Shi, L., Wu, B., Eds.; SPIE: San Francisco, CA, USA, 2025; p. 12. [Google Scholar]
- Perkov, S.; Vorobev, V.; Kurochkin, M.A.; Gorodkov, S.; Gorin, D. Rapid low-cost hyperspectral imaging system for quantitative assessment of infantile hemangioma. J. Biophotonics 2024, 17, e202300375. [Google Scholar] [CrossRef]
- Waterhouse, D.J.; Borsetto, D.; Santarius, T.; Tysome, J.R.; Bohndiek, S.E. First-in-human pilot study of snapshot multispectral endoscopy for delineation of pituitary adenoma. J. Biomed. Opt. 2025, 30, 056002. [Google Scholar] [CrossRef]
- Studier-Fischer, A.; Bressan, M.; bin Qasim, A.; Özdemir, B.; Sellner, J.; Seidlitz, S.; Haney, C.M.; Egen, L.; Michel, M.; Dietrich, M.; et al. Spectral characterization of intraoperative renal perfusion using hyperspectral imaging and artificial intelligence. Sci. Rep. 2024, 14, 17262. [Google Scholar] [CrossRef]
- Merdasa, A.; Berggren, J.; Tenland, K.; Stridh, M.; Hernandez-Palacios, J.; Gustafsson, N.; Sheikh, R.; Malmsjö, M. Oxygen saturation mapping during reconstructive surgery of human forehead flaps with hyperspectral imaging and spectral unmixing. Microvasc. Res. 2023, 150, 104573. [Google Scholar] [CrossRef]
- Vandebriel, R.; Luthman, S.; Vunckx, K.; Jayapala, M.; Charle, W.; Solie, L.; De Vleeschouwer, S.; Giannantonio, T.; Alperovich, A.; Zhang, X. Integrating hyperspectral imaging in an existing intra-operative environment for detection of intrinsic brain tumors. In Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XXI; Boudoux, C., Tunnell, J.W., Eds.; SPIE: San Francisco, CA, USA, 2023; p. 33. [Google Scholar] [CrossRef]
- Greenspan, H. Medical Image Computing and Computer Assisted Intervention—MICCAI 2023: 26th International Conference, Vancouver, BC, Canada, October 8–12, 2023, Proceedings, Part IX, 1st ed.; Lecture Notes in Computer Science Series; Springer: Cham, Switzerland, 2023. [Google Scholar]
- Roddan, A.; Czempiel, T.; Xu, C.; Xu, H.; Weld, A.; Chalau, V.; Anichini, G.; Elson, D.S.; Giannarou, S. Multimodal imaging platform for enhanced tumor resection in neurosurgery: Integrating hyperspectral and pCLE technologies. Int. J. CARS 2025, 20, 1087–1096. [Google Scholar] [CrossRef]
- Bali, A.; Wolter, S.; Pelzel, D.; Weyer, U.; Azevedo, T.; Lio, P.; Kouka, M.; Geißler, K.; Bitter, T.; Ernst, G.; et al. Real-Time Intraoperative Decision-Making in Head and Neck Tumor Surgery: A Histopathologically Grounded Hyperspectral Imaging and Deep Learning Approach. Cancers 2025, 17, 1617. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, M.L.; Alperovich, A.; Giannantonio, T.; Barz, B.; Zhang, X.; Holm, F.; Navab, N.; Boehm, F.; Schwamborn, C.; Hoffmann, T.K.; et al. Robust Tumor Segmentation with Hyperspectral Imaging and Graph Neural Networks. In Lecture Notes in Computer Science; Springer Nature: Cham, Switzerland, 2025; pp. 258–274. [Google Scholar] [CrossRef]
- Ellebrecht, D.B. Hyperspectral imaging enables the differentiation of differentially inflated and perfused pulmonary tissue: A proof-of-concept study in pulmonary lobectomies for intersegmental plane mapping. Biomed. Eng./Biomed. Tech. 2023, 68, 421–426. [Google Scholar] [CrossRef]
- Gockel, I.; Jansen-Winkeln, B.; Holfert, N.; Rayes, N.; Thieme, R.; Maktabi, M.; Sucher, R.; Seehofer, D.; Barberio, M.; Diana, M.; et al. Möglichkeiten und Perspektiven der Hyperspektralbildgebung in der Viszeralchirurgie. Chirurg 2020, 91, 150–159. [Google Scholar] [CrossRef]
- Lin, T.-L.; Lu, C.-T.; Karmakar, R.; Nampalley, K.; Mukundan, A.; Hsiao, Y.-P.; Hsieh, S.-C.; Wang, H.-C. Assessing the Efficacy of the Spectrum-Aided Vision Enhancer (SAVE) to Detect Acral Lentiginous Melanoma, Melanoma In Situ, Nodular Melanoma, and Superficial Spreading Melanoma. Diagnostics 2024, 14, 1672. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.-L.; Karmakar, R.; Mukundan, A.; Chaudhari, S.; Hsiao, Y.-P.; Hsieh, S.-C.; Wang, H.-C. Assessing the Efficacy of the Spectrum-Aided Vision Enhancer (SAVE) to Detect Acral Lentiginous Melanoma, Melanoma In Situ, Nodular Melanoma, and Superficial Spreading Melanoma: Part II. Diagnostics 2025, 15, 714. [Google Scholar] [CrossRef]
- Pfahl, A.; Köhler, H.; Thomaßen, M.T.; Maktabi, M.; Bloße, A.M.; Mehdorn, M.; Lyros, O.; Moulla, Y.; Niebisch, S.; Jansen-Winkeln, B.; et al. Video: Clinical evaluation of a laparoscopic hyperspectral imaging system. Surg. Endosc. 2022, 36, 7794–7799. [Google Scholar] [CrossRef] [PubMed]
- MacCormac, O.; Horgan, C.C.; Waterhouse, D.; Noonan, P.; Janatka, M.; Miles, R.; Jacobs, J.; Dockerill, C.; Trotouin, T.; Schizas, A.; et al. Hyperspectral abdominal laparoscopy with real-time quantitative tissue oxygenation imaging: A live porcine study. Front. Med. Technol. 2025, 7, 1549245. [Google Scholar] [CrossRef]
- Ikematsu, H.; Takara, Y.; Nishihara, K.; Kano, Y.; Owaki, Y.; Okamoto, R.; Fujiwara, T.; Takamatsu, T.; Yamada, M.; Tomioka, Y.; et al. Possibility of determining high quantitative fecal occult blood on stool surface using hyperspectral imaging. J. Gastroenterol. 2025, 60, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Stergar, J.; Hren, R.; Milanič, M. Effects of phantom microstructure on their optical properties. J. Biomed. Opt. 2024, 29, 093502. [Google Scholar] [CrossRef]
- Hacker, L.; Wabnitz, H.; Pifferi, A.; Pfefer, T.J.; Pogue, B.W.; Bohndiek, S.E. Criteria for the design of tissue-mimicking phantoms for the standardization of biophotonic instrumentation. Nat. Biomed. Eng. 2022, 6, 541–558. [Google Scholar] [CrossRef]
- Dinh, J.; Yamashita, A.; Kang, H.; Gioux, S.; Choi, H.S. Optical Tissue Phantoms for Quantitative Evaluation of Surgical Imaging Devices. Adv. Photonics Res. 2023, 4, 2200194. [Google Scholar] [CrossRef]
- Naglič, P.; Zelinskyi, Y.; Rogelj, L.; Stergar, J.; Milanič, M.; Novak, J.; Kumperščak, B.; Bürmen, M. Optical properties of PlatSil SiliGlass tissue-mimicking phantoms. Biomed. Opt. Express 2020, 11, 3753. [Google Scholar] [CrossRef] [PubMed]
- Sekar, S.K.V.; Pacheco, A.; Martella, P.; Li, H.; Lanka, P.; Pifferi, A.; Andersson-Engels, S. Solid phantom recipe for diffuse optics in biophotonics applications: A step towards anatomically correct 3D tissue phantoms. Biomed. Opt. Express 2019, 10, 2090. [Google Scholar] [CrossRef]
- Pruitt, K.; Ma, L.; Rathgeb, A.; Gahan, J.C.; Johnson, B.A.; Strand, D.W.; Fei, B. Design and validation of a high-speed hyperspectral laparoscopic imaging system. J. Biomed. Opt. 2024, 29, 093506. [Google Scholar] [CrossRef]
- Hren, R.; Sersa, G.; Simoncic, U.; Milanic, M. Imaging microvascular changes in nonocular oncological clinical applications by optical coherence tomography angiography: A literature review. Radiol. Oncol. 2023, 57, 411–418. [Google Scholar] [CrossRef]
- Hren, R.; Brezar, S.K.; Marhl, U.; Sersa, G. Laser speckle contrast imaging of perfusion in oncological clinical applications: A literature review. Radiol. Oncol. 2024, 58, 326–334. [Google Scholar] [CrossRef]
- Lux, R.L.; Burgess, M.J.; Wyatt, R.F.; Evans, A.K.; Vincent, G.M.; Abildskov, J.A. Clinically practical lead systems for improved electrocardiography: Comparison with precordial grids and conventional lead systems. Circulation 1979, 59, 356–363. [Google Scholar] [CrossRef]
- Hubley-Kozey, C.L.; Mitchell, L.B.; Gardner, M.J.; Warren, J.W.; Penney, C.J.; Smith, E.R.; Horácek, B.M. Spatial Features in Body-Surface Potential Maps Can Identify Patients With a History of Sustained Ventricular Tachycardia. Circulation 1995, 92, 1825–1838. [Google Scholar] [CrossRef]
- SippensGroenewegen, A.; Spekhorst, H.; Van Hemel, N.M.; Kingma, J.H.; Hauer, R.N.; De Bakker, J.M.; Grimbergen, C.A.; Janse, M.J.; Dunning, A.J. Localization of the site of origin of postinfarction ventricular tachycardia by endocardial pace mapping. Body surface mapping compared with the 12-lead electrocardiogram. Circulation 1993, 88, 2290–2306. [Google Scholar] [CrossRef]
- Hren, R.; Horácek, B.M. Value of simulated body surface potential maps as templates in localizing sites of ectopic activation for radiofrequency ablation. Physiol. Meas. 1997, 18, 373–400. [Google Scholar] [CrossRef] [PubMed]
- Hren, R.; Steinhoff, U.; Gessner, C.; Endt, P.; Goedde, P.; Agrawal, R.; Oeff, M.; Lux, R.L.; Trahms, L. Value of Magnetocardiographic QRST Integral Maps in the Identification of Patients at Risk of Ventricular Arrhythmias. Pacing Clin. Electrophis 1999, 22, 1292–1304. [Google Scholar] [CrossRef] [PubMed]
- Bergquist, J.; Rupp, L.; Zenger, B.; Brundage, J.; Busatto, A.; MacLeod, R.S. Body Surface Potential Mapping: Contemporary Applications and Future Perspectives. Hearts 2021, 2, 514–542. [Google Scholar] [CrossRef]
- Roth, B.J. The magnetocardiogram. Biophys. Rev. 2024, 5, 021305. [Google Scholar] [CrossRef] [PubMed]
- Imre, A.; Nagy, B.; Hren, R. Early-stage health technology assessment of a curative gene therapy for multiple sclerosis. Br. J. Clin. Pharmacol. 2025; early view. [Google Scholar] [CrossRef]
- Jakab, I.; Dimitrova, M.; Houÿez, F.; Bereczky, T.; Fövényes, M.; Maravic, Z.; Belina, I.; Andriciuc, C.; Tóth, K.; Piniazhko, O.; et al. Recommendations for patient involvement in health technology assessment in Central and Eastern European countries. Front. Public Health 2023, 11, 1176200. [Google Scholar] [CrossRef]
- MacCormac, O.; Elliot, M.; Whittaker, L.; Bahl, A.; Ségaud, S.; Plowright, A.J.; Winslade, S.; Taylor-Gee, A.; Spencer, B.; Vercauteren, T.; et al. Science for tomorrow’s neurosurgery: Insights on establishing a neurosurgery patient group focused on developing novel intra-operative imaging techniques. Res. Involv. Engagem. 2024, 10, 112. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Garritty, C.; Gartlehner, G.; Nussbaumer-Streit, B.; King, V.J.; Hamel, C.; Kamel, C.; Affengruber, L.; Stevens, A. Cochrane Rapid Reviews Methods Group offers evidence-informed guidance to conduct rapid reviews. J. Clin. Epidemiol. 2021, 130, 13–22. [Google Scholar] [CrossRef] [PubMed]
Reference | Year of Publication | Number of Patients | Oncologic Intervention |
---|---|---|---|
Kidneys | |||
Ayala et al. [67] | 2023 | 10 | Partial nephrectomy |
Eye | |||
No new studies in the clinical oncological setting (since 3 October 2022) | |||
Breasts | |||
Kleiss et al. [68] | 2024 | 15 | DIEP flap breast reconstruction surgery |
Kondziołka et al. [69] | 2024 | 26 | Skin response to radiation |
Female reproductive system | |||
Schimunek et al. [70] | 2023 | 41 | CIN |
Vega et al. [71] | 2025 | 62 | CIN and cervical cancer |
Brain | |||
Marois et al. [72] | 2023 | 1 | Glioma resection |
Sancho et al. [73] | 2023 | 5 | Brain tumor resection |
Leon et al. [74] | 2023 | 34 | Brain tumor resection |
Giannantonio et al. [75] | 2023 | 5 | Low-grade glioma resection |
Puustinen et al. [76] | 2023 | 1 | High-grade glioma resection |
MacCormac et al. [77] | 2023 | 1 | Posterior fossa meningioma |
Kifle et al. [78] | 2023 | 4 | Epilepsy or malignant neoplasm (pediatric) |
Martín-Pérez et al. [79] | 2024 | 10 | IDH-mutated tumors and other carcinoma |
Head and neck | |||
Pertzborn et al. [80] | 2022 | 7 | Oral SCC |
Bali et al. [81] | 2024 | 12 | Oral SCC |
Felicio-Briegel et al. [82] | 2024 | 14 | Radial forearm free flap reconstructive surgery |
Thoenissen et al. [83] | 2023 | 13 | Tumor resection in head and neck surgery |
Chand et al. [84] | 2024 | 91 | Oral SMF, leukoplakia, and oral SCC |
Xoxha et al. [85] | 2025 | 16 | SCC and BCC |
Lungs | |||
Ellebrecht and Kugler [86] | 2023 | 19 | Adenocarcinoma NSCLC, squamous NSCLC, SCLC |
Liver/abdominal organs | |||
Felli et al. [87] | 2022 | 15 | Hepatectomy |
Bannone et al. [88] | 2024 | 169 | Elective abdominal surgery (pancreatoduodenectomy, total pancreatectomy, distal pancreatectomy, colectomy, splenectomy, sarcoma resection, major liver resection, minor liver resection, explorative laparotomy) |
Skin | |||
Calin et al. [89] | 2023 | 36 | SCC, BCC, AK, and SK |
Stridh et al. [90] | 2024 | 1 | Cutaneous angio-sarcoma |
Parasca et al. [91] | 2024 | 11 | SCC and BCC |
Huang et al. [92] | 2024 | 34 | Mycosis fungoides, psoriasis and atopic dermatitis |
Courtenay et al. [93] | 2024 | 125 | SCC, BCC, and AK |
Courtenay et al. [94] | 2024 | 125 | SCC, BCC, and AK |
Gastrointestinal tract | |||
Zimmermann et al. [95] | 2023 | 8 | Esophagectomy—open surgery |
Thomaßen et al. [96] | 2023 | 19 | Gastrointestinal resection—laparoscopic surgery |
Ilgen et al. [97] | 2024 | 22 | Esophagectomy—laparoscopic surgery |
De Winne et al. [98] | 2025 | 2 | Esophagectomy—laparoscopic surgery |
Cardiovascular system | |||
Perkov et al. [99] | 2024 | 6 | Infantile hemangioma |
Endocrine glands | |||
Waterhouse et al. [100] | 2025 | 12 | Transsphenoidal surgery of pituitary adenomas |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hren, R.; Dóczi, T.; Orszagh, E.; Babič, D. Recent Advances in Perfusion Assessment in Clinical Oncology Using Hyperspectral Imaging. Electronics 2025, 14, 3439. https://doi.org/10.3390/electronics14173439
Hren R, Dóczi T, Orszagh E, Babič D. Recent Advances in Perfusion Assessment in Clinical Oncology Using Hyperspectral Imaging. Electronics. 2025; 14(17):3439. https://doi.org/10.3390/electronics14173439
Chicago/Turabian StyleHren, Rok, Tamás Dóczi, Erika Orszagh, and Dušan Babič. 2025. "Recent Advances in Perfusion Assessment in Clinical Oncology Using Hyperspectral Imaging" Electronics 14, no. 17: 3439. https://doi.org/10.3390/electronics14173439
APA StyleHren, R., Dóczi, T., Orszagh, E., & Babič, D. (2025). Recent Advances in Perfusion Assessment in Clinical Oncology Using Hyperspectral Imaging. Electronics, 14(17), 3439. https://doi.org/10.3390/electronics14173439