Towards Safe and Effective Biomedical Nanocoatings: Plasma-Sputtered Magnesium-Based Nanoparticles with Cytoprotective, Antimicrobial and Antialgal Properties
Abstract
1. Introduction
2. Results
2.1. X-Ray Photoelectron Spectroscopy (XPS) Analysis
2.2. SEM Analysis
2.3. Antimicrobial and Antialgal Activity Analysis
2.4. Effects of Mg-Coated Textile Extracts on Mammalian Cell Viability
3. Discussion
4. Materials and Methods
4.1. In Situ Formation of Mg-Based Nanoparticles on Textile Substrates via Magnetron Sputtering
4.2. Characterization of Materials
4.3. Evaluation of Antimicrobial and Antialgal Activity
4.4. Cultivation of Mammalian Cells
4.5. Cell Viability Assays
4.5.1. MTT Assay—Evaluation of Mitochondrial Enzyme Activity
4.5.2. PrestoBlue Assay—Real-Time Measurement of Metabolic Viability
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yousefian, F.; Hesari, R.; Jensen, T.; Obagi, S.; Rgeai, A.; Damiani, G.; Bunick, C.G.; Grada, A. Antimicrobial Wound Dressings: A Concise Review for Clinicians. Antibiotics 2023, 12, 1434. [Google Scholar] [CrossRef]
- Gou, Y.; Hu, L.; Liao, X.; He, J.; Liu, F. Advances of Antimicrobial Dressings Loaded with Antimicrobial Agents in Infected Wounds. Front. Bioeng. Biotechnol. 2024, 12, 1431949. [Google Scholar] [CrossRef]
- Duan, S.; Wu, R.; Xiong, Y.-H.; Ren, H.-M.; Lei, C.; Zhao, Y.-Q.; Zhang, X.-Y.; Xu, F.-J. Multifunctional Antimicrobial Materials: From Rational Design to Biomedical Applications. Prog. Mater. Sci. 2022, 125, 100887. [Google Scholar] [CrossRef]
- Mantravadi, P.K.; Kalesh, K.A.; Dobson, R.C.J.; Hudson, A.O.; Parthasarathy, A. The Quest for Novel Antimicrobial Compounds: Emerging Trends in Research, Development, and Technologies. Antibiotics 2019, 8, 8. [Google Scholar] [CrossRef]
- Ostaszewska, T.; Śliwiński, J.; Kamaszewski, M.; Sysa, P.; Chojnacki, M. Cytotoxicity of Silver and Copper Nanoparticles on Rainbow Trout. Environ. Sci. Pollut. Res. 2018, 25, 908–915. [Google Scholar] [CrossRef]
- Akter, M.; Sikder, M.T.; Rahman, M.M.; Ullah, A.K.M.A.; Hossain, K.F.B.; Banik, S.; Hosokawa, T.; Saito, T.; Kurasaki, M. A Systematic Review on Silver Nanoparticles-Induced Cytotoxicity: Physicochemical Properties and Perspectives. J. Adv. Res. 2018, 9, 1–16. [Google Scholar] [CrossRef]
- Yılmaz, G.E.; Göktürk, I.; Ovezova, M.; Yılmaz, F.; Kılıç, S.; Denizli, A. Antimicrobial Nanomaterials: A Review. Hygiene 2023, 3, 269–290. [Google Scholar] [CrossRef]
- Szymańska, E.; Winnicka, K. Stability of Chitosan—A Challenge for Pharmaceutical and Biomedical Applications. Mar. Drugs 2015, 13, 1819–1846. [Google Scholar] [CrossRef]
- Arnold, W.A.; Blum, A.; Branyan, J.; Bruton, T.A.; Carignan, C.C.; Cortopassi, G.; Datta, S.; DeWitt, J.; Doherty, A.-C.; Halden, R.U. Quaternary Ammonium Compounds: A Chemical Class of Emerging Concern. Environ. Sci. Technol. 2023, 57, 7645–7665. [Google Scholar] [CrossRef]
- Nguyen, T.L.; Ora, A.; Häkkinen, S.T.; Ritala, A.; Räisänen, R.; Kallioinen-Mänttäri, M.; Melin, K. Innovative Extraction Technologies of Bioactive Compounds from Plant By-Products for Textile Colorants and Antimicrobial Agents. Biomass Convers. Biorefin. 2024, 14, 24973–25002. [Google Scholar] [CrossRef]
- Ali, T.; Ahmed, A.; Alam, U.; Uddin, I.; Tripathi, P.; Muneer, M. Enhanced Photocatalytic and Antibacterial Activities of Ag-Doped TiO2 Nanoparticles under Visible Light. Mater. Chem. Phys. 2018, 212, 325–335. [Google Scholar] [CrossRef]
- Hammami, I.; Alabdallah, N.M. Gold Nanoparticles: Synthesis Properties and Applications. J. King Saud Univ. 2021, 33, 101560. [Google Scholar] [CrossRef]
- Liu, M.; Wang, X.; Li, H.; Xia, C.; Liu, Z.; Liu, J.; Yin, A.; Lou, X.; Wang, H.; Mo, X. Magnesium Oxide-Incorporated Electrospun Membranes Inhibit Bacterial Infections and Promote the Healing Process of Infected Wounds. J. Mater. Chem. B 2021, 9, 3727–3744. [Google Scholar] [CrossRef]
- Dai, J.; Wu, C.; Yang, J.; Zhang, L.; Dong, Q.; Han, L.; Li, X.; Bai, J.; Xue, F.; Chu, P.K. Poly-Lactic Acid Coatings on the Biomedical WE43 Mg Alloy: Protection Mechanism and Ion Permeation Effects. Prog. Org. Coat. 2023, 177, 107427. [Google Scholar] [CrossRef]
- Qian, K.; Zhang, Y.; Dong, Q.; Shao, Y.; Cheng, Z.; Ju, J.; Xue, F.; Chu, C.; Xia, D.; Bai, J. Enhancement of Corrosion Resistance and Antibacterial Properties of PEO Coated AZ91D Mg Alloy by Copper-and Phosphate-Based Sealing Treatment. Corros. Sci. 2023, 219, 111218. [Google Scholar] [CrossRef]
- Pilchova, I.; Klacanova, K.; Tatarkova, Z.; Kaplan, P.; Racay, P. The Involvement of Mg2+ in Regulation of Cellular and Mitochondrial Functions. Oxid. Med. Cell. Longev. 2017, 2017, 6797460. [Google Scholar] [CrossRef]
- Vormann, J. Magnesium: Nutrition and Metabolism. Mol. Aspects Med. 2003, 24, 27–37. [Google Scholar] [CrossRef]
- Fedele, G.; Castiglioni, S.; Trapani, V.; Zafferri, I.; Bartolini, M.; Casati, S.M.; Ciuffreda, P.; Wolf, F.I.; Maier, J.A. Impact of Inducible Nitric Oxide Synthase Activation on Endothelial Behavior under Magnesium Deficiency. Nutrients 2024, 16, 1406. [Google Scholar] [CrossRef]
- Liu, L.; Wang, F.; Song, W.; Zhang, D.; Lin, W.; Yin, Q.; Wang, Q.; Li, H.; Yuan, Q.; Zhang, S. Magnesium Promotes Vascularization and Osseointegration in Diabetic States. Int. J. Oral Sci. 2024, 16, 10. [Google Scholar] [CrossRef]
- Nguyen, N.-Y.T.; Grelling, N.; Wetteland, C.L.; Rosario, R.; Liu, H. Antimicrobial Activities and Mechanisms of Magnesium Oxide Nanoparticles (NMgO) against Pathogenic Bacteria, Yeasts, and Biofilms. Sci. Rep. 2018, 8, 16260. [Google Scholar] [CrossRef]
- Dong, C.; He, G.; Zheng, W.; Bian, T.; Li, M.; Zhang, D. Study on Antibacterial Mechanism of Mg(OH)2 Nanoparticles. Mater. Lett. 2014, 134, 286–289. [Google Scholar] [CrossRef]
- Xia, D.; Shi, X.; Chen, K.; Hao, A.; Iseri, Y. Understanding the Mechanisms behind the Antibacterial Activity of Magnesium Hydroxide Nanoparticles against Sulfate-Reducing Bacteria in Sediments. Sci. Rep. 2024, 14, 21831. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, Y.; Jiang, Q.; Sui, B.; Rao, D.; Wang, J.; Yuan, G.; Liu, X. Antimicrobial Effects and Mechanistic Exploration of Micronized Mgh2 Particles against Common Oral Pathogenic Bacteria. Appl. Mater. Today 2025, 42, 102567. [Google Scholar] [CrossRef]
- Motrenko, M.; Lange, A.; Kalińska, A.; Gołębiewski, M.; Kunowska-Slósarz, M.; Nasiłowska, B.; Czwartos, J.; Skrzeczanowski, W.; Orzeszko-Rywka, A.; Jagielski, T. Green Nanoparticle Synthesis in the Application of Non-Bacterial Mastitis in Cattle. Molecules 2025, 30, 1369. [Google Scholar] [CrossRef]
- Jagielski, T.; Bakuła, Z.; Pleń, M.; Kamiński, M.; Nowakowska, J.; Bielecki, J.; Wolska, K.I.; Grudniak, A.M. The Activity of Silver Nanoparticles against Microalgae of the Prototheca Genus. Nanomedicine 2018, 13, 1025–1036. [Google Scholar] [CrossRef]
- Yudaev, P.; Mezhuev, Y.; Chistyakov, E. Nanoparticle-Containing Wound Dressing: Antimicrobial and Healing Effects. Gels 2022, 8, 329. [Google Scholar] [CrossRef]
- Garg, R.; Gonuguntla, S.; Sk, S.; Iqbal, M.S.; Dada, A.O.; Pal, U.; Ahmadipour, M. Sputtering Thin Films: Materials, Applications, Challenges and Future Directions. Adv. Colloid Interface Sci. 2024, 330, 103203. [Google Scholar] [CrossRef]
- Surdu, L.; Visileanu, E.; Ardeleanu, A.; Mitran, C.; Rădulescu, I.R.; Stancu, C.; Sandulache, I.; Mitu, B. Research Regarding the Cover Factor of Magnetron Sputtering Plasma Coated Fabrics. Ind. Text. 2019, 70, 154–159. [Google Scholar] [CrossRef]
- Zaatreh, S.; Haffner, D.; Strauß, M.; Wegner, K.; Warkentin, M.; Lurtz, C.; Zamponi, C.; Mittelmeier, W.; Kreikemeyer, B.; Willumeit-Römer, R. Fast Corroding, Thin Magnesium Coating Displays Antibacterial Effects and Low Cytotoxicity. Biofouling 2017, 33, 294–305. [Google Scholar] [CrossRef]
- Liang, H.; Geng, X.; Li, W.; Panepinto, A.; Thiry, D.; Chen, M.; Snyders, R. Experimental and Modeling Study of the Fabrication of Mg Nano-Sculpted Films by Magnetron Sputtering Combined with Glancing Angle Deposition. Coatings 2019, 9, 361. [Google Scholar] [CrossRef]
- Wang, Y.; Sha, L.; Zhao, J.; Li, Q.; Zhu, Y.; Wang, N. Antibacterial Property of Fabrics Coated by Magnesium-Based Brucites. Appl. Surf. Sci. 2017, 400, 413–419. [Google Scholar] [CrossRef]
- Tan, X.-Q.; Liu, J.-Y.; Niu, J.-R.; Liu, J.-Y.; Tian, J.-Y. Recent Progress in Magnetron Sputtering Technology Used on Fabrics. Materials 2018, 11, 1953. [Google Scholar] [CrossRef]
- Wan, X.; Li, Y.; Tian, C.; Zhou, J.; Qian, S.; Wang, L. Fabrication and Properties of Super-Hydrophobic Microstructures on Magnesium Alloys by Laser–Chemical Etching. Appl. Phys. A 2022, 128, 899. [Google Scholar] [CrossRef]
- Brown, H.L.; Thornley, S.A.; Wakeham, S.J.; Thwaites, M.J.; Curry, R.J.; Baker, M.A. The Impact of Substrate Bias on a Remote Plasma Sputter Coating Process for Conformal Coverage of Trenches and 3D Structures. J. Phys. D Appl. Phys. 2015, 48, 335303. [Google Scholar] [CrossRef]
- Yang, L.; Li, X.; Yang, L.; Zhu, X.; Wang, M.; Song, Z.; Liu, H.H.; Sun, W.; Dong, R.; Yue, J. Effect of Mg Contents on the Microstructure, Mechanical Properties and Cytocompatibility of Degradable Zn-0.5 Mn-XMg Alloy. J. Funct. Biomater. 2023, 14, 195. [Google Scholar] [CrossRef]
- Zhao, Y.; Tian, A.; Wang, W.; Chen, Y.; Li, W.; Liu, W.; Chen, M. The Effects of Reaction Parameters on the Corrosion Resistance of an Mg-Al Hydroxide Coating via in Situ Growth on a Biomedical Magnesium Alloy. Coatings 2022, 12, 1388. [Google Scholar] [CrossRef]
- Banai, S.; Haggroth, L.; Epstein, S.E.; Casscells, W. Influence of Extracellular Magnesium on Capillary Endothelial Cell Proliferation and Migration. Circ. Res. 1990, 67, 645–650. [Google Scholar] [CrossRef]
- Ameh, T.; Gibb, M.; Stevens, D.; Pradhan, S.H.; Braswell, E.; Sayes, C.M. Silver and Copper Nanoparticles Induce Oxidative Stress in Bacteria and Mammalian Cells. Nanomaterials 2022, 12, 2402. [Google Scholar] [CrossRef]
- Al Alawi, A.M.; Al Badi, A.; Al Huraizi, A.; Falhammar, H. Magnesium: The Recent Research and Developments. Adv. Food Nutr. Res. 2021, 96, 193–218. [Google Scholar] [CrossRef]
- Fiorentini, D.; Cappadone, C.; Farruggia, G.; Prata, C. Magnesium: Biochemistry, Nutrition, Detection, and Social Impact of Diseases Linked to Its Deficiency. Nutrients 2021, 13, 1136. [Google Scholar] [CrossRef]
- Pan, S.; An, L.; Meng, X.; Li, L.; Ren, F.; Guan, Y. MgCl2 and ZnCl2 Promote Human Umbilical Vein Endothelial Cell Migration and Invasion and Stimulate Epithelial mesenchymal Transition via the Wnt/Β catenin Pathway. Exp. Ther. Med. 2017, 14, 4663–4670. [Google Scholar] [CrossRef]
- Metryka, O.; Wasilkowski, D.; Mrozik, A. Insight into the Antibacterial Activity of Selected Metal Nanoparticles and Alterations within the Antioxidant Defence System in Escherichia Coli, Bacillus Cereus and Staphylococcus Epidermidis. Int. J. Mol. Sci. 2021, 22, 11811. [Google Scholar] [CrossRef]
- Ran, S.; Liu, B.; Jiang, W.; Sun, Z.; Liang, J. Transcriptome Analysis of Enterococcus Faecalis in Response to Alkaline Stress. Front. Microbiol. 2015, 6, 795. [Google Scholar] [CrossRef]
- Signoretto, C.; del Mar Lleò, M.; Tafi, M.C.; Canepari, P. Cell Wall Chemical Composition of Enterococcus Faecalis in the Viable but Nonculturable State. Appl. Environ. Microbiol. 2000, 66, 1953–1959. [Google Scholar] [CrossRef]
- Willett, J.L.E.; Dunny, G.M. Insights into Ecology, Pathogenesis, and Biofilm Formation of Enterococcus faecalis from Functional Genomics. Microbiol. Mol. Biol. Rev. 2025, 89, e00081-23. [Google Scholar] [CrossRef]
- Parga, A.; Mattu, J.; Belibasakis, G.N.; Kline, K.A.; Leprince, J.G.; Manoil, D. A Polymicrobial Perspective into the Ecological Role of Enterococcus Faecalis in Dental Root Canal Infections. NPJ Biofilms Microbiomes 2025, 11, 83. [Google Scholar] [CrossRef]
- Dong-yeon, D.L.; Galera-Laporta, L.; Bialecka-Fornal, M.; Moon, E.C.; Shen, Z.; Briggs, S.P.; Garcia-Ojalvo, J.; Süel, G.M. Magnesium Flux Modulates Ribosomes to Increase Bacterial Survival. Cell 2019, 177, 352–360. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Dey, A.; Neogi, S. An Insight into the Mechanism of Antibacterial Activity by Magnesium Oxide Nanoparticles. J. Mater. Chem. B 2021, 9, 5329–5339. [Google Scholar] [CrossRef]
- Coelho, C.C.; Padrão, T.; Costa, L.; Pinto, M.T.; Costa, P.C.; Domingues, V.F.; Quadros, P.A.; Monteiro, F.J.; Sousa, S.R. The Antibacterial and Angiogenic Effect of Magnesium Oxide in a Hydroxyapatite Bone Substitute. Sci. Rep. 2020, 10, 19098. [Google Scholar] [CrossRef]
- Del Chierico, F.; Trapani, V.; Petito, V.; Reddel, S.; Pietropaolo, G.; Graziani, C.; Masi, L.; Gasbarrini, A.; Putignani, L.; Scaldaferri, F. Dietary Magnesium Alleviates Experimental Murine Colitis through Modulation of Gut Microbiota. Nutrients 2021, 13, 4188. [Google Scholar] [CrossRef]
- Wierzbicki, M.; Kot, M.; Lange, A.; Kalińska, A.; Gołębiewski, M.; Jaworski, S. Evaluation of the Antimicrobial, Cytotoxic, and Physical Properties of Selected Nano-Complexes in Bovine Udder Inflammatory Pathogen Control. Nanotechnol. Sci. Appl. 2024, 17, 77–94. [Google Scholar] [CrossRef]
- Ely, V.L.; Pereira, D.I.B.; da Costa, M.M.; Panagio, L.; Nakasato, G.; Reis, G.; Cargnelutti, J.F.; Sangioni, L.A.; Botton, S.A. Activity of Biogenic Silver Nanoparticles against Isolates of Prototheca Species from Bovine Mastitis. Lett. Appl. Microbiol. 2022, 75, 24–28. [Google Scholar] [CrossRef]
- Kong, F.; Wang, J.; Han, R.; Ji, S.; Yue, J.; Wang, Y.; Ma, L. Antifungal Activity of Magnesium Oxide Nanoparticles: Effect on the Growth and Key Virulence Factors of Candida Albicans. Mycopathologia 2020, 185, 485–494. [Google Scholar] [CrossRef]
- Slavin, Y.N.; Bach, H. Mechanisms of Antifungal Properties of Metal Nanoparticles. Nanomaterials 2022, 12, 4470. [Google Scholar] [CrossRef]
- Gatou, M.-A.; Skylla, E.; Dourou, P.; Pippa, N.; Gazouli, M.; Lagopati, N.; Pavlatou, E.A. Magnesium Oxide (MgO) Nanoparticles: Synthetic Strategies and Biomedical Applications. Crystals 2024, 14, 215. [Google Scholar] [CrossRef]
- Han, Y.; Li, S.; Li, X.; Ma, J.; Ping, J.; Sun, Y. Study on Process Parameters of Magnetron Sputtering Titanium Coating in Deep Porous Structures. ACS Omega 2024, 9, 14551–14557. [Google Scholar] [CrossRef]
- Bakhit, B.; Primetzhofer, D.; Pitthan, E.; Sortica, M.A.; Ntemou, E.; Rosen, J.; Hultman, L.; Petrov, I.; Greczynski, G. Systematic Compositional Analysis of Sputter-Deposited Boron-Containing Thin Films. J. Vac. Sci. Technol. A 2021, 39, 063408. [Google Scholar] [CrossRef]
- Hunter, L. Fibre Structure. In Cotton: Science and Technology; Gordon, S., Hsieh, Y.L., Eds.; Woodhead Publishing: Cambridge, UK, 2007; pp. 3–65. [Google Scholar]
- Ul-Haq, N.; Nasir, H. Cleaner Production Technologies in Desizing of Cotton Fabric. J. Text. Inst. 2012, 103, 304–310. [Google Scholar] [CrossRef]
- Kumari, S.V.G.; Pakshirajan, K.; Pugazhenthi, G. Application of Active and Environment-Friendly Poly (3-Hydroxybutyrate)/Grapeseed Oil/MgO Nanocomposite Packaging for Prolonging the Shelf-Life of Cherry Tomatoes (Solanum lycopersicum L. Var. Cerasiforme). Sustain. Chem. Pharm. 2024, 41, 101681. [Google Scholar] [CrossRef]
- Farahani, H.; Wagiran, R.; Urban, G. MgO-Doped (Zr,Sr) TiO3 Perovskite Humidity Sensors: Microstructural Effects on Water Permeation. Proceedings 2017, 1, 408. [Google Scholar] [CrossRef]
- Luo, D.; Xie, Q.; Gu, S.; Xue, W. Potato Starch Films by Incorporating Tea Polyphenol and MgO Nanoparticles with Enhanced Physical, Functional and Preserved Properties. Int. J. Biol. Macromol. 2022, 221, 108–120. [Google Scholar] [CrossRef]
- Giedraitienė, A.; Ružauskas, M.; Šiugždinienė, R.; Tučkutė, S.; Grigonis, K.; Milčius, D. Development of Antibacterial Cotton Textiles by Deposition of Fe2O3 Nanoparticles Using Low-Temperature Plasma Sputtering. Nanomaterials 2023, 13, 3106. [Google Scholar] [CrossRef]
- Fotakis, G.; Timbrell, J.A. In Vitro Cytotoxicity Assays: Comparison of LDH, Neutral Red, MTT and Protein Assay in Hepatoma Cell Lines Following Exposure to Cadmium Chloride. Toxicol. Lett. 2006, 160, 171–177. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Boncler, M.; Różalski, M.; Krajewska, U.; Podsędek, A.; Watala, C. Comparison of PrestoBlue and MTT Assays of Cellular Viability in the Assessment of Anti-Proliferative Effects of Plant Extracts on Human Endothelial Cells. J. Pharmacol. Toxicol. Methods 2014, 69, 9–16. [Google Scholar] [CrossRef]
- Luzak, B.; Siarkiewicz, P.; Boncler, M. An Evaluation of a New High-Sensitivity PrestoBlue Assay for Measuring Cell Viability and Drug Cytotoxicity Using EA. Hy926 Endothelial Cells. Toxicol. Vitr. 2022, 83, 105407. [Google Scholar] [CrossRef]
- Rabiei, H.; Torshabi, M.; Montazer, M.; Khaloo, S.S.; Dehghan, S.F. Antimicrobial Activity and Cytotoxicity of Cotton-Polyester Fabric Coated with a Metal–Organic Framework and Metal Oxide Nanoparticle. Appl. Nanosci. 2023, 13, 5765–5776. [Google Scholar] [CrossRef]
Sample | Concentration, at. % (Mean ± SD *) | |||||
---|---|---|---|---|---|---|
C | O | Ca | Si | Na | Mg | |
Control textile | 61.2 ± 1.6 | 34.5 ± 0.5 | 3.2 ± 0.4 | 1.6 ± 0.2 | 0.2 ± 0.1 | - |
20 min | 33.6 ± 0.7 | 38.7 ± 0.6 | 8.3 ± 0.3 | 1.2 ± 0.0 | 0.1 ± 0.0 | 18.1 ± 0.5 |
60 min | 34.7 ± 0.4 | 36.5 ± 0.2 | 7.6 ± 0.1 | 1.3 ± 0.2 | 0.2 ± 0.1 | 19.8 ± 0.6 |
120 min | 33 ± 0.5 | 37.4 ± 0.6 | 7.2 ± 0.5 | 1.1 ± 0.3 | 0.1 ± 0.0 | 21.3 ± 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodaitė, R.; Kairytė, L.; Giedraitienė, A.; Ružauskas, M.; Šiugždinienė, R.; Čiapienė, I.; Tatarūnas, V.; Varnagiris, Š.; Milčius, D. Towards Safe and Effective Biomedical Nanocoatings: Plasma-Sputtered Magnesium-Based Nanoparticles with Cytoprotective, Antimicrobial and Antialgal Properties. Molecules 2025, 30, 3526. https://doi.org/10.3390/molecules30173526
Rodaitė R, Kairytė L, Giedraitienė A, Ružauskas M, Šiugždinienė R, Čiapienė I, Tatarūnas V, Varnagiris Š, Milčius D. Towards Safe and Effective Biomedical Nanocoatings: Plasma-Sputtered Magnesium-Based Nanoparticles with Cytoprotective, Antimicrobial and Antialgal Properties. Molecules. 2025; 30(17):3526. https://doi.org/10.3390/molecules30173526
Chicago/Turabian StyleRodaitė, Raminta, Laura Kairytė, Agnė Giedraitienė, Modestas Ružauskas, Rita Šiugždinienė, Ieva Čiapienė, Vacis Tatarūnas, Šarūnas Varnagiris, and Darius Milčius. 2025. "Towards Safe and Effective Biomedical Nanocoatings: Plasma-Sputtered Magnesium-Based Nanoparticles with Cytoprotective, Antimicrobial and Antialgal Properties" Molecules 30, no. 17: 3526. https://doi.org/10.3390/molecules30173526
APA StyleRodaitė, R., Kairytė, L., Giedraitienė, A., Ružauskas, M., Šiugždinienė, R., Čiapienė, I., Tatarūnas, V., Varnagiris, Š., & Milčius, D. (2025). Towards Safe and Effective Biomedical Nanocoatings: Plasma-Sputtered Magnesium-Based Nanoparticles with Cytoprotective, Antimicrobial and Antialgal Properties. Molecules, 30(17), 3526. https://doi.org/10.3390/molecules30173526