Celebrating
Peer Review
Week 2025
 
20 pages, 6483 KB  
Article
Effect of Trace La on Microstructure and Thermal Conductivity of Hypoeutectic Al-7Si Alloy
by Jun-Yu Yue, Ji-Cheng Li, Yi Sui, Lei Wen and Rui-Ying Zhang
Metals 2025, 15(10), 1087; https://doi.org/10.3390/met15101087 - 29 Sep 2025
Abstract
Al-Si phase change materials are widely used in solar thermal power generation and industrial waste heat reclamation due to their high heat storage density, high phase transition temperature, and low cost. Hypoeutectic Al-7Si phase change thermal storage alloys with trace La additions were [...] Read more.
Al-Si phase change materials are widely used in solar thermal power generation and industrial waste heat reclamation due to their high heat storage density, high phase transition temperature, and low cost. Hypoeutectic Al-7Si phase change thermal storage alloys with trace La additions were produced through smelting and casting to examine how La affects their microstructural characteristics and thermophysical performance. The findings show that La is adsorbed at the eutectic Si growth interface. Due to the difference in atomic radii, it alters the stacking sequence of Si atoms, generating numerous high-density staggered twins on the {111}Si planes of eutectic Si. La additions modify the morphology of eutectic Si, leading to a morphological transition from lamellar to short rods structures with reduced dimensions. The optimal eutectic Si modification is achieved with 0.06 wt.% La addition. The altered morphology and reduced size of the eutectic Si phase enhance the continuity of the α-Al matrix. This reduces the scattering of free electrons by eutectic Si, increases their mean free path, and ultimately improves the thermal conductivity of the alloy. With 0.06 wt.% La addition, the Al-7Si alloy achieved a peak thermal conductivity of 179.3 W·m−1·K−1, representing a 15.36% enhancement over the unmodified alloy. After 100 thermal cycles, the alloy maintained its phase transition temperature, but the modification effect of La diminished, as evidenced by increased formation of lamellar eutectic Si. Consequently, the latent heat of the Al-7Si-0.06 alloy decreased from 340.4 J/g to 328.6 J/g. Full article
Show Figures

Figure 1

15 pages, 436 KB  
Review
Research Progress on the Application of Plant Growth Regulators in the Rapid Propagation of Jujube by In Vitro Culture
by Bochao Yang, Zhi Luo, Xingyu Zhu, Yinzhong Ji, Quanhui Ma and Fenfen Yan
Plants 2025, 14(19), 3012; https://doi.org/10.3390/plants14193012 - 29 Sep 2025
Abstract
Jujube (Ziziphus jujuba Mill.) is an important economic fruit tree in China, and its in vitro culture technology is the key to achieving large-scale seedling cultivation. PGRs (Plant growth regulators) play a central regulatory role in all stages of jujube micropropagation, including [...] Read more.
Jujube (Ziziphus jujuba Mill.) is an important economic fruit tree in China, and its in vitro culture technology is the key to achieving large-scale seedling cultivation. PGRs (Plant growth regulators) play a central regulatory role in all stages of jujube micropropagation, including explant initiation, proliferation, and rooting. This article provides a comprehensive overview of recent advances in in vitro culture of jujube, with a focus on the recommended exogenous phytohormone ratios, their effects, and underlying regulatory mechanisms across distinct varieties during the key stages such as in vitro culture, shoot proliferation, and root formation. The primary culture of most jujube varieties usually employs the MS medium, and it is recommended that auxin and cytokinin be used in combination. During the initial cultivation stage, the use of NAA (1-naphthaleneacetic acid) or IBA (indole butyric acid) is recommended at concentrations ranging from 0.1 to 1.0 mg/L. At the same time, 6-BA (6-benzylaminopurine) is suggested, with a concentration range of 0.5 to 2.5 mg/L. In the subculture multiplication of most jujube varieties, MS medium is used, and auxin (such as NAA, IBA), and TDZ (thidiazuron) and cytokinin (e.g., 6-BA) are used in combination. The recommended concentration range for auxin remains between 0.1 and 1.0 mg/L, and for cytokinin 6-BA between 0.5 and 2.5 mg/L, while the recommended concentration of TDZ is suggested to be below 0.01 mg/L. Rooting induction for most jujube varieties has predominantly been achieved using 1/2 MS medium, with growth regulator concentrations typically ranging from 0.5 to 3.0 mg/L. Full article
(This article belongs to the Special Issue Advances in Jujube Research, Second Edition)
Show Figures

Figure 1

25 pages, 8087 KB  
Review
Biochar-Based Remediation of Heavy Metal-Contaminated Soils: Mechanisms, Synergies, and Sustainable Prospects
by Yuxin Wei, Jingjing Ma, Kuankuan Liu, Shuai Zhang and Junqi Wang
Nanomaterials 2025, 15(19), 1487; https://doi.org/10.3390/nano15191487 - 29 Sep 2025
Abstract
This study systematically explores the mechanisms and application potential of biochar in remediating heavy metal-contaminated soils. Particular emphasis is placed on the role of raw materials and pyrolysis conditions in modulating key physicochemical properties of biochar, including its aromatic structure, porosity, cation exchange [...] Read more.
This study systematically explores the mechanisms and application potential of biochar in remediating heavy metal-contaminated soils. Particular emphasis is placed on the role of raw materials and pyrolysis conditions in modulating key physicochemical properties of biochar, including its aromatic structure, porosity, cation exchange capacity, and ash content, which collectively enhance heavy metal immobilization. The direct remediation mechanisms are categorized into six pathways: physical adsorption, electrostatic interactions, precipitation, ion exchange, organic functional group complexation, and redox reactions, with particular emphasis on the reduction in toxic Cr6+ and the oxidation of mobile As3+. In addition to direct interactions, biochar indirectly facilitates remediation by enhancing soil carbon sequestration, improving soil physicochemical characteristics, stimulating microbial activity, and promoting plant growth, thereby generating synergistic effects. The study evaluates combined remediation strategies integrating biochar with phytoremediation and microbial remediation, highlighting their enhanced efficiency. Moreover, practical challenges related to the long-term stability, ecological risks, and economic feasibility in field applications are critically analyzed. By synthesizing recent theoretical advancements and practical findings, this research provides a scientific foundation for optimizing biochar-based soil remediation technologies. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Graphical abstract

21 pages, 538 KB  
Article
Finite-Time Synchronization and Mittag–Leffler Synchronization for Uncertain Fractional-Order Delayed Cellular Neural Networks with Fuzzy Operators via Nonlinear Adaptive Control
by Hongguang Fan, Kaibo Shi, Zizhao Guo, Anran Zhou and Jiayi Cai
Fractal Fract. 2025, 9(10), 634; https://doi.org/10.3390/fractalfract9100634 - 29 Sep 2025
Abstract
This paper investigates a class of uncertain fractional-order delayed cellular neural networks (UFODCNNs) with fuzzy operators and nonlinear activations. Both fuzzy AND and fuzzy OR are considered, which help to improve the robustness of the model when dealing with various uncertain problems. To [...] Read more.
This paper investigates a class of uncertain fractional-order delayed cellular neural networks (UFODCNNs) with fuzzy operators and nonlinear activations. Both fuzzy AND and fuzzy OR are considered, which help to improve the robustness of the model when dealing with various uncertain problems. To achieve the finite-time (FT) synchronization and Mittag–Leffler synchronization of the concerned neural networks (NNs), a nonlinear adaptive controller consisting of three information feedback modules is devised, and each submodule performs its function based on current or delayed historical information. Based on the fractional-order comparison theorem, the Lyapunov function, and the adaptive control scheme, new FT synchronization and Mittag–Leffler synchronization criteria for the UFODCNNs are derived. Unlike previous feedback controllers, the control strategy proposed in this article can adaptively adjust the strength of the information feedback, and partial parameters only need to satisfy inequality constraints within a local time interval, which shows our control mechanism has a significant advantage in conservatism. The experimental results show that our mean synchronization time and variance are 11.397% and 12.5% lower than the second-ranked controllers, respectively. Full article
Show Figures

Figure 1

23 pages, 1381 KB  
Article
Trends in Using Microalgae as a Green Energy Source: Conventional, Machine Learning, and Hybrid Modeling Methods
by Ángel Darío González-Delgado, Segundo Rojas-Flores and Anibal Alviz-Meza
Processes 2025, 13(10), 3134; https://doi.org/10.3390/pr13103134 (registering DOI) - 29 Sep 2025
Abstract
This study analyzes, quantifies, and maps, from a bibliometric perspective, scientific research on microalgae energy production. It includes traditional simulation, machine learning, and hybrid approaches, covering 500 original articles from 2005 to 2024 in Scopus. We used Biblioshiny 4.1.2 software in RStudio 4.3.0 [...] Read more.
This study analyzes, quantifies, and maps, from a bibliometric perspective, scientific research on microalgae energy production. It includes traditional simulation, machine learning, and hybrid approaches, covering 500 original articles from 2005 to 2024 in Scopus. We used Biblioshiny 4.1.2 software in RStudio 4.3.0 to categorize and evaluate the contributions of authors and journals. The studied field underwent an exponential growth in publications from 2004 to 2022, with an average annual increase of approximately 21%. Moreover, recent research focuses on photobioreactors, computational fluid dynamics, carbon dioxide capture, bio-oils, biodiesel, and hydrothermal liquefaction, increasingly integrating machine learning algorithms and hybrid methods. Since 2020, we have identified a clear trend toward combining modeling approaches to predict and improve energy efficiency, particularly for biodiesel, bio-derived hydrogen, and crude bio-oil produced via pyrolysis or hydrothermal liquefaction, which is often influenced by factors such as light, carbon dioxide, nutrients, and blending operations. Finally, recent advancements involve combining physical models with data to enable real-time optimization and control, supporting microalgae-based circular biorefining strategies. This review serves as a guide for future research in green energy materials and process modeling, inspiring colleagues to explore new ways for microalgae energy production and modeling. Full article
27 pages, 8382 KB  
Article
Optimization Design and Flight Validation of Pull-Up Control for Air-Deployed UAVs Based on Improved NSGA-II
by Heng Zhang, Wenyue Meng, Ziang Gao, Guanyu Liu and Jian Zhang
Drones 2025, 9(10), 679; https://doi.org/10.3390/drones9100679 (registering DOI) - 29 Sep 2025
Abstract
During the automatic leveling process of small low-cost unmanned aerial vehicles (UAVs) after airdrop, their state parameters and control surface efficiency undergo drastic changes. It is difficult to achieve good control effects using controllers with fixed parameters. To solve these problems, this study [...] Read more.
During the automatic leveling process of small low-cost unmanned aerial vehicles (UAVs) after airdrop, their state parameters and control surface efficiency undergo drastic changes. It is difficult to achieve good control effects using controllers with fixed parameters. To solve these problems, this study proposes a parameter adaptive PID controller based on indicated airspeed. When tuning the controller parameters, in order to ensure the successful pulling of the UAV and the safety of structure and flight, it is necessary to optimize the success rate of pulling up, normal overload, angle of attack (AOA), airspeed, and descent altitude simultaneously. These five indicators are of different importance to the UAV. To facilitate parameter tuning based on these differences, an improved second-generation non-dominated sorting genetic algorithm (NSGA-II) is proposed, which combines a comprehensive fitness mechanism based on target priority and segmented scoring and an adaptive genetic strategy. In this study, different priorities were set for all indicators, and segmented scores were given based on individual indicators to calculate the comprehensive fitness, which guided the evolutionary direction of the population. Then, while the genetic parameters were modified, elite individuals were retained to balance search ability and convergence. Finally, the effectiveness of this mechanism was confirmed through comparative simulation. The flight test results show significant differences from the simulation results of the controller designed in this study, but the basic trend remains consistent. The controller can effectively suppress the oscillations caused by the initial state. Full article
17 pages, 2010 KB  
Article
Spontaneous Seizure Outcomes in Mice Using an Improved Version of the Pilocarpine Model of Temporal Lobe Epilepsy
by Ronald P. Gaykema, Madison J. Failor, Aleksandra Maciejczuk, Magda Pikus, Mariia Oliinyk, Maggie B. Ellison, Amir A. Behrooz, Kiran Singh, John M. Williamson and Edward Perez-Reyes
Int. J. Mol. Sci. 2025, 26(19), 9540; https://doi.org/10.3390/ijms26199540 (registering DOI) - 29 Sep 2025
Abstract
Temporal lobe epilepsy (TLE) is a debilitating disorder that affects millions of people worldwide and is difficult to treat with medicines. There has been little progress in the development of novel therapies for these patients because of the lack of suitable animal models. [...] Read more.
Temporal lobe epilepsy (TLE) is a debilitating disorder that affects millions of people worldwide and is difficult to treat with medicines. There has been little progress in the development of novel therapies for these patients because of the lack of suitable animal models. Current rodent models of TLE use chemoconvulsants or electrical stimulation to induce status epilepticus, which evolves into chronic epilepsy with spontaneous recurring seizures. These models have face validity in human TLE as they share similarities with seizure onset in the hippocampus, EEG patterns, tonic–clonic convulsions behavior, and hippocampal sclerosis. Unfortunately, seizure frequencies are so variable that they hinder drug testing. The ideal model for screening epilepsy therapies would have spontaneous seizure frequencies that are greater than two per day, little-to-no seizure-free days, and would maintain these features for more than 4 weeks. This study describes a series of improvements to the mouse pilocarpine TLE model. First, a pharmacokinetic model was developed to guide pilocarpine dosing. Second, induction was combined with EEG monitoring, allowing for real-time monitoring of pilocarpine-induced EEG discharges and electrographic seizures that precede behavioral manifestations. Third, strains of mice were identified that withstand pilocarpine-induced status epilepticus and reliably develop spontaneous recurring seizures. The pilocarpine model was improved by lowering mortality and increasing the fraction of mice that developed spontaneous seizures and had seizure frequencies that are amenable to drug screening. Future studies are required to identify the ideal mouse strain for drug screening and validate the response to known anti-epileptic drugs. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Epilepsy—3rd Edition)
17 pages, 802 KB  
Article
Impact of Calcium Lactate Concentration and Holding Time on Caviar-like Chicken Broth Hydrogel Beads
by Betül Karslıoğlu, Eda Demirok Soncu, Tayyip Kızıldoğan, Dilan Gezer and Sıla Sudem Almaci
Molecules 2025, 30(19), 3926; https://doi.org/10.3390/molecules30193926 (registering DOI) - 29 Sep 2025
Abstract
This study is the first to encapsulate chicken broth into caviar-like hydrogel beads (CBHBs) using ionic gelation, aiming to explore their potential in molecular gastronomy and functional food design. The effects of calcium lactate concentration (1%, 2.5%, and 5%) and post-gelation holding time [...] Read more.
This study is the first to encapsulate chicken broth into caviar-like hydrogel beads (CBHBs) using ionic gelation, aiming to explore their potential in molecular gastronomy and functional food design. The effects of calcium lactate concentration (1%, 2.5%, and 5%) and post-gelation holding time (0, 30, and 60 min) on the physicochemical, morphological, mechanical, and sensory properties of chicken broth hydrogel beads were evaluated. The beads were produced by dropping a 1% sodium alginate–chicken broth mixture into calcium lactate solutions, followed by analysis of diameter, bulk density, pH, color, shape, texture, and consumer acceptance. Results revealed that higher calcium concentrations and extended holding times significantly decreased bead diameter and increased bulk density and hardness, indicating denser and more compact structures. Morphologically, increased calcium levels resulted in irregular, droplet-like shapes, with reduced sphericity. Instrumental color analysis showed higher a*, b*, and chroma values at higher calcium levels. Sensory evaluations demonstrated that samples with lower calcium concentrations and no post-gelation holding were significantly preferred by panelists in terms of softness and overall liking. These findings underscore the importance of optimizing calcium concentration and holding time in the design of alginate-based hydrogel beads and suggest that CBHBs have potential applications in molecular gastronomy and functional food product development. Full article
21 pages, 10052 KB  
Article
TGF-beta Increases Permeability of 70 kDa Molecular Tracer from the Heart to Cells of the Osteoarthritic Guinea Pig Knee Joint
by Lucy Ngo and Melissa L. Knothe Tate
Cells 2025, 14(19), 1524; https://doi.org/10.3390/cells14191524 (registering DOI) - 29 Sep 2025
Abstract
Osteoarthritis involves complex interactions between articular joint tissues and the immune system, which is implicated in molecular trafficking via barrier-function modulating cytokines. The current study aims to test effects of an acute spike in TNF-α or TGF-β on vascular barrier function at multiple [...] Read more.
Osteoarthritis involves complex interactions between articular joint tissues and the immune system, which is implicated in molecular trafficking via barrier-function modulating cytokines. The current study aims to test effects of an acute spike in TNF-α or TGF-β on vascular barrier function at multiple length scales, from the heart to tissue compartments of the knee, and cellular inhabitants of those respective compartments, in a spontaneous guinea pig model of osteoarthritis. First we quantified the intensity of a fluorescent-tagged 70 kDa tracer, similar in size to albumin, the most prevalent transporter protein in the blood, in tissue compartments of bone (periosteum, marrow space, compact bone, and epiphyseal bone) and cartilage (superficial cartilage, calcified cartilage, and the interface between, i.e., the epiphyseal line), as well as at sites of tendon attachment to bone (entheses). We then examined tracer presence and intensity in the respective pericellular and extracellular matrix zones of bone and cartilage. Acute exposure to TGF-β reduced barrier function (increased permeability) at nearest vascular interfaces in four of eight tissue compartments studied, compared to TNF-α where one of eight tissue compartments showed significant diminishment in barrier function. The increase in permeability associated with reduced barrier function was observed at both tissue compartment and cellular length scales. The observation of pericellular transport of the albumin-sized molecules to osteocytes contrasts with previous observations of barrier function in healthy, untreated animals and is indicative of increased molecular transport in pericellular regions of musculoskeletal tissues in cytokine-treated animals. Understanding age- and disease-related changes in molecular transport within musculoskeletal structures, such as the knee joint, is crucial for elucidating the etiology and pathogenesis of osteoarthritis. Full article
Show Figures

Figure 1

14 pages, 2355 KB  
Article
Gradient-Equivalent Medium Enables Acoustic Rainbow Capture and Acoustic Enhancement
by Yulin Ren, Guodong Hao, Xinsa Zhao and Jianning Han
Crystals 2025, 15(10), 850; https://doi.org/10.3390/cryst15100850 (registering DOI) - 29 Sep 2025
Abstract
The detection and extraction of weak signals are crucial in various engineering and scientific fields, yet current acoustic sensing technologies are restricted by fundamental pressure detection methods. This paper proposes gradient-equivalent medium-coupled metamaterials (GEMCMs) utilizing strong wave compression and an equivalent medium mechanism [...] Read more.
The detection and extraction of weak signals are crucial in various engineering and scientific fields, yet current acoustic sensing technologies are restricted by fundamental pressure detection methods. This paper proposes gradient-equivalent medium-coupled metamaterials (GEMCMs) utilizing strong wave compression and an equivalent medium mechanism to capture weak signals in complex environments and enhance target acoustic signals. Overcoming shape and impedance mismatch limitations of traditional gradient structures, GEMCMs significantly improve control performance. Experimental and numerical simulations indicate that GEMCMs can effectively enhance specific frequency components in acoustic signals, outperforming traditional gradient structures. This enhancement of specific frequency components relies on the resonance effect of the unit cell structure. By introducing acoustic resonance within a spatially wound acoustic channel, a significant amplification of weak acoustic signals is achieved. This provides a new research direction for acoustic wave manipulation and enhancement, and holds significant importance in fields such as mechanical fault diagnosis and medical diagnostics. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
27 pages, 3352 KB  
Article
ECO-HYBRID: Sustainable Waste Classification Using Transfer Learning with Hybrid and Enhanced CNN Models
by Sharanya Shetty, Saanvi Kallianpur, Roshan Fernandes, Anisha P. Rodrigues and Vijaya Padmanabha
Sustainability 2025, 17(19), 8761; https://doi.org/10.3390/su17198761 (registering DOI) - 29 Sep 2025
Abstract
Effective waste management is important for reducing environmental harm, improving recycling operations, and building urban sustainability. However, accurate waste classification remains a critical challenge, as many deep learning models struggle with diverse waste types. In this study, classification accuracy is enhanced using transfer [...] Read more.
Effective waste management is important for reducing environmental harm, improving recycling operations, and building urban sustainability. However, accurate waste classification remains a critical challenge, as many deep learning models struggle with diverse waste types. In this study, classification accuracy is enhanced using transfer learning, ensemble techniques, and custom architectures. Eleven pre-trained convolutional neural networks, including ResNet-50, EfficientNet variants, and DenseNet-201, were fine-tuned to extract meaningful patterns from waste images. To further improve model performance, ensemble strategies such as weighted averaging, soft voting, and stacking were implemented, resulting in a hybrid model combining ResNet-50, EfficientNetV2-M, and DenseNet-201, which outperformed individual models. In the proposed system, two specialized architectures were developed: EcoMobileNet, an optimized MobileNetV3 Large-based model incorporating Squeeze-and-Excitation blocks for efficient mobile deployment, and EcoDenseNet, a DenseNet-201 variant enhanced with Mish activation for improved feature extraction. The evaluation was conducted on a dataset comprising 4691 images across 10 waste categories, sourced from publicly available repositories. The implementation of EcoMobileNet achieved a test accuracy of 98.08%, while EcoDenseNet reached an accuracy of 97.86%. The hybrid model also attained 98.08% accuracy. Furthermore, the ensemble stacking approach yielded the highest test accuracy of 98.29%, demonstrating its effectiveness in classifying heterogeneous waste types. By leveraging deep learning, the proposed system contributes to the development of scalable, sustainable, and automated waste-sorting solutions, thereby optimizing recycling processes and minimizing environmental impact. Full article
(This article belongs to the Special Issue Smart Cities with Innovative Solutions in Sustainable Urban Future)
18 pages, 594 KB  
Article
Active Breaks in Primary and Secondary School Children and Adolescents: The Point of View of Teachers
by Michela Persiani, Andrea Ceciliani, Gabriele Russo, Laura Dallolio, Giulio Senesi, Laura Bragonzoni, Marco Montalti, Rossella Sacchetti and Alice Masini
Healthcare 2025, 13(19), 2482; https://doi.org/10.3390/healthcare13192482 (registering DOI) - 29 Sep 2025
Abstract
Background/Objectives: Engaging in regular physical activity (PA) and reducing sedentary behaviors benefits youth health, especially for those with disabilities. However, two-thirds of European children remain insufficiently active. In schools, Active Breaks, brief 5–15 min PA sessions led by teachers during or between lessons, [...] Read more.
Background/Objectives: Engaging in regular physical activity (PA) and reducing sedentary behaviors benefits youth health, especially for those with disabilities. However, two-thirds of European children remain insufficiently active. In schools, Active Breaks, brief 5–15 min PA sessions led by teachers during or between lessons, offer a feasible strategy to increase movement. This study investigated teachers’ perceptions of ABs by comparing implementers and non-implementers, examining facilitators and barriers to implementation, and exploring their potential to support the inclusion of students with disabilities. Methods: An observational cross-sectional study was conducted among primary and secondary school teachers in the Emilia-Romagna region (Italy), all of whom had completed a 6 h training course on the implementation of ABs. Data were collected using an ad hoc questionnaire consisting of four sections: sociodemographic data, an adapted Attitudes Toward Physical Activity scale, ABs’ practicality/sustainability, and inclusiveness. Results: Overall, 65% of teachers reported implementing ABs, with higher adoption in primary (69.5%) than secondary schools (58.6%). Implementers reported more positive perceptions and attitudes across individual, classroom, and school-support domains (p < 0.05). In addition, primary teachers consistently scored higher than their secondary counterparts, particularly in terms of class characteristics and benefit perceptions (p < 0.001). Most teachers, especially in primary schools (84.2%), reported no difficulties, although one-third of secondary teachers reported challenges. Exploratory factor analysis on barrier items identified two dimensions (practical/logistical feasibility; institutional/procedural difficulties), but internal consistency was low. Teachers mainly reported using motor activities, with sessions lasting 5–10 min, typically scheduled mid-morning. Inclusion analysis revealed that 60% of teachers had students with disabilities in their classes. While most students participated without adjustments, 25% required occasional or consistent modifications. Conclusions: ABs are a practical and inclusive strategy to reduce SBs in schools. However, not all teachers are currently able to implement them, due to varying contextual constraints, levels of support, and perceived barriers. Primary school settings appear more conducive to their integration, whereas secondary schools may require more tailored support. Fostering teacher confidence, peer collaboration, and inclusive planning can enhance both the implementation and long-term sustainability of educational initiatives. Full article
(This article belongs to the Section Public Health and Preventive Medicine)
29 pages, 37875 KB  
Article
Hardware-in-the-Loop Testing of Spacecraft Relative Dynamics and Tethered Satellite System on a Tip-Tilt Flat-Table Facility
by Giuseppe Governale, Armando Pastore, Matteo Clavolini, Mattia Li Vigni, Christian Bellinazzi, Catello Leonardo Matonti, Stefano Aliberti, Riccardo Apa and Marcello Romano
Aerospace 2025, 12(10), 884; https://doi.org/10.3390/aerospace12100884 (registering DOI) - 29 Sep 2025
Abstract
This article presents a compact tip-tilting platform designed for hardware-in-the-loop emulation of spacecraft relative dynamics and a physical setup for testing tethered systems. The architecture consists of a granite slab supported by a universal joint and two linear actuators to control its orientation. [...] Read more.
This article presents a compact tip-tilting platform designed for hardware-in-the-loop emulation of spacecraft relative dynamics and a physical setup for testing tethered systems. The architecture consists of a granite slab supported by a universal joint and two linear actuators to control its orientation. This configuration allows a Floating Spacecraft Simulator to move on the surface in a quasi-frictionless environment under the effect of gravitational acceleration. The architecture includes a dedicated setup to emulate tethered satellite dynamics, providing continuous feedback on the tension along the tether through a mono-axial load cell. By adopting the Buckingham “π” theorem, the dynamic similarity is introduced for the ground-based experiment to reproduce the orbital dynamics. Proof-of-concept results demonstrate the testbed’s capability to accurately reproduce the Hill–Clohessy–Wiltshire equations. Moreover, the results of the deployed tethered system dynamics are presented. This paper also details the system architecture of the testbed and the methodologies employed during the experimental campaign. Full article
28 pages, 2161 KB  
Article
TimeWeaver: Orchestrating Narrative Order via Temporal Mixture-of-Experts Integrated Event–Order Bidirectional Pretraining and Multi-Granular Reward Reinforcement Learning
by Zhicong Lu, Wei Jia, Changyuan Tian, Li Jin, Yang Bai and Guangluan Xu
Electronics 2025, 14(19), 3880; https://doi.org/10.3390/electronics14193880 (registering DOI) - 29 Sep 2025
Abstract
Human storytellers often orchestrate diverse narrative orders (chronological, flashback) for crafting compelling stories. To equip artificial intelligence systems with such capability, existing methods rely on implicitly learning narrative sequential knowledge, or explicitly modeling narrative order through pairwise event temporal order (e.g., take medicine [...] Read more.
Human storytellers often orchestrate diverse narrative orders (chronological, flashback) for crafting compelling stories. To equip artificial intelligence systems with such capability, existing methods rely on implicitly learning narrative sequential knowledge, or explicitly modeling narrative order through pairwise event temporal order (e.g., take medicine <after> get ill). However, both suffer from imbalanced narrative order distribution bias and inadequate event temporal understanding, hindering generating high-quality events in the story that balance the logic and narrative order. In this paper, we propose a narrative-order-aware framework, TimeWeaver, which presents an event–order bidirectional pretrained model integrated with temporal mixture-of-experts to orchestrate diverse narrative orders. Specifically, to mitigate imbalanced distribution bias, the temporal mixture-of-experts is devised to route events with various narrative orders to corresponding experts, grasping distinct orders of narrative generation. Then, to enhance event temporal understanding, an event sequence narrative-order-aware model is pretrained with bidirectional reasoning between event and order, encoding the event temporal orders and event correlations. At the fine-tuning stage, reinforcement learning with multi-granular optimal transport reward is designed to boost the quality of generated events. Extensive experimental results on automatic and manual evaluations demonstrate the superiority of our framework in orchestrating diverse narrative orders during story generation. Full article
(This article belongs to the Special Issue Advances in Generative AI and Computational Linguistics)
14 pages, 8646 KB  
Article
UCHL1 Promotes Gastric Cancer Progression by Regulating CIP2A Degradation
by Ga-ye Lee, In-ho Jeong, Byung Sik Kim, Hee-Sung Kim and Peter Chang-Whan Lee
Pharmaceuticals 2025, 18(10), 1468; https://doi.org/10.3390/ph18101468 (registering DOI) - 29 Sep 2025
Abstract
Background: Gastric cancer is one of the most prevalent malignancies worldwide and the fourth leading cause of cancer-related mortality. Protein ubiquitination and deubiquitination regulate protein stability as post-translational modifications, playing essential roles in tumorigenesis. Although UCHL1, a deubiquitinating enzyme (DUB), is implicated in [...] Read more.
Background: Gastric cancer is one of the most prevalent malignancies worldwide and the fourth leading cause of cancer-related mortality. Protein ubiquitination and deubiquitination regulate protein stability as post-translational modifications, playing essential roles in tumorigenesis. Although UCHL1, a deubiquitinating enzyme (DUB), is implicated in the progression of several cancer types, its role in gastric cancer remains unclear. Methods: Kaplan–Meier analysis and gastric cancer patient tissues were used to assess UCHL1 expression. Cell viability assay, colony-forming assay, and transwell migration and invasion assay were performed to evaluate cell growth. Immunoprecipitation and Western blotting analyzed protein expression and interactions. Results: This study demonstrates that UCHL1 expression is markedly upregulated in gastric cancer tissues compared to normal tissues. Elevated UCHL1 expression is associated with poor patient prognosis, supporting its potential role as an oncogenic factor. Reduced UCHL1 expression suppressed cell proliferation, migration, and invasion in gastric cancer cell lines. As the underlying mechanism, we identified CIP2A, a known oncogenic regulator of c-Myc, as a downstream effector of UCHL1. UCHL1 knockdown reduced CIP2A protein levels via deubiquitination, attenuated c-Myc signaling, and decreased expression of key cell cycle regulators. Furthermore, UCHL1 knockdown significantly downregulated cyclin D1 expression, arresting the cell cycle in the G1 phase and inhibiting cell proliferation. Conclusions: Collectively, our findings reveal that UCHL1 promotes gastric cancer progression, highlighting it as a potential therapeutic target. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

74 pages, 72294 KB  
Article
The Role of Collecting Data on Various Site Conditions Through Satellite Remote Sensing Technology and Field Surveys in Predicting the Landslide Travel Distance: A Case Study of the 2022 Petrópolis Disaster in Brazil
by Thiago Dutra dos Santos and Taro Uchida
Remote Sens. 2025, 17(19), 3337; https://doi.org/10.3390/rs17193337 (registering DOI) - 29 Sep 2025
Abstract
Landslide runout distance is governed not only by collapsed magnitude but also by site-specific geoenvironmental conditions. While remote sensing techniques has advanced landslide susceptibility mapping, its application to runout modeling remains limited. This study examined the role of collecting data on various site [...] Read more.
Landslide runout distance is governed not only by collapsed magnitude but also by site-specific geoenvironmental conditions. While remote sensing techniques has advanced landslide susceptibility mapping, its application to runout modeling remains limited. This study examined the role of collecting data on various site conditions through remote sensing and field surveys datasets in predicting the landslide travel distance from the 2022 disaster in Petrópolis, Rio de Janeiro. A total of 218 multivariate linear regression models were developed using morphometric, remote sensing, and field survey variables collected across collapse, transport, and deposition zones. Results show that predictive accuracy was limited when based solely on landslide scale (R2 = 0.06–0.10) but improved substantially with the inclusion of site condition data across collapse, transport, and deposition zones (R2 = 0.49–0.51). Additionally, model performance was strongly influenced by runout path typology, with channelized flows producing the most stable and accurate predictions (R2 = 0.73–0.90), while obstructed and open-slope paths performed worse (R2 = 0.39–0.61). These findings demonstrate that empirical models integrating multizonal site-condition data and runout path typology offer a scalable, reproducible framework for landslide hazard mapping in data-scarce, complex mountainous urban environments. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
18 pages, 8441 KB  
Article
Effects of the Novel Triazole Fungicide Ipfentrifluconazole on Different Endpoints in Zebrafish Larvae
by Mingfei Xu, Yilin Huang, Mingrong Qian, Yuanxiang Jin and Hu Zhang
Toxics 2025, 13(10), 830; https://doi.org/10.3390/toxics13100830 (registering DOI) - 29 Sep 2025
Abstract
The potential hazards of triazole fungicides to non-target organisms necessitate environmental risk assessment. This study, therefore, focused on characterizing the differential toxicity of the enantiomers of Ipfentrifluconazole (IFZ), a new triazole fungicide, in zebrafish larvae using a multi-endpoint approach. Acute toxicity tests determined [...] Read more.
The potential hazards of triazole fungicides to non-target organisms necessitate environmental risk assessment. This study, therefore, focused on characterizing the differential toxicity of the enantiomers of Ipfentrifluconazole (IFZ), a new triazole fungicide, in zebrafish larvae using a multi-endpoint approach. Acute toxicity tests determined the LC50 values of 1.709 mg/L for rac-IFZ, 1.531 mg/L for (+)-IFZ, and 1.809 mg/L for (−)-IFZ, indicating a higher toxicity of the (+)-enantiomer. To avoid overt mortality while revealing organ-level effects, we chose a concentration of approximately 20% of the LC50 of (+)-IFZ, which is 340 μg/L, as the exposure concentration. Exposure to IFZ induced developmental defects, including swim bladder malformation, cardiac blood pooling, and metabolic disturbances during the early developmental stage of zebrafish. Additionally, cardiac and hepatic development and function were disrupted in zebrafish larvae following IFZ exposure. Biochemical and transcriptomic analyses revealed distinct toxic mechanisms: (+)-IFZ primarily disrupted lipid metabolism through alterations in PPAR signaling pathway and fatty acid degradation, while (−)-IFZ significantly impaired cardiac function by affecting adrenergic signaling in cardiomyocytes and cardiac muscle contraction. Rac-IFZ mainly influenced drug metabolism, particularly cytochrome P450-related pathways. These findings demonstrated the toxic effects of IFZ, emphasizing the need for evaluating environmental and health risks of chiral pesticides. The study provides valuable insights into the molecular mechanisms underlying IFZ toxicity. Full article
(This article belongs to the Section Ecotoxicology)
21 pages, 298 KB  
Article
Taxation of Farms in the European Union and Its Sensitivity to Economic Indicators: Evidence from Poland (2004–2022)
by Anna Jęczmyk and Roma Ryś-Jurek
Sustainability 2025, 17(19), 8747; https://doi.org/10.3390/su17198747 (registering DOI) - 29 Sep 2025
Abstract
The aim of this study is to present the taxation of the Polish farm sector in the years 2004–2022 in comparison with other EU countries. Three indicators were applied to describe the phenomenon: the value of taxes per farm, the share of taxes [...] Read more.
The aim of this study is to present the taxation of the Polish farm sector in the years 2004–2022 in comparison with other EU countries. Three indicators were applied to describe the phenomenon: the value of taxes per farm, the share of taxes in family farm net income, and the value of taxes per hectare of agricultural utilized area. The analysis is based on data from the FADN database. Results for Poland were contrasted with those of other EU Member States. In addition, the sensitivity of the Polish farm tax burden to twelve basic production, economic, and financial categories was examined using the ordinary least squares method with a constant term. The findings were compared with EU averages, providing a descriptive overview of how tax burdens interact with farm performance and sustainability conditions. Full article
14 pages, 731 KB  
Article
In Vivo Characterization and Tissue Tropism of a Wild-Type Yellow Fever Virus Isolate from the 2017–2018 Brazilian Outbreak in C57BL/6 IFNAR1⁻/⁻ Mice
by Ana Luiza Campos Cruz, Natália Lima Pessoa, Ester Maria Paiva Silva, Sabrynna Brito Oliveira, Jéssica Pauline Coelho Souza, Samantha Stephany Fiuza Meneses Viegas, Anna Catarina Dias Soares Guimarães, Pedro Augusto Alves, Cintia Lopes de Brito Magalhães, Thomas P. Monath, Olindo Assis Martins-Filho, Andréa Teixeira-Carvalho, A. Desiree LaBeaud, Nidia Esther Colquehuanca Arias and Betânia Paiva Drumond
Viruses 2025, 17(10), 1325; https://doi.org/10.3390/v17101325 (registering DOI) - 29 Sep 2025
Abstract
Yellow fever remains a significant public health concern in endemic regions of South America and Africa, where periodic outbreaks continue to challenge surveillance and control efforts. Despite the widespread use of vaccines and historical YFV strains in experimental settings, there is limited information [...] Read more.
Yellow fever remains a significant public health concern in endemic regions of South America and Africa, where periodic outbreaks continue to challenge surveillance and control efforts. Despite the widespread use of vaccines and historical YFV strains in experimental settings, there is limited information on the pathogenic behavior of contemporary wild-type isolates in animal models. To address this gap, this study aimed to develop and characterize a murine model infected with a wild-type YFV strain isolated in 2018, from Brazil’s largest sylvatic outbreak in decades. In this study, four-week-old male and female C57BL/6 IFNAR1−/− mice were subcutaneously infected with WT YFV. Mice exhibited a nearly 50% survival rate and developed several clinical signs. Viral loads were assessed in serum and some tissues, collected either upon euthanasia of moribund animals or at the end point. YFV RNA was detected in all sampled tissues and serum. Infectious viral particles were identified in the brains of both sexes and in the testis. No statistically significant differences were observed between males and females in survival, clinical signs, or viral loads. Altogether, this study provides a robust and reproducible murine model for wild-type YFV infection, offering a valuable platform for investigating viral pathogenesis, host responses, and potential therapeutic interventions. Full article
(This article belongs to the Special Issue Advances in Alphavirus and Flavivirus Research, 3rd Edition)
15 pages, 3401 KB  
Article
On the Quasi-Steady Vorticity Balance in the Mature Stage of Hurricane Irma (2017)
by Jasper de Jong, Aarnout J. van Delden and Michiel L. J. Baatsen
Atmosphere 2025, 16(10), 1146; https://doi.org/10.3390/atmos16101146 (registering DOI) - 29 Sep 2025
Abstract
Vorticity budgets in traditional height or pressure coordinates are commonly examined to help explain how tropical cyclones evolve over time. One disadvantage of using these coordinates is that the vorticity flux due to diabatic heating cannot be easily assessed. Isentropic coordinates naturally lend [...] Read more.
Vorticity budgets in traditional height or pressure coordinates are commonly examined to help explain how tropical cyclones evolve over time. One disadvantage of using these coordinates is that the vorticity flux due to diabatic heating cannot be easily assessed. Isentropic coordinates naturally lend themselves to determine the effect of diabatic heating—the vorticity budget simplifies, and a clear-cut distinction can be made between adiabatic (advective) and diabatic vorticity fluxes. Above the boundary layer, advective vorticity fluxes alone would lead to a quick spin-down of the mature tropical cyclone. Do diabatic processes prevent this from happening? If so, how? This paper investigates the vorticity budget of Hurricane Irma (2017) in its mature quasi-steady phase. We analyse a simulation of Irma with an operational high-resolution weather forecasting model. During Irma’s remarkably long period (37 h) of steady peak intensity, the radially outward advective isentropic vorticity flux in the eyewall above the boundary layer is balanced by a radially inward diabatic isentropic vorticity flux. Frictional effects and asymmetrical flow properties are of little importance to the maintenance of cyclone intensity in its mature phase, provided enough latent heat is released in the eyewall to maintain an inward vorticity flux that balances the advective flux. Full article
(This article belongs to the Section Meteorology)
14 pages, 637 KB  
Article
Active Breaks Enhance Complex Processing Speed, Math Performance, and Physical Activity in Primary School Children: A Randomized Controlled Trial
by Giovanni Fiorilli, Gloria Di Claudio, Domenico Di Fonza, Francesca Baralla, Giovanna Aquino, Giulia Di Martino, Carlo Della Valle, Marco Centorbi, Giuseppe Calcagno, Andrea Buonsenso and Alessandra di Cagno
J. Funct. Morphol. Kinesiol. 2025, 10(4), 376; https://doi.org/10.3390/jfmk10040376 (registering DOI) - 29 Sep 2025
Abstract
Objectives: This study aimed to evaluate the effects of a 12-week Active Breaks (ABs) program on physical, cognitive, and academic outcomes in primary school children. Methods: Eighty primary school students (age: 7.52 ± 0.50) (BMI: 18.35 ± 3.07) were recruited and [...] Read more.
Objectives: This study aimed to evaluate the effects of a 12-week Active Breaks (ABs) program on physical, cognitive, and academic outcomes in primary school children. Methods: Eighty primary school students (age: 7.52 ± 0.50) (BMI: 18.35 ± 3.07) were recruited and randomly assigned to three experimental groups—involving creativity-based (CRE) (age: 7.97 ± 0.18 years) (BMI: 20.01 ± 3.59), fitness-based (FIT) (age: 7.93 ± 0.26 years) (BMI: 16.74 ± 1.76), and combined (COM) (age: 7.97 ± 0.18 years) (BMI: 19.38 ± 4.24) ABs—and a control group (CON) (age: 7.42 ± 0.49 years) (BMI: 18.31 ± 2.64). The intervention consisted of two daily sessions (10 min each) three times per week over a 12-week period. Numerical skills, calculation abilities, and arithmetic problem-solving performance were evaluated using the “Test for the Assessment of Calculation and Problem-Solving Skills” (AC-MT 6-11). Attention and concentration performance were assessed using the Reynolds Interference Task (RIT). Motor skill performance was assessed using the MOTORFIT tests. Results: The FIT and CRE groups showed higher improvement in physical performances (p < 0.05). Regarding cognitive outcomes, the COM group outperformed the CON group in the Total Correct Index (p = 0.032). Regarding mathematical performance, all EGs achieved higher results than the CON group (p < 0.042), with the COM group achieving the highest scores in operations, problem-solving, and total scores (p < 0.032). Conclusions: Incorporating structured physical activity through ABs during curricular hours is an effective strategy to enhance physical, cognitive, and academic performance in primary school children. A combined approach appears to be especially beneficial, supporting both physical and cognitive development simultaneously. Full article
(This article belongs to the Special Issue Sports Medicine and Public Health)
17 pages, 1111 KB  
Article
Can Heat Waves Fully Capture Outdoor Human Thermal Stress? A Pilot Investigation in a Mediterranean City
by Serena Falasca, Ferdinando Salata, Annalisa Di Bernardino, Anna Maria Iannarelli and Anna Maria Siani
Atmosphere 2025, 16(10), 1145; https://doi.org/10.3390/atmos16101145 (registering DOI) - 29 Sep 2025
Abstract
In addition to air temperature and personal factors, other weather quantities govern the outdoor human thermal perception. This study provides a new targeted approach for the evaluation of extreme events based on a specific multivariable bioclimate index. Heat waves (HWs) and outdoor human [...] Read more.
In addition to air temperature and personal factors, other weather quantities govern the outdoor human thermal perception. This study provides a new targeted approach for the evaluation of extreme events based on a specific multivariable bioclimate index. Heat waves (HWs) and outdoor human thermal stress (OHTS) events that occurred in downtown Rome (Italy) over the years 2018–2023 are identified, characterized, and compared through appropriate indices based on the air temperature for HWs and the Mediterranean Outdoor Comfort Index (MOCI) for OHTS events. The overlap between the two types of events is evaluated for each year through the hit (HR) and false alarm rates. The outcomes reveal severe traits for HWs and OHTS events and higher values of HR (minimum of 66%) with OHTS as a predictor of extreme conditions. This pilot investigation confirms that the use of air temperature threshold underestimates human physiological stress, revealing the importance of including multiple parameters, such as weather variables (temperature, wind speed, humidity, and solar radiation) and personal factors, in the assessment of hazards for the population living in a specific geographical region. This type of approach reveals increasingly critical facets and can provide key strategies to establish safe outdoor conditions for occupational and leisure activities. Full article
(This article belongs to the Section Biometeorology and Bioclimatology)
21 pages, 1755 KB  
Article
Field Performance of Novel Citrus Rootstocks Grafted with ‘Valencia’ Orange and Their Response to Systemic Delivery of Oxytetracycline
by Caroline Tardivo, Gabriel Pugina, Kim D. Bowman and Ute Albrecht
Plants 2025, 14(19), 3020; https://doi.org/10.3390/plants14193020 (registering DOI) - 29 Sep 2025
Abstract
The global citrus industry faces unprecedented challenges due to Huanglongbing (HLB), which is associated with the bacterial pathogen Candidatus Liberibacter asiaticus (CLas). This study evaluates the field performance of 11 rootstocks, grafted with ‘Valencia’ orange (Citrus sinensis), under Florida’s [...] Read more.
The global citrus industry faces unprecedented challenges due to Huanglongbing (HLB), which is associated with the bacterial pathogen Candidatus Liberibacter asiaticus (CLas). This study evaluates the field performance of 11 rootstocks, grafted with ‘Valencia’ orange (Citrus sinensis), under Florida’s HLB-endemic production conditions, while also examining the impact of systemic applications of oxytetracycline (OTC) via trunk injection. Mature trees received annual OTC injections and were assessed over two production seasons. In year 1, OTC-treated trees exhibited significant improvements regardless of the rootstock, including a 36% increase in yield, an 11% increase in juice TSS, and reduced leaf bacterial titers. During year 2, the positive effects of OTC were sustained, or even enhanced. CLas titers were reduced in both leaves and roots; yield increased by 70%; and fruit weight, juice color, and TSS also improved significantly. Moreover, OTC-injected trees exhibited a larger percentage of finer roots compared to non-injected trees. US-1688 and US-1672, both hybrids of C. maxima ‘Hirado’ and C. reticulata ‘Cleopatra’, emerged as the most productive rootstocks. These results demonstrate the importance of rootstock selection for sustainable citrus cultivation while highlighting the benefits of integrating the systemic delivery of OTC to manage HLB and maximize the resilience of citrus. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
22 pages, 4603 KB  
Article
Integrated Metabolomic and Transcriptomic Analyses of the Flavonoid Biosynthetic Pathway in Relation to Color Mutation in Roses
by Yun Xuan, Jie Ren, Zhu Chen and Dan Shi
Biology 2025, 14(10), 1337; https://doi.org/10.3390/biology14101337 (registering DOI) - 29 Sep 2025
Abstract
The color of flowers constitutes one of the most significant ornamental characteristics in roses. Red pigmentation in rose flowers is generally controlled by the biosynthetic pathway of anthocyanins. In this study, the red petals from the rose cultivar ‘Silk Road’ (SR) and the [...] Read more.
The color of flowers constitutes one of the most significant ornamental characteristics in roses. Red pigmentation in rose flowers is generally controlled by the biosynthetic pathway of anthocyanins. In this study, the red petals from the rose cultivar ‘Silk Road’ (SR) and the white petals from its color mutant ‘Arctic Road’ (AR) were investigated. Transcriptomic and metabolomic analyses were utilized to identify the crucial genes and metabolites associated with the biosynthesis of flavonoids. A total of 479 flavonoid- related metabolites and 39,201 genes were detected in the rose petals. Comparative analyses revealed significant differences in 277 metabolites and 2556 genes between the blooming flowers of AR and SR. The contents of 11 anthocyanins, 11 proanthocyanidins, as well as the expression levels of CHS, ANS, 3GT, COMT, and CCoAOMT differ significantly between the two cultivars, which may contribute to the formation of white petals in AR. Additionally, 5 GSTs, 4 ABCCs, and 8 MATEs were found to be downregulated in AR, potentially resulting in reduced sequestration of anthocyanins in petal vacuoles. Through comprehensive data analyses, the correlations between genes and metabolites associated with anthocyanin variation in rose petals were identified. The MYB gene (Chr1g0360311) may serve as a key regulator in anthocyanin biosynthesis. This study offers new perspectives on the specific genes and metabolites regulating petal pigmentation, as well as the molecular mechanisms underlying flavonoid synthesis in roses. The candidate key genes associated with anthocyanin biosynthesis and sequestration could serve as important genetic resources for developing ornamental plant varieties with specific pigmentation traits. Full article
(This article belongs to the Special Issue Molecular Biology of Plants)
Show Figures

Figure 1

24 pages, 7021 KB  
Article
Goblet Cells and Mucus Composition in Jejunum and Ileum Containing Peyer’s Patches and in Colon: A Study in Pigs
by Vladimir Ginoski, José Luis Cortés Sánchez, Stefan Kahlert, Johannes Schulze Holthausen, Łukasz Grześkowiak, Jürgen Zentek and Hermann-Josef Rothkötter
Animals 2025, 15(19), 2852; https://doi.org/10.3390/ani15192852 (registering DOI) - 29 Sep 2025
Abstract
The intestinal mucus layer is a dynamic protective barrier that maintains gut homeostasis, supports immune defense, and regulates host–microbiota interactions. Rodent models have yielded valuable insights, but their intestinal structure and physiology differ from those of humans and pigs. By contrast, the omnivorous [...] Read more.
The intestinal mucus layer is a dynamic protective barrier that maintains gut homeostasis, supports immune defense, and regulates host–microbiota interactions. Rodent models have yielded valuable insights, but their intestinal structure and physiology differ from those of humans and pigs. By contrast, the omnivorous pig shares closer anatomical and immunological features with humans, making it a relevant large-animal model in translational studies. In this study, we established a histological workflow for porcine intestine by combining Carnoy’s fixation with Alcian Blue–Periodic Acid–Schiff and Mucicarmine staining. This enabled accurate visualization and quantification of goblet-cell density and mucus thickness across intestinal segments, with a particular focus on Peyer’s patches—key sites of immune surveillance. Both stains produced consistent results. We observed a clear proximal-to-distal gradient, from jejunum to colon, in mucus thickness: the colon displayed the thickest layer (~100 μm), whereas the follicle-associated epithelium over Peyer’s patches in the jejunum and ileum showed a markedly thinner layer (<12 μm) and fewer goblet cells. Immunofluorescence further revealed strong cytokeratin-18 expression in goblet cells, delineating their morphology and polarity. These findings demonstrate region-specific differences in mucus architecture and goblet-cell distribution that likely reflect specialized immune functions, advancing our understanding of the intestinal barrier and informing future strategies to support gut health and immunity. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

27 pages, 2951 KB  
Article
Evaluating UHI Mitigation and Outdoor Comfort in a Heritage Context: A Microclimate Simulation Study of Florence’s Historic Center
by Cecilia Ciacci, Neri Banti, Vincenzo Di Naso and Frida Bazzocchi
Sustainability 2025, 17(19), 8760; https://doi.org/10.3390/su17198760 (registering DOI) - 29 Sep 2025
Abstract
This paper evaluates Urban Heat Island (UHI) mitigation strategies in Florence’s historical centre, characterized by relevant cultural heritage value and significant tourist fluxes but increasingly susceptible to heatwaves. The research work focused on the evaluation of both current microclimate conditions and mitigation solutions [...] Read more.
This paper evaluates Urban Heat Island (UHI) mitigation strategies in Florence’s historical centre, characterized by relevant cultural heritage value and significant tourist fluxes but increasingly susceptible to heatwaves. The research work focused on the evaluation of both current microclimate conditions and mitigation solutions for UHI-related issues, using ENVI-met microclimate modelling software as a simulation tool. Different models, featuring a 2 m grid resolution and detailed material properties, were produced to assess outdoor air temperature (Ta), mean radiant temperature (MRT), and Universal Thermal Full article

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop