Celebrating Peer
Review Week
23–27 September Find out more
 
22 pages, 3401 KiB  
Article
Trajectory Planning of a Mother Ship Considering Seakeeping Indices to Enhance Launch and Recovery Operations of Autonomous Drones
by Salvatore Rosario Bassolillo, Egidio D’Amato, Salvatore Iacono, Silvia Pennino and Antonio Scamardella
Oceans 2024, 5(3), 720-741; https://doi.org/10.3390/oceans5030041 (registering DOI) - 23 Sep 2024
Abstract
This research focuses on integrating seakeeping indices into the trajectory planning of a mother ship in order to minimize risks during UAV (unmanned aerial vehicle) takeoff and landing in challenging sea conditions. By considering vessel dynamics and environmental factors, the proposed trajectory planning [...] Read more.
This research focuses on integrating seakeeping indices into the trajectory planning of a mother ship in order to minimize risks during UAV (unmanned aerial vehicle) takeoff and landing in challenging sea conditions. By considering vessel dynamics and environmental factors, the proposed trajectory planning algorithm computes optimal paths that prioritize the stability and safety of the ship, mitigating the impact of adverse weather on UAV operations. Specifically, the new adaptive weather routing model presented is based on a genetic algorithm. The model uses the previously evaluated response amplitude operators (RAOs) for the reference ship at different velocities and encounter angles, along with weather forecast data provided by the global wave model (GWAM). Preliminary evaluations confirm the effectiveness of the presented model in significantly improving the reliability of autonomous UAV operations from a mother ship across all encountered sea state conditions, particularly when compared with a graph-based solution. The current results clearly demonstrate that it is possible to achieve appreciable improvements in ship seakeeping performance, thereby making UAV-related operations safer. Full article
(This article belongs to the Special Issue Feature Papers of Oceans 2024)
Show Figures

Figure 1

37 pages, 4076 KiB  
Article
Blockchain Technology Adoption by Critical Stakeholders in Prefabricated Construction Supply Chain Based on Evolutionary Game and System Dynamics
by Rui Zhou, Jin Wang and Dongli Zhu
Buildings 2024, 14(9), 3034; https://doi.org/10.3390/buildings14093034 (registering DOI) - 23 Sep 2024
Abstract
Blockchain technology (BT) is a promising solution to address information asymmetry and trust issues in the prefabricated construction supply chain (PCSC). However, its practical application in PCSC remains limited under the influence of stakeholders’ adoption strategies. While previous studies have analyzed drivers and [...] Read more.
Blockchain technology (BT) is a promising solution to address information asymmetry and trust issues in the prefabricated construction supply chain (PCSC). However, its practical application in PCSC remains limited under the influence of stakeholders’ adoption strategies. While previous studies have analyzed drivers and barriers to BT adoption, they often take a static view, neglecting the long-term dynamic decision-making interactions between stakeholders. This study addresses this gap by examining the interests of owners, general contractors, and subcontractors, and by developing a tripartite evolutionary game model to analyze the interaction mechanism of the strategy of adopting BT in PCSC. Additionally, a system dynamics simulation validates the evolution of stabilization strategies and examines the impact of key parameters. The results indicate that successful BT adoption requires technology maturity to surpass a threshold between 0.5 and 0.7, along with a fair revenue and cost-sharing coefficient between general contractors and subcontractors, ranging from 0.3 to 0.5 at the lower limit and 0.7 to 0.9 at the upper limit. Notably, general contractors play a pivotal role in driving BT adoption, acting as potential leaders. Furthermore, appropriate incentives, default compensation, and government subsidies can promote optimal adoption strategies, although overly high incentives may reduce owners’ willingness to mandate BT adoption. This study provides practical insights and policy recommendations for critical stakeholders to facilitate the widespread adoption of BT in PCSC. Full article
18 pages, 10786 KiB  
Article
The Interrelationships and Driving Factors of Ecosystem Service Functions in the Tianshan Mountains
by Wudi Chen, Ran Wang, Xiaohuang Liu, Tao Lin, Zhe Hao, Yukun Zhang and Yu Zheng
Forests 2024, 15(9), 1678; https://doi.org/10.3390/f15091678 (registering DOI) - 23 Sep 2024
Abstract
Ecosystems offer natural resources and habitats for humans, serving as the foundation for human social development. Taking the Tianshan Mountains as the study area, this study investigated the changing trends, hot spots, and driving factors of water yield (WY), soil conservation (SC), carbon [...] Read more.
Ecosystems offer natural resources and habitats for humans, serving as the foundation for human social development. Taking the Tianshan Mountains as the study area, this study investigated the changing trends, hot spots, and driving factors of water yield (WY), soil conservation (SC), carbon storage (CS), and habitat quality (HQ), in the Tianshan region, from 1990 to 2020. To determine the trade-offs and synergies between the ESs, we employed the Spearman correlation coefficient, geographically weighted regression, the self-organizing map (SOM), and other methods. Five main results were obtained. (1) There were similar spatial distribution patterns for WY, HQ, CS, and SC, with high-value areas mainly concentrated in grassland zones, forest zones, river valleys, and the intermountain basins of the mountain range, while regions with low value were clustered in desert zones and snow/ice zones. (2) According to the hotspot analysis, areas with relatively strong ES provisioning for WY, HQ, CS, and SC, were primarily concentrated in the BoroHoro Ula Mountains and Yilianhabierga Mountains. In contrast, areas with relatively weak ES provisioning were mainly located in the Turpan Basin. (3) Precipitation was the primary explanatory factor for WY. Soil type, potential evapotranspiration (PET), and the normalized difference vegetation index (NDVI) were the primary explanatory factors for HQ. Soil type and NDVI were the primary explanatory factors for CS. PET was the primary explanatory factor for SC. (4) There were synergistic relationships between the WY, HQ, CS, and SC, with the strongest synergies found between CS–HQ, WY–HQ, and WY–SC. (5) Six ES bundles were identified through the SOM method, with their composition varying at different spatial scales, indicating the need for different ES management priorities in different regions. Our analysis of ESs, from various perspectives, offers insights to aid sustainable ecosystem management and conservation efforts in the Tianshan region and other major economic areas worldwide. Full article
(This article belongs to the Section Forest Ecology and Management)
17 pages, 1523 KiB  
Article
Critical Success Factors for the Widespread Adoption of Virtual Alternative Dispute Resolution (VADR) in the Construction Industry: A Structural Equation Modeling Analysis
by Mohamed Salem, Ruqaya S. Al-Sabah, Mohamed T. Elnabwy, Emad Elbeltagi and Mohamed Tantawy
Buildings 2024, 14(9), 3033; https://doi.org/10.3390/buildings14093033 (registering DOI) - 23 Sep 2024
Abstract
This study explores the increasing adoption of virtual alternative dispute resolution (VADR) in the construction industry, enhancing efficiency and accessibility in dispute resolution. VADR is crucial for streamlining processes and reducing participation barriers. The study aims to investigate the critical success factors (CSFs) [...] Read more.
This study explores the increasing adoption of virtual alternative dispute resolution (VADR) in the construction industry, enhancing efficiency and accessibility in dispute resolution. VADR is crucial for streamlining processes and reducing participation barriers. The study aims to investigate the critical success factors (CSFs) influencing the adoption of VADR in the construction sector. Given the rising importance of VADR technologies, understanding the key factors driving their acceptance is crucial. The background highlights the growing reliance on innovative technologies to boost operational efficiency and decision-making processes. The data for the study were collected using a cross-sectional design with online structured survey questionnaire (N = 97) from diversified construction industries. Using Smart PLS 4, structural equation modeling (SEM) was employed to test the validity, reliability, and proposed hypotheses of the study. The results showed that cost factors had the greatest impact on VADR acceptance, followed by user competence and training, procedural adaptability, and technological infrastructure. Logistical assistance and legal frameworks also had a considerable favorable impact. However, stakeholder buy-in had no significant influence on VADR implementation. The implications indicate that economic feasibility, logistical readiness, flexible procedures, supportive legal contexts, and user skills are significant factors for successful VADR integration. Governments and organizations should deploy VADR technologies to encourage innovation and operational improvement in the construction industry. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

25 pages, 13624 KiB  
Article
Exploiting Axisymmetry to Optimize CFD Simulations—Heave Motion and Wave Radiation of a Spherical Buoy
by Josh Davidson, Vincenzo Nava, Jacob Andersen and Morten Bech Kramer
Symmetry 2024, 16(9), 1252; https://doi.org/10.3390/sym16091252 (registering DOI) - 23 Sep 2024
Abstract
Simulating the free decay motion and wave radiation from a heaving semi-submerged sphere poses significant computational challenges due to its three-dimensional complexity. By leveraging axisymmetry, we reduce the problem to a two-dimensional simulation, significantly decreasing computational demands while maintaining accuracy. In this paper, [...] Read more.
Simulating the free decay motion and wave radiation from a heaving semi-submerged sphere poses significant computational challenges due to its three-dimensional complexity. By leveraging axisymmetry, we reduce the problem to a two-dimensional simulation, significantly decreasing computational demands while maintaining accuracy. In this paper, we exploit axisymmetry to perform a large ensemble of Computational Fluid Dynamics (CFDs) simulations, aiming to evaluate and maximize both accuracy and efficiency, using the Reynolds Averaged Navier–Stokes (RANS) solver interFOAM, in the opensource finite volume CFD software OpenFOAM. Validated against highly accurate experimental data, extensive parametric studies are conducted, previously limited by computational constraints, which facilitate the refinement of simulation setups. More than 50 iterations of the same heaving sphere simulation are performed, informing efficient trade-offs between computational cost and accuracy across various simulation parameters and mesh configurations. Ultimately, by employing axisymmetry, this research contributes to the development of more accurate and efficient numerical modeling in ocean engineering. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry in Ocean Engineering)
16 pages, 2127 KiB  
Article
Prediction of the Potential Distribution and Conservation Strategies of the Endangered Plant Tapiscia sinensis
by Mei Liu, Xiaoyu Li, Liyong Yang, Keyi Chen, Zixi Shama, Xue Jiang, Jingtian Yang, Guanghua Zhao and Yi Huang
Forests 2024, 15(9), 1677; https://doi.org/10.3390/f15091677 (registering DOI) - 23 Sep 2024
Abstract
Tapiscia sinensis Oliv. (T. sinensis), known as the Yingjiao tree, belongs to the Staphyleaceae family. It is a deciduous tree species endemic to China and represents an ancient species from the Tertiary glacial relics, possessing significant ecological and economic [...] Read more.
Tapiscia sinensis Oliv. (T. sinensis), known as the Yingjiao tree, belongs to the Staphyleaceae family. It is a deciduous tree species endemic to China and represents an ancient species from the Tertiary glacial relics, possessing significant ecological and economic value. This study is based on 154 effective distribution points of T. sinensis in China and 12 environmental factors. Using integrated modeling and ArcGIS software (v10.8), the potential geographic distribution of T. sinensis under climate change was predicted to assess its future impact on distribution and ecological niche. Additionally, on-site surveys were conducted to compare the characteristics of T. sinensis forest communities across different habitability zones. The study also proposes conservation strategies based on the influence of climate change on the distribution of T. sinensis and the characteristics of its forest communities. The results indicate that (1) the current highly suitable areas for T. sinensis are primarily located in the municipal regions where Chongqing, Hubei, Hunan, and Guizhou provinces meet, covering an area of 20.44 × 104 km2. (2) In three suitable community categories, T. sinensis is consistently a subdominant species, with the community in moderately suitable areas being the most diverse and exhibiting higher stability and evenness. (3) Under future climate change scenarios, the potential distribution area for T. sinensis will gradually decrease with rising temperatures. It will shift toward northern higher latitude regions, with the degree of ecological niche migration also increasing. (4) Conservation measures for T. sinensis primarily involve in situ and ex situ protection approaches. These results provide a theoretical basis for the scientific management and resource conservation of T. sinensis. Full article
(This article belongs to the Special Issue Forest Management: Planning, Decision Making and Implementation)
14 pages, 556 KiB  
Article
Dosimetric and Clinical Prognostic Factors in Single-Isocenter Linac-Based Stereotactic Radiotherapy for Brain Metastases
by Valeria Faccenda, Riccardo Ray Colciago, Sofia Paola Bianchi, Elena De Ponti, Denis Panizza and Stefano Arcangeli
Cancers 2024, 16(18), 3243; https://doi.org/10.3390/cancers16183243 (registering DOI) - 23 Sep 2024
Abstract
Background/Objectives: To report on predictive factors in Linac-based SRT for single and multiple BM. Methods: Consecutive patients receiving either one or three fractions of single-isocenter coplanar VMAT SRT were retrospectively included. The GTV-PTV margin was 1–2 mm. The delivered target dose was estimated [...] Read more.
Background/Objectives: To report on predictive factors in Linac-based SRT for single and multiple BM. Methods: Consecutive patients receiving either one or three fractions of single-isocenter coplanar VMAT SRT were retrospectively included. The GTV-PTV margin was 1–2 mm. The delivered target dose was estimated by recalculating the original plans on roto-translated CT according to errors recorded by post-treatment CBCT. The Kaplan–Meier method estimated local progression-free survival (LPFS), intracranial progression-free survival (IPFS), and overall survival (OS). Log-rank and Wilcoxon–Mann–Whitney tests evaluated inter-group differences, whereas Cox regression analysis assessed prognostic factors. Results: Fifty females and fifty males, with a median age of 69 years, received 107 SRTs. A total of 213 BM (range, 1–10 per treatment) with a median volume of 0.22 cc were irradiated with a median minimum BED of 59.5 Gy. The median delivered GTV D95 reduction was −0.3%. The median follow-up was 11 months. Nineteen LP events and a 1-year LC rate of 90.1% were observed. The GTV coverage did not correlate with LC, while the GTV volume was a risk factor for LP, with the 1-year rate dropping to 73% for volumes ≥ 0.88 cc. The median LPFS, IPFS, and OS were 6, 5, and 7 months, respectively. Multivariate analysis showed that patients with melanoma histology and those receiving a second or subsequent systemic therapy line had the worst outcomes, whereas patients with adenocarcinoma histology and mutations showed better results. Conclusions: The accuracy and efficacy of the Linac-based SRT approach for BM were confirmed, but the dose distribution alone failed to predict the treatment response, suggesting that other factors must be considered to maximize SRT outcomes. Full article
(This article belongs to the Special Issue Stereotactic Radiotherapy in Tumor Ablation (Volume II))
16 pages, 2665 KiB  
Article
Comparative Study of Lightweight Target Detection Methods for Unmanned Aerial Vehicle-Based Road Distress Survey
by Feifei Xu, Yan Wan, Zhipeng Ning and Hui Wang
Sensors 2024, 24(18), 6159; https://doi.org/10.3390/s24186159 (registering DOI) - 23 Sep 2024
Abstract
Unmanned aerial vehicles (UAVs) are effective tools for identifying road anomalies with limited detection coverage due to the discrete spatial distribution of roads. Despite computational, storage, and transmission challenges, existing detection algorithms can be improved to support this task with robustness and efficiency. [...] Read more.
Unmanned aerial vehicles (UAVs) are effective tools for identifying road anomalies with limited detection coverage due to the discrete spatial distribution of roads. Despite computational, storage, and transmission challenges, existing detection algorithms can be improved to support this task with robustness and efficiency. In this study, the K-means clustering algorithm was used to calculate the best prior anchor boxes; Faster R-CNN (region-based convolutional neural network), YOLOX-s (You Only Look Once version X-small), YOLOv5-s, YOLOv7-tiny, YOLO-MobileNet, and YOLO-RDD models were built based on image data collected by UAVs. YOLO-MobileNet has the most lightweight model but performed worst in accuracy, but greatly reduces detection accuracy. YOLO-RDD (road distress detection) performed best with a mean average precision (mAP) of 0.701 above the Intersection over Union (IoU) value of 0.5 and achieved relatively high accuracy in detecting all four types of distress. The YOLO-RDD model most successfully detected potholes with an AP of 0.790. Significant or severe distresses were better identified, and minor cracks were relatively poorly identified. The YOLO-RDD model achieved an 85% computational reduction compared to YOLOv7-tiny while maintaining high detection accuracy. Full article
14 pages, 3234 KiB  
Review
Lectin-Based Approaches to Analyze the Role of Glycans and Their Clinical Application in Disease
by Hiroko Ideo, Akiko Tsuchida and Yoshio Takada
Int. J. Mol. Sci. 2024, 25(18), 10231; https://doi.org/10.3390/ijms251810231 (registering DOI) - 23 Sep 2024
Abstract
Lectin-based approaches remain a valuable tool for analyzing glycosylation, especially when detecting cancer-related changes. Certain glycans function as platforms for cell communication, signal transduction, and adhesion. Therefore, the functions of glycans are important considerations for clinical aspects, such as cancer, infection, and immunity. [...] Read more.
Lectin-based approaches remain a valuable tool for analyzing glycosylation, especially when detecting cancer-related changes. Certain glycans function as platforms for cell communication, signal transduction, and adhesion. Therefore, the functions of glycans are important considerations for clinical aspects, such as cancer, infection, and immunity. Considering that the three-dimensional structure and multivalency of glycans are important factors for their function, their binding characteristics toward lectins provide vital information. Glycans and lectins are inextricably linked, and studies on lectins have also led to research on the roles of glycans. The applications of lectins are not limited to analysis but can also be used as drug delivery tools. Moreover, mammalian lectins are potential therapeutic targets because certain lectins change their expression in cancer, and lectin regulation subsequently regulates several molecules with glycans. Herein, we review lectin-based approaches for analyzing the role of glycans and their clinical applications in diseases, as well as our recent results. Full article
(This article belongs to the Special Issue Glycobiology of Health and Diseases)
15 pages, 537 KiB  
Article
Experiences in Coping with Stress—A Qualitative Study of Family Caregivers of Children with Medical Complexity
by Mikhaila N. Layshock, Amy S. Porter, Jori F. Bogetz, Lydia McLachlan, Sydney Weill, Abby Rosenberg, Joseph G. Winger, Amy Houtrow, Robert B. Noll, Yael Schenker and Justin A. Yu
Children 2024, 11(9), 1151; https://doi.org/10.3390/children11091151 (registering DOI) - 23 Sep 2024
Abstract
Objective: To better understand the strategies family caregivers of children with medical complexity (CMC) utilize to deal with the stress and challenges associated with caregiving. Methods: We conducted a cross-sectional qualitative study among family caregivers of CMC receiving medical care at a children’s [...] Read more.
Objective: To better understand the strategies family caregivers of children with medical complexity (CMC) utilize to deal with the stress and challenges associated with caregiving. Methods: We conducted a cross-sectional qualitative study among family caregivers of CMC receiving medical care at a children’s hospital in Western Pennsylvania. Participants completed in-depth, semi-structured interviews focused on how CMC family caregivers approach and manage caregiving-related challenges and stress. Using constant comparative methodology, we inductively analyzed deidentified transcripts for emergent themes. Results: We interviewed 19 participants (89.4% female) with a mean age of 43 years (range 32–54 years). The mean age of the participants’ children was 10.8 years (range 1–20 years). Twelve participants’ children identified as white and four identified as Black. Three central themes regarding CMC caregivers’ stress-coping strategies emerged: (1) maintaining a positive mindset, (2) developing and relying on interpersonal support networks, and (3) making time for self-preservation. All three themes were universally reported (n = 19/19) by our participants. The most common subthemes for each theme, respectively, focused on staying hopeful and celebrating moments of joy; cultivating supportive relationships with family, friends, and fellow CMC family caregivers; and finding pleasure in “little things” (e.g., everyday activities and hobbies). Conclusion: Family caregivers of CMC utilize a multi-faceted approach to cope with the stress and challenges routinely encountered in caring for CMC. This study’s findings could be used to inform future clinical efforts and research directions aiming to improve clinicians’ ability to support CMC caregivers’ well-being. Full article
14 pages, 1710 KiB  
Article
Experimental Study of Surface Microtexture Formed by Laser-Induced Cavitation Bubble on 7050 Aluminum Alloy
by Bin Li, Byung-Won Min, Yingxian Ma, Rui Zhou, Hai Gu and Yupeng Cao
Coatings 2024, 14(9), 1230; https://doi.org/10.3390/coatings14091230 (registering DOI) - 23 Sep 2024
Abstract
In order to study the feasibility of forming microtexture at the surface of 7050 aluminum alloy by laser-induced cavitation bubble, and how the density of microtexture influences its tribological properties, the evolution of the cavitation bubble was captured by a high-speed camera, and [...] Read more.
In order to study the feasibility of forming microtexture at the surface of 7050 aluminum alloy by laser-induced cavitation bubble, and how the density of microtexture influences its tribological properties, the evolution of the cavitation bubble was captured by a high-speed camera, and the underwater acoustic signal of evolution was collected by a fiber optic hydrophone system. This combined approach was used to study the effect of the cavitation bubble on 7050 aluminum alloy. The surface morphology of the microtexture was analyzed by a confocal microscope, and the tribological properties of the microtexture were analyzed by a friction testing machine. Then the feasibility of the preparation process was verified and the optimal density was obtained. The study shows that the microtexture on the surface of a sample is formed by the combined results of the plasma shock wave and the collapse shock wave. When the density of microtexture is less than or equal to 19.63%, the diameters of the micropits range from 478μm to 578μm, and the depths of the micropits range from 13.56μm to 18.25μm. This shows that the laser-induced cavitation bubble is able to form repeatable microtexture. The friction coefficient of the sample with microtexture is lower than that of the untextured sample, with an average friction coefficient of 0.16. This indicates that the microtexture formed by laser-induced cavitation bubble has a good lubrication effect. The sample with a density of 19.63% is uniform and smooth, having the minimum friction coefficient, with an average friction coefficient of 0.14. This paper provides a new approach for microtexture processing of metal materials. Full article
14 pages, 460 KiB  
Article
Relationship of SOD-1 Activity in Metabolic Syndrome and/or Frailty in Elderly Individuals
by Sylwia Dzięgielewska-Gęsiak, Ewa Wysocka, Edyta Fatyga and Małgorzata Muc-Wierzgoń
Metabolites 2024, 14(9), 514; https://doi.org/10.3390/metabo14090514 (registering DOI) - 23 Sep 2024
Abstract
Introduction: Although aging is a natural phenomenon, in recent years it has accelerated. One key factor implicated in the aging process is oxidative stress. Oxidative stress also plays a role in frailty (frail) and metabolic syndrome (MetS). Methods: A total of 66 elderly [...] Read more.
Introduction: Although aging is a natural phenomenon, in recent years it has accelerated. One key factor implicated in the aging process is oxidative stress. Oxidative stress also plays a role in frailty (frail) and metabolic syndrome (MetS). Methods: A total of 66 elderly persons (65 years old and older) with no acute or severe chronic disorders were assessed for waist circumference (WC), arterial blood pressure, glycemia, glycated hemoglobin (HbA1c), plasma lipids, and activity of erythrocyte superoxide dismutase (SOD-1). Patients were classified as NonMetS-Nonfrail (n = 19), NonMetS-frail (n = 20), MetS-Nonfrail (n = 17), or MetS-frail (n = 10). Results: There were no significant differences in superoxide dismutase activity among investigated elderly groups. However, the data suggest that MetS individuals, both frail and nonfrail, have higher risk factors for cardiovascular disease compared to NonMetS individuals. The correlations analyses of SOD-1 and other metabolic indices suggest that SOD-1 levels may be influenced by age, total cholesterol, HDL cholesterol, and fasting glucose levels in certain groups of seniors. Conclusions: Aging is associated with decreased antioxidant enzyme SOD-1 activity with glucose alteration in frailty syndrome as well as with lipids disturbances in metabolic syndrome. These factors provide a nuanced view of how frailty and metabolic syndrome interact with various health parameters, informing both clinical practice and future research directions. Full article
11 pages, 2315 KiB  
Article
Identification of Key Volatile Compounds in Tilapia during Air Frying Process by Quantitative Gas Chromatography–Ion Mobility Spectrometry
by Tianyu Chen, Yong Xue, Chunsheng Li, Yongqiang Zhao, Hui Huang, Yang Feng, Huan Xiang and Shengjun Chen
Molecules 2024, 29(18), 4516; https://doi.org/10.3390/molecules29184516 (registering DOI) - 23 Sep 2024
Abstract
Air frying as a new roasting technology has potential for roasted fish production. In this study, the changes in volatile compounds (VCs) during air frying of tilapia were studied by quantitative gas chromatography–ion mobility spectrometry, followed by the identification of key VCs based [...] Read more.
Air frying as a new roasting technology has potential for roasted fish production. In this study, the changes in volatile compounds (VCs) during air frying of tilapia were studied by quantitative gas chromatography–ion mobility spectrometry, followed by the identification of key VCs based on their odor activity value (OAV). There were 34 verified VCs, of which 16 VCs were identified as the key VCs with OAV ≥ 1. Most of the VCs were improved by air frying and peaked at 20 min. During the air frying, the total sulfhydryl content markedly decreased, while the protein carbonyl and MDA content significantly increased, suggesting the enhancement in the oxidation of lipids and proteins. The correlation network among the chemical properties and key VCs was constructed. The change in total sulfhydryl, protein carbonyl, and MDA showed significant correlation with most of the key VCs, especially 2-methyl butanal, ethyl acetate, and propanal. The results indicated that the oxidation of lipids and proteins contributed the most to the flavor improvement in air-fried tilapia. This study provides a crucial reference for the volatile flavor improvement and pre-cooked product development of roasted tilapia. Full article
(This article belongs to the Section Food Chemistry)
19 pages, 1630 KiB  
Article
Putting a Kink in HIV-1 Particle Infectivity: Rocaglamide Inhibits HIV-1 Replication by Altering Gag-Genomic RNA Interaction
by Paul Rosenfeld, Gatikrushna Singh, Amanda Paz Herrera, Juan Ji, Bradley Seufzer, Xiao Heng, Kathleen Boris-Lawrie and Alan Cochrane
Viruses 2024, 16(9), 1506; https://doi.org/10.3390/v16091506 (registering DOI) - 23 Sep 2024
Abstract
Our examination of RNA helicases for effects on HIV-1 protein production and particle assembly identified Rocaglamide (RocA), a known modulator of eIF4A1 function, as an inhibitor of HIV-1 replication in primary CD4+ T cells and three cell systems. HIV-1 attenuation by low-nM [...] Read more.
Our examination of RNA helicases for effects on HIV-1 protein production and particle assembly identified Rocaglamide (RocA), a known modulator of eIF4A1 function, as an inhibitor of HIV-1 replication in primary CD4+ T cells and three cell systems. HIV-1 attenuation by low-nM RocA doses was associated with reduced viral particle formation without a marked decrease in Gag production. Rather, the co-localization of Gag and HIV-1 genomic RNA (gRNA) assemblies was impaired by RocA treatment in a reversible fashion. Ribonucleoprotein (RNP) immunoprecipitation studies recapitulated the loss of Gag-gRNA assemblies upon RocA treatment. Parallel biophysical studies determined that neither RocA nor eIF4A1 independently affected the ability of Gag to interact with viral RNA, but together, they distorted the structure of the HIV-1 RNP visualized by electron microscopy. Taken together, several lines of evidence indicate that RocA induces stable binding of eIF4A1 onto the viral RNA genome in a manner that interferes with the ordered assembly of Gag along Gag-gRNA assemblies required to generate infectious virions. Full article
(This article belongs to the Special Issue HIV Assembly, Release and Maturation)
15 pages, 427 KiB  
Review
Oral Microbiota and the Risk of Gastrointestinal Cancers—A Narrative Literature Review
by Kinga Knop-Chodyła, Anna Kochanowska-Mazurek, Zuzanna Piasecka, Aneta Głaz, Ewelina Weronika Wesołek-Bielaska, Kinga Syty, Alicja Forma and Jacek Baj
Pathogens 2024, 13(9), 819; https://doi.org/10.3390/pathogens13090819 (registering DOI) - 23 Sep 2024
Abstract
The human body is colonized by trillions of microorganisms in a symbiotic relationship. The oral cavity represents one of the most abundant microbial habitats in our body. Advances in sequencing techniques provide a more detailed understanding of the oral microbiota and how imbalances [...] Read more.
The human body is colonized by trillions of microorganisms in a symbiotic relationship. The oral cavity represents one of the most abundant microbial habitats in our body. Advances in sequencing techniques provide a more detailed understanding of the oral microbiota and how imbalances between bacteria, the phenomenon of dysbiosis, can affect not only the development of dental caries or inflammation within the oral cavity but also systemic diseases and cancers in distant locations. This narrative review evaluates the relationship between oral microbiota and its impact on gastrointestinal cancers. Using the keywords “oral microbiota ‘AND’ gastrointestinal cancers”, the PubMed Web of Science and Scopus databases were searched for articles published between 2014 and 2024. Based on the review, the relationship between oral microbiota and oral, esophageal, gastric, colorectal, hepatocellular, and pancreatic cancers was described. Potential oncogenic mechanisms exploited by the microbiota such as the production of pro-inflammatory cytokines, induction of abnormal immune responses, and disruption of cell metabolic pathways were assessed. Further research and a thorough understanding of the impact of the oral microbiota on the development of cancers of the gastrointestinal tract may play a key role in their prevention, diagnosis, and treatment in the future. Full article
Show Figures

Figure 1

31 pages, 3495 KiB  
Review
A Review on the Latest Early Pleistocene Carnivoran Guild from the Vallparadís Section (NE Iberia)
by Joan Madurell-Malapeira, Maria Prat-Vericat, Saverio Bartolini-Lucenti, Andrea Faggi, Darío Fidalgo, Adrian Marciszak and Lorenzo Rook
Quaternary 2024, 7(3), 40; https://doi.org/10.3390/quat7030040 (registering DOI) - 23 Sep 2024
Abstract
The Vallparadís Section encompasses various geological layers that span a significant chronological range, extending from the latest Early Pleistocene to the early Middle Pleistocene, covering a timeframe from approximately 1.2 to 0.6 Ma. This period holds particular importance, as it coincides with a [...] Read more.
The Vallparadís Section encompasses various geological layers that span a significant chronological range, extending from the latest Early Pleistocene to the early Middle Pleistocene, covering a timeframe from approximately 1.2 to 0.6 Ma. This period holds particular importance, as it coincides with a significant climatic transition known as the Early–Middle Pleistocene Transition, a pivotal phase in Quaternary climatic history. This transition, marked by the shift from a 41,000-year obliquity-driven climatic cycle to a 100,000-year precession-forced cyclicity, had profound effects on the Calabrian carnivorous mammal communities. Notably, the once diverse carnivore guild began to decline across Europe during this period, with their last documented occurrences coinciding with those found within the Vallparadís Section (e.g., Megantereon or Xenocyon). Concurrently, this period witnessed the initial dispersals of African carnivorans into the European landscape (e.g., steppe lions), marking a significant shift in the composition and dynamics of the region’s carnivorous fauna. Full article
Show Figures

Figure 1

17 pages, 28641 KiB  
Article
Non-Linear Plasma Wave Dynamics: Investigating Chaos in Dynamical Systems
by Raymond Ghandour, Abdullah S. Karar, Zaher Al Barakeh, Julien Moussa H. Barakat and Zia Ur Rehman
Mathematics 2024, 12(18), 2958; https://doi.org/10.3390/math12182958 (registering DOI) - 23 Sep 2024
Abstract
This work addresses the significant issue of plasma waves interacting with non-linear dynamical systems in both perturbed and unperturbed states, as modeled by the generalized Whitham–Broer–Kaup–Boussinesq–Kupershmidt (WBK-BK) Equations. We investigate analytical solutions and the subsequent emergence of chaos within these systems. Initially, we [...] Read more.
This work addresses the significant issue of plasma waves interacting with non-linear dynamical systems in both perturbed and unperturbed states, as modeled by the generalized Whitham–Broer–Kaup–Boussinesq–Kupershmidt (WBK-BK) Equations. We investigate analytical solutions and the subsequent emergence of chaos within these systems. Initially, we apply advanced mathematical techniques, including the transform method and the GG2 method. These methods allow us to derive new precise solutions and enhance our understanding of the non-linear processes dominating plasma wave dynamics. Through a systematic analysis, we identify the conditions under which the system transitions from orderly patterns to chaotic behavior. This investigation provides valuable insights into the fundamental mechanisms of non-linear wave propagation in plasmas. Our results highlight the dynamic interplay between non-linearity and variation, leading to chaos, which may be useful in predicting and potentially controlling similar phenomena in practical applications. Full article
27 pages, 22292 KiB  
Article
RFSoC Softwarisation of a 2.45 GHz Doppler Microwave Radar Motion Sensor
by Peter Hobden, Edmond Nurellari and Saket Srivastava
J. Sens. Actuator Netw. 2024, 13(5), 58; https://doi.org/10.3390/jsan13050058 (registering DOI) - 23 Sep 2024
Abstract
Microwave Doppler sensors are used extensively in motion detection as they are energy-efficient, small-size and relatively low-cost sensors. Common applications of microwave Doppler sensors are for detecting intrusion behind a car roof liner inside an automotive vehicle and to detect moving objects. These [...] Read more.
Microwave Doppler sensors are used extensively in motion detection as they are energy-efficient, small-size and relatively low-cost sensors. Common applications of microwave Doppler sensors are for detecting intrusion behind a car roof liner inside an automotive vehicle and to detect moving objects. These applications require a millisecond response from the target for effective detection. A Doppler microwave sensor is ideally suited to the task, as we are only interested in movement of a large water-based mass (i.e., a person) (FMCW Radar also detect static objects). Although microwave components at 2.45 GHz are now relatively cheap due to mass production of other Industrial Scientific and Medical application (ISM) devices, they do require tuning for temperature compensation, dielectric, and manufacturing variability. A digital solution would be ideal, as chip solutions are known to be more repeatable, but Application-Specific Integrated Circuits (ASICs) are expensive to initially prototype. This paper presents the first completely digital Doppler motion sensor solution at 2.45 GHz, implemented on the new RFSoC from Xilinx without the need to up/downconvert the frequency externally. Our proposed system uses a completely digital approach bringing the benefits of product repeatability, better overtemperature performance and softwarisation, without compromising any performance metric associated with a comparable analogue motion sensor. The RFSoC shows to give superior distance versus false detection, as the Signal-to-Noise Ratio (SNR) is better than a typical analogue system. This is mainly due to the high gain amplification requirement of an analogue system, making it susceptible to electrical noise appearing in the intermediate-frequency (IF) baseband. The proposed RFSoC-based Doppler sensor shows how digital technology can replace traditional analogue radio frequency (RF). A case study is presented showing how we can use a novel method of using multiple Doppler channels to provide range discrimination, which can be performed in both analogue and in a digital implementation (RFSoC). Full article
Show Figures

Figure 1

25 pages, 2616 KiB  
Article
GastricAITool: A Clinical Decision Support Tool for the Diagnosis and Prognosis of Gastric Cancer
by Rocío Aznar-Gimeno, María Asunción García-González, Rubén Muñoz-Sierra, Patricia Carrera-Lasfuentes, María de la Vega Rodrigálvarez-Chamarro, Carlos González-Muñoz, Enrique Meléndez-Estrada, Ángel Lanas and Rafael del Hoyo-Alonso
Biomedicines 2024, 12(9), 2162; https://doi.org/10.3390/biomedicines12092162 (registering DOI) - 23 Sep 2024
Abstract
Background/Objective: Gastric cancer (GC) is a complex disease representing a significant global health concern. Advanced tools for the early diagnosis and prediction of adverse outcomes are crucial. In this context, artificial intelligence (AI) plays a fundamental role. The aim of this work was [...] Read more.
Background/Objective: Gastric cancer (GC) is a complex disease representing a significant global health concern. Advanced tools for the early diagnosis and prediction of adverse outcomes are crucial. In this context, artificial intelligence (AI) plays a fundamental role. The aim of this work was to develop a diagnostic and prognostic tool for GC, providing support to clinicians in critical decision-making and enabling personalised strategies. Methods: Different machine learning and deep learning techniques were explored to build diagnostic and prognostic models, ensuring model interpretability and transparency through explainable AI methods. These models were developed and cross-validated using data from 590 Spanish Caucasian patients with primary GC and 633 cancer-free individuals. Up to 261 variables were analysed, including demographic, environmental, clinical, tumoral, and genetic data. Variables such as Helicobacter pylori infection, tobacco use, family history of GC, TNM staging, metastasis, tumour location, treatment received, gender, age, and genetic factors (single nucleotide polymorphisms) were selected as inputs due to their association with the risk and progression of the disease. Results: The XGBoost algorithm (version 1.7.4) achieved the best performance for diagnosis, with an AUC value of 0.68 using 5-fold cross-validation. As for prognosis, the Random Survival Forest algorithm achieved a C-index of 0.77. Of interest, the incorporation of genetic data into the clinical–demographics models significantly increased discriminatory ability in both diagnostic and prognostic models. Conclusion: This article presents GastricAITool, a simple and intuitive decision support tool for the diagnosis and prognosis of GC. Full article
21 pages, 1247 KiB  
Article
Predicting Power Consumption Using Deep Learning with Stationary Wavelet
by Majdi Frikha, Khaled Taouil, Ahmed Fakhfakh and Faouzi Derbel
Forecasting 2024, 6(3), 864-884; https://doi.org/10.3390/forecast6030043 (registering DOI) - 23 Sep 2024
Abstract
Power consumption in the home has grown in recent years as a consequence of the use of varied residential applications. On the other hand, many families are beginning to use renewable energy, such as energy production, energy storage devices, and electric vehicles. As [...] Read more.
Power consumption in the home has grown in recent years as a consequence of the use of varied residential applications. On the other hand, many families are beginning to use renewable energy, such as energy production, energy storage devices, and electric vehicles. As a result, estimating household power demand is necessary for energy consumption monitoring and planning. Power consumption forecasting is a challenging time series prediction topic. Furthermore, conventional forecasting approaches make it difficult to anticipate electric power consumption since it comprises irregular trend components, such as regular seasonal fluctuations. To address this issue, algorithms combining stationary wavelet transform (SWT) with deep learning models have been proposed. The denoised series is fitted with various benchmark models, including Long Short-Term Memory (LSTM), Gated Recurrent Units (GRUs), Bidirectional Gated Recurrent Units (Bi-GRUs), Bidirectional Long Short-Term Memory (Bi-LSTM), and Bidirectional Gated Recurrent Units Long Short-Term Memory (Bi-GRU LSTM) models. The performance of the SWT approach is evaluated using power consumption data at three different time intervals (1 min, 15 min, and 1 h). The performance of these models is evaluated using metrics such as Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and Mean Absolute Error (MAE). The SWT/GRU model, utilizing the bior2.4 filter at level 1, has emerged as a highly reliable option for precise power consumption forecasting across various time intervals. It is observed that the bior2.4/GRU model has enhanced accuracy by over 60% compared to the deep learning model alone across all accuracy measures. The findings clearly highlight the success of the SWT denoising technique with the bior2.4 filter in improving the power consumption prediction accuracy. Full article
(This article belongs to the Section Power and Energy Forecasting)
30 pages, 7796 KiB  
Article
Analysis of Ni-Cu Interaction in Aluminum-Based Alloys: Hardness, Tensile and Precipitation Behavior
by Ehab Samuel, Agnes M. Samuel, Victor Songmene, Herbert W. Doty and Fawzy H. Samuel
Materials 2024, 17(18), 4676; https://doi.org/10.3390/ma17184676 (registering DOI) - 23 Sep 2024
Abstract
The present work was aimed at quantifying the effects of Ni addition in the range of 0–4% together with 0.3%Zr on the hardness and the tensile properties, volume fraction of intermetallics, and changes in size and distribution of phase precipitation in Sr-modified Al-9%Si-2%Cu-0.6%Mg [...] Read more.
The present work was aimed at quantifying the effects of Ni addition in the range of 0–4% together with 0.3%Zr on the hardness and the tensile properties, volume fraction of intermetallics, and changes in size and distribution of phase precipitation in Sr-modified Al-9%Si-2%Cu-0.6%Mg cast alloys. The study was mainly carried out using high-resolution FESEM and TEM microscopes equipped with EDS facilities. Samples were solidified at the rate of ~3 °C/s and examined at different aging conditions. The investigations are supported by thermal analysis carried out at a solidification rate of ~0.8 °C/s. The results revealed that the main compositions of the Ni-based phases are close to Al3(Ni,Cu), Al3CuNi, and Al3Ni. An Al3Ni2Cu2 phase was also detected in the 4%Ni alloy. The Cu–Ni phases were observed to precipitate, covering the surfaces of pre-existing primary Al3Zr particles. The TEM analysis indicated the magnitude of the reduction in both size and density of the precipitated Al2Cu phase particles as the Ni content reached 4%, coupled with a delay in the transition from coherent to incoherency of the Al2Cu precipitates. Full article
27 pages, 2240 KiB  
Article
A Multi-Scale Numerical Simulation Method Considering Anisotropic Relative Permeability
by Li Wu, Junqiang Wang, Deli Jia, Ruichao Zhang, Jiqun Zhang, Yiqun Yan and Shuoliang Wang
Processes 2024, 12(9), 2058; https://doi.org/10.3390/pr12092058 (registering DOI) - 23 Sep 2024
Abstract
Most of the oil reservoirs in China are fluvial deposits with firm reservoir heterogeneity, where differences in fluid flow capacity in individual directions should not be ignored; however, the available commercial reservoir simulation software cannot consider the anisotropy of the relative permeability. To [...] Read more.
Most of the oil reservoirs in China are fluvial deposits with firm reservoir heterogeneity, where differences in fluid flow capacity in individual directions should not be ignored; however, the available commercial reservoir simulation software cannot consider the anisotropy of the relative permeability. To handle this challenge, this paper takes full advantage of the parallelism of the multi-scale finite volume (MsFV) method and establishes a multi-scale numerical simulation approach that incorporates the effects of reservoir anisotropy. The methodology is initiated by constructing an oil–water black-oil model considering the anisotropic relative permeability. Subsequently, the base model undergoes decoupling through a sequential solution, formulating the pressure and transport equations. Following this, a multi-scale grid system is configured, within which the pressure and transport equations are progressively developed in the fine-scale grid domain. Ultimately, the improved multi-scale finite volume (IMsFV) method is applied to mitigate low-frequency error in the coarse-scale grid, thereby enhancing computational efficiency. This paper introduces two primary innovations. The first is the development of a multi-scale solution method for the pressure equation incorporating anisotropic relative permeability. Validated using the Egg model, a comparative analysis with traditional numerical simulations demonstrates a significant improvement in computational speed without sacrificing accuracy. The second innovation involves applying the multi-scale framework to investigate the impact of anisotropy relative permeability on waterflooding performance, uncovering distinct mechanisms by which absolute and relative permeability anisotropy influence waterflooding outcomes. Therefore, the IMsFV method can be used as an effective tool for high-resolution simulation and precise residual oil prediction in anisotropic reservoirs. Full article
(This article belongs to the Special Issue New Insight in Enhanced Oil Recovery Process Analysis and Application)
13 pages, 1629 KiB  
Article
Effect of Yttrium and Yttria Addition in Self-Passivating WCr SMART Material for First-Wall Application in a Fusion Power Plant
by Jie Chen, Elena Tejado, Marcin Rasiński, Andrey Litnovsky, Duc Nguyen-Manh, Eric Prestat, Tamsin Whitfield, Jose Ygnacio Pastor, Martin Bram, Jan Willem Coenen, Christian Linsmeier and Jesus Gonzalez-Julian
Metals 2024, 14(9), 1092; https://doi.org/10.3390/met14091092 (registering DOI) - 23 Sep 2024
Abstract
The self-passivating yttrium-containing WCr alloy has been developed and researched as a potential plasma-facing armour material for fusion power plants. This study explores the use of yttria (Y2O3) powders instead of yttrium elemental powders in the mechanical alloying process [...] Read more.
The self-passivating yttrium-containing WCr alloy has been developed and researched as a potential plasma-facing armour material for fusion power plants. This study explores the use of yttria (Y2O3) powders instead of yttrium elemental powders in the mechanical alloying process to assess their applicability for this material. Fabricated through field-assisted sintering, WCr-Y2O3 ingots show Y2O3 and Cr-containing oxides (Cr-O and Y-Cr-O) dispersed at grain boundaries (GBs), while WCrY ingots contain Y-O particles at grain boundaries, both resulting from unavoidable oxidation during fabrication. WCr-Y2O3 demonstrates higher flexural strength than WCrY across all temperature ranges, ranging from 850 to 1050 MPa, but lower fracture toughness, between 3 and 4 MPa·√m. Enhanced oxidation resistance is observed in WCr-Y2O3, with lower mass gain as compared to WCrY during the 20-hour oxidation test. This study confirms the effectiveness of both yttria and yttrium in the reactive element effect (REE) for the passivation of WCr alloy, suggesting the potential of Y2O3-doped WCr for first wall applications in a fusion power plant. Full article
16 pages, 1406 KiB  
Article
Oxygen-Plasma-Treated Al/TaOX/Al Resistive Memory for Enhanced Synaptic Characteristics
by Gyeongpyo Kim, Seoyoung Park, Minsuk Koo and Sungjun Kim
Biomimetics 2024, 9(9), 578; https://doi.org/10.3390/biomimetics9090578 (registering DOI) - 23 Sep 2024
Abstract
In this study, we investigate the impact of O2 plasma treatment on the performance of Al/TaOX/Al-based resistive random-access memory (RRAM) devices, focusing on applications in neuromorphic systems. Comparative analysis using scanning electron microscopy and X-ray photoelectron spectroscopy confirmed the differences [...] Read more.
In this study, we investigate the impact of O2 plasma treatment on the performance of Al/TaOX/Al-based resistive random-access memory (RRAM) devices, focusing on applications in neuromorphic systems. Comparative analysis using scanning electron microscopy and X-ray photoelectron spectroscopy confirmed the differences in chemical composition between O2-plasma-treated and untreated RRAM cells. Direct-current measurements showed that O2-plasma-treated RRAM cells exhibited significant improvements over untreated RRAM cells, including higher on/off ratios, improved uniformity and distribution, longer retention times, and enhanced durability. The conduction mechanism is investigated by current–voltage (I–V) curve fitting. In addition, paired-pulse facilitation (PPF) is observed using partial short-term memory. Furthermore, 3- and 4-bit weight tuning with auto-pulse-tuning algorithms was achieved to improve the controllability of the synapse weight for the neuromorphic system, maintaining retention times exceeding 103 s in the multiple states. Neuromorphic simulation with an MNIST dataset is conducted to evaluate the synaptic device. Full article

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop