Sex-Based Differences in Lung Cancer Incidence: A Retrospective Analysis of Two Large US-Based Cancer Databases
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. NLST Analysis
2.2. SEER Analysis
2.3. Statistical Analysis
3. Results
3.1. NLST
3.2. SEER
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA A Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef] [PubMed]
- Bade, B.C.; Dela Cruz, C.S. Lung Cancer 2020: Epidemiology, Etiology, and Prevention. Clin. Chest Med. 2020, 41, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.I.; McKinley, M.; Cheng, I.; Haile, R.; Wakelee, H.; Gomez, S.L. Lung cancer incidence trends in California by race/ethnicity, histology, sex, and neighborhood socioeconomic status: An analysis spanning 28 years. Lung Cancer 2017, 108, 140–149. [Google Scholar] [CrossRef]
- Lewis, D.R.; Check, D.P.; Caporaso, N.E.; Travis, W.D.; Devesa, S.S. US lung cancer trends by histologic type. Cancer 2014, 120, 2883–2892. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA A Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- May, L.; Shows, K.; Nana-Sinkam, P.; Li, H.; Landry, J.W. Sex Differences in Lung Cancer. Cancers 2023, 15, 3111. [Google Scholar] [CrossRef]
- Ragavan, M.V.; Patel, M.I. Understanding Sex Disparities in Lung Cancer Incidence: Are Women more at Risk? Lung Cancer Manag. 2020, 9, LMT34. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, J.; Chen, Y.; Liu, Z.; Xia, H.; Xu, H. Gender disparities in lung cancer incidence in the United States during 2001–2019. Sci. Rep. 2023, 13, 12581. [Google Scholar] [CrossRef]
- Jemal, A.; Miller, K.D.; Ma, J.; Siegel, R.L.; Fedewa, S.A.; Islami, F.; Devesa, S.S.; Thun, M.J. Higher Lung Cancer Incidence in Young Women Than Young Men in the United States. N. Engl. J. Med. 2018, 378, 1999–2009. [Google Scholar] [CrossRef]
- Gee, K.; Yendamuri, S. Lung cancer in females-sex-based differences from males in epidemiology, biology, and outcomes: A narrative review. Transl. Lung Cancer Res. 2024, 13, 163–178. [Google Scholar] [CrossRef]
- Marcus, M.W.; Raji, O.Y.; Field, J.K. Lung cancer screening: Identifying the high risk cohort. J. Thorac. Dis. 2015, 7, S156–S162. [Google Scholar] [CrossRef] [PubMed]
- Bach, P.B.; Mirkin, J.N.; Oliver, T.K.; Azzoli, C.G.; Berry, D.A.; Brawley, O.W.; Byers, T.; Colditz, G.A.; Gould, M.K.; Jett, J.R.; et al. Benefits and harms of CT screening for lung cancer: A systematic review. JAMA 2012, 307, 2418–2429. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.X.; Nelson, R.A.; Kim, J.Y.; Raz, D.J. Non–Small Cell Lung Cancer as a Second Primary Among Patients with Previous Malignancy: Who Is at Risk? Clin. Lung Cancer 2017, 18, 543–550.e543. [Google Scholar] [CrossRef] [PubMed]
- Tammemägi, M.C.; Katki, H.A.; Hocking, W.G.; Church, T.R.; Caporaso, N.; Kvale, P.A.; Chaturvedi, A.K.; Silvestri, G.A.; Riley, T.L.; Commins, J.; et al. Selection Criteria for Lung-Cancer Screening. N. Engl. J. Med. 2013, 368, 728–736. [Google Scholar] [CrossRef]
- Murphy, P.K.; Sellers, M.E.; Bonds, S.H.; Scott, S. The SEER Program’s longstanding commitment to making cancer resources available. J. Natl. Cancer Inst. Monogr. 2024, 2024, 118–122. [Google Scholar] [CrossRef]
- Mahvi, D.A.; Liu, R.; Grinstaff, M.W.; Colson, Y.L.; Raut, C.P. Local Cancer Recurrence: The Realities, Challenges, and Opportunities for New Therapies. CA A Cancer J. Clin. 2018, 68, 488–505. [Google Scholar] [CrossRef] [PubMed]
- Tian, S. Classification and survival prediction for early-stage lung adenocarcinoma and squamous cell carcinoma patients. Oncol. Lett. 2017, 14, 5464–5470. [Google Scholar] [CrossRef] [PubMed]
- Jemal, A.; Ma, J.; Rosenberg, P.S.; Siegel, R.; Anderson, W.F. Increasing lung cancer death rates among young women in southern and midwestern States. J. Clin. Oncol. 2012, 30, 2739–2744. [Google Scholar] [CrossRef]
- Jeon, J.; Holford, T.R.; Levy, D.T.; Feuer, E.J.; Cao, P.; Tam, J.; Clarke, L.; Clarke, J.; Kong, C.Y.; Meza, R. Smoking and Lung Cancer Mortality in the United States From 2015 to 2065: A Comparative Modeling Approach. Ann. Intern. Med. 2018, 169, 684–693. [Google Scholar] [CrossRef]
- Hansen, M.S.; Licaj, I.; Braaten, T.; Langhammer, A.; Le Marchand, L.; Gram, I.T. Sex Differences in Risk of Smoking-Associated Lung Cancer: Results from a Cohort of 600,000 Norwegians. Am. J. Epidemiol. 2017, 187, 971–981. [Google Scholar] [CrossRef]
- Harris, R.E.; Zang, E.A.; Anderson, J.I.; Wynder, E.L. Race and Sex Differences in Lung Cancer Risk Associated with Cigarette Smoking. Int. J. Epidemiol. 1993, 22, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Risch, H.A.; Howe, G.R.; Jain, M.; Burch, J.D.; Holowaty, E.J.; Miller, A.B. Are female smokers at higher risk for lung cancer than male smokers? A case-control analysis by histologic type. Am. J. Epidemiol. 1993, 138, 281–293. [Google Scholar] [CrossRef]
- Zang, E.A.; Wynder, E.L. Differences in lung cancer risk between men and women: Examination of the evidence. J. Natl. Cancer Inst. 1996, 88, 183–192. [Google Scholar] [CrossRef]
- Cornelius, M.E.; Loretan, C.G.; Wang, T.W.; Jamal, A.; Homa, D.M. Tobacco Product Use Among Adults—United States, 2020. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 397–405. [Google Scholar] [CrossRef]
- Xu, F.H.; Xiong, D.; Xu, Y.F.; Cao, S.M.; Xue, W.Q.; Qin, H.D.; Liu, W.S.; Cao, J.Y.; Zhang, Y.; Feng, Q.S.; et al. An epidemiological and molecular study of the relationship between smoking, risk of nasopharyngeal carcinoma, and Epstein-Barr virus activation. J. Natl. Cancer Inst. 2012, 104, 1396–1410. [Google Scholar] [CrossRef]
- Giovino, G.A.; Villanti, A.C.; Mowery, P.D.; Sevilimedu, V.; Niaura, R.S.; Vallone, D.M.; Abrams, D.B. Differential trends in cigarette smoking in the USA: Is menthol slowing progress? Tob. Control 2015, 24, 28. [Google Scholar] [CrossRef] [PubMed]
- Thakur, M.K.; Ruterbusch, J.J.; Schwartz, A.G.; Gadgeel, S.M.; Beebe-Dimmer, J.L.; Wozniak, A.J. Risk of Second Lung Cancer in Patients with Previously Treated Lung Cancer: Analysis of Surveillance, Epidemiology, and End Results (SEER) Data. J. Thorac. Oncol. 2018, 13, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Gasperino, J. Gender is a risk factor for lung cancer. Med. Hypotheses 2011, 76, 328–331. [Google Scholar] [CrossRef]
- Stapelfeld, C.; Dammann, C.; Maser, E. Sex-specificity in lung cancer risk. Int. J. Cancer 2020, 146, 2376–2382. [Google Scholar] [CrossRef]
- Sarabia, S.F.; Zhu, B.T.; Kurosawa, T.; Tohma, M.; Liehr, J.G. Mechanism of cytochrome P450-catalyzed aromatic hydroxylation of estrogens. Chem. Res. Toxicol. 1997, 10, 767–771. [Google Scholar] [CrossRef]
- Ben-Zaken Cohen, S.; Paré, P.D.; Man, S.F.; Sin, D.D. The growing burden of chronic obstructive pulmonary disease and lung cancer in women: Examining sex differences in cigarette smoke metabolism. Am. J. Respir. Crit. Care Med. 2007, 176, 113–120. [Google Scholar] [CrossRef]
- Newbold, R.R.; Liehr, J.G. Induction of uterine adenocarcinoma in CD-1 mice by catechol estrogens. Cancer Res. 2000, 60, 235–237. [Google Scholar]
- Pinheiro, P.S.; Callahan, K.E.; Medina, H.N.; Koru-Sengul, T.; Kobetz, E.N.; Gomez, S.L.; de Lima Lopes, G. Lung cancer in never smokers: Distinct population-based patterns by age, sex, and race/ethnicity. Lung Cancer 2022, 174, 50–56. [Google Scholar] [CrossRef]
- Ragavan, M.; Patel, M.I. The evolving landscape of sex-based differences in lung cancer: A distinct disease in women. Eur. Respir. Rev. 2022, 31, 210100. [Google Scholar] [CrossRef]
- Clément-Duchêne, C.; Vignaud, J.M.; Stoufflet, A.; Bertrand, O.; Gislard, A.; Thiberville, L.; Grosdidier, G.; Martinet, Y.; Benichou, J.; Hainaut, P.; et al. Characteristics of never smoker lung cancer including environmental and occupational risk factors. Lung Cancer 2010, 67, 144–150. [Google Scholar] [CrossRef]
- Hackshaw, A.K.; Law, M.R.; Wald, N.J. The accumulated evidence on lung cancer and environmental tobacco smoke. BMJ 1997, 315, 980–988. [Google Scholar] [CrossRef]
- Hosgood, H.D., III; Boffetta, P.; Greenland, S.; Lee, Y.-C.A.; McLaughlin, J.; Seow, A.; Duell, E.J.; Andrew, A.S.; Zaridze, D.; Szeszenia-Dabrowska, N. In-home coal and wood use and lung cancer risk: A pooled analysis of the International Lung Cancer Consortium. Environ. Health Perspect. 2010, 118, 1743–1747. [Google Scholar] [CrossRef]
- North, C.M.; Christiani, D.C. Women and Lung Cancer: What is New? Semin. Thorac. Cardiovasc. Surg. 2013, 25, 87–94. [Google Scholar] [CrossRef]
- Ai, F.; Zhao, J.; Yang, W.; Wan, X. Dose–response relationship between active smoking and lung cancer mortality/prevalence in the Chinese population: A meta-analysis. BMC Public Health 2023, 23, 747. [Google Scholar] [CrossRef]
- Chen, J. A Comparative Analysis of Lung Cancer Incidence and Tobacco Consumption in Canada, Norway and Sweden: A Population-Based Study. Int. J. Environ. Res. Public Health 2023, 20, 6930. [Google Scholar] [CrossRef]
- Ruano-Ravina, A.; Figueiras, A.; Montes-Martínez, A.; Barros-Dios, J.M. Dose–response relationship between tobacco and lung cancer: New findings. Eur. J. Cancer Prev. 2003, 12, 257–263. [Google Scholar] [CrossRef]
- Law, M.; Morris, J.; Watt, H.; Wald, N. The dose-response relationship between cigarette consumption, biochemical markers and risk of lung cancer. Br. J. Cancer 1997, 75, 1690–1693. [Google Scholar] [CrossRef]
- Lubin, J.H.; Caporaso, N.E. Cigarette Smoking and Lung Cancer: Modeling Total Exposure and Intensity. Cancer Epidemiol. Biomark. Prev. 2006, 15, 517–523. [Google Scholar] [CrossRef]
- Cranford, H.M.; Koru-Sengul, T.; Lopes, G.; Pinheiro, P.S. Lung Cancer Incidence by Detailed Race-Ethnicity. Cancers 2023, 15, 2164. [Google Scholar] [CrossRef]
- Schabath, M.B.; Cress, D.; Munoz-Antonia, T. Racial and Ethnic Differences in the Epidemiology and Genomics of Lung Cancer. Cancer Control 2016, 23, 338–346. [Google Scholar] [CrossRef] [PubMed]
Variable | Overall n = 37,627 | Male n = 23,662 (62.9%) | Female n = 13,965 (37.1%) | p-Value |
---|---|---|---|---|
Age | 62 (5.1) | 62.2 (5.1) | 61.8 (5) | <0.001 |
Race | <0.001 | |||
Caucasian | 34,552 (92.4%) | 21,658 (92.1%) | 12,894 (93%) | |
African American | 1389 (3.7%) | 833 (3.5%) | 556 (4%) | |
Other | 1434 (3.8%) | 1014 (4.3%) | 420 (3%) | |
Smoking Status | <0.001 | |||
Former | 19,060 (50.7%) | 12,360 (52.2%) | 6700 (48%) | |
Current | 18,567 (49.3%) | 11,302 (47.8%) | 7265 (52%) | |
Pack-years | 64.6 (23.6) | 66.9 (25.1) | 60.6 (20.4) | <0.001 |
Variable | Univariate HR 95% (95% CI) | p-Value | Multivariate HR (95% CI) | p-Value |
---|---|---|---|---|
Age | 1.076 (1.066–1.085) | <0.001 | 1.073 (1.063–1.082) | <0.001 |
Sex | ||||
Female vs. Male | 1.033 (0.939–1.137) | 0.502 | 1.11 (1.007–1.222) | 0.035 |
Pack-years | 1.007 (1.006–1.009) | <0.001 | 1.006 (1.005–1.008) | <0.001 |
Variable | Overall n = 19,327 | Male n = 9175 (47.5%) | Female n = 10,152 (52.5%) | p-Value |
---|---|---|---|---|
Age | 70.5 (9.8) | 70.4 (9.4) | 70.9 (10.1) | 0.086 |
Race | 0.005 | |||
Caucasian | 15,721 (81.3%) | 7400 (80.7%) | 8321 (82%) | |
Non-Caucasian | 1568 (8.1%) | 738 (8%) | 830 (8.2%) | |
Unknown | 2038 (10.5%) | 1037 (11.3%) | 1001 (9.9%) | |
Grade | <0.001 | |||
Well/Moderately Well Differentiated | 9175 (47.5%) | 4131 (45%) | 5044 (49.7%) | |
Poorly Differentiated | 4325 (22.4%) | 2332 (25.4%) | 1993 (19.6%) | |
Unknown | 5827 (30.1%) | 2712 (29.6%) | 3115 (30.7%) | |
Histology | <0.001 | |||
Adenocarcinoma | 12,528 (64.8%) | 5254 (57.3%) | 7274 (71.7%) | |
Squamous Cell Carcinoma | 6799 (35.2%) | 3921 (42.7%) | 2878 (28.3%) |
Variable | Univariate HR (95% CI) | p-Value | Multivariate HR (95% CI) | p-Value |
---|---|---|---|---|
Age | 0.998 (0.993–1.002) | 0.369 | - | - |
Sex | ||||
Female vs. Male | 1.12 (1.022–1.228) | 0.016 | 1.138 (1.02–1.269) | 0.021 |
Race | ||||
Non-Caucasian vs. Caucasian | 0.907 (0.764–1.078) | 0.267 | - | - |
Grade | ||||
Poorly Differentiated vs. Well/Moderately Well Differentiated | 1.071 (0.959–1.196) | 0.226 | - | - |
Histology | ||||
Squamous Cell Carcinoma vs. Adenocarcinoma | 1.181 (1.073–1.3) | <0.001 | 1.171 (1.046–1.311) | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ratnakaram, K.; Yendamuri, S.; Groman, A.; Kalvapudi, S. Sex-Based Differences in Lung Cancer Incidence: A Retrospective Analysis of Two Large US-Based Cancer Databases. Cancers 2024, 16, 3244. https://doi.org/10.3390/cancers16193244
Ratnakaram K, Yendamuri S, Groman A, Kalvapudi S. Sex-Based Differences in Lung Cancer Incidence: A Retrospective Analysis of Two Large US-Based Cancer Databases. Cancers. 2024; 16(19):3244. https://doi.org/10.3390/cancers16193244
Chicago/Turabian StyleRatnakaram, Kalyan, Sai Yendamuri, Adrienne Groman, and Sukumar Kalvapudi. 2024. "Sex-Based Differences in Lung Cancer Incidence: A Retrospective Analysis of Two Large US-Based Cancer Databases" Cancers 16, no. 19: 3244. https://doi.org/10.3390/cancers16193244
APA StyleRatnakaram, K., Yendamuri, S., Groman, A., & Kalvapudi, S. (2024). Sex-Based Differences in Lung Cancer Incidence: A Retrospective Analysis of Two Large US-Based Cancer Databases. Cancers, 16(19), 3244. https://doi.org/10.3390/cancers16193244