Thermomechanical Assessment of Recovered PA12 Powders with Basalt Filler for Automotive Components
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Characterization
3. Results and Discussion
3.1. Thermal Characterization
3.2. Mechanical Characterization
3.3. Material Comparison
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Despeisse, M.; Ford, S. The role of additive manufacturing in improving resource efficiency and sustainability. In Advances in Production Management Systems: Innovative Production Management towards Sustainable Growth, Proceedings of the IFIP WG 5.7 International Conference, APMS 2015, Tokyo, Japan, 7–9 September 2015; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar]
- Jung, S.; Kara, L.B.; Nie, Z.; Simpson, T.W.; Whitefoot, K.S. Is Additive Manufacturing an Environmentally and Economically Preferred Alternative for Mass Production? Environ. Sci. Technol. 2023, 57, 6373–6386. [Google Scholar] [CrossRef] [PubMed]
- Di, L.; Yang, Y. Towards closed-loop material flow in additive manufacturing: Recyclability analysis of thermoplastic waste. J. Clean. Prod. 2022, 362, 132427. [Google Scholar] [CrossRef]
- 3D Printing Market Size, Share & Trends Analysis Report by Component (Hardware, Software, Services), by Printer Type, by Technology, by Software, by Application, by Vertical, by Region, and Segment Forecasts, 2024–2030. n.d. Available online: https://www.researchandmarkets.com/reports/4375433/3d-printing-market-size-share-and-trends-analysis?srsltid=AfmBOoomGSkOq4Qn7yxVtYTKYPH4cGiYW2ZSu_8mzgq5HcNFjPPF2eef (accessed on 15 May 2024).
- Olakanmi, E.O. Selective laser sintering/melting (SLS/SLM) of pure Al, Al-Mg, and Al-Si powders: Effect of processing conditions and powder properties. J. Mater. Process. Technol. 2013, 213, 1387–1405. [Google Scholar] [CrossRef]
- Bashir, Z.; Gu, H.; Yang, L. Evaluation of poly(ethylene terephthalate) powder as a material for selective laser sintering, and characterization of printed part. Polym. Eng. Sci. 2018, 58, 1888–1900. [Google Scholar] [CrossRef]
- Hague, R.; Mansour, S.; Saleh, N. Material and design considerations for Rapid Manufacturing. Int. J. Prod. Res. 2004, 42, 4691–4708. [Google Scholar] [CrossRef]
- Bazan, A.; Turek, P.; Zakręcki, A. Influence of Antibacterial Coating and Mechanical and Chemical Treatment on the Surface Properties of PA12 Parts Manufactured with SLS and MJF Techniques in the Context of Medical Applications. Materials 2023, 16, 2405. [Google Scholar] [CrossRef]
- Khedr, M.S.F. Bio-based polyamide. Phys. Sci. Rev. 2023, 8, 827–847. [Google Scholar] [CrossRef]
- He, D.; Kim, H.C.; De Kleine, R.; Soo, V.K.; Kiziltas, A.; Compston, P.; Doolan, M. Life cycle energy and greenhouse gas emissions implications of polyamide 12 recycling from selective laser sintering for an injection-molded automotive component. J. Ind. Ecol. 2022, 26, 1378–1388. [Google Scholar] [CrossRef]
- Yi, F.; Zhou, Q.; Wang, C.; Yan, Z.; Liu, B. Effect of powder reuse on powder characteristics and properties of Inconel 718 parts produced by selective laser melting. J. Mater. Res. Technol. 2021, 13, 524–533. [Google Scholar] [CrossRef]
- Meier, B.; Skalon, M.; Warchomicka, F.; Belei, C.; Görtler, M.; Kaindl, R.; Sommitsch, C. Effect of the reuse of powder on material properties of Ti6Al4V processed by SLM. AIP Conf. Proc. 2019, 2113, 150006. [Google Scholar] [CrossRef]
- Ardila, L.C.; Garciandia, F.; González-Díaz, J.B.; Álvarez, P.; Echeverria, A.; Petite, M.M.; Deffley, R.; Ochoa, J. Effect of IN718 recycled powder reuse on properties of parts manufactured by means of Selective Laser Melting. Phys. Procedia 2014, 56, 99–107. [Google Scholar] [CrossRef]
- Giganto, S.; Martínez-Pellitero, S.; Barreiro, J.; Zapico, P. Influence of 17-4 PH stainless steel powder recycling on properties of SLM additive manufactured parts. J. Mater. Res. Technol. 2022, 16, 1647–1658. [Google Scholar] [CrossRef]
- Contaldi, V.; Corrado, P.; Del Re, F.; Di Martino, D.; Di Petta, P.; Palumbo, B.; Scherillo, F.; Squillace, A. Direct metal laser sintering of Ti-6Al-4V parts with reused powder. Int. J. Adv. Manuf. Technol. 2022, 120, 1013–1021. [Google Scholar] [CrossRef]
- Babu, R.P.; O’Connor, K.; Seeram, R. Current progress on bio-based polymers and their future trends. Prog. Biomater. 2013, 2, 8. [Google Scholar] [CrossRef] [PubMed]
- Gomes, P.C.; Piñeiro, O.G.; Alves, A.C.; Carneiro, O.S. On the Reuse of SLS Polyamide 12 Powder. Materials 2022, 15, 5486. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Zobeiry, N.; Mamidala, R.; Chen, X. A review of aging, degradation, and reusability of PA12 powders in selective laser sintering additive manufacturing. Mater. Today Commun. 2023, 34, 105279. [Google Scholar] [CrossRef]
- Mägi, P.; Krumme, A.; Pohlak, M. Recycling of PA-12 in Additive Manufacturing and the Improvement of its Mechanical Properties. Key Eng. Mater. 2016, 674, 9–14. [Google Scholar] [CrossRef]
- Wiese, M.; Thiede, S.; Herrmann, C. Rapid manufacturing of automotive polymer series parts: A systematic review of processes, materials and challenges. Addit. Manuf. 2020, 36, 101582. [Google Scholar] [CrossRef]
- Barczewski, M.; Sałasińska, K.; Kloziński, A.; Skórczewska, K.; Szulc, J.; Piasecki, A. Application of the Basalt Powder as a Filler for Polypropylene Composites with Improved Thermo-Mechanical Stability and Reduced Flammability. Polym. Eng. Sci. 2019, 59, E71–E79. [Google Scholar] [CrossRef]
- Matykiewicz, D.; Barczewski, M.; Michałowski, S. Basalt powder as an eco-friendly filler for epoxy composites: Thermal and thermo-mechanical properties assessment. Compos. Part B Eng. 2019, 164, 272–279. [Google Scholar] [CrossRef]
- Zainal, N.F.A.; Saiter, J.M.; Halim, S.I.A.; Lucas, R.; Chan, C.H. Thermal analysis: Basic concept of differential scanning calorimetry and thermogravimetry for beginners. Chem. Teach. Int. 2021, 3, 59–75. [Google Scholar] [CrossRef]
- Ming, Y.; Zhou, Z.; Hao, T.; Nie, Y. Polymer Nanocomposites: Role of modified filler content and interfacial interaction on crystallization. Eur. Polym. J. 2022, 162, 110894. [Google Scholar] [CrossRef]
- Sha, H.; Zhang, X.; Harrison, I.R. A dynamic mechanical thermal analysis (DMTA) study of polyethylenes. Thermochim. Acta 1991, 192, 233–242. [Google Scholar] [CrossRef]
- ASTM D790; Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. ASTM International: West Conshohocken, PA, USA, 2017.
- Martynková, G.S.; Slíva, A.; Kratošová, G.; Barabaszová, K.Č.; Študentová, S.; Klusák, J.; Brožová, S.; Dokoupil, T.; Holešová, S. Polyamide 12 materials study of morpho-structural changes during laser sintering of 3D printing. Polymers 2021, 13, 810. [Google Scholar] [CrossRef] [PubMed]
- Dorigato, A.; Fambri, L. Effect of aramid regenerated fibers on thermo-mechanical behaviour of polyamide 12 composites. J. Reinf. Plast. Compos. 2013, 32, 1243–1256. [Google Scholar] [CrossRef]
- Van Krevelen, D.W.; te Nijenhuis, K. Chapter 1—Polymer Properties. In Properties of Polymers; Elsevier: Oxford, UK, 2009. [Google Scholar]
- Ghislandi, M.; Luis, L.A.S.; Schulte, K.; Barros-Timmons, A. Effect of filler functionalization on thermo-mechanical properties of polyamide-12/carbon nanofibers composites: A study of filler-matrix molecular interactions. J. Mater. Sci. 2013, 48, 8427–8437. [Google Scholar] [CrossRef]
- McCrum, N.; Williams, B.; Read, G. Anelastic and Dielectric Effects in Polymeric Solids; Dover Books on Engineering; John Wiley & Sons: Hoboken, NJ, USA, 1991. [Google Scholar]
- Fu, S.Y.; Feng, X.Q.; Lauke, B.; Mai, Y.W. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos. Part B Eng. 2008, 39, 933–961. [Google Scholar] [CrossRef]
- Fiore, V.; Di Bella, G.; Scalici, T.; Valenza, A. Effect of plasma treatment on mechanical and thermal properties of marble powder/epoxy composites. Polym. Compos. 2018, 39, 309–317. [Google Scholar] [CrossRef]
PA12 Raw | PA12 Mix | PA12 + 15% Basalt | |
---|---|---|---|
T melting 1st [°C] | 185 | 175 | 175 |
T melting 2nd [°C] | 173 | 169–175 | 168–175 |
T crystallization [°C] | 142 | 150 | 148 |
χ [%] | 34.5 | 43.5 | 45.7 |
PA12 Raw | PA12 Mix | PA12 + 15% Basalt | |
---|---|---|---|
T onset [°C] (2% loss) | 339 | 348 | 361 |
T peak [°C] | 459 | 448 | 458 |
Residue [%] | 3 | 3 | 12 |
PA12 Raw | PA12 Mix | PA12 + 15% Basalt | |
---|---|---|---|
Storage modulus (−100 °C) [MPa] | 2406 ± 117 | 2434 ± 134 | 3025 ± 151 |
Storage modulus (25 °C) [MPa] | 1656 ± 42 | 1541 ± 59 | 1974 ± 95 |
Tβ [°C] | −76 | −75 | −76 |
Tg [°C] | 45 | 46 | 46 |
PA12 Raw | PA12 Mix | PA12 + 15% Basalt | |
---|---|---|---|
Maximum stress [MPa] | 35.03 ± 1.51 | 38.22 ± 1.30 | 43.91 ± 0.77 |
Elastic modulus [MPa] | 1008 ± 36 | 1094 ± 42 | 1366 ± 45 |
PA6 | Polypropylene | PA12 | |
---|---|---|---|
Commercial name | Akulon Ultraflow® K FG6 | PETRONAS Propelinas H022 | SINTERIT® (Kraków, Poland) PA12 Industrial FRESH |
Reinforcement | 30% glass fibers | 30% glass fibers | 15% basalt powder |
Flexural modulus [MPa] | 8500 | 3100 | 1366 |
Flexural strength [MPa] | 235 | 47 | 44 |
Tg [°C] | 55 | −20 | 55 |
Tm [°C] | 220 | 160 | 180 |
Density [g/cm3] | 1.35 | 0.91 | 1.01 |
Price [EUR/kg] | 5.00 | 26.00 | 120.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Napolitano, F.; Papa, I.; Cimino, F.; Lopresto, V.; Russo, P. Thermomechanical Assessment of Recovered PA12 Powders with Basalt Filler for Automotive Components. Polymers 2024, 16, 2682. https://doi.org/10.3390/polym16192682
Napolitano F, Papa I, Cimino F, Lopresto V, Russo P. Thermomechanical Assessment of Recovered PA12 Powders with Basalt Filler for Automotive Components. Polymers. 2024; 16(19):2682. https://doi.org/10.3390/polym16192682
Chicago/Turabian StyleNapolitano, Francesco, Ilaria Papa, Francesca Cimino, Valentina Lopresto, and Pietro Russo. 2024. "Thermomechanical Assessment of Recovered PA12 Powders with Basalt Filler for Automotive Components" Polymers 16, no. 19: 2682. https://doi.org/10.3390/polym16192682
APA StyleNapolitano, F., Papa, I., Cimino, F., Lopresto, V., & Russo, P. (2024). Thermomechanical Assessment of Recovered PA12 Powders with Basalt Filler for Automotive Components. Polymers, 16(19), 2682. https://doi.org/10.3390/polym16192682