Investigating Arctic Permafrost Dynamics Using Electrical Resistivity Imaging and Borehole Measurement in Svalbard
Abstract
:1. Introduction
2. Study Site and Survey Configuration
3. Results
4. Discussion
4.1. Resistivity Difference between 2022 and 2023
4.2. The Variation of the Active Layer and Permafroste
4.3. Determining Hydraulic Parameters within the Active Layer
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ACGR. Glossary of Permafrost and Related Ground-Ice Terms; Technical Memorandum No. 142; Associate Committee on Geotechnical Research, Permafrost Subcommittee, National Research Council of Canada: Ottawa, ON, Canada, 1988; p. 155. [Google Scholar]
- Rossi, M.; Dal Cin, M.; Picotti, S.; Gei, D.; Isaev, V.S.; Pogorelov, A.V.; Gorshkov, E.I.; Sergeev, D.O.; Kotov, P.I.; Giorgi, M.; et al. Active Layer and Permafrost Investigations Using Geophysical and Geocryological Methods—A Case Study of the Khanovey Area, Near Vorkuta, in the NE European Russian Arctic. Front. Earth Sci. 2022, 10, 1–22. [Google Scholar] [CrossRef]
- Zhang, T.; Barry, R.; Knowles, K.; Heginbottom, J.; Brown, J. Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere. Polar Geogr. 2008, 31, 47–68. [Google Scholar] [CrossRef]
- Gruber, S. Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 2012, 6, 221–233. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Z.; Kong, Y.; Zhang, F.; Yang, K.; Zhang, T. Most of the northern hemisphere permafrost remains under climate change. Sci. Rep. 2019, 9, 3295. [Google Scholar] [CrossRef] [PubMed]
- Harris, S.A.; Brouchkov, A.; Guodong, C. Geocryology: Characteristics and Use of Frozen Ground and Permafrost Landforms; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- IPCC. Meeting Report of the Intergovernmental Panel on Climate Change Expert Meeting on Mitigation, Sustainability and Climate Stabilization Scenarios; IPCC: Geneva, Switzerland, 2017. [Google Scholar]
- Biskaborn, B.K.; Smith, S.L.; Noetzli, J.; Matthes, H.; Vieira, G.; Streletskiy, D.A.; Schoeneich, P.; Romanovsky, V.E.; Lewkowicz, A.G.; Abramov, A. Permafrost is warming at a global scale. Nat. Commun. 2019, 10, 264. [Google Scholar] [CrossRef]
- NSIDC. Advancing Knowledge of Earth’s Frozen Regions. Cryosphere Glossary. Available online: https://nsidc.org/cryosphere/glossary (accessed on 15 July 2024).
- Chen, T.; Ma, W.; Wu, Z.-J.; Mu, Y.-H. Characteristics of dynamic response of the active layer beneath embankment in permafrost regions along the Qinghai–Tibet Railroad. Cold Reg. Sci. Technol. 2014, 98, 1–7. [Google Scholar] [CrossRef]
- Isaksen, K.; Sollid, J.L.; Holmlund, P.; Harris, C. Recent warming of mountain permafrost in Svalbard and Scandinavia. J. Geophys. Res. Earth Surf. 2007, 112, 1–11. [Google Scholar] [CrossRef]
- Sobota, I.; Nowak, M. Changes in the dynamics and thermal regime of the permafrost and active layer of the high arctic coastal area in north-west spitsbergen, svalbard. Geogr. Ann. Ser. A Phys. Geogr. 2014, 96, 227–240. [Google Scholar] [CrossRef]
- Sobota, I.; Weckwerth, P.; Grajewski, T.; Dziembowski, M.; Greń, K.; Nowak, M. Short-term changes in thickness and temperature of the active layer in summer in the Kaffiøyra region, NW Spitsbergen, Svalbard. Catena 2018, 160, 141–153. [Google Scholar] [CrossRef]
- Keating, K.; Binley, A.; Bense, V.; Van Dam, R.L.; Christiansen, H.H. Combined geophysical measurements provide evidence for unfrozen water in permafrost in the Adventdalen valley in Svalbard. Geophys. Res. Lett. 2018, 45, 7606–7614. [Google Scholar] [CrossRef]
- Rouyet, L.; Lauknes, T.R.; Christiansen, H.H.; Strand, S.M.; Larsen, Y. Seasonal dynamics of a permafrost landscape, Adventdalen, Svalbard, investigated by InSAR. Remote Sens. Environ. 2019, 231, 111236. [Google Scholar] [CrossRef]
- Hinkel, K.; Doolittle, J.; Bockheim, J.; Nelson, F.; Paetzold, R.; Kimble, J.M.; Travis, R. Detection of subsurface permafrost features with ground-penetrating radar, Barrow, Alaska. Permafr. Periglac. Process. 2001, 12, 179–190. [Google Scholar] [CrossRef]
- Kim, K.; Lee, J.; Ju, H.; Jung, J.Y.; Chae, N.; Chi, J.; Kwon, M.J.; Lee, B.Y.; Wagner, J.; Kim, J.-S. Time-lapse electrical resistivity tomography and ground penetrating radar mapping of the active layer of permafrost across a snow fence in Cambridge Bay, Nunavut Territory, Canada: Correlation interpretation using vegetation and meteorological data. Geosci. J. 2021, 25, 877–890. [Google Scholar] [CrossRef]
- Forte, E.; French, H.M.; Raffi, R.; Santin, I.; Guglielmin, M. Investigations of polygonal patterned ground in continuous Antarctic permafrost by means of ground penetrating radar and electrical resistivity tomography: Some unexpected correlations. Permafr. Periglac. Process. 2022, 33, 226–240. [Google Scholar] [CrossRef]
- Sobota, I. Współczesne Zmiany Kriosfery Północno-Zachodniego Spitsbergenu na Przykładzie Regionu Kaffiøyry; Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika: Toruń, Poland, 2013. [Google Scholar]
- Sobota, I.; Nowak, M.; Weckwerth, P. Long-term changes of glaciers in north-western Spitsbergen. Glob. Planet. Change 2016, 144, 182–197. [Google Scholar] [CrossRef]
- Schuler, T.V.; Kohler, J.; Elagina, N.; Hagen, J.O.M.; Hodson, A.J.; Jania, J.A.; Kääb, A.M.; Luks, B.; Małecki, J.; Moholdt, G. Reconciling Svalbard glacier mass balance. Front. Earth Sci. 2020, 8, 156. [Google Scholar] [CrossRef]
- Kejna, M.; Sobota, I. Meteorological conditions on Kaffiøyra (NW Spitsbergen) in 2013–2017 and their connection with atmospheric circulation and sea ice extent. Pol. Polar Res. 2019, 40, 175–204. [Google Scholar] [CrossRef]
- Lippmann, E. 4-Point Light hp Technical Data and Operating Instructions; Version 3.37; Geophysikalische Messgerate: Schaufling, Germany, 2005; Volume 28. [Google Scholar]
- Dahlin, T.; Zhou, B. A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophys. Prospect. 2004, 52, 379–398. [Google Scholar] [CrossRef]
- Lin, D.-J.; Chang, P.-Y.; Puntu, J.M.; Doyoro, Y.G.; Amania, H.H.; Chang, L.-C. Estimating the specific yield and groundwater level of an unconfined aquifer using time-lapse electrical resistivity imaging in the pingtung plain, Taiwan. Water 2023, 15, 1184. [Google Scholar] [CrossRef]
- Puntu, J.M.; Chang, P.-Y.; Amania, H.H.; Lin, D.-J.; Sung, C.-Y.; Suryantara, M.; Chang, L.-C.; Doyoro, Y.G. Groundwater monitoring and specific yield estimation using time-lapse electrical resistivity imaging and machine learning. Front. Environ. Sci. 2023, 11, 1197888. [Google Scholar] [CrossRef]
- AGI. Instruction Manual for EarthImager 2D 2.3.0; AGI: Virginia Beach, VA, USA, 2006; Volume 62. [Google Scholar]
- Yang, X.; Lagmanson, M.B. Planning resistivity surveys using numerical simulations. In Proceedings of the 16th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems, San Antonio, TX, USA, 6–10 April 2003; p. cp-190-00047. [Google Scholar]
- Sharma, S.; Verma, G.K. Inversion of electrical resistivity data: A review. Int. J. Comput. Syst. Eng. 2015, 9, 400–406. [Google Scholar]
- Archie, G.E. The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. AIME 1942, 146, 54–62. [Google Scholar] [CrossRef]
- Dakhnov, V.N.; Keller, G.V. Geophysical Well Logging: The Application of Geophysical Methods; Colorado School of Mines: Golden, CO, USA, 1962. [Google Scholar]
- Glover, P.W. Archie’s law—A reappraisal. Solid Earth 2016, 7, 1157–1169. [Google Scholar] [CrossRef]
- Keller, G.V.; Frischknecht, F.C. Electrical Methods in Geophysical Prospecting; Pergamon: Oxford, UK, 1966. [Google Scholar]
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Chang, P.-Y.; Puntu, J.M.; Lin, D.-J.; Yao, H.-J.; Chang, L.-C.; Chen, K.-H.; Lu, W.-J.; Lai, T.-H.; Doyoro, Y.G. Using Time-Lapse Resistivity Imaging Methods to Quantitatively Evaluate the Potential of Groundwater Reservoirs. Water 2022, 14, 420. [Google Scholar] [CrossRef]
Borehole No. | Coordinate-X | Coordinate-Y | Ground Elevation (m) | Pressure Sensor Elevation (m) |
---|---|---|---|---|
S1 | 8,735,652.0 | 430,441.6 | 1.463 | 0.573 |
S2 | 8,735,658.5 | 430,449.6 | 1.861 | 1.391 |
S3 | 8,735,608.0 | 430,386.9 | 2.831 | 1.941 |
S4 | 8,735,627.2 | 430,410.4 | 2.160 | 0.880 |
S5 | 8,735,645.9 | 430,433.6 | 1.858 | 0.668 |
Borehole No. | 2022 Avg. Groundwater Depth (m) * | 2022 Groundwater Table Elevation (m) | 2023 Avg. Groundwater Depth (m) + | 2023 Groundwater Table Elevation (m) + |
---|---|---|---|---|
S1 | 0.779 | 0.684 | N.A. # | N.A. # |
S2 | 0.403 | 1.458 | 0.126 | 1.735 |
S3 | 0.830 | 2.001 | 0.799 | 2.032 |
S4 | 1.287 | 0.873 | 1.295 | 0.865 |
S5 | 1.220 | 0.638 | 1.219 | 0.639 |
(m) | (m) | (m) | |||||
---|---|---|---|---|---|---|---|
0.26 | 0.03 | 6.11 | 0.84 | 0.77 | 1.30 | 0.24 | 1.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, D.-J.; Chang, P.-Y.; Chen, Y.-L.; Puntu, J.M.; Ni, C.-F.; Giletycz, S.J.; Sobota, I.; Czarnecki, K.; Chang, Y.-H. Investigating Arctic Permafrost Dynamics Using Electrical Resistivity Imaging and Borehole Measurement in Svalbard. Water 2024, 16, 2707. https://doi.org/10.3390/w16192707
Lin D-J, Chang P-Y, Chen Y-L, Puntu JM, Ni C-F, Giletycz SJ, Sobota I, Czarnecki K, Chang Y-H. Investigating Arctic Permafrost Dynamics Using Electrical Resistivity Imaging and Borehole Measurement in Svalbard. Water. 2024; 16(19):2707. https://doi.org/10.3390/w16192707
Chicago/Turabian StyleLin, Ding-Jiun, Ping-Yu Chang, Ying-Lon Chen, Jordi Mahardika Puntu, Chuen-Fa Ni, Slawomir Jack Giletycz, Ireneusz Sobota, Kamil Czarnecki, and Yu-Huan Chang. 2024. "Investigating Arctic Permafrost Dynamics Using Electrical Resistivity Imaging and Borehole Measurement in Svalbard" Water 16, no. 19: 2707. https://doi.org/10.3390/w16192707
APA StyleLin, D. -J., Chang, P. -Y., Chen, Y. -L., Puntu, J. M., Ni, C. -F., Giletycz, S. J., Sobota, I., Czarnecki, K., & Chang, Y. -H. (2024). Investigating Arctic Permafrost Dynamics Using Electrical Resistivity Imaging and Borehole Measurement in Svalbard. Water, 16(19), 2707. https://doi.org/10.3390/w16192707