Receptor-Based Strategies for Overcoming Resistance in Cancer Therapy
Abstract
:1. Introduction
2. Strategies to Overcome Drug Resistance
2.1. Immunomodulation and Vascular Targeting in Drug Resistance
2.1.1. Antiangiogenic Strategies to Overcome Cancer Drug Resistance
2.1.2. Overcoming Immune Checkpoint Inhibitor Resistance in Cancer Treatment
3. Targeted Therapies and Specific Drug Resistance
Overcoming Resistance to Kinase Inhibitors
4. Receptor Degradation Strategies
5. Insights from Clinical Settings
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer Statistics, 2024. CA A Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef]
- Sah, N.; Ramaiah, B.; Abdulla; Gupta, A.K.; Thomas, S.M. Noncompliance with Prescription-Writing Guidelines in an Outpatient Department of a Tertiary Care Hospital: A Prospective, Observational Study. RGUHS J. Pharm. Sci. 2020, 10, 29–36. [Google Scholar] [CrossRef]
- Sharma, M.; Bakshi, A.K.; Mittapelly, N.; Gautam, S.; Marwaha, D.; Rai, N.; Singh, N.; Tiwari, P.; Agarwal, N.; Kumar, A.; et al. Recent Updates on Innovative Approaches to Overcome Drug Resistance for Better Outcomes in Cancer. J. Control. Release 2022, 346, 43–70. [Google Scholar] [CrossRef]
- Why Do Cancer Treatments Stop Working?—NCI. Available online: https://www.cancer.gov/about-cancer/treatment/research/drug-combo-resistance (accessed on 8 April 2024).
- Wang, X.; Zhang, H.; Chen, X. Drug Resistance and Combating Drug Resistance in Cancer. Cancer Drug Resist. 2019, 2, 141–160. [Google Scholar] [CrossRef]
- The Role and Mechanisms of Action of microRNAs in Cancer Drug Resistance|Clinical Epigenetics|Full Text. Available online: https://clinicalepigeneticsjournal.biomedcentral.com/articles/10.1186/s13148-018-0587-8 (accessed on 8 April 2024).
- Sah, N.; Ramaiah, B.; Koneri, R. The Pharmacist Role in Clinical Audit at an Indian Accredited Hospital: An Interventional Study. Indian J. Pharm. Pract. 2019, 12, 117–125. [Google Scholar] [CrossRef]
- Schumacher, T.J.; Sah, N.; Palle, K.; Rumbley, J.; Mereddy, V.R. Synthesis and Biological Evaluation of Benzofuran Piperazine Derivatives as Potential Anticancer Agents. Bioorg. Med. Chem. Lett. 2023, 93, 129425. [Google Scholar] [CrossRef]
- Adult Immunotherapy Network—Cancer Moonshot Recommendation—NCI. Available online: https://www.cancer.gov/research/key-initiatives/moonshot-cancer-initiative/implementation/adult-immunotherapy-network (accessed on 8 April 2024).
- Cancer Moonshot Biobank|National Cancer Institute. Available online: https://moonshotbiobank.cancer.gov (accessed on 8 April 2024).
- Cancer Moonshot Research Initiatives—NCI. Available online: https://www.cancer.gov/research/key-initiatives/moonshot-cancer-initiative/implementation (accessed on 8 April 2024).
- Tabatabaee, A.; Nafari, B.; Farhang, A.; Hariri, A.; Khosravi, A.; Zarrabi, A.; Mirian, M. Targeting Vimentin: A Multifaceted Approach to Combatting Cancer Metastasis and Drug Resistance. Cancer Metastasis Rev. 2024, 43, 363–377. [Google Scholar] [CrossRef] [PubMed]
- Karasarides, M.; Cogdill, A.P.; Robbins, P.B.; Bowden, M.; Burton, E.M.; Butterfield, L.H.; Cesano, A.; Hammer, C.; Haymaker, C.L.; Horak, C.E.; et al. Hallmarks of Resistance to Immune-Checkpoint Inhibitors. Cancer Immunol. Res. 2022, 10, 372–383. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.; Tian, W.; Wang, Z.; Zhang, J.; Zhou, R. Co-Inhibition of TIGIT and PD-1/PD-L1 in Cancer Immunotherapy: Mechanisms and Clinical Trials. Mol. Cancer 2023, 22, 93. [Google Scholar] [CrossRef]
- Upadhaya, S.; Neftelino, S.T.; Hodge, J.P.; Oliva, C.; Campbell, J.R.; Yu, J.X. Combinations Take Centre Stage in PD1/PDL1 Inhibitor Clinical Trials. Nat. Rev. Drug Discov. 2020, 20, 168–169. [Google Scholar] [CrossRef]
- Sah, N.; Ramaiah, B.; Koneri, R. Sulfasalazine-Induced Drug Rash with Eosinophilia and Systemic Symptoms Syndrome in a Seronegative Spondyloarthritis Patient: A Case Report. Indian J. Pharmacol. 2021, 53, 391–393. [Google Scholar] [CrossRef] [PubMed]
- Kulig, P.; Milczarek, S.; Bakinowska, E.; Szalewska, L.; Baumert, B.; Machaliński, B. Lenalidomide in Multiple Myeloma: Review of Resistance Mechanisms, Current Treatment Strategies and Future Perspectives. Cancers 2023, 15, 963. [Google Scholar] [CrossRef] [PubMed]
- Gacche, R.N.; Assaraf, Y.G. Redundant Angiogenic Signaling and Tumor Drug Resistance. Drug Resist. Updates 2018, 36, 47–76. [Google Scholar] [CrossRef]
- Melaccio, A.; Reale, A.; Saltarella, I.; Desantis, V.; Lamanuzzi, A.; Cicco, S.; Frassanito, M.A.; Vacca, A.; Ria, R. Pathways of Angiogenic and Inflammatory Cytokines in Multiple Myeloma: Role in Plasma Cell Clonal Expansion and Drug Resistance. J. Clin. Med. 2022, 11, 6491. [Google Scholar] [CrossRef]
- Shi, H.; Zhao, Z.; Jiang, W.; Zhu, P.; Zhou, N.; Huang, X. A Review Into the Insights of the Role of Endothelial Progenitor Cells on Bone Biology. Front. Cell Dev. Biol. 2022, 10, 878697. [Google Scholar] [CrossRef]
- Zhang, Z.-S.; Zhou, H.-N.; He, S.-S.; Xue, M.-Y.; Li, T.; Liu, L.-M. Research Advances in Pericyte Function and Their Roles in Diseases. Chin. J. Traumatol. 2020, 23, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, J.; Chen, Z.; Luo, J.; Guo, W.; Sun, L.; Lin, L. Targeting M2-like Tumor-Associated Macrophages Is a Potential Therapeutic Approach to Overcome Antitumor Drug Resistance. NPJ Precis. Oncol. 2024, 8, 31. [Google Scholar] [CrossRef] [PubMed]
- Nowosad, A.; Marine, J.-C.; Karras, P. Perivascular Niches: Critical Hubs in Cancer Evolution. Trends Cancer 2023, 9, 897–910. [Google Scholar] [CrossRef]
- Castven, D.; Czauderna, C.; Becker, D.; Pereira, S.; Schmitt, J.; Weinmann, A.; Shah, V.; Hajduk, J.; Keggenhoff, F.; Binder, H.; et al. Acquired Resistance to Antiangiogenic Therapies in Hepatocellular Carcinoma Is Mediated by Yes-Associated Protein 1 Activation and Transient Expansion of Stem-Like Cancer Cells. Hepatol. Commun. 2022, 6, 1140–1156. [Google Scholar] [CrossRef]
- Hida, K.; Maishi, N.; Matsuda, A.; Yu, L. Beyond Starving Cancer: Anti-Angiogenic Therapy. J. Med. Ultrason. 2023, 1–6. [Google Scholar] [CrossRef]
- Montemagno, C.; Pagès, G. Resistance to Anti-Angiogenic Therapies: A Mechanism Depending on the Time of Exposure to the Drugs. Front. Cell Dev. Biol. 2020, 8, 584. [Google Scholar] [CrossRef] [PubMed]
- Quan, L.; Ohgaki, R.; Hara, S.; Okuda, S.; Wei, L.; Okanishi, H.; Nagamori, S.; Endou, H.; Kanai, Y. Amino Acid Transporter LAT1 in Tumor-Associated Vascular Endothelium Promotes Angiogenesis by Regulating Cell Proliferation and VEGF-A-Dependent mTORC1 Activation. J. Exp. Clin. Cancer Res. 2020, 39, 266. [Google Scholar] [CrossRef] [PubMed]
- Kiss, E.A.; Saharinen, P. Anti-Angiogenic Targets: Angiopoietin and Angiopoietin Receptors. Tumor Angiogenesis 2019, 227–250. [Google Scholar] [CrossRef]
- Leong, A.; Kim, M. The Angiopoietin-2 and TIE Pathway as a Therapeutic Target for Enhancing Antiangiogenic Therapy and Immunotherapy in Patients with Advanced Cancer. Int. J. Mol. Sci. 2020, 21, 8689. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, I.; Baum, A.; Hofmann, M.H.; Trapani, F.; Reichel-Voda, C.; Ehrensperger, D.; Aichinger, M.; Ebner, F.; Budano, N.; Schweifer, N.; et al. Pharmacodynamic and Antitumor Activity of BI 836880, a Dual Vascular Endothelial Growth Factor and Angiopoietin 2 Inhibitor, Alone and Combined with Programmed Cell Death Protein-1 Inhibition. J. Pharmacol. Exp. Ther. 2023, 384, 331–342. [Google Scholar] [CrossRef]
- Szymczyk, J.; Sochacka, M.; Chudy, P.; Opalinski, L.; Otlewski, J.; Zakrzewska, M. FGF1 Protects FGFR1-Overexpressing Cancer Cells against Drugs Targeting Tubulin Polymerization by Activating AKT via Two Independent Mechanisms. Front. Oncol. 2022, 12, 1011762. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, Y.; Ji, H.; Sun, X.; Xie, S.; Chen, L.; Li, S.; Zeng, W.; Chen, R.; Tang, Q.; et al. Lenvatinib for Effectively Treating Antiangiogenic Drug-Resistant Nasopharyngeal Carcinoma. Cell Death Dis. 2022, 13, 724. [Google Scholar] [CrossRef]
- Chia, Z.-J.; Cao, Y.; Little, P.J.; Kamato, D. Transforming Growth Factor-β Receptors: Versatile Mechanisms of Ligand Activation. Acta Pharmacol. Sin. 2024, 45, 1337–1348. [Google Scholar] [CrossRef]
- Niu, M.; Yi, M.; Wu, Y.; Lyu, L.; He, Q.; Yang, R.; Zeng, L.; Shi, J.; Zhang, J.; Zhou, P.; et al. Synergistic Efficacy of Simultaneous Anti-TGF-β/VEGF Bispecific Antibody and PD-1 Blockade in Cancer Therapy. J. Hematol. Oncol. 2023, 16, 94. [Google Scholar] [CrossRef]
- Acharya, G.; Mani, C.; Sah, N.; Saamarthy, K.; Young, R.; Reedy, M.B.; Sobol, R.W.; Palle, K. CHK1 Inhibitor Induced PARylation by Targeting PARG Causes Excessive Replication and Metabolic Stress and Overcomes Chemoresistance in Ovarian Cancer. Cell Death Discov. 2024, 10, 278. [Google Scholar] [CrossRef]
- Role of Chemokine-Mediated Angiogenesis in Resistance towards Crizotinib and Its Reversal by Anlotinib in EML4-ALK Positive NSCLC—PMC. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9153090/ (accessed on 9 April 2024).
- Qi, M.; Fan, S.; Huang, M.; Pan, J.; Li, Y.; Miao, Q.; Lyu, W.; Li, X.; Deng, L.; Qiu, S.; et al. Targeting FAPα-Expressing Hepatic Stellate Cells Overcomes Resistance to Antiangiogenics in Colorectal Cancer Liver Metastasis Models. J. Clin. Investig. 2023, 133, e157399. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Chelariu-Raicu, A.; Umamaheswaran, S.; Nick, A.M.; Stur, E.; Hanjra, P.; Jiang, D.; Jennings, N.B.; Chen, X.; Corvigno, S.; et al. Endothelial P130cas Confers Resistance to Anti-Angiogenesis Therapy. Cell Rep. 2022, 39, 110999. [Google Scholar] [CrossRef] [PubMed]
- Sah, N.; Peddibhotla, S.; Richardson, B.; Luna, P.; Bansal, N.A.; Mani, C.; Reedy, M.; Palle, K. Abstract A084: Oncogenic Role for Upregulated Lymphoblastic Leukemia Derived Sequence-1 in the Progression of Ovarian Cancer and Its Metastasis. Cancer Epidemiol. Biomark. Prev. 2023, 32, A084. [Google Scholar] [CrossRef]
- Lopes-Coelho, F.; Silva, F.; Gouveia-Fernandes, S.; Martins, C.; Lopes, N.; Domingues, G.; Brito, C.; Almeida, A.M.; Pereira, S.A.; Serpa, J. Monocytes as Endothelial Progenitor Cells (EPCs), Another Brick in the Wall to Disentangle Tumor Angiogenesis. Cells 2020, 9, 107. [Google Scholar] [CrossRef]
- Glover, A.; Zhang, Z.; Shannon-Lowe, C. Deciphering the Roles of Myeloid Derived Suppressor Cells in Viral Oncogenesis. Front. Immunol. 2023, 14, 1161848. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, L.; Yan, G.; Chen, Y.; Zhou, M.; Wu, Y.; Li, Y. Inflammation and Tumor Progression: Signaling Pathways and Targeted Intervention. Signal Transduct. Target. Ther. 2021, 6, 263. [Google Scholar]
- Gadwa, J.; Bickett, T.E.; Darragh, L.B.; Knitz, M.W.; Bhatia, S.; Piper, M.; Court, B.V.; Bhuvane, S.; Nguyen, D.; Nangia, V.; et al. Complement C3a and C5a Receptor Blockade Modulates Regulatory T Cell Conversion in Head and Neck Cancer. J. Immunother. Cancer 2021, 9, e002585. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.-B.; Wu, C.-Y.; Wang, X.-Y.; Deng, J.; Cao, W.-J.; Tang, Y.-Z.; Wan, C.-C.; Chen, Z.-T.; Zhan, W.-Y.; Shan, H.; et al. Targeting Inflammatory Macrophages Rebuilds Therapeutic Efficacy of DOT1L Inhibition in Hepatocellular Carcinoma. Mol. Ther. 2023, 31, 105–118. [Google Scholar] [CrossRef] [PubMed]
- Ghouse, S.M.; Vadrevu, S.K.; Manne, S.; Reese, B.; Patel, J.; Patel, B.; Silwal, A.; Lodhi, N.; Paterson, Y.; Srivastava, S.K.; et al. Therapeutic Targeting of Vasculature in the Premetastatic and Metastatic Niches Reduces Lung Metastasis. J. Immunol. 2020, 204, 990–1000. [Google Scholar] [CrossRef]
- Tang, T.; Huang, X.; Zhang, G.; Hong, Z.; Bai, X.; Liang, T. Advantages of Targeting the Tumor Immune Microenvironment over Blocking Immune Checkpoint in Cancer Immunotherapy. Signal Transduct. Target. Ther. 2021, 6, 72. [Google Scholar] [CrossRef]
- Ciciola, P.; Cascetta, P.; Bianco, C.; Formisano, L.; Bianco, R. Combining Immune Checkpoint Inhibitors with Anti-Angiogenic Agents. J. Clin. Med. 2020, 9, 675. [Google Scholar] [CrossRef]
- Chen, J.-R.; Zhao, J.-T.; Xie, Z.-Z. Integrin-Mediated Cancer Progression as a Specific Target in Clinical Therapy. Biomed. Pharmacother. 2022, 155, 113745. [Google Scholar] [CrossRef]
- Yi, M.; Jiao, D.; Qin, S.; Chu, Q.; Wu, K.; Li, A. Synergistic Effect of Immune Checkpoint Blockade and Anti-Angiogenesis in Cancer Treatment. Mol. Cancer 2019, 18, 60. [Google Scholar] [CrossRef]
- Chaudhary, P.K.; Kim, S. An Insight into GPCR and G-Proteins as Cancer Drivers. Cells 2021, 10, 3288. [Google Scholar] [CrossRef]
- Kohli, K.; Pillarisetty, V.G.; Kim, T.S. Key Chemokines Direct Migration of Immune Cells in Solid Tumors. Cancer Gene Ther. 2022, 29, 10–21. [Google Scholar] [CrossRef]
- Crean, D.; Murphy, E.P. Targeting NR4A Nuclear Receptors to Control Stromal Cell Inflammation, Metabolism, Angiogenesis, and Tumorigenesis. Front. Cell Dev. Biol. 2021, 9, 589770. [Google Scholar] [CrossRef]
- Akil, A.; Gutiérrez-García, A.K.; Guenter, R.; Rose, J.B.; Beck, A.W.; Chen, H.; Ren, B. Notch Signaling in Vascular Endothelial Cells, Angiogenesis, and Tumor Progression: An Update and Prospective. Front. Cell Dev. Biol. 2021, 9, 642352. [Google Scholar] [CrossRef]
- Morris, R.M.; Mortimer, T.O.; O’Neill, K.L. Cytokines: Can Cancer Get the Message? Cancers 2022, 14, 2178. [Google Scholar] [CrossRef]
- Wang, Q.; Shen, X.; Chen, G.; Du, J. How to Overcome Resistance to Immune Checkpoint Inhibitors in Colorectal Cancer: From Mechanisms to Translation. Int. J. Cancer 2023, 153, 709–722. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, C.; Wang, H. Immune-Checkpoint Inhibitor Resistance in Cancer Treatment: Current Progress and Future Directions. Cancer Lett. 2023, 562, 216182. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Hsu, J.-M.; Yang, W.-H.; Hung, M.-C. Mechanisms Regulating PD-L1 Expression in Cancers and Associated Opportunities for Novel Small-Molecule Therapeutics. Nat. Rev. Clin. Oncol. 2022, 19, 287–305. [Google Scholar] [CrossRef]
- Improvement of the Anticancer Efficacy of PD-1/PD-L1 Blockade via Combination Therapy and PD-L1 Regulation—PMC. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8917703/ (accessed on 10 April 2024).
- Yang, Z.; Wang, Y.; Liu, S.; Deng, W.; Lomeli, S.H.; Moriceau, G.; Wohlschlegel, J.; Piva, M.; Lo, R.S. Enhancing PD-L1 Degradation by ITCH during MAPK Inhibitor Therapy Suppresses Acquired Resistance. Cancer Discov. 2022, 12, 1942–1959. [Google Scholar] [CrossRef]
- Yuan, J.; Khilnani, A.; Brody, J.; Andtbacka, R.H.I.; Hu-Lieskovan, S.; Luke, J.J.; Diab, A.; Marabelle, A.; Snyder, A.; Cao, Z.A.; et al. Current Strategies for Intratumoural Immunotherapy—Beyond Immune Checkpoint Inhibition. Eur. J. Cancer 2021, 157, 493–510. [Google Scholar] [CrossRef]
- Zhou, B.; Gao, Y.; Zhang, P.; Chu, Q. Acquired Resistance to Immune Checkpoint Blockades: The Underlying Mechanisms and Potential Strategies. Front. Immunol. 2021, 12, 693609. [Google Scholar] [CrossRef]
- Nguyen, H.-M.; Sah, N.; Humphrey, M.R.M.; Rabkin, S.D.; Saha, D. Growth, Purification, and Titration of Oncolytic Herpes Simplex Virus. J. Vis. Exp. 2021, 171, 1–16. [Google Scholar] [CrossRef]
- Chen, X.; Feng, L.; Huang, Y.; Wu, Y.; Xie, N. Mechanisms and Strategies to Overcome PD-1/PD-L1 Blockade Resistance in Triple-Negative Breast Cancer. Cancers 2022, 15, 104. [Google Scholar] [CrossRef]
- Shen, M.; Chen, C.; Guo, Q.; Wang, Q.; Liao, J.; Wang, L.; Yu, J.; Xue, M.; Duan, Y.; Zhang, J. Systemic Delivery of mPEG-Masked Trispecific T-Cell Nanoengagers in Synergy with STING Agonists Overcomes Immunotherapy Resistance in TNBC and Generates a Vaccination Effect. Adv. Sci. 2022, 9, e2203523. [Google Scholar] [CrossRef]
- Vesely, M.D.; Zhang, T.; Chen, L. Resistance Mechanisms to Anti-PD Cancer Immunotherapy. Annu. Rev. Immunol. 2022, 40, 45–74. [Google Scholar] [CrossRef]
- Park, J.S.; Gazzaniga, F.S.; Wu, M.; Luthens, A.K.; Gillis, J.; Zheng, W.; LaFleur, M.W.; Johnson, S.B.; Morad, G.; Park, E.M.; et al. Targeting PD-L2-RGMb Overcomes Microbiome-Related Immunotherapy Resistance. Nature 2023, 617, 377–385. [Google Scholar] [CrossRef]
- Yi, W.; Yan, D.; Wang, D.; Li, Y. Smart Drug Delivery Systems to Overcome Drug Resistance in Cancer Immunotherapy. Cancer Biol. Med. 2023, 20, 248–267. [Google Scholar] [CrossRef]
- Irreversible JNK Blockade Overcomes PD-L1-Mediated Resistance to Chemotherapy in Colorectal Cancer|Oncogene. Available online: https://www.nature.com/articles/s41388-021-01910-6 (accessed on 10 April 2024).
- Combination of STING Agonist and CXCR3 Antagonist Disrupts Immune Tolerance to Overcome Anti-PD-L1 Resistance in Lung Adenocarcinoma under Oxidative Stress—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/abs/pii/S037811192200782X (accessed on 10 April 2024).
- Mani, C.; Acharya, G.; Kshirsagar, S.; Vijayan, M.; Khan, H.; Reddy, P.H.; Palle, K. A Novel Role for BRIP1/FANCJ in Neuronal Cells Health and in Resolving Oxidative Stress-Induced DNA Lesions. J. Alzheimers Dis. 2022, 85, 207–221. [Google Scholar] [CrossRef] [PubMed]
- Luna, P.; Acharya, G.; Ochola, D.; Peddibhotla, S.; Mani, C.; Reedy, M.B.; Palle, K. Abstract 5496: Glutaminase Inhibition Induces Replication Stress in Ovarian Cancer Cells and Inhibition of Replication Checkpoint Causes Synthetic Lethality. Cancer Res. 2023, 83, 5496. [Google Scholar] [CrossRef]
- Okechukwu, C.C.; Ma, X.; Sah, N.; Mani, C.; Palle, K.; Gmeiner, W.H. Enhanced Therapeutic Efficacy of the Nanoscale Fluoropyrimidine Polymer CF10 in a Rat Colorectal Cancer Liver Metastasis Model. Cancers 2024, 16, 1360. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Liu, S.; Mao, M.; Gong, Y.; Li, X.; Lei, T.; Liu, C.; Wu, S.; Hu, Q. T-Cell Infiltration and Its Regulatory Mechanisms in Cancers: Insights at Single-Cell Resolution. J. Exp. Clin. Cancer Res. 2024, 43, 38. [Google Scholar] [CrossRef]
- Healey, N. Tumor Infiltrating Lymphocyte Approval Heralds New Era for Precision Cancer Immunotherapy. Nat. Med. 2024, 30, 1795–1796. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yuan, Z.; Li, Z.; He, X.; Zhang, Y.; Wang, X.; Su, J.; Wu, X.; Li, M.; Du, F.; et al. Key Oncogenic Signaling Pathways Affecting Tumor-Infiltrating Lymphocytes Infiltration in Hepatocellular Carcinoma: Basic Principles and Recent Advances. Front. Immunol. 2024, 15, 1354313. [Google Scholar] [CrossRef]
- Zhou, L.; Yi, M. Editorial: Harnessing Tumor Microenvironment for Gynecologic Cancer Therapy. Front. Immunol. 2024, 15, 1407128. [Google Scholar] [CrossRef]
- Targeting TBK1 to Overcome Resistance to Cancer Immunotherapy—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/36634707/ (accessed on 10 April 2024).
- Belmontes, B.; Sawant, D.V.; Zhong, W.; Tan, H.; Kaul, A.; Aeffner, F.; O’Brien, S.A.; Chun, M.; Noubade, R.; Eng, J.; et al. Immunotherapy Combinations Overcome Resistance to Bispecific T Cell Engager Treatment in T Cell-Cold Solid Tumors. Sci. Transl. Med. 2021, 13, eabd1524. [Google Scholar] [CrossRef]
- Dong, S.; Zhang, S.; Zhao, P.; Lin, G.; Ma, X.; Xu, J.; Zhang, H.; Hu, J.; Zou, C. A Combined Analysis of Bulk and Single-Cell Sequencing Data Reveals That Depleted Extracellular Matrix and Enhanced Immune Processes Co-Contribute to Fluorouracil Beneficial Responses in Gastric Cancer. Front. Immunol. 2022, 13, 999551. [Google Scholar] [CrossRef]
- Zhou, K.; Li, S.; Zhao, Y.; Cheng, K. Mechanisms of Drug Resistance to Immune Checkpoint Inhibitors in Non-Small Cell Lung Cancer. Front. Immunol. 2023, 14, 1127071. [Google Scholar] [CrossRef]
- Zhou, X.; Ni, Y.; Liang, X.; Lin, Y.; An, B.; He, X.; Zhao, X. Mechanisms of Tumor Resistance to Immune Checkpoint Blockade and Combination Strategies to Overcome Resistance. Front. Immunol. 2022, 13, 915094. [Google Scholar] [CrossRef] [PubMed]
- Addressing CPI Resistance in NSCLC: Targeting TAM Receptors to Modulate the Tumor Microenvironment and Future Prospects—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/35858709/ (accessed on 10 April 2024).
- Combination of P38 MAPK Inhibitor with PD-L1 Antibody Effectively Prolongs Survivals of Temozolomide-Resistant Glioma-Bearing Mice via Reduction of Infiltrating Glioma-Associated Macrophages and PD-L1 Expression on Resident Glioma-Associated Microglia|Brain Tumor Pathology. Available online: https://link.springer.com/article/10.1007/s10014-021-00404-3 (accessed on 10 April 2024).
- Zhao, J.; Dong, Y.; Zhang, Y.; Wang, J.; Wang, Z. Biophysical Heterogeneity of Myeloid-Derived Microenvironment to Regulate Resistance to Cancer Immunotherapy. Adv. Drug Deliv. Rev. 2022, 191, 114585. [Google Scholar] [CrossRef] [PubMed]
- Target Immune Components to Circumvent Sorafenib Resistance in Hepatocellular Carcinoma—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/37121146/ (accessed on 10 April 2024).
- T Cell-Mediated Targeted Delivery of Tadalafil Regulates Immunosuppression and Polyamine Metabolism to Overcome Immune Checkpoint Blockade Resistance in Hepatocellular Carcinoma—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/36813307/ (accessed on 10 April 2024).
- Gonzalez, C.; Williamson, S.; Gammon, S.T.; Glazer, S.; Rhee, J.H.; Piwnica-Worms, D. TLR5 Agonists Enhance Anti-Tumor Immunity and Overcome Resistance to Immune Checkpoint Therapy. Commun Biol 2023, 6, 31. [Google Scholar] [CrossRef] [PubMed]
- Immune Checkpoint Proteins: Signaling Mechanisms and Molecular Interactions in Cancer Immunotherapy—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/35341913/ (accessed on 10 April 2024).
- Gautam, S.K.; Basu, S.; Aithal, A.; Dwivedi, N.V.; Gulati, M.; Jain, M. Regulation of Pancreatic Cancer Therapy Resistance by Chemokines. Semin. Cancer Biol. 2022, 86, 69–80. [Google Scholar] [CrossRef]
- Monteleone, G.; Franzè, E.; Maresca, C.; Colella, M.; Pacifico, T.; Stolfi, C. Targeted Therapy of Interleukin-34 as a Promising Approach to Overcome Cancer Therapy Resistance. Cancers 2023, 15, 971. [Google Scholar] [CrossRef]
- Shi, W.; Lv, L.; Liu, N.; Wang, H.; Wang, Y.; Zhu, W.; Liu, Z.; Zhu, J.; Lu, H. A Novel Anti-PD-L1/IL-15 Immunocytokine Overcomes Resistance to PD-L1 Blockade and Elicits Potent Antitumor Immunity. Mol. Ther. 2023, 31, 66–77. [Google Scholar] [CrossRef]
- Wang, H.; Borlongan, M.; Hemminki, A.; Basnet, S.; Sah, N.; Kaufman, H.L.; Rabkin, S.D.; Saha, D. Viral Vectors Expressing Interleukin 2 for Cancer Immunotherapy. Hum. Gene Ther. 2023, 34, 878–895. [Google Scholar] [CrossRef]
- Yi, M.; Niu, M.; Zhang, J.; Li, S.; Zhu, S.; Yan, Y.; Li, N.; Zhou, P.; Chu, Q.; Wu, K. Combine and Conquer: Manganese Synergizing Anti-TGF-β/PD-L1 Bispecific Antibody YM101 to Overcome Immunotherapy Resistance in Non-Inflamed Cancers. J. Hematol. Oncol. 2021, 14, 146. [Google Scholar] [CrossRef]
- Cheng, C.; Zhuge, L.; Xiao, X.; Luan, S.; Yuan, Y. Overcoming Resistance to PD-1/PD-L1 Inhibitors in Esophageal Cancer. Front. Oncol. 2022, 12, 955163. [Google Scholar] [CrossRef]
- Advances in Immune Therapies for the Treatment of Microsatellite Instability-High/Deficient Mismatch Repair Metastatic Colorectal Cancer (Review)—PMC. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8360619/ (accessed on 10 April 2024).
- Ding, P.R. Immunotherapy for microsatellite-instability-high advanced colorectal cancer. Zhonghua Wei Chang Wai Ke Za Zhi 2022, 25, 199–204. [Google Scholar] [CrossRef]
- Insights and Strategies of Melanoma Immunotherapy: Predictive Biomarkers of Response and Resistance and Strategies to Improve Response Rates—PMC. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9820306/ (accessed on 10 April 2024).
- Choi, S.H.; Jung, D.; Kim, K.Y.; An, H.J.; Park, K.-S. Combined Use of Cisplatin plus Natural Killer Cells Overcomes Immunoresistance of Cisplatin Resistant Ovarian Cancer. Biochem. Biophys. Res. Commun. 2021, 563, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Tarantino, P.; Barroso-Sousa, R.; Garrido-Castro, A.C.; McAllister, S.S.; Guerriero, J.L.; Mittendorf, E.; Curigliano, G.; Tolaney, S.M. Understanding Resistance to Immune Checkpoint Inhibitors in Advanced Breast Cancer. Expert Rev. Anticancer Ther. 2022, 22, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Qin, G.; Liu, S.; Liu, J.; Hu, H.; Yang, L.; Zhao, Q.; Li, C.; Zhang, B.; Zhang, Y. Overcoming Resistance to Immunotherapy by Targeting GPR84 in Myeloid-Derived Suppressor Cells. Signal Transduct. Target. Ther. 2023, 8, 164. [Google Scholar] [CrossRef]
- Wei, C.-Y.; Zhu, M.-X.; Zhang, P.-F.; Huang, X.-Y.; Wan, J.-K.; Yao, X.-Z.; Hu, Z.-T.; Chai, X.-Q.; Peng, R.; Yang, X.; et al. PKCα/ZFP64/CSF1 Axis Resets the Tumor Microenvironment and Fuels Anti-PD1 Resistance in Hepatocellular Carcinoma. J. Hepatol. 2022, 77, 163–176. [Google Scholar] [CrossRef] [PubMed]
- Strategies to Overcome Drug Resistance Using SHP2 Inhibitors—PMC. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8727779/ (accessed on 10 April 2024).
- Cristina, M.; Emiliano, L.; Leonardo, S.; Giulia, S.; Roberta, G.; Adolfo, A.; Marta, S.S.; Paola, S.; Samuele, R.; Pierluigi, S.; et al. Identification of a Novel Nitroflavone-Based Scaffold for Designing Mutant-Selective EGFR Tyrosine Kinase Inhibitors Targeting T790M and C797S Resistance in Advanced NSCLC. Bioorg. Chem. 2022, 129, 106219. [Google Scholar] [CrossRef]
- Sun, Y.; Dong, Y.; Liu, X.; Zhang, Y.; Bai, H.; Duan, J.; Tian, Z.; Yan, X.; Wang, J.; Wang, Z. Blockade of STAT3/IL-4 Overcomes EGFR T790M-Cis-L792F-Induced Resistance to Osimertinib via Suppressing M2 Macrophages Polarization. EBioMedicine 2022, 83, 104200. [Google Scholar] [CrossRef]
- Yan, D.; Huelse, J.M.; Kireev, D.; Tan, Z.; Chen, L.; Goyal, S.; Wang, X.; Frye, S.V.; Behera, M.; Schneider, F.; et al. MERTK Activation Drives Osimertinib Resistance in EGFR-Mutant Non-Small Cell Lung Cancer. J. Clin. Investig. 2022, 132, e150517. [Google Scholar] [CrossRef]
- Fu, K.; Xie, F.; Wang, F.; Fu, L. Therapeutic Strategies for EGFR-Mutated Non-Small Cell Lung Cancer Patients with Osimertinib Resistance. J. Hematol. Oncol. 2022, 15, 173. [Google Scholar] [CrossRef]
- Tian, X.; Wang, R.; Gu, T.; Ma, F.; Laster, K.V.; Li, X.; Liu, K.; Lee, M.-H.; Dong, Z. Costunolide Is a Dual Inhibitor of MEK1 and AKT1/2 That Overcomes Osimertinib Resistance in Lung Cancer. Mol. Cancer 2022, 21, 193. [Google Scholar] [CrossRef]
- Chen, W.; Yu, D.; Sun, S.-Y.; Li, F. Nanoparticles for Co-Delivery of Osimertinib and Selumetinib to Overcome Osimertinib-Acquired Resistance in Non-Small Cell Lung Cancer. Acta Biomater. 2021, 129, 258–268. [Google Scholar] [CrossRef]
- Fukuda, K.; Otani, S.; Takeuchi, S.; Arai, S.; Nanjo, S.; Tanimoto, A.; Nishiyama, A.; Naoki, K.; Yano, S. Trametinib Overcomes KRAS-G12V-Induced Osimertinib Resistance in a Leptomeningeal Carcinomatosis Model of EGFR-Mutant Lung Cancer. Cancer Sci. 2021, 112, 3784–3795. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Zou, T.; Qin, W.; Shen, X.; Su, Y.; Li, J.; Chen, Y.; Zhang, Z.; Sun, H.; Zheng, Y.; et al. Inhibition of EGFR Overcomes Acquired Lenvatinib Resistance Driven by STAT3-ABCB1 Signaling in Hepatocellular Carcinoma. Cancer Res. 2022, 82, 3845–3857. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Long, L.; Liu, J.; Zhu, L.; Luo, F. Case Report: Anlotinib Reverses Nivolumab Resistance in Advanced Primary Pulmonary Lymphoepithelioma-Like Carcinoma with FGFR3 Gene Amplification. Front. Oncol. 2021, 11, 749682. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.-H.; Nam, A.-R.; Bang, J.-H.; Oh, K.-S.; Seo, H.-R.; Kim, J.-M.; Yoon, J.; Kim, T.-Y.; Oh, D.-Y. WEE1 Inhibition Reverses Trastuzumab Resistance in HER2-Positive Cancers. Gastric Cancer 2021, 24, 1003–1020. [Google Scholar] [CrossRef]
- Gomes, I.N.F.; da Silva-Oliveira, R.J.; da Silva, L.S.; Martinho, O.; Evangelista, A.F.; van Helvoort Lengert, A.; Leal, L.F.; Silva, V.A.O.; Dos Santos, S.P.; Nascimento, F.C.; et al. Comprehensive Molecular Landscape of Cetuximab Resistance in Head and Neck Cancer Cell Lines. Cells 2022, 11, 154. [Google Scholar] [CrossRef]
- Landi, N.; Ciaramella, V.; Ragucci, S.; Chambery, A.; Ciardiello, F.; Pedone, P.V.; Troiani, T.; Di Maro, A. A Novel EGFR Targeted Immunotoxin Based on Cetuximab and Type 1 RIP Quinoin Overcomes the Cetuximab Resistance in Colorectal Cancer Cells. Toxins 2023, 15, 57. [Google Scholar] [CrossRef]
- Kawasaki, N.; Yamashita-Kashima, Y.; Fujimura, T.; Yoshiura, S.; Harada, N.; Kondoh, O.; Yoshimura, Y. Resistance to Obinutuzumab-Induced Antibody-Dependent Cellular Cytotoxicity Caused by Abnormal Fas Signaling Is Overcome by Combination Therapies. Mol. Biol. Rep. 2022, 49, 4421–4433. [Google Scholar] [CrossRef]
- Tian, Y.; Chen, Z.-H.; Wu, P.; Zhang, D.; Ma, Y.; Liu, X.-F.; Wang, X.; Ding, D.; Cao, X.-C.; Yu, Y. MIR497HG-Derived miR-195 and miR-497 Mediate Tamoxifen Resistance via PI3K/AKT Signaling in Breast Cancer. Adv. Sci. (Weinh) 2023, 10, e2204819. [Google Scholar] [CrossRef]
- Park, S.-J.; Joo, S.H.; Lee, N.; Jang, W.-J.; Seo, J.H.; Jeong, C.-H. ACY-241, an HDAC6 Inhibitor, Overcomes Erlotinib Resistance in Human Pancreatic Cancer Cells by Inducing Autophagy. Arch. Pharm. Res. 2021, 44, 1062–1075. [Google Scholar] [CrossRef]
- You, Q.; Wang, J.; Yu, Y.; Li, F.; Meng, L.; Chen, M.; Yang, Q.; Xu, Z.; Sun, J.; Zhuo, W.; et al. The Histone Deacetylase SIRT6 Promotes Glycolysis through the HIF-1α/HK2 Signaling Axis and Induces Erlotinib Resistance in Non-Small Cell Lung Cancer. Apoptosis 2022, 27, 883–898. [Google Scholar] [CrossRef]
- Zhou, J.; Ji, Q.; Li, Q. Resistance to Anti-EGFR Therapies in Metastatic Colorectal Cancer: Underlying Mechanisms and Reversal Strategies. J. Exp. Clin. Cancer Res. 2021, 40, 328. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Huang, Z.; Han, L.; Gong, Y.; Xie, C. Mechanisms and Management of 3rd-generation EGFR-TKI Resistance in Advanced Non-small Cell Lung Cancer (Review). Int. J. Oncol. 2021, 59, 90. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Bhattacharya, A.; Li, Y.; Sexton, S.; Ling, X.; Li, F.; Zhang, Y. Depleting Receptor Tyrosine Kinases EGFR and HER2 Overcomes Resistance to EGFR Inhibitors in Colorectal Cancer. J. Exp. Clin. Cancer Res. 2022, 41, 184. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.-R.; Zhang, Y.-F.; Lei, H.-M.; Tang, Y.-B.; Ma, C.-S.; Lv, Q.-M.; Wang, S.-Y.; Lu, L.-M.; Shen, Y.; Chen, H.-Z.; et al. Targeting AKR1B1 Inhibits Glutathione de Novo Synthesis to Overcome Acquired Resistance to EGFR-Targeted Therapy in Lung Cancer. Sci. Transl. Med. 2021, 13, eabg6428. [Google Scholar] [CrossRef]
- Oh, S.Y.; Lee, Y.W.; Lee, E.J.; Kim, J.H.; Park, Y.; Heo, S.G.; Yu, M.R.; Hong, M.H.; DaSilva, J.; Daly, C.; et al. Preclinical Study of a Biparatopic METxMET Antibody-Drug Conjugate, REGN5093-M114, Overcomes MET-Driven Acquired Resistance to EGFR TKIs in EGFR-Mutant NSCLC. Clin. Cancer Res. 2023, 29, 221–232. [Google Scholar] [CrossRef]
- Lim, S.M.; Kim, C.G.; Cho, B.C. Antibody-Drug Conjugates: A New Addition to the Treatment Landscape of EGFR-Mutant Non-Small Cell Lung Cancer. Cancer Res. 2022, 82, 18–20. [Google Scholar] [CrossRef]
- Zeng, Y.; Yu, D.; Tian, W.; Wu, F. Resistance Mechanisms to Osimertinib and Emerging Therapeutic Strategies in Non small Cell Lung Cancer. Curr. Opin. Oncol. 2022, 34, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Mao, T.; Wang, J.; Zheng, H.; Hu, Z.; Cao, P.; Yang, S.; Zhu, L.; Guo, S.; Zhao, X.; et al. Toward the Next Generation EGFR Inhibitors: An Overview of Osimertinib Resistance Mediated by EGFR Mutations in Non-Small Cell Lung Cancer. Cell Commun. Signal. 2023, 21, 71. [Google Scholar] [CrossRef]
- Tsubata, Y.; Tanino, R.; Isobe, T. Current Therapeutic Strategies and Prospects for EGFR Mutation-Positive Lung Cancer Based on the Mechanisms Underlying Drug Resistance. Cells 2021, 10, 3192. [Google Scholar] [CrossRef]
- Tang, X.; Cheng, L.; Li, G.; Yan, Y.-M.; Su, F.; Huang, D.-L.; Zhang, S.; Liu, Z.; Qian, M.; Li, J.; et al. A Small-Molecule Compound D6 Overcomes EGFR-T790M-Mediated Resistance in Non-Small Cell Lung Cancer. Commun. Biol. 2021, 4, 1391. [Google Scholar] [CrossRef]
- Malapelle, U.; Passiglia, F. A Strategy to Overcome EGFR p.T790M Cis p.L792F Induced Resistance to Osimertinib. EBioMedicine 2022, 83, 104213. [Google Scholar] [CrossRef] [PubMed]
- Qu, F.; Zhou, Y.; Yu, W. A Review of Research Progress on Mechanisms and Overcoming Strategies of Acquired Osimertinib Resistance. Anticancer Drugs 2022, 33, e76–e83. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, M.; Shinde, Y.; Pawara, R.; Noolvi, M.; Surana, S.; Ahmad, I.; Patel, H. Emerging Approaches to Overcome Acquired Drug Resistance Obstacles to Osimertinib in Non-Small-Cell Lung Cancer. J. Med. Chem. 2022, 65, 1008–1046. [Google Scholar] [CrossRef] [PubMed]
- Markham, A.; Keam, S.J. Selumetinib: First Approval. Drugs 2020, 80, 931–937. [Google Scholar] [CrossRef] [PubMed]
- Guardiola, S.; Sánchez-Navarro, M.; Rosell, R.; Giralt, E.; Codony-Servat, J. Anti-EGF Nanobodies Enhance the Antitumoral Effect of Osimertinib and Overcome Resistance in Non-Small Cell Lung Cancer (NSCLC) Cellular Models. Med. Oncol. 2022, 39, 195. [Google Scholar] [CrossRef]
- Ku, B.M.; Heo, J.Y.; Kim, J.; Sun, J.-M.; Lee, S.-H.; Ahn, J.S.; Park, K.; Ahn, M.-J. ERK Inhibitor ASN007 Effectively Overcomes Acquired Resistance to EGFR Inhibitor in Non-Small Cell Lung Cancer. Investig. New Drugs 2022, 40, 265–273. [Google Scholar] [CrossRef]
- Ma, G.; Deng, Y.; Qian, L.; Vallega, K.A.; Zhang, G.; Deng, X.; Owonikoko, T.K.; Ramalingam, S.S.; Fang, D.D.; Zhai, Y.; et al. Overcoming Acquired Resistance to Third-Generation EGFR Inhibitors by Targeting Activation of Intrinsic Apoptotic Pathway through Mcl-1 Inhibition, Bax Activation, or Both. Oncogene 2022, 41, 1691–1700. [Google Scholar] [CrossRef]
- Sah, N.; Luna, P.; Mani, C.; Gmeiner, W.; Palle, K. A Novel Fluoropyrimidine Drug to Treat Recalcitrant Colorectal Cancer. J. Pharmacol. Exp. Ther. 2023, 385, 441. [Google Scholar] [CrossRef]
- Sah, N.; Luna, P.; Mani, C.; Gmeiner, W.; Palle, K. Abstract 6178: A Novel Second-Generation Nano-Fluoropyrimidine to Treat Metastatic Colorectal Cancer and Overcome 5-Fluorouracil Resistance. Cancer Res. 2023, 83, 6178. [Google Scholar] [CrossRef]
- Hong, X.; Hsieh, M.-T.; Tseng, T.-Y.; Lin, H.-Y.; Chang, H.-C.; Yau, S.-T.; Cheng, W.-C.; Ke, B.; Liao, H.-H.; Wu, C.-Y.; et al. Diarylheptanoid 35d Overcomes EGFR TKI Resistance by Inducing Hsp70-Mediated Lysosomal Degradation of EGFR in EGFR-Mutant Lung Adenocarcinoma. J. Biol. Chem. 2023, 299, 104814. [Google Scholar] [CrossRef]
- Kwon, Y.-S.; Nam, K.-S.; Kim, S. Tamoxifen Overcomes the Trastuzumab-Resistance of SK-BR-3 Tumorspheres by Targeting Crosstalk between Cytoplasmic Estrogen Receptor α and the EGFR/HER2 Signaling Pathway. Biochem. Pharmacol. 2021, 190, 114635. [Google Scholar] [CrossRef] [PubMed]
- Zalaquett, Z.; Catherine Rita Hachem, M.; Kassis, Y.; Hachem, S.; Eid, R.; Raphael Kourie, H.; Planchard, D. Acquired Resistance Mechanisms to Osimertinib: The Constant Battle. Cancer Treat. Rev. 2023, 116, 102557. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Piotrowska, Z.; Soo, R.; Cho, B.C.; Lim, S.M. Combatting Acquired Resistance to Osimertinib in EGFR-Mutant Lung Cancer. Ther. Adv. Med. Oncol. 2022, 14. [Google Scholar] [CrossRef] [PubMed]
- Huddleston, C.; Fakhreddine, A.B.; Stroever, S.; Young, R.; Sah, N.; Palle, K.; Reedy, M. Abstract 1305: Comparison of HPV-DNA Testing to PET-CT Imaging as Prognostic Test Following Definitive Treatment for Cervical Cancer: A Retrospective Proof-of-Concept Study. Cancer Res. 2024, 84, 1305. [Google Scholar] [CrossRef]
- Varghese, J.; Sah, N.; Thomas, S.M.; Jose, J.C.; Ramaiah, B.; Koneri, R. PDG6 Clinical Evaluation of Skin and Soft Tissue Infections in Inpatient Versus Outpatient Setting at a Tertiary Care Hospital—A Prospective Study. Value Health 2020, 23, S521–S522. [Google Scholar] [CrossRef]
- Varghese, J.; Sah, N.; Ramaiah, B. PDG50 Obstacles in the IV to ORAL Antibiotic Shift for Eligible Patients at a Tertiary Care Hospital. Value Health 2020, 23, S527. [Google Scholar] [CrossRef]
Drugs | Target | Cancer Models | Resistance Mechanism | Target to Overcome Resistance | References |
---|---|---|---|---|---|
Osimertinib | EGFR-TKI | NSCLC | EGFR domain (T790M, C797S, T790M-cis-L792F) Mutation, MAPK/ERK/PI3K/AKT activation | T790M and C797S (nitro flavone-based inhibitor) STAT-3 (Dupilumab) MEK1/2, AKT1/2, ERK (Costunolide, Selumetinib, Trametinib) | [103,104,105,106,107,108,109] |
Lenvatinib | Multiple receptor TKI | HCC | Activation of the EGFR–STAT3–ABCB1 signaling axis | EGFR | [110] |
Sorafenib | TKI | HCC | Immune components | Tumor-associated myeloid cells (PD-1,PD-L1 inhibitors) | [85] |
Nivolumab (mAb) | PD-1 | HCC, PLELC | Multidrug resistance, FGFR3 gene amplification | Tyrosine kinase receptor (Anlotinib) | [111] |
Trastuzumab (mAb) | HER2 | GC, BC | Mutation in HER2 (c.1899-1G>A) | WEE1 | [112] |
Cetuximab | EGFR | HNSCC, CRC | Overexpression of KRAS, RhoA, mTOR, and CD44, | RhoA–mTOR–PIK3–AKT, Type 1 ribosome inactivating protein (RIP) (Quinoin) | [113,114] |
Obinutuzumab (mAb) | CD20 | FL | Abnormal Fas signaling | Glucocorticoid receptor (prednisolone) Alkylating agents (Bendamustine) | [115] |
Tamoxifen | ER | BC | Long non-coding RNAs (lncRNAs), miRNAs | PI3K-AKT (Ipatasertib and AT7867) | [116] |
Erlotinib | Receptor TKI | PC, NSCLC | Overexpression of HDAC6; Histone deacetylase SIRT6 promoting glycolysis | Histone deacetylase 6 (HDAC6) | [117,118] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sah, N.; Shaik, A.A.; Acharya, G.; Dunna, M.; Silwal, A.; Sharma, S.; Khan, S.; Bagchi, S. Receptor-Based Strategies for Overcoming Resistance in Cancer Therapy. Receptors 2024, 3, 425-443. https://doi.org/10.3390/receptors3040021
Sah N, Shaik AA, Acharya G, Dunna M, Silwal A, Sharma S, Khan S, Bagchi S. Receptor-Based Strategies for Overcoming Resistance in Cancer Therapy. Receptors. 2024; 3(4):425-443. https://doi.org/10.3390/receptors3040021
Chicago/Turabian StyleSah, Naresh, Abdul Althaf Shaik, Ganesh Acharya, Manikantha Dunna, Ashok Silwal, Sejal Sharma, Sabiha Khan, and Sounak Bagchi. 2024. "Receptor-Based Strategies for Overcoming Resistance in Cancer Therapy" Receptors 3, no. 4: 425-443. https://doi.org/10.3390/receptors3040021
APA StyleSah, N., Shaik, A. A., Acharya, G., Dunna, M., Silwal, A., Sharma, S., Khan, S., & Bagchi, S. (2024). Receptor-Based Strategies for Overcoming Resistance in Cancer Therapy. Receptors, 3(4), 425-443. https://doi.org/10.3390/receptors3040021