Annual Achievements Report
Available Now
 
14 pages, 7478 KiB  
Article
Constructing a Ta3N5/Tubular Graphitic Carbon Nitride Van Der Waals Heterojunction for Enhanced Photocatalytic Hydrogen Production
by Junbo Yu, Guiming Ba, Fuhong Bi, Huilin Hu, Jinhua Ye and Defa Wang
Catalysts 2025, 15(7), 691; https://doi.org/10.3390/catal15070691 (registering DOI) - 20 Jul 2025
Abstract
Constructing a heterojunction is considered one of the most effective strategies for enhancing photocatalytic activity. Herein, we employ Ta3N5 and tubular graphitic carbon nitride (TCN) to construct a Ta3N5/TCN van der Waals heterojunction via electrostatic self-assembly [...] Read more.
Constructing a heterojunction is considered one of the most effective strategies for enhancing photocatalytic activity. Herein, we employ Ta3N5 and tubular graphitic carbon nitride (TCN) to construct a Ta3N5/TCN van der Waals heterojunction via electrostatic self-assembly for enhanced photocatalytic H2 production. SEM and TEM results show that Ta3N5 particles (~300 nm in size) are successfully anchored onto the surface of TCN. The light absorption capability of the Ta3N5/TCN heterojunction is between those of Ta3N5 and TCN. The strong interaction between Ta3N5 and TCN with different energy structures (Fermi levels) by van der Waals force renders the formation of an interfacial electric field to drive the separation and transfer of photogenerated charge carriers in the Ta3N5/TCN heterojunction, as evidenced by the photoluminescence (PL) and photoelectrochemical (PEC) characterization results. Consequently, the optimal Ta3N5/TCN heterojunction exhibits a remarkable H2 production rate of 12.73 mmol g−1 h−1 under visible light irradiation, which is 3.3 and 16.8 times those of TCN and Ta3N5, respectively. Meanwhile, the cyclic experiment demonstrates excellent stability of the Ta3N5/TCN heterojunction upon photocatalytic reaction. Notably, the photocatalytic performance of 15-TaN/TCN outperforms the most previously reported CN-based and Ta3N5-based heterojunctions for H2 production. This work provides a new avenue for the rational design of CN-based van der Waals heterojunction photocatalysts with enhanced photocatalytic activity. Full article
Show Figures

Figure 1

14 pages, 3622 KiB  
Article
Surface Moisture Control for Sustainable Manure Management: Reducing Ammonia Emissions and Preserving Nutrients
by Ieva Knoknerienė, Rolandas Bleizgys and Vilma Naujokienė
Sustainability 2025, 17(14), 6617; https://doi.org/10.3390/su17146617 (registering DOI) - 20 Jul 2025
Abstract
Researchers increasingly agree that livestock farming is the leading cause of air pollution with ammonia (NH3) gas. The existing research suggests that 30–80% of nitrogen is lost from slurry and liquid manure in the gaseous form of ammonia. Most studies have [...] Read more.
Researchers increasingly agree that livestock farming is the leading cause of air pollution with ammonia (NH3) gas. The existing research suggests that 30–80% of nitrogen is lost from slurry and liquid manure in the gaseous form of ammonia. Most studies have focused on environmental factors influencing ammonia volatilization and manure composition but not on controlling the moisture level on the surface of the excreta. Applying the principles of convective mass exchange, this study was undertaken to compare different types of organic covers that mitigate NH3 emissions and offer recommendations on how to properly apply organic covers on the surface of manure. Data was obtained from research in laboratory conditions comparing well-known coatings (chopped straw) with less commonly used organic materials (peat) or waste generated in other industries (sawdust, hemp chaff). This research demonstrated that applying bio-coatings can reduce ammonia (NH3) emissions at coating thicknesses of ≥5 cm for sawdust, ≥3 cm for peat, ≥10 cm for hemp chaff, and 8–12 cm for straw. These reductions are linked to the ability of the coatings to lower manure surface moisture evaporation, a key driver of ammonia volatilization, highlighting the role of surface moisture control in emission mitigation. Full article
Show Figures

Figure 1

8 pages, 5186 KiB  
Case Report
Ectopic Intramural Isthmic Pregnancy: Case Report
by Eloisa Maria Mariani, Diletta Guglielmi, Paola Camponovo, Erika Gambino, Alessandra Inzoli, Davide Leni, Paolo Passoni and Anna Locatelli
J. Clin. Med. 2025, 14(14), 5146; https://doi.org/10.3390/jcm14145146 (registering DOI) - 20 Jul 2025
Abstract
Background/Objectives: Intramural pregnancy (IMP) is a rare type of ectopic pregnancy where the embryo implants within the uterine myometrium. This condition carries a high risk of massive hemorrhage, uterine rupture, and potentially life-threatening complications. Methods: We present a case of a 35-year-old patient [...] Read more.
Background/Objectives: Intramural pregnancy (IMP) is a rare type of ectopic pregnancy where the embryo implants within the uterine myometrium. This condition carries a high risk of massive hemorrhage, uterine rupture, and potentially life-threatening complications. Methods: We present a case of a 35-year-old patient who underwent in vitro fertilization (IVF) and was diagnosed with an IMP located in the back-isthmian portion of the uterus by ultrasound scan. Results: We performed a conservative treatment approach based on the gestational sac location and the patient’s stable clinical condition and desire for future fertility. We first administered mifepristone 600 mg, followed by intracavitary methotrexate under ultrasound guidance. Although originally planned, a uterine artery embolization was not performed due to the evidence of bilateral anastomoses between the uterine and ovarian arteries. Progressive reabsorption of pregnancy was observed over the course of 8 months. Conclusions: Non-surgical management can be considered for IMP, thus allowing fertility preservation. Full article
(This article belongs to the Section Obstetrics & Gynecology)
Show Figures

Figure 1

17 pages, 4184 KiB  
Review
Molecular Modification Strategies for Enhancing CO2 Electroreduction
by Yali Wang, Leibing Chen, Guoying Li, Jing Mei, Feng Zhang, Jiaxing Lu and Huan Wang
Molecules 2025, 30(14), 3038; https://doi.org/10.3390/molecules30143038 (registering DOI) - 20 Jul 2025
Abstract
Electrocatalytic CO2 reduction reaction (CO2RR) is a crucial technology for achieving carbon cycling and renewable energy conversion, yet it faces challenges such as complex reaction pathways, competition for intermediate adsorption, and low product selectivity. In recent years, molecular modification has [...] Read more.
Electrocatalytic CO2 reduction reaction (CO2RR) is a crucial technology for achieving carbon cycling and renewable energy conversion, yet it faces challenges such as complex reaction pathways, competition for intermediate adsorption, and low product selectivity. In recent years, molecular modification has emerged as a promising strategy. By adjusting the surface properties of catalysts, molecular modification alters the electronic structure, steric hindrance, promotes the adsorption of reactants, stabilizes intermediates, modifies the hydrophilic–hydrophobic environment, and regulates pH, thereby significantly enhancing the conversion efficiency and selectivity of CO2RR. This paper systematically reviews the modification strategies and mechanisms of molecularly modified materials in CO2RR. By summarizing and analyzing the existing literature, this review provides new perspectives and insights for future research on molecularly modified materials in electrocatalytic CO2 reduction. Full article
(This article belongs to the Special Issue Functional Materials for Small Molecule Electrocatalysis)
Show Figures

Figure 1

14 pages, 5817 KiB  
Article
Recent Changes in Sexually Transmitted Infection in Korea: A Population-Based Analysis
by Jae Yen Song, Kang Seob Kim, Chang Hee Han and Sangrak Bae
J. Clin. Med. 2025, 14(14), 5145; https://doi.org/10.3390/jcm14145145 (registering DOI) - 20 Jul 2025
Abstract
Background: The objective of this study is to investigate the prevalence and epidemiological changes of major sexually transmitted infections (STIs) in Korea over the past decade. Methods: From 2010 to 2021, patients diagnosed with STIs based on ICD-10 codes were analyzed [...] Read more.
Background: The objective of this study is to investigate the prevalence and epidemiological changes of major sexually transmitted infections (STIs) in Korea over the past decade. Methods: From 2010 to 2021, patients diagnosed with STIs based on ICD-10 codes were analyzed using Korean Health insurance data. The analysis included the number of patients, prevalence, and age-specific prevalence (in 5-year intervals) over this period. We examined changes in disease patterns over time by analyzing the annual trends and age-specific prevalence of bacterial STIs such as chlamydia, mycoplasma, gonorrhea, and syphilis; viral STIs such as genital herpes, human papillomavirus (HPV), and human immunodeficiency virus (HIV); and other infections including scabies, pubic lice, and trichomoniasis. Results: In 2010, the STI with the highest prevalence due to an infectious pathogen was trichomoniasis (256.65/100,000), while latent syphilis had the lowest prevalence (5.29/100,000). In 2021, the STI with the highest prevalence was genital herpes (254.54 per 100,000 persons), and latent syphilis continued to have the lowest prevalence. Bacterial STIs showed a decreasing trend. Viral STIs showed a continuous increase throughout the study period, with anogenital warts (AGW) having the highest rate of increase. Other infections showed a decreasing trend. HIV and AGW in men showed a rapid increase. Gender differences varied depending on the disease. Conclusions: While bacterial STIs have gradually declined, viral STIs have continued to increase during last decade. The characteristics of each pathogen vary according to age and gender, necessitating the establishment of risk groups for each pathogen and the development of prevention policies accordingly. Full article
Show Figures

Figure 1

20 pages, 3898 KiB  
Article
Synergistic Multi-Model Approach for GPR Data Interpretation: Forward Modeling and Robust Object Detection
by Hang Zhang, Zhijie Ma, Xinyu Fan and Feifei Hou
Remote Sens. 2025, 17(14), 2521; https://doi.org/10.3390/rs17142521 (registering DOI) - 20 Jul 2025
Abstract
Ground penetrating radar (GPR) is widely used for subsurface object detection, but manual interpretation of hyperbolic features in B-scan images remains inefficient and error-prone. In addition, traditional forward modeling methods suffer from low computational efficiency and strong dependence on field measurements. To address [...] Read more.
Ground penetrating radar (GPR) is widely used for subsurface object detection, but manual interpretation of hyperbolic features in B-scan images remains inefficient and error-prone. In addition, traditional forward modeling methods suffer from low computational efficiency and strong dependence on field measurements. To address these challenges, we propose an unsupervised data augmentation framework that utilizes CycleGAN-based model to generates diverse synthetic B-scan images by simulating varying geological parameters and scanning configurations. This approach achieves GPR data forward modeling and enhances the scenario coverage of training data. We then apply the EfficientDet architecture, which incorporates a bidirectional feature pyramid network (BiFPN) for multi-scale feature fusion, to enhance the detection capability of hyperbolic signatures in B-scan images under challenging conditions such as partial occlusions and background noise. The proposed method achieves a mean average precision (mAP) of 0.579 on synthetic datasets, outperforming YOLOv3 and RetinaNet by 16.0% and 23.5%, respectively, while maintaining robust multi-object detection in complex field conditions. Full article
(This article belongs to the Special Issue Advanced Ground-Penetrating Radar (GPR) Technologies and Applications)
Show Figures

Figure 1

13 pages, 381 KiB  
Article
Association Between Carbohydrate Quality Index During Pregnancy and Risk for Large-for-Gestational-Age Neonates: Results from the BORN 2020 Study
by Antigoni Tranidou, Antonios Siargkas, Ioannis Tsakiridis, Emmanouela Magriplis, Aikaterini Apostolopoulou, Michail Chourdakis and Themistoklis Dagklis
Children 2025, 12(7), 955; https://doi.org/10.3390/children12070955 (registering DOI) - 20 Jul 2025
Abstract
Background/Objectives: To assess the association between early pregnancy carbohydrate quality, as measured by the Carbohydrate Quality Index (CQI), and the risk of delivering a large-for-gestational-age (LGA) infant in a Mediterranean pregnant cohort of northern Greece. Methods: We analyzed singleton pregnancies from [...] Read more.
Background/Objectives: To assess the association between early pregnancy carbohydrate quality, as measured by the Carbohydrate Quality Index (CQI), and the risk of delivering a large-for-gestational-age (LGA) infant in a Mediterranean pregnant cohort of northern Greece. Methods: We analyzed singleton pregnancies from the BORN 2020 prospective cohort in Greece. Dietary intake was assessed via a validated food frequency questionnaire, and CQI was computed from glycemic index, fiber density, whole-to-refined grain ratio, and solid-to-liquid carbohydrate ratio. Multivariable logistic regression was used to estimate the association between CQI (in tertiles) and LGA risk, defined as birthweight >90th percentile. Results: Among the 797 participants, 152 (19.1%) delivered LGA infants, and 117 (14.7%) were diagnosed with GDM. Of those with GDM, 23 (19.7%) delivered LGA infants. In the total population, higher maternal weight (p < 0.001), height (p = 0.006), and pre-pregnancy BMI (p = 0.004) were significantly associated with LGA. A greater proportion of women with LGA had a BMI > 25 (p = 0.007). In the GDM subgroup, maternal height remained significantly higher in those who delivered LGA infants (p = 0.017). In multivariable models, moderate CQI was consistently associated with increased odds of LGA across all models (Model 1: aOR = 1.60 (95% CI: 1.03–2.50), p = 0.037, Model 2: aOR = 1.57 (95% CI: 1.01–2.46), p = 0.046, Model 3: aOR = 1.58 (95% CI: 1.01–2.47), p = 0.044, Model 4 aOR: 1.70; 95% CI: 1.08–2.72; p = 0.023), whereas high CQI was not. In the GDM subgroup, a significant association between high CQI and increased LGA risk was observed in less adjusted models (Model 1 aOR: 6.74; 95% CI: 1.32–56.66; p = 0.039, Model 2 aOR: 6.64; 95% CI: 1.27–57.48; p = 0.044), but this was attenuated and became non-significant in the fully adjusted model (aOR: 3.05; 95% CI: 0.47–30.22; p = 0.28). When examining CQI components individually, no consistent associations were observed. Notably, a higher intake of low-quality carbohydrates (≥50% of energy intake) was significantly associated with increased LGA risk in the total population (aOR: 4.25; 95% CI: 1.53–11.67; p = 0.005). Conclusions: Higher early pregnancy intake of low-quality carbohydrates was associated with an elevated risk of LGA in the general population. However, CQI itself showed a non-linear and inconsistent relationship with LGA, with moderate, but not high, CQI linked to increased risk, particularly in GDM pregnancies, where associations were lost after adjustment. Both carbohydrate quality and quantity evaluations are essential, particularly in high-risk groups, to inform dietary guidance in pregnancy. Full article
(This article belongs to the Special Issue Recent Advances in Maternal and Fetal Health (2nd Edition))
Show Figures

Figure 1

16 pages, 296 KiB  
Article
The Impact of Synbiotics on the Bacterial Flora During the Course of Chronic Sinusitis
by Karolina Goroszkiewicz, Grażyna Lisowska, Grażyna Stryjewska-Makuch, Olga Karłowska-Bijak and Maciej Misiołek
Medicina 2025, 61(7), 1306; https://doi.org/10.3390/medicina61071306 (registering DOI) - 20 Jul 2025
Abstract
Background and objectives: Chronic rhinosinusitis (CRS) is a multifactorial inflammatory condition often associated with microbiome imbalance (dysbiosis). Recent studies highlight the potential role of synbiotics—combinations of probiotics and prebiotics—in modulating the microbiota and supporting immune responses. The authors of this study aimed [...] Read more.
Background and objectives: Chronic rhinosinusitis (CRS) is a multifactorial inflammatory condition often associated with microbiome imbalance (dysbiosis). Recent studies highlight the potential role of synbiotics—combinations of probiotics and prebiotics—in modulating the microbiota and supporting immune responses. The authors of this study aimed to evaluate the impact of oral synbiotic supplementation on the sinus microbiota in patients undergoing endoscopic sinus surgery (ESS) for CRS. Materials and Methods: A total of 425 adult patients with CRS were enrolled in a multicenter retrospective study. According to EPOS 2020 guidelines, participants qualified for ESS. The intervention group (n = 194) received a synbiotic preparation for 6–8 weeks before and after surgery; the control group (n = 231) received no supplementation. Intraoperative and follow-up bacteriological samples were collected and analyzed. Statistical analysis included chi-square, t-tests, Wilcoxon tests, and ANOVA models. Results: Patients receiving synbiotics showed a significant reduction in pathogenic bacterial colonies postoperatively compared to the control group. In the synbiotic group coagulase-negative staphylococci appeared more frequently. Patients in the synbiotic group required significantly less postoperative antibiotic therapy (p < 0.05). Both groups exhibited an increase in Gram-positive and physiological flora and a decrease in Gram-negative bacteria following ESS. Conclusions: Synbiotic supplementation may beneficially influence the composition of the sinus microbiota and reduce pathogenic bacterial colonization following ESS. The findings suggest that synbiotics could serve as a supportive strategy in CRS treatment, potentially decreasing the need for postoperative antibiotics. Full article
(This article belongs to the Section Translational Medicine)
23 pages, 7547 KiB  
Article
Internal Flow Characteristics in a Prototype Spray Tower Based on CFD
by Xin Li, Hui-Fan Huang, Xiao-Wei Xu and Yu-Liang Zhang
Processes 2025, 13(7), 2308; https://doi.org/10.3390/pr13072308 (registering DOI) - 20 Jul 2025
Abstract
To investigate the mechanisms by which inlet water velocity and rotational speed affect spray tower performance, computational fluid dynamics (CFD) was employed to analyze key performance indicators, including outlet flow velocity, flow rate, and the ratio of internal to external outlet flow rates. [...] Read more.
To investigate the mechanisms by which inlet water velocity and rotational speed affect spray tower performance, computational fluid dynamics (CFD) was employed to analyze key performance indicators, including outlet flow velocity, flow rate, and the ratio of internal to external outlet flow rates. The results show that outlet flow rate is strongly positively correlated with rotational speed, while inlet water velocity demonstrates nonlinear effects on internal flow velocity. Significant parameter interaction exists—the correlation between inlet velocity and outlet velocity varies with rotational speed (R = −0.9831 to 0.5229), and the outlet flow rate ratio shows a strong negative correlation with rotational speed (R = −0.9918). The gray model demonstrated superior robustness with minimal error fluctuations, whereas the partial least squares regression model exhibited significantly increased errors under extreme conditions. This study provides a theoretical foundation and data support for spray tower parameter optimization. Full article
(This article belongs to the Section Automation Control Systems)
Show Figures

Figure 1

14 pages, 471 KiB  
Article
Profiles of Approaches to Writing and Their Links to Self-Efficacy and LLM Acceptance in L2 Academic Writing
by Fei Sun, Laura Mendoza, Junju Wang and Hongbin Li
Behav. Sci. 2025, 15(7), 983; https://doi.org/10.3390/bs15070983 (registering DOI) - 20 Jul 2025
Abstract
Approaches to writing play an important role in both the writing processes and outcomes. However, little is known about whether L2 writers adopt different combinations of approaches in academic writing contexts and what factors predict such combinations. Hence, this study aimed to identify [...] Read more.
Approaches to writing play an important role in both the writing processes and outcomes. However, little is known about whether L2 writers adopt different combinations of approaches in academic writing contexts and what factors predict such combinations. Hence, this study aimed to identify different profiles of approaches to writing in an L2 academic context and examine how they are predicted by writing self-efficacy and large language model (LLM) acceptance. To this end, a total of 578 Chinese graduate students were recruited to participate in the study. Latent profile analysis revealed three distinct writing profiles: unorganized (Profile 1), dissonant (Profile 2), and deep and organized (Profile 3), with the majority of students categorized under the dissonant profile. Additionally, multinomial logistic regression analysis revealed that writing self-efficacy positively predicted profile membership, with the strongest effect observed for Profile 3, followed by Profile 2 and then Profile 1. LLM acceptance also positively predicted profile membership, with the strongest effect for Profile 2, followed by Profile 3 and then Profile 1. Full article
Show Figures

Figure 1

12 pages, 630 KiB  
Systematic Review
Advancing Diagnostic Tools in Forensic Science: The Role of Artificial Intelligence in Gunshot Wound Investigation—A Systematic Review
by Francesco Sessa, Mario Chisari, Massimiliano Esposito, Elisa Guardo, Lucio Di Mauro, Monica Salerno and Cristoforo Pomara
Forensic Sci. 2025, 5(3), 30; https://doi.org/10.3390/forensicsci5030030 (registering DOI) - 20 Jul 2025
Abstract
Background/Objectives: Artificial intelligence (AI) is beginning to be applied in wound ballistics, showing preliminary potential to improve the accuracy and objectivity of forensic analyses. This review explores the current state of AI applications in forensic firearm wound analysis, emphasizing its potential to [...] Read more.
Background/Objectives: Artificial intelligence (AI) is beginning to be applied in wound ballistics, showing preliminary potential to improve the accuracy and objectivity of forensic analyses. This review explores the current state of AI applications in forensic firearm wound analysis, emphasizing its potential to address challenges such as subjective interpretations and data heterogeneity. Methods: A systematic review adhering to PRISMA guidelines was conducted using databases such as Scopus and Web of Science. Keywords focused on AI and GSW classification identified 502 studies, narrowed down to 4 relevant articles after rigorous screening based on inclusion and exclusion criteria. Results: These studies examined the role of deep learning (DL) models in classifying GSWs by type, shooting distance, and entry or exit characteristics. The key findings demonstrated that DL models like TinyResNet, ResNet152, and ConvNext Tiny achieved accuracy ranging from 87.99% to 98%. Models were effective in tasks such as classifying GSWs and estimating shooting distances. However, most studies were exploratory in nature, with small sample sizes and, in some cases, reliance on animal models, which limits generalizability to real-world forensic scenarios. Conclusions: Comparisons with other forensic AI applications revealed that large, diverse datasets significantly enhance model performance. Transparent and interpretable AI systems utilizing techniques are essential for judicial acceptance and ethical compliance. Despite the encouraging results, the field remains in an early stage of development. Limitations highlight the need for standardized protocols, cross-institutional collaboration, and the integration of multimodal data for robust forensic AI systems. Future research should focus on overcoming current data and validation constraints, ensuring the ethical use of human forensic data, and developing AI tools that are scientifically sound and legally defensible. Full article
Show Figures

Figure 1

16 pages, 1980 KiB  
Review
Analyzing the Blueprint: Exploring the Molecular Profile of Metastasis and Therapeutic Resistance
by Guadalupe Avalos-Navarro, Martha Patricia Gallegos-Arreola, Emmanuel Reyes-Uribe, Luis Felipe Jave Suárez, Gildardo Rivera-Sánchez, Héctor Rangel-Villalobos, Ana Luisa Madriz-Elisondo, Itzae Adonai Gutiérrez Hurtado, Juan José Varela-Hernández and Ramiro Ramírez-Patiño
Int. J. Mol. Sci. 2025, 26(14), 6954; https://doi.org/10.3390/ijms26146954 (registering DOI) - 20 Jul 2025
Abstract
Metastases are the leading cause of cancer-related deaths. The spread of neoplasms involves multiple mechanisms, with metastatic tumors exhibiting molecular behaviors distinct from their primary counterparts. The key hallmarks of metastatic lesions include chromosomal instability, copy number alterations (CNAs), and a reduced degree [...] Read more.
Metastases are the leading cause of cancer-related deaths. The spread of neoplasms involves multiple mechanisms, with metastatic tumors exhibiting molecular behaviors distinct from their primary counterparts. The key hallmarks of metastatic lesions include chromosomal instability, copy number alterations (CNAs), and a reduced degree of subclonality. Furthermore, metabolic adaptations such as enhanced glycogen synthesis and storage, as well as increased fatty acid oxidation (FAO), play a critical role in sustaining energy supply in metastases and contributing to chemoresistance. FAO promotes the infiltration of macrophages into the tumor, where they polarize to the M2 phenotype, which is associated with immune suppression and tissue remodeling. Additionally, the tumor microbiome and the action of cytotoxic drugs trigger neutrophil extravasation through inflammatory pathways. Chemoresistant neutrophils in the tumor microenvironment can suppress effector lymphocyte activation and facilitate the formation of neutrophil extracellular traps (NETs), which are linked to drug resistance. This article examines the genomic features of metastatic tumors, along with the metabolic and immunological dynamics within the metastatic tumor microenvironment, and their contribution to drug resistance. It also discusses the molecular mechanisms underlying resistance to chemotherapeutic agents commonly used in the treatment of metastatic cancer. Full article
(This article belongs to the Special Issue Breast Cancer: From Pathophysiology to Novel Therapies)
Show Figures

Figure 1

12 pages, 3671 KiB  
Article
Method for Suppressing Scintillation in Up-Link Optical Communication Using Optical Pin-like Beams Propagating Through Atmospheric Turbulence
by Rong Wang, Bin Lan, Chao Liu, Kaihe Zhang, Jiaxin Zhou, Xueying Li, Tianjun Dai and Hao Xian
Photonics 2025, 12(7), 739; https://doi.org/10.3390/photonics12070739 (registering DOI) - 20 Jul 2025
Abstract
Free space optical communication (FSOC) systems operating in the space–atmosphere channel are susceptible to severe turbulence-induced scintillation, particularly in up-link configurations where the adaptive optics (AO) pre-correction becomes ineffective due to anisoplanatic constraints. This study presents a novel scintillation suppression strategy utilizing self-focusing [...] Read more.
Free space optical communication (FSOC) systems operating in the space–atmosphere channel are susceptible to severe turbulence-induced scintillation, particularly in up-link configurations where the adaptive optics (AO) pre-correction becomes ineffective due to anisoplanatic constraints. This study presents a novel scintillation suppression strategy utilizing self-focusing optical pin-like beams (OPBs) with tailored phase modulation, combining theoretical derivation and numerical simulation. It is found that increasing the shape factor γ and modulation depth C elevates the average received power and reduces the scintillation index at the focal point. Meanwhile, quantitative evaluation of the five OPB configurations shows that the parameter set γ = 1.4 and C = 7 × 10−5 gives a peak scintillation suppression efficiency. It shows that turbulence induced scintillation is suppressed by 44% with the turbulence intensity D/r0 = 10, demonstrating exceptional effectiveness in up-link transmission. The findings demonstrate that OPB with optimized γ and C establish an approach for uplink FSOC, which is achieved through suppressed scintillation and stabilized power reception. Full article
Show Figures

Figure 1

18 pages, 4106 KiB  
Article
Assessment of Ammonia Adsorption Capacity on Activated Banana Peel Biochars
by Katarzyna Jedynak and Barbara Charmas
Materials 2025, 18(14), 3395; https://doi.org/10.3390/ma18143395 (registering DOI) - 20 Jul 2025
Abstract
This paper presents the assessment of the possibility of ammonia adsorption on biochars from banana peels, chemically activated with potassium hydroxide (KOH) at different temperatures. The obtained materials were characterized in detail using a number of analytical techniques, including nitrogen adsorption (BET), scanning [...] Read more.
This paper presents the assessment of the possibility of ammonia adsorption on biochars from banana peels, chemically activated with potassium hydroxide (KOH) at different temperatures. The obtained materials were characterized in detail using a number of analytical techniques, including nitrogen adsorption (BET), scanning electron microscopy (SEM), elemental analysis (CHNS), thermal analysis (TG, DTG, DTA), Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, Boehm titration method and biochar surface pH. They revealed a largely developed microporous structure and a large specific surface area, ranging from 1134 to 2332 m2 g−1. The adsorption tests against ammonia in the gas phase showed a large adsorption capacity of the materials, up to 5.94 mmol g−1 at 0 °C and 3.83 mmol g−1 at 20 °C. The adsorption properties of the obtained biochars were confirmed to be significantly influenced by the surface chemistry (presence of the acidic functional groups). The research results indicate that the waste-based biomass, such as banana peels, can be an ecological and economical raw material for the production of highly effective adsorbents, useful in the removal of ammonia and other toxic gases polluting the environment. Full article
(This article belongs to the Section Porous Materials)
Show Figures

Figure 1

20 pages, 16432 KiB  
Article
Application of Clustering Methods in Multivariate Data-Based Prospecting Prediction
by Xiaopeng Chang, Minghua Zhang, Liang Chen, Sheng Zhang, Wei Ren and Xiang Zhang
Minerals 2025, 15(7), 760; https://doi.org/10.3390/min15070760 (registering DOI) - 20 Jul 2025
Abstract
Mining and analyzing information from multiple sources—such as geophysics and geochemistry—is a key aspect of big data-driven mineral prediction. Clustering, which groups large datasets based on distance metrics, is an essential method in multidimensional data analysis. The Two-Step Clustering (TSC) approach offers advantages [...] Read more.
Mining and analyzing information from multiple sources—such as geophysics and geochemistry—is a key aspect of big data-driven mineral prediction. Clustering, which groups large datasets based on distance metrics, is an essential method in multidimensional data analysis. The Two-Step Clustering (TSC) approach offers advantages by handling both categorical and continuous variables and automatically determining the optimal number of clusters. In this study, we applied the TSC method to mineral prediction in the northeastern margin of the Jiaolai Basin by: (i) converting residual gravity and magnetic anomalies into categorical variables using Ward clustering; and (ii) transforming 13 stream sediment elements into independent continuous variables through factor analysis. The results showed that clustering is sensitive to categorical variables and performs better with fewer categories. When variables share similar distribution characteristics, consistency between geophysical discretization and geochemical boundaries also influences clustering results. In this study, the (3 × 4) and (4 × 4) combinations yielded optimal clustering results. Cluster 3 was identified as a favorable zone for gold deposits due to its moderate gravity, low magnetism, and the enrichment in F1 (Ni–Cu–Zn), F2 (W–Mo–Bi), and F3 (As–Sb), indicating a multi-stage, shallow, hydrothermal mineralization process. This study demonstrates the effectiveness of combining Ward clustering for variable transformation with TSC for the integrated analysis of categorical and numerical data, confirming its value in multi-source data research and its potential for further application. Full article
Show Figures

Figure 1

17 pages, 2893 KiB  
Article
Insulator Defect Detection Based on Improved YOLO11n Algorithm Under Complex Environmental Conditions
by Shoutian Dong, Yiqi Qin, Benrui Li, Qi Zhang and Yu Zhao
Electronics 2025, 14(14), 2898; https://doi.org/10.3390/electronics14142898 (registering DOI) - 20 Jul 2025
Abstract
Detecting defects in transmission line insulators is crucial to prevent power grid failures as power systems continue to expand. This study introduces YOL011n-SSA, an enhanced insulator defect detection technique method that addresses the challenges of effectively identifying flaws in complex environments. First, this [...] Read more.
Detecting defects in transmission line insulators is crucial to prevent power grid failures as power systems continue to expand. This study introduces YOL011n-SSA, an enhanced insulator defect detection technique method that addresses the challenges of effectively identifying flaws in complex environments. First, this study incorporates the StarNet network into the backbone of the model. By stacking multiple layers of star operations, the model reduces both parameter count and model size, improving its adaptability to real-time object detection tasks. Secondly, the SOPN feature pyramid network is introduced into the neck part of the model. By optimizing the multi-scale feature fusion of the richer information obtained after expanding the channel dimension, the detection efficiency for low-resolution images and small objects is improved. Then, the ADown module was adopted to improve the backbone and neck parts of the model. It effectively reduces parameter count and significantly lowers the computational cost by implementing downsampling operations between different layers of the feature map, thereby enhancing the practicality of the model. Meanwhile, by introducing the NWD to improve the evaluation index of the loss function, the detection model’s capability in assessing the similarities among various small-object defects is enhanced. Experimental results were obtained using an expanded dataset based on a public dataset, incorporating three types of insulator defects under complex environmental conditions. The results demonstrate that the YOLO11n-SSA algorithm achieved an mAP@0.5 of 0.919, an mAP@0.5:0.95 of 70.7%, a precision of 0.95, and a recall of 0.875, representing improvements of 3.9%, 5.5%, 2%, and 5.7%, respectively, when compared to the original YOLO1ln method. The detection time per image is 0.0134 s. Compared to other mainstream algorithms, the YOLO11n-SSA algorithm demonstrates superior detection accuracy and real-time performance. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

20 pages, 1791 KiB  
Review
Regulation of Bombyx mori–BmNPV Protein Interactions: Study Strategies and Molecular Mechanisms
by Dan Guo, Bowen Liu, Mingxing Cui, Heying Qian and Gang Li
Viruses 2025, 17(7), 1017; https://doi.org/10.3390/v17071017 (registering DOI) - 20 Jul 2025
Abstract
As a pivotal model organism in Lepidoptera research, the silkworm (Bombyx mori) holds significant importance in life science due to its economic value and biotechnological applications. Advancements in proteomics and bioinformatics have enabled substantial progress in characterizing the B. mori proteome. [...] Read more.
As a pivotal model organism in Lepidoptera research, the silkworm (Bombyx mori) holds significant importance in life science due to its economic value and biotechnological applications. Advancements in proteomics and bioinformatics have enabled substantial progress in characterizing the B. mori proteome. Systematic screening and identification of protein–protein interactions (PPIs) have progressively elucidated the molecular mechanisms governing key biological processes, including viral infection, immune regulation, and growth development. This review comprehensively summarizes traditional PPI detection techniques, such as yeast two-hybrid (Y2H) and immunoprecipitation (IP), alongside emerging methodologies such as mass spectrometry-based interactomics and artificial intelligence (AI)-driven PPI prediction. We critically analyze the strengths, limitations, and technological integration strategies for each approach, highlighting current field challenges. Furthermore, we elaborate on the molecular regulatory networks of Bombyx mori nucleopolyhedrovirus (BmNPV) from multiple perspectives: apoptosis and cell cycle regulation; viral protein invasion and trafficking; non-coding RNA-mediated modulation; metabolic reprogramming; and host immune evasion. These insights reveal the dynamic interplay between viral replication and host defense mechanisms. Collectively, this synthesis aims to provide a robust theoretical foundation and technical guidance for silkworm genetic improvement, infectious disease management, and the advancement of related biotechnological applications. Full article
(This article belongs to the Section Invertebrate Viruses)
Show Figures

Figure 1

8 pages, 3450 KiB  
Communication
The Complete Chloroplast Genome of Water Crowfoot of Ranunculus cf. penicillatus and Phylogenetic Insight into the Genus Ranunculus (sect. Batrachium)
by Jurgita Butkuvienė, Donatas Naugžemys and Donatas Žvingila
Int. J. Mol. Sci. 2025, 26(14), 6953; https://doi.org/10.3390/ijms26146953 (registering DOI) - 20 Jul 2025
Abstract
This study describes the first complete chloroplast genome of Ranunculus cf. penicillatus and provides new insights into the genetic composition and evolutionary relationships of the Ranunculus genus. The genome was assembled and characterized using high-throughput sequencing technologies, revealing a circular structure encompassing 158,313 [...] Read more.
This study describes the first complete chloroplast genome of Ranunculus cf. penicillatus and provides new insights into the genetic composition and evolutionary relationships of the Ranunculus genus. The genome was assembled and characterized using high-throughput sequencing technologies, revealing a circular structure encompassing 158,313 base pairs. Comparative analysis with the chloroplast genomes of related species within the Ranunculus genus highlights notable variations in structural organization, which can elucidate potential adaptive evolutionary mechanisms. Phylogenetic analyses conducted using the maximum likelihood approach resulted in the placement of Ranunculus cf. penicillatus within a well-defined clade, revealing its relationship with other taxa. This study not only enriches the existing plastid genomic data of the genus Ranunculus but also serves as an additional resource for future studies on the phylogenetics, systematics, and conservation biology of this diverse group of aquatic plants. The findings highlight the importance of complete chloroplast genomes in the Ranunculus section Batrachium, an evolutionarily young group of aquatic plants, for understanding plant diversity and evolution. The genome can be accessed on GenBank with the accession number PV690257. Full article
(This article belongs to the Special Issue Study on Organellar Genomes of Vascular Plants)
Show Figures

Figure 1

28 pages, 5540 KiB  
Article
An Ontology Proposal for Implementing Digital Twins in Hospitality: The Case of Front-End Services
by Moises Segura-Cedres, Desiree Manzano-Farray, Carmen Lidia Aguiar-Castillo, Rafael Perez-Jimenez and Victor Guerra-Yanez
Sensors 2025, 25(14), 4504; https://doi.org/10.3390/s25144504 (registering DOI) - 20 Jul 2025
Abstract
The implementation of Digital Twins (DTs) in hospitality facilities represents a significant opportunity to optimize front-end services, enhancing guest experience and operational efficiency. This paper proposes an ontology-driven approach for DTs in hotel reception areas, focusing on integrating IoT devices, real-time data processing, [...] Read more.
The implementation of Digital Twins (DTs) in hospitality facilities represents a significant opportunity to optimize front-end services, enhancing guest experience and operational efficiency. This paper proposes an ontology-driven approach for DTs in hotel reception areas, focusing on integrating IoT devices, real-time data processing, and service optimization. By modeling interactions between guests, receptionists, and hotel management systems, DTs enhance resource allocation, predictive maintenance, and customer satisfaction. Simulations and historical data analysis enable forecasting demand fluctuations and optimizing check-in/check-out processes. This research provides a structured framework for DT applications in hospitality, validated through scenario-based simulations, showing significant improvements in check-in time and guest satisfaction. Validation was conducted through scenario-based simulations reflecting real-world operational challenges, such as guest surges, room assignment, and staff workload balancing. Metrics including check-in time, guest satisfaction index, task completion rates, and prediction accuracy were used to evaluate performance. Simulations were grounded in historical hotel data and modeled typical peak-period dynamics to ensure realism. Results demonstrated a 25–35% reduction in check-in time, a 20% improvement in staff efficiency, and significant enhancements in guest satisfaction, underscoring the practical value of the proposed framework in real hospitality settings. Full article
(This article belongs to the Special Issue Feature Papers in the 'Sensor Networks' Section 2025)
Show Figures

Figure 1

10 pages, 389 KiB  
Article
Effects of Short-Term Exposure to High-Dose Inhaled Corticosteroids on Appetite, Dietary Intake, Leptin Levels, and Body Weight in Adults with Asthma—A Prospective Pilot Study
by Sotirios Kakavas and Dimitrios Karayiannis
J. Pers. Med. 2025, 15(7), 326; https://doi.org/10.3390/jpm15070326 (registering DOI) - 20 Jul 2025
Abstract
Background: Inhaled corticosteroids (ICSs) are a cornerstone in asthma management, particularly during exacerbations, when high doses are often prescribed. However, patient concerns about potential side effects such as increased appetite, weight gain, and metabolic disturbances may reduce adherence, compromising treatment outcomes. While oral [...] Read more.
Background: Inhaled corticosteroids (ICSs) are a cornerstone in asthma management, particularly during exacerbations, when high doses are often prescribed. However, patient concerns about potential side effects such as increased appetite, weight gain, and metabolic disturbances may reduce adherence, compromising treatment outcomes. While oral corticosteroids (OCSs) are well known to induce such effects, the metabolic impact of short-term high-dose ICSs remains poorly studied. Objective: This prospective pilot study aimed to assess whether a 14-day course of high-dose ICSs in adults with stable asthma induces changes in appetite, dietary intake, leptin levels, or body weight. Methods: Thirty-five adults (19 males, 16 females; mean age 48.7 ± 15.1 years) with stable mild asthma received ≥400 µg/day extrafine beclomethasone dipropionate/formoterol via pressurized metered-dose inhaler for 14 days. Participants underwent assessments at baseline and after 14 days, including body weight, BMI, fasting serum leptin levels, dietary intake (evaluated using 24 h dietary recalls), and appetite (measured via a visual analogue scale). Results: No significant changes were observed in body weight (mean change: −0.38 kg; 95% CI: −0.81 to 0.05; p = 0.083) or BMI (p = 0.912) following high-dose ICS use. Similarly, serum leptin levels (mean change: 0.13 ng/mL; 95% CI: −3.47 to 3.72; p = 0.945), subjective appetite scores (mean change: −4.93 mm; 95% CI: −13.64 to 3.79; p = 0.267), and dietary energy intake (mean change: +255 kJ/day; 95% CI: −380 to 891; p = 0.431) did not differ significantly post-intervention. Conclusions: Short-term high-dose ICS therapy in adults with mild asthma may not significantly affect appetite, dietary intake, leptin levels, or body weight. These findings support the metabolic safety of short-term high-dose ICSs and may help alleviate patient concerns, improving adherence during exacerbation management. Full article
(This article belongs to the Section Epidemiology)
Show Figures

Figure 1

23 pages, 2234 KiB  
Article
Exploring the Dynamic Link Between Crude Oil and Islamic Stock Returns: A BRIC Perspective During the GFC
by Tanvir Bhuiyan and Ariful Hoque
J. Risk Financial Manag. 2025, 18(7), 402; https://doi.org/10.3390/jrfm18070402 (registering DOI) - 20 Jul 2025
Abstract
This study examines the relationship between crude oil returns (CRT) and Islamic stock returns (ISR) in BRIC countries during the Global Financial Crisis (GFC), employing wavelet-based comovement analysis and regression models that incorporate both contemporaneous and lagged CRT across 40 cases. The wavelet [...] Read more.
This study examines the relationship between crude oil returns (CRT) and Islamic stock returns (ISR) in BRIC countries during the Global Financial Crisis (GFC), employing wavelet-based comovement analysis and regression models that incorporate both contemporaneous and lagged CRT across 40 cases. The wavelet analysis reveals strong long-term comovement at low frequencies between ISR and CRT during the GFC. Contemporaneous regressions show that increases (decreases) in CRT align with corresponding movements in ISR. Lagged regressions indicate that CRT can predict ISR up to one week ahead for Brazil, Russia, and China, and up to two weeks for India, although the predictive strength weakens beyond this window. These findings challenge the perception that Islamic stocks were immune to the GFC, showing they were affected by global oil market dynamics, albeit with varying degrees of resilience across countries and time horizons. Full article
(This article belongs to the Special Issue The New Horizons of Global Financial Literacy)
Show Figures

Figure 1

25 pages, 528 KiB  
Review
Life Cycle Assessment and Environmental Load Management in the Cement Industry
by Qiang Su, Ruslan Latypov, Shuyi Chen, Lei Zhu, Lixin Liu, Xiaolu Guo and Chunxiang Qian
Systems 2025, 13(7), 611; https://doi.org/10.3390/systems13070611 (registering DOI) - 20 Jul 2025
Abstract
The cement industry is a significant contributor to global environmental impacts, and Life Cycle Assessment (LCA) has emerged as a critical tool for evaluating and managing these burdens. This review uniquely synthesizes recent advancements in the LCA methodology and provides a detailed comparison [...] Read more.
The cement industry is a significant contributor to global environmental impacts, and Life Cycle Assessment (LCA) has emerged as a critical tool for evaluating and managing these burdens. This review uniquely synthesizes recent advancements in the LCA methodology and provides a detailed comparison of cement production impacts across major producing regions, notably highlighting China’s role as the largest global emitter. It covers the core LCA phases, including goal and scope definition, inventory analysis, impact assessment, and interpretation, and emphasizes the role of LCA in quantifying cradle-to-gate impacts (typically around 0.9–1.0 t CO2 per ton of cement), evaluating the emissions reductions provided by alternative cement types (such as ~30–45% lower emissions using limestone calcined clay cements), informing policy frameworks like emissions trading schemes, and guiding sustainability certifications. Strategies for environmental load reduction in cement manufacturing are quantitatively examined, including technological innovations (e.g., carbon capture technologies potentially cutting plant emissions by up to ~90%) and material substitutions. Persistent methodological challenges—such as data quality issues, scope limitations, and the limited real-world integration of LCA findings—are critically discussed. Finally, specific future research priorities are identified, including developing country-specific LCI databases, integrating techno-economic assessment into LCA frameworks, and creating user-friendly digital tools to enhance the practical implementation of LCA-driven strategies in the cement industry. Full article
Show Figures

Figure 1

9 pages, 1583 KiB  
Article
Snapshot Quantitative Phase Imaging with Acousto-Optic Chromatic Aberration Control
by Christos Alexandropoulos, Laura Rodríguez-Suñé and Martí Duocastella
Sensors 2025, 25(14), 4503; https://doi.org/10.3390/s25144503 (registering DOI) - 20 Jul 2025
Abstract
The transport of intensity equation enables quantitative phase imaging from only two axially displaced intensity images, facilitating the characterization of low-contrast samples like cells and microorganisms. However, the rapid selection of the correct defocused planes, crucial for real-time phase imaging of dynamic events, [...] Read more.
The transport of intensity equation enables quantitative phase imaging from only two axially displaced intensity images, facilitating the characterization of low-contrast samples like cells and microorganisms. However, the rapid selection of the correct defocused planes, crucial for real-time phase imaging of dynamic events, remains challenging. Additionally, the different images are normally acquired sequentially, further limiting phase-reconstruction speed. Here, we report on a system that addresses these issues and enables user-tuned defocusing with snapshot phase retrieval. Our approach is based on combining multi-color pulsed illumination with acousto-optic defocusing for microsecond-scale chromatic aberration control. By illuminating each plane with a different color and using a color camera, the information to reconstruct a phase map can be gathered in a single acquisition. We detail the fundamentals of our method, characterize its performance, and demonstrate live phase imaging of a freely moving microorganism at speeds of 150 phase reconstructions per second, limited only by the camera’s frame rate. Full article
(This article belongs to the Special Issue Optical Imaging for Medical Applications)
Show Figures

Figure 1

17 pages, 1342 KiB  
Review
Esophageal Squamous Papilloma and Papillomatosis: Current Evidence of HPV Involvement and Malignant Potential
by Miriana Mercurio, Roberto de Sire, Paola Campagnoli, Marco Dal Fante, Linda Fazzini, Luciano Guerra, Massimo Primignani, Maria Giuseppina Tatarella, Mauro Sollai, Sandro Ardizzone and Roberta Maselli
Cancers 2025, 17(14), 2404; https://doi.org/10.3390/cancers17142404 (registering DOI) - 20 Jul 2025
Abstract
Human papillomavirus (HPV) is a recognized oncogenic agent in several epithelial malignancies, though its role in esophageal squamous lesions remains unclear. Esophageal squamous papilloma and papillomatosis are rare, often benign lesions, but increasing evidence suggests possible associations with high-risk HPV genotypes and a [...] Read more.
Human papillomavirus (HPV) is a recognized oncogenic agent in several epithelial malignancies, though its role in esophageal squamous lesions remains unclear. Esophageal squamous papilloma and papillomatosis are rare, often benign lesions, but increasing evidence suggests possible associations with high-risk HPV genotypes and a non-negligible risk of dysplasia and malignant transformation. This narrative review summarizes current evidence on epidemiology, clinical features, histopathology, and diagnostic approaches, emphasizing advanced endoscopic imaging techniques that improve lesion detection and characterization. Management relies primarily on complete endoscopic resection with histological and virological evaluation. While small, non-dysplastic solitary lesions may not require routine surveillance, multifocal or high-risk HPV-positive cases warrant closer follow-up. Standardized HPV testing and long-term prospective studies are needed to better define the oncogenic potential and inform surveillance and treatment strategies. Full article
(This article belongs to the Special Issue Technical Advances in Esophageal Cancer Treatment)
Show Figures

Figure 1

22 pages, 840 KiB  
Article
Relationship Between Family Support, C-Reactive Protein and Body Mass Index Among Outpatients with Schizophrenia
by Argyro Pachi, Athanasios Tselebis, Evgenia Kavourgia, Nikolaos Soultanis, Dimitrios Kasimis, Christos Sikaras, Spyros Baras and Ioannis Ilias
Healthcare 2025, 13(14), 1754; https://doi.org/10.3390/healthcare13141754 (registering DOI) - 20 Jul 2025
Abstract
Background/Objectives: Schizophrenia has been associated with increased inflammatory and metabolic disturbances. Perceived family support potentially affects inflammatory and metabolic biomarkers. The aim of this study was to determine the interrelations between family support, C-reactive protein (CRP) and Body Mass Index (BMI) in a [...] Read more.
Background/Objectives: Schizophrenia has been associated with increased inflammatory and metabolic disturbances. Perceived family support potentially affects inflammatory and metabolic biomarkers. The aim of this study was to determine the interrelations between family support, C-reactive protein (CRP) and Body Mass Index (BMI) in a sample of outpatients with schizophrenia. Importantly, this study sought to elucidate the effect of perceived family support on inflammatory processes among patients with schizophrenia. Methods: In this cross-sectional correlation study, 206 outpatients with schizophrenia in clinical remission completed a standardized self-report questionnaire that assessed family support (Family Support Scale—FSS). Sociodemographic, clinical and laboratory data were also recorded. Results: Among the participants, 49.5% had detectable CRP values (≥0.11 mg/dL), whereas 14.6% had positive CRP levels (>0.6 mg/dL). There was a significant difference in CRP levels among the different BMI groups (normal weight/overweight vs. obese). For obese patients, the crude odds ratios (ORs) for detectable and positive CRP values were 1.980 (95% confidence interval (CI) [1.056, 3.713]) and 27.818 (95% CI [6.300, 122.838]), respectively. Significant positive correlations were observed among CRP, BMI and illness duration, while scores on the FSS were negatively associated with these variables. The results of binary logistic regression analysis indicated that both BMI and family support were significant factors in determining the likelihood of having positive CRP levels, with each unit increase in the BMI associated with a 17% (95% CI [0.025, 0.337]) increase in the odds, and with each unit increase in family support leading to an 8.6% (95% CI [0.018, 0.15]) decrease. A moderation analysis revealed that the association between family support and the probability of having positive CRP levels depends on the BMI value, but only for obese patients did the protective effect of family support significantly decrease the magnitude of the risk of having positive CRP (b = −0.1972, SE = 0.053, OR = 0.821, p = 0.000, 95% CI [−0.3010, −0.0934]). Conclusions: The effect of perceived family support on inflammatory responses becomes evident in cases where beyond metabolic complications, inflammatory processes have already been established. Increased perceived family support seems to protect against inflammation and, notably, the association between low perceived family support and increased inflammation is even stronger. Establishing the role of family involvement during the treatment of patients with schizophrenia through inflammatory processes is a novelty of this study, emphasizing the need to incorporate family therapy into psychiatric treatment plans. However, primary interventions are considered necessary for patients with schizophrenia in order to maintain their BMI within normal limits and avoid the subsequent nosological sequelae. Full article
Show Figures

Figure 1

14 pages, 2441 KiB  
Article
Determination of Biochemical and Metabolomic Characteristics of Sheep Blood Serum and Their Application in Clinical Practice
by Peter Očenáš, Matej Baloga, Marcela Valko-Rokytovská and Sonja Ivašková
Life 2025, 15(7), 1141; https://doi.org/10.3390/life15071141 (registering DOI) - 20 Jul 2025
Abstract
Due to advances in molecular technologies and the expanding knowledge of biomarkers, their use in patient screening, diagnosis, prognosis, and targeted therapy is continuously increasing. Biomarker characteristics play a crucial role across all areas of medical research/practice. Biomarkers often reflect changes in the [...] Read more.
Due to advances in molecular technologies and the expanding knowledge of biomarkers, their use in patient screening, diagnosis, prognosis, and targeted therapy is continuously increasing. Biomarker characteristics play a crucial role across all areas of medical research/practice. Biomarkers often reflect changes in the biochemical composition of biofluids, which can be qualitatively and quantitatively analyzed using methods such as high-performance liquid chromatography (HPLC) at various stages of clinical intervention. This study focuses on establishing physiological reference ranges for selected biochemical and metabolomic indicators by analyzing blood serum samples from domestic sheep. A total of sixty samples are examined using standard biochemical assays and HPLC, resulting in the determination of experimental reference values for twenty-one biochemical and eight metabolomic parameters. Reliable and reproducible preclinical testing is essential before any diagnostic method can be introduced into clinical use. A thorough understanding of the safety and efficacy of such methods in animal models is a prerequisite for initiating human trials. Species selection and the definition of physiological biomarker ranges are therefore critical components in the development of effective preclinical protocols. This work contributes to the foundation needed for further clinical testing by establishing reference values for relevant biomarkers in a commonly used animal model. Full article
(This article belongs to the Section Genetics and Genomics)
Show Figures

Figure 1

Open Access Journals

Browse by Indexing Browse by Subject Selected Journals
Back to TopTop