- Article
Method of Estimating Wave Height from Radar Images Based on Genetic Algorithm Back-Propagation (GABP) Neural Network
- Yang Meng,
- Jinda Wang and
- Yanbo Wei
- + 2 authors
In the domain of marine remote sensing, the real-time monitoring of ocean waves is a research hotspot, which employs acquired X-band radar images to retrieve wave information. To enhance the accuracy of the classical spectrum method using the extracted signal-to-noise ratio (SNR) from an image sequence, data from the preferred analysis area around the upwind is required. Additionally, the accuracy requires further improvement in cases of low wind speed and swell. For shore-based radar, access to the preferred analysis area cannot be guaranteed in practice, which limits the measurement accuracy of the spectrum method. In this paper, a method using extracted SNRs and an optimized genetic algorithm back-propagation (GABP) neural network model is proposed to enhance the inversion accuracy of significant wave height. The extracted SNRs from multiple selected analysis regions, included angles, and wind speed are employed to construct a feature vector as the input parameter of the GABP neural network. Considering the not-completely linear relationship of wave height to the SNR derived from radar images, the GABP network model is used to fit the relationship. Compared with the classical SNR-based method, the correlation coefficient using the GABP neural network is improved by 0.14, and the root mean square error is reduced by 0.20 m.
22 January 2026








