You are currently viewing a new version of our website. To view the old version click .

Information

Information is a scientific, peer-reviewed, open access journal of information science and technology, data, knowledge, and communication, published monthly online by MDPI.
The International Society for the Study of Information (IS4SI) is affiliated with Information and its members receive discounts on the article processing charges.
Quartile Ranking JCR - Q2 (Computer Science, Information Systems)

All Articles (5,493)

With the increasing prevalence of brain tumors, it becomes crucial to ensure fast and reliable segmentation in MRI scans. Medical professionals struggle with manual tumor segmentation due to its exhausting and time-consuming nature. Automated segmentation speeds up decision-making and diagnosis; however, achieving an optimal balance between accuracy and computational cost remains a significant challenge. In many cases, current methods trade speed for accuracy, or vice versa, consuming substantial computing power and making them difficult to use on devices with limited resources. To address this issue, we present PRA-UNet, a lightweight deep learning model optimized for fast and accurate 2D brain tumor segmentation. Using a single 2D input, the architecture processes four types of MRI scans (FLAIR, T1, T1c, and T2). The encoder uses inverted residual blocks and bottleneck residual blocks to capture features at different scales effectively. The Convolutional Block Attention Module (CBAM) and the Spatial Attention Module (SAM) improve the bridge and skip connections by refining feature maps and making it easier to detect and localize brain tumors. The decoder uses depthwise separable convolutions, which significantly reduce computational costs without degrading accuracy. The BraTS2020 dataset shows that PRA-UNet achieves a Dice score of 95.71%, an accuracy of 99.61%, and a processing speed of 60 ms per image, enabling real-time analysis. PRA-UNet outperforms other models in segmentation while requiring less computing power, suggesting it could be suitable for deployment on lightweight edge devices in clinical settings. Its speed and reliability enable radiologists to diagnose tumors quickly and accurately, enhancing practical medical applications.

23 December 2025

Architectural Overview of PRA-UNet Illustrating the Encoder Path, Bridge Attention Mechanism, and Decoder Reconstruction Stages.

Parkinson’s disease has brought great harm to human life and health. The detection of Parkinson’s disease based on electroencephalogram (EEG) provides a new way to prevent and treat Parkinson’s disease. However, due to the limited EEG data samples, there are large differences among different subjects, especially among different datasets. In this study, a new method called Improved Convex Hull and Maximum Mean Discrepancy (ICMMD)for cross-dataset classification of Parkinson’s disease is proposed by combining convex hull and transfer learning. The paper innovatively implements cross-data transfer learning in the field of brain–computer interfaces for Parkinson’s disease, using Euclidean distance for data alignment and EEG channel selection, and combines the convex envelope with MMD distance to form an effective source domain selection method. Lowpd, San and UNM datasets are used to verify the effectiveness of the proposed method through experiments on different brain regions and frequency bands in Parkinson’s. The results show that this method has good classification performance in different regions of the brain and frequency bands. The research in this paper provides a new idea and method for disease detection of Parkinson’s disease across datasets.

23 December 2025

Wildfire occurrence in arid and semiarid landscapes is increasingly driven by shifts in climatic and biophysical conditions, yet its dynamics remain poorly understood in the mountainous environments of western Saudi Arabia. This study modeled wildfire probabilities across the Aseer, Al Baha, Makkah Al-Mukarramah, and Jazan regions via multisource Earth observation datasets from 2012–2025. Active fire detections from VIIRS were integrated with ERA5-Land reanalysis variables, vegetation indices, and Copernicus DEM GLO30 topography. A random forest classifier was trained and validated via stratified sampling and cross-validation to predict monthly burn probabilities. Calibration, reliability assessment, and independent temporal validation confirmed strong model performance (AUC-ROC = 0.96; Brier = 0.03). Climatic dryness (dew-point deficit), vegetation structure (LAI_lv), and surface soil moisture emerged as dominant predictors, underscoring the coupling between energy balance and fuel desiccation. Temporal trend analyses (Kendall’s τ and Sen’s slope) revealed the gradual intensification of fire probability during the dry-to-transition seasons (February–April and September–November), with Aseer showing the most persistent risk. These findings establish a scalable framework for wildfire early warning and landscape management in arid ecosystems under accelerating climatic stress.

23 December 2025

As artificial intelligence (AI) becomes increasingly woven into educational design and decision-making, its use within initial teacher education (ITE) exposes deep tensions between efficiency, equity, and professional agency. A critical action research study conducted across three iterations of a third-year ITE course investigated how pre-service teachers engaged with AI-supported lesson planning tools while learning to design for inclusion. Analysis of 123 lesson plans, reflective journals, and survey data revealed a striking pattern. Despite instruction in inclusive pedagogy, most participants reproduced fixed-tiered differentiation and deficit-based assumptions about learners’ abilities, a process conceptualised as micro-streaming. AI-generated recommendations often shaped these outcomes, subtly reinforcing hierarchies of capability under the guise of personalisation. Yet, through iterative reflection, dialogue, and critical framing, participants began to recognise and resist these influences, reframing differentiation as design for diversity rather than classification. The findings highlight the paradoxical role of AI in teacher education, as both an amplifier of inequity and a catalyst for critical consciousness and argue for the urgent integration of critical digital pedagogy within ITE programmes. AI can advance inclusive teaching only when educators are empowered to interrogate its epistemologies, question its biases, and reclaim professional judgement as the foundation of ethical pedagogy.

23 December 2025

News & Conferences

Issues

Open for Submission

Editor's Choice

Reprints of Collections

Test and Evaluation Methods for Human-Machine Interfaces of Automated Vehicles II
Reprint

Test and Evaluation Methods for Human-Machine Interfaces of Automated Vehicles II

Editors: Frederik Naujoks, Yannick Forster, Andreas Keinath, Nadja Schömig, Sebastian Hergeth, Katharina Wiedemann
Big Data and Artificial Intelligence
Reprint

Big Data and Artificial Intelligence

Volume III
Editors: Miltiadis D. Lytras, Andreea Claudia Serban

Get Alerted

Add your email address to receive forthcoming issues of this journal.

XFacebookLinkedIn
Information - ISSN 2078-2489