Topical Collection "Assessment of the Ageing and Durability of Polymers"

A topical collection in Polymers (ISSN 2073-4360). This collection belongs to the section "Polymer Applications".

Editor

Prof. Dr. Mariaenrica Frigione
E-Mail Website
Collection Editor
Innovation Engineering Department, University of Salento, Prov.le Lecce-Monteroni, 73100 Lecce, Italy
Interests: cold-cured adhesives and matrices for FRP employed in constructions; polymeric nanostructured adhesives and coatings; hydrophobic coatings for stone conservation and wood protection; durability of polymers, adhesives and coatings; eco-efficient materials for construction and cultural heritage
Special Issues and Collections in MDPI journals

Topical Collection Information

Dear Colleagues,

The ageing and degradation of polymeric materials, and their stability against external—possibly harsh—agents, fire and mechanical stresses, represent a fundamental issue for any application involving polymers. Although polymers are believed to be “everlasting materials”, they actually experience degradation during their service life, resulting in an appreciable modification in their properties.

The durability of a polymeric material can be defined as its average lifetime under the in-service conditions. It depends on several parameters—the most important being the type of polymer, the process used to manufacture and apply it, the usage and load regime, and the kind and level of environmental exposure.

Due to the wide selection of polymers (thermoplastic, semi-crystalline and amorphous, cross-linked, thermosetting, elastomers, natural and biodegradable polymers, composites and nano-composites, etc.), to the variety of their applications and utilization, and to the variability of involved stresses and exposure regimes, despite the extensive attention devoted to the durability of polymers, several issues are still open. These include: the most appropriate methods and procedures to foresee their long-term performance, the reliability of standard accelerated ageing tests, and the identification of ageing and degradation mechanisms taking place under complex and coupled mechanical–environmental conditions and/or in the event of fire, stabilization procedures and protection against fire.

This Topical Collection aims at providing a platform for the discussion of open issues, challenges, and achievements when analyzing the chemical ageing, degradation routes, and durability features of different polymers and the possibility of making reliable previsions for their long-term performance.

Prof. Dr. Mariaenrica Frigione
Topical Collection Editor
Journal Editorial Board Member

Keywords

  • chemical aging
  • degradation mechanisms
  • durability
  • environmental agents
  • mechanical stresses
  • natural and accelerated procedures
  • service conditions
  • weathering
  • fire protection
  • stabilization

Related Special Issues

Published Papers (172 papers)

2021

Jump to: 2020, 2019, 2018, 2016, 2015, 2014

Open AccessArticle
Reliability Prediction of Acrylonitrile O-Ring for Nuclear Power Applications Based on Shore Hardness Measurements
Polymers 2021, 13(6), 943; https://doi.org/10.3390/polym13060943 - 19 Mar 2021
Viewed by 261
Abstract
The degradation of polymeric components is of considerable interest to the nuclear industry and its regulatory bodies. The objective of this work was the development of a methodology to determine the useful life—based on the storage temperature—of acrylonitrile O-rings used as mechanical sealing [...] Read more.
The degradation of polymeric components is of considerable interest to the nuclear industry and its regulatory bodies. The objective of this work was the development of a methodology to determine the useful life—based on the storage temperature—of acrylonitrile O-rings used as mechanical sealing elements to prevent leakages in nuclear equipment. To this aim, a reliability-based approach that allows prediction of the use-suitability of different storage scenarios (that involve different storage times and temperatures) considering the further required in-service performance, is presented. Thus, experimental measurements of Shore A hardness have been correlated with storage variables (temperature and storage time). The storage (and its associated hardening) was proved to have a direct effect on in-service durability, reducing this by up to 60.40%. Based on this model, the in-service performance was predicted; after the first three years of operation the increase in probability of failure (POF) was practically insignificant. Nevertheless, from this point on, and especially, from 5 years of operation, the POF increased from 10% to 20% at approximately 6 years (for new and stored). From the study, it was verified that for any of the analysis scenarios, the limit established criterion was above that of the storage time premise considered in usual nuclear industry practices. The novelty of this work is that from a non-destructive test, like a Shore A hardness measurement, the useful life and reliability of O-rings can be estimated and be, accordingly, a decision tool that allows for improvement in the management of maintenance of safety-related equipment. Finally, it was proved that the storage strategies of our nuclear power plants are successful, perfectly meeting the expectations of suitability and functionality of the components when they are installed after storage. Full article
Show Figures

Figure 1

Open AccessArticle
Mathematical Modeling of Outdoor Natural Weathering of Polycarbonate: Regional Characteristics of Degradation Behaviors
Polymers 2021, 13(5), 820; https://doi.org/10.3390/polym13050820 - 07 Mar 2021
Viewed by 441
Abstract
Many natural exposure sites have been developed to ensure the reliability of materials intended for outdoor use. However, the effects of local climate on aging have not been completely understood. This study aimed to elucidate the regional characteristics of natural aging. Non-stabilized and [...] Read more.
Many natural exposure sites have been developed to ensure the reliability of materials intended for outdoor use. However, the effects of local climate on aging have not been completely understood. This study aimed to elucidate the regional characteristics of natural aging. Non-stabilized and stabilized polycarbonates were monitored in terms of their appearance (yellowing and loss of gloss) during natural weathering at five exposure sites (Tokyo, Kagoshima, Okinawa, Florida, and Arizona) in conjunction with climate fluctuation for up to 24 months. Three approaches were employed to characterize the natural aging behaviors: (i) modeling the rate function of degradation, (ii) evaluating the contribution ratio of individual degradational factors, and (iii) estimating the “synchronicity” by cross-correlation analysis with the climate dataset. The aging rates were the highest in Arizona and lowest in Kagoshima among the five exposure sites. First, prediction curves were constructed from the degradation rate function (variables: UV irradiation, temperature, and humidity), and these curves were found to agree well with the measured aging behaviors. Second, the exposure data in Arizona demonstrated strong temperature dependence, while those in Okinawa and Florida had stronger dependence on UV irradiation compared to other sites. Lastly, the synchronicity between UV irradiation and temperature was the highest in Arizona and lowest in Kagoshima, which can explain the significantly faster deterioration in Arizona and the slow deterioration in Kagoshima. Full article
Show Figures

Graphical abstract

Open AccessReview
Durability of Externally Bonded Fiber-Reinforced Polymer Composites in Concrete Structures: A Critical Review
Polymers 2021, 13(5), 765; https://doi.org/10.3390/polym13050765 - 28 Feb 2021
Viewed by 409
Abstract
Externally bonded fiber-reinforced polymer composites have been in use in civil infrastructure for decades, but their long-term performance is still difficult to predict due to many knowledge gaps in the understanding of degradation mechanisms. This paper summarizes critical durability issues associated with the [...] Read more.
Externally bonded fiber-reinforced polymer composites have been in use in civil infrastructure for decades, but their long-term performance is still difficult to predict due to many knowledge gaps in the understanding of degradation mechanisms. This paper summarizes critical durability issues associated with the application of fiber-reinforced polymer (FRP) composites for rehabilitation of concrete structures. A variety of factors that affect the longevity of FRP composites are discussed: installation, quality control, material selection, and environmental conditions. Critical review of design approaches currently used in various international design guidelines is presented to identify potential opportunities for refinement of design guidance with respect to durability. Interdisciplinary approaches that combine materials science and structural engineering are recognized as having potential to develop composites with improved durability. Full article
Show Figures

Graphical abstract

Open AccessArticle
Synthesis of Carvedilol–Organotin Complexes and Their Effects on Reducing Photodegradation of Poly(Vinyl Chloride)
Polymers 2021, 13(4), 500; https://doi.org/10.3390/polym13040500 - 06 Feb 2021
Cited by 1 | Viewed by 392
Abstract
Poly(vinyl chloride) (PVC) undergoes photodegradation induced by ultraviolet (UV) irradiation; therefore, for outdoor applications, its photostability should be enhanced through the use of additives. Several carvedilol tin complexes were synthesized, characterized and mixed with PVC to produce thin films. These films were irradiated [...] Read more.
Poly(vinyl chloride) (PVC) undergoes photodegradation induced by ultraviolet (UV) irradiation; therefore, for outdoor applications, its photostability should be enhanced through the use of additives. Several carvedilol tin complexes were synthesized, characterized and mixed with PVC to produce thin films. These films were irradiated at 25 °C with a UV light (λ = 313 nm) for up to 300 h. The reduction in weight and changes in chemical structure and surface morphology of the PVC films were monitored. The films containing synthesized complexes showed less undesirable changes than the pure PVC film. Organotin with a high content of aromatics was particularly efficient in inhibiting photodegradation of PVC. The carvedilol tin complexes both absorbed UV light and scavenged radicals, hydrochloride, and peroxides and, therefore, photostabilized PVC. Full article
Show Figures

Graphical abstract

Open AccessArticle
Effect of Nanoclay Particles on the Performance of High-Density Polyethylene-Modified Asphalt Concrete Mixture
Polymers 2021, 13(3), 434; https://doi.org/10.3390/polym13030434 - 29 Jan 2021
Viewed by 291
Abstract
Utilizing polymers for asphalt concrete (AC) mixture modification has many drawbacks that hinder its wide implementations for roadway construction. Recently, research on employing complementary materials, such as nanomaterials, to balance negative impacts of polymers while enhancing the AC mixture’s performance has received great [...] Read more.
Utilizing polymers for asphalt concrete (AC) mixture modification has many drawbacks that hinder its wide implementations for roadway construction. Recently, research on employing complementary materials, such as nanomaterials, to balance negative impacts of polymers while enhancing the AC mixture’s performance has received great attention. This study aimed to investigate the effect of incorporating nanoclay (NC) particles on the performance of a high-density polyethylene (HDPE)-modified AC mixture. A 60/70 asphalt binder was first modified with HDPE, and then NC particles were gradually added at a concentration of 1–4% by weight of the asphalt binder. The binders’ physical characteristics, storage stability, and chemical change were scrutinized. AC mixture performance, including pseudo-stiffness, moisture damage resistance, stripping susceptibility, and rutting tendency, was investigated. A statistical analysis on the experimental results was conducted using Kruskal–Wallis and Dunn tests. Test results showed that employing NC/HDPE significantly increased penetration index and thereby enhanced binder temperature sensitivity. Moreover, it prevented oxidation action and separation and, therefore, enhanced binder storage stability. Furthermore, incorporating NC amplified pseudo-stiffness and significantly improved resistance against moisture damage and stripping of HDPE-modified mixtures. Moreover, it improved both elastic (recoverable) and plastic (unrecoverable) deformations of mixtures. The most satisfactory results were attained when incorporating 3% of NC. Full article
Show Figures

Figure 1

Open AccessArticle
Suppression of Smoldering of Calcium Alginate Flame-Retardant Paper by Flame-Retardant Polyamide-66
Polymers 2021, 13(3), 430; https://doi.org/10.3390/polym13030430 - 29 Jan 2021
Viewed by 357
Abstract
Calcium alginate (Ca-Alg) fibers are renewable fibers obtained from the ocean with essential flame retardancy, which have recently been applied as components of flame-retardant paper. However, the application of Ca-Alg fibers is limited because of their tendency to smolder. Therefore, composites papers were [...] Read more.
Calcium alginate (Ca-Alg) fibers are renewable fibers obtained from the ocean with essential flame retardancy, which have recently been applied as components of flame-retardant paper. However, the application of Ca-Alg fibers is limited because of their tendency to smolder. Therefore, composites papers were fabricated by blending using flame-retardant polyamide-66 (FR-PA), with a 5 wt% content of phosphorous flame retardant, which will form molten carbon during combustion. When the FR-PA content is 30% of the composite paper, FR-PA forms a compact carbon layer on the surface of the Ca-Alg fibers during combustion, which isolates the mass/heat transfer and effectively suppresses the smoldering of Ca-Alg. This consists of a condensed flame retardant mechanism. Furthermore, the combustion and thermal degradation behavior of paper were analyzed by cone calorimetry (CONE), TG and TG-IR. Ca-Alg in the composite paper decomposed and released CO2 before ignition, which delayed the ignition time. Simultaneously, the FR-PA contained in the composite paper effectively inhibited the combustion of volatile combustibles in the gas phase. Overall, FR-PA and Ca-Alg improve the thermal stability of the composite paper in different temperature regions under air atmosphere. Ca-Alg reduces the formation of aromatic products and NH3 in the composite paper under N2 atmosphere. Ca-Alg-based paper with excellent flame retardancy was successfully prepared. Full article
Show Figures

Figure 1

2020

Jump to: 2021, 2019, 2018, 2016, 2015, 2014

Open AccessCommunication
Effect of Panel Moisture Content on Internal Bond Strength and Thickness Swelling of Medium Density Fiberboard
Polymers 2021, 13(1), 114; https://doi.org/10.3390/polym13010114 - 30 Dec 2020
Viewed by 384
Abstract
Wood-based products usually have serious limitations concerning contact with water, both because wood is a hygroscopic material and because the commonly used binder has low moisture resistance. This paper studies the effect of panel moisture content (MC) on the physico-mechanical properties of medium [...] Read more.
Wood-based products usually have serious limitations concerning contact with water, both because wood is a hygroscopic material and because the commonly used binder has low moisture resistance. This paper studies the effect of panel moisture content (MC) on the physico-mechanical properties of medium density fiberboards (MDF). Several commercial MDF boards produced in Europe were stored at room temperature and relative humidity (RH) for 9 weeks (approx. range 15–20 °C and 50–85% RH). Every week, a strip of each MDF board was cut out, divided into 5 × 5 cm test pieces and its internal bond strength (IB) was measured. A strong influence of MDF moisture content on internal bond strength was observed and therefore IB test pieces were stored in a climatic chamber (either at 20 °C, 55% RH and at 20 °C, 70% RH). A decreasing linear relation was established between IB and MC. It was found that this effect is reversible: after drying, internal bond strength rises again (following a slight hysteresis). This work reinforces the importance of conditioned storage before board properties analysis, as described in European Standard EN 319. Full article
Show Figures

Figure 1

Open AccessArticle
Physico-Mechanical and Biological Durability of Citric Acid-Bonded Rubberwood Particleboard
Polymers 2021, 13(1), 98; https://doi.org/10.3390/polym13010098 - 29 Dec 2020
Viewed by 444
Abstract
This study investigated the effects of different citric acid content on the physico-mechanical and biological durability of rubberwood particleboard. Particleboards with density of 700 kg/m3 were produced with three different citric acid contents, namely 10, 15 and 20 wt%. Particleboards made from [...] Read more.
This study investigated the effects of different citric acid content on the physico-mechanical and biological durability of rubberwood particleboard. Particleboards with density of 700 kg/m3 were produced with three different citric acid contents, namely 10, 15 and 20 wt%. Particleboards made from 10 wt% urea formaldehyde (UF) resin were served as control for comparison purposes. FTIR analysis was carried out and the formation of ester linkages between -OH on cellulose and carbonyl groups of citric acid was confirmed. The peak intensity increased along with increasing citric content, which indicated that a higher amount of ester linkages were formed at higher citric acid content. Citric acid-bonded particleboard had inferior physical properties (water absorption and thickness swelling) and mechanical properties (internal bonding strength, modulus of rupture and modulus of elasticity) compared to that of the UF-bonded particleboard. However, the performance of particleboard was enhanced with increasing citric acid content. Meanwhile, citric acid-bonded particleboard displayed significantly better fungal and termite resistance than UF-bonded particleboard owing to the acidic nature of citric acid. It can be concluded that citric acid is a suitable green binder for particleboard but some improvement is needed during the particleboard production process. Full article
Show Figures

Figure 1

Open AccessArticle
Effect of Cyclotriphosphazene-Based Curing Agents on the Flame Resistance of Epoxy Resins
Polymers 2021, 13(1), 8; https://doi.org/10.3390/polym13010008 - 22 Dec 2020
Viewed by 388
Abstract
Epoxy resins are characterized by excellent properties such as chemical resistance, shape stability, hardness and heat resistance, but they present low flame resistance. In this work, the synthesized derivatives, namely hexacyclohexylamino-cyclotriphosphazene (HCACTP) and novel diaminotetracyclohexylamino-cyclotriphosphazene (DTCATP), were applied as curing agents for halogen-free [...] Read more.
Epoxy resins are characterized by excellent properties such as chemical resistance, shape stability, hardness and heat resistance, but they present low flame resistance. In this work, the synthesized derivatives, namely hexacyclohexylamino-cyclotriphosphazene (HCACTP) and novel diaminotetracyclohexylamino-cyclotriphosphazene (DTCATP), were applied as curing agents for halogen-free flame retarding epoxy materials. The thermal properties and combustion behavior of the cured epoxy resins were investigated. The obtained results revealed that the application of both derivatives significantly increased flame resistance. The epoxy resins cured with HCACTP and DTCATP exhibited lower total heat release together with lower total smoke production compared to the epoxy materials based on conventional curing agents (dipropylenetriamine and ethylenediamine). Comparing both derivatives, the HCACTP-cured epoxy resin was found to provide a higher flame resistance. The designed novel class of epoxy materials may be used for the preparation of materials with improved flame resistance properties in terms of flame spreading and smoke inhibition. Full article
Show Figures

Figure 1

Open AccessArticle
The Impact of the Acidic Environment on the Mechanical Properties of Epoxy Compounds in Different Conditions
Polymers 2020, 12(12), 2957; https://doi.org/10.3390/polym12122957 - 10 Dec 2020
Cited by 2 | Viewed by 330
Abstract
The aim of this work was to determine the impact of the acidic environment on the mechanical properties of two epoxy compounds in different conditions. The samples were made from the epoxy compounds composed of the epoxy resin (based on Bisphenol A), triethylenetetramine [...] Read more.
The aim of this work was to determine the impact of the acidic environment on the mechanical properties of two epoxy compounds in different conditions. The samples were made from the epoxy compounds composed of the epoxy resin (based on Bisphenol A), triethylenetetramine curing agent (unmodified compound), and calcium carbonate (CaCO3) (modified compound). The epoxy compound samples were seasoned for the following period of time (i.e., one week, one month, and three months). The environment was tap water and the acidic environment had three different concentrations of acetic acid (3%, 6%, and 9%). Strength tests of the epoxy compound samples were carried out in accordance with the ISO 604 standard. In the case of the modified composition, it is noted that the samples immersed in tap water were characterized by a higher strength than in acidic environments. A similar tendency was observed for unmodified compositions, although the differences were smaller than for the modified compositions. It was also noticed that the increase in the pH of the acidic solution in many analyzed cases contributed to the decrease in mechanical properties, although the immersion time in the acidic solution is important. Full article
Show Figures

Graphical abstract

Open AccessArticle
Tin Complexes Containing an Atenolol Moiety as Photostabilizers for Poly(Vinyl Chloride)
Polymers 2020, 12(12), 2923; https://doi.org/10.3390/polym12122923 - 06 Dec 2020
Cited by 1 | Viewed by 440
Abstract
The lifetime of poly(vinyl chloride) (PVC) can be increased through the addition of additives to provide protection against irradiation. Therefore, several new tin complexes containing atenolol moieties were synthesized and their photostabilizing effect on PVC was investigated. Reacting atenolol with a number of [...] Read more.
The lifetime of poly(vinyl chloride) (PVC) can be increased through the addition of additives to provide protection against irradiation. Therefore, several new tin complexes containing atenolol moieties were synthesized and their photostabilizing effect on PVC was investigated. Reacting atenolol with a number of tin reagents in boiling methanol provided high yields of tin complexes. PVC was then mixed with the tin complexes at a low concentration, producing polymeric thins films. The films were irradiated with ultraviolet light and the resulting damage was assessed using different analytical and surface morphology techniques. Infrared spectroscopy and weight loss determination indicated that the films incorporating tin complexes incurred less damage and less surface changes compared to the blank film. In particular, the triphenyltin complex was very effective in enhancing the photostability of PVC, and this is due to its high aromaticity (three phenyl rings) compared to other complexes. Such an additive acts as a hydrogen chloride scavenger, radical absorber, and hydroperoxide decomposer. Full article
Show Figures

Graphical abstract

Open AccessArticle
Cellulose Structural Changes during Mild Torrefaction of Eucalyptus Wood
Polymers 2020, 12(12), 2831; https://doi.org/10.3390/polym12122831 - 28 Nov 2020
Viewed by 318
Abstract
The changes in the cellulose structure of eight Eucalyptus species (E. botryoides, E. globulus, E. grandis, E. maculata, E. propinqua, E. rudis, E. saligna and E. viminalis) in a mild torrefaction (from 160 °C to [...] Read more.
The changes in the cellulose structure of eight Eucalyptus species (E. botryoides, E. globulus, E. grandis, E. maculata, E. propinqua, E. rudis, E. saligna and E. viminalis) in a mild torrefaction (from 160 °C to 230 °C, 3 h) were studied in situ and after cellulose isolation from the wood by solid-state carbon nuclear magnetic resonance (13C NMR), wide angle X-ray scattering (WAXS), Fourier transform infrared spectroscopy (FTIR) and by analytic pyrolysis coupled with gas chromatography and mass spectrometry (Py-GC/MS). Changes in molecular weight were assessed by viscosimetry. A small decrease in cellulose crystallinity (ca. 2%–3%) was attributed to its amorphization on crystallite surfaces as a result of acid hydrolysis and free radical reactions resulting in the homolytic splitting of glycosidic bonds. The degree of the cellulose polymerization (DPv) decreased more than twice during the heat treatment of wood. It has been proposed that changes in the supramolecular structure of cellulose and in molecular weight during a heat treatment can be affected by the amount of lignin present in the wood. The limitations of FTIR and Py-GC/MS techniques to distinguish the minor changes in cellulose crystallinity were discussed. Full article
Show Figures

Figure 1

Open AccessArticle
Dielectric Measurement Based Deducted Quantities to Track Repetitive, Short-Term Thermal Aging of Polyvinyl Chloride (PVC) Cable Insulation
Polymers 2020, 12(12), 2809; https://doi.org/10.3390/polym12122809 - 27 Nov 2020
Cited by 2 | Viewed by 495
Abstract
The effect of short-term (3- and 6-h-long) periodic thermal aging was investigated at three different temperatures on PVC cables and PVC films. Three different temperatures (110, 125, and 140 °C) were used for aging PVC cables and one (110 °C) for PVC films. [...] Read more.
The effect of short-term (3- and 6-h-long) periodic thermal aging was investigated at three different temperatures on PVC cables and PVC films. Three different temperatures (110, 125, and 140 °C) were used for aging PVC cables and one (110 °C) for PVC films. PVC films were prepared for the investigation containing 0, 30, 40, and 50 weight percent of dioctyl phthalate plasticizer (DOP). The effect of short-term thermal aging was monitored by electrical (dielectric spectrum and voltage response measurement) and mechanical (Shore D hardness) methods. From the loss factor measurements, different deducted quantities were calculated and compared with Shore D hardness, which has been shown to be a parameter reflecting the effect of short-term thermal aging on PVC insulation. The measurements revealed that Shore D hardness is not the best property for monitoring aging. Instead, increasing dissipated power and the shifting behavior of tan δ–frequency curves proved to be the best phenomena for assessing the impact of thermal aging. Simple deducted quantities may provide a basis for following short-term thermal aging. Full article
Show Figures

Graphical abstract

Open AccessArticle
Moving toward Smart Cities: Evaluation of the Self-Cleaning Properties of Si-Based Consolidants Containing Nanocrystalline TiO2 Activated by Either UV-A or UV-B Radiation
Polymers 2020, 12(11), 2577; https://doi.org/10.3390/polym12112577 - 02 Nov 2020
Cited by 1 | Viewed by 448
Abstract
This study evaluated the self-cleaning ability and durability of Si-based consolidants (an ethyl silicate consolidant and a consolidant based on nanosized silica) spiked with nanocrystalline TiO2 activated by either UV-A radiation (spectral region between 340 and 400 nm, and main peak at [...] Read more.
This study evaluated the self-cleaning ability and durability of Si-based consolidants (an ethyl silicate consolidant and a consolidant based on nanosized silica) spiked with nanocrystalline TiO2 activated by either UV-A radiation (spectral region between 340 and 400 nm, and main peak at 365 nm) or UV-B radiation (spectral region between 270 and 420 nm, and main peak at 310 nm). Granite samples were coated with consolidant, to which nanocrystalline TiO2 was added at different concentrations (0.5, 1, and 3%, by wt.). Diesel soot was then applied to the coated surfaces, and the samples were exposed to UV-A or UV-B radiation for 1650 h. The surface color changes, relative to the color of untreated granite, were determined every 330 h by color spectrophotometry. Slight color changes indicated a recovery of the reference color due to the degradation of the soot. The final surfaces of both the untreated and treated surfaces were compared by stereomicroscopy and scanning electron microscopy. The main findings were that: (1) In general, the consolidant containing nanosized silica induced the most intense photocatalytic activity. In the more compact xerogel coating formed by the nanosized silica, more TiO2 nanoparticles were available to interact with the radiation. (2) For all consolidant mixtures, soot degradation remained constant or decreased over time, except with ethyl silicate with 0.5 wt % TiO2 (no self-cleaning capacity). (3) Soot degradation increased with the concentration of TiO2. (4) The UV-B radiation was the most effective in terms of soot degradation, except for the surface coated with the ethyl silicate and 3% wt. TiO2. Full article
Show Figures

Graphical abstract

Open AccessArticle
Effect of the B:Zn:H2O Molar Ratio on the Properties of Poly(Vinyl Acetate) and Zinc Borate-Based Intumescent Coating Materials Exposed to a Quasi-Real Cellulosic Fire
Polymers 2020, 12(11), 2542; https://doi.org/10.3390/polym12112542 - 30 Oct 2020
Viewed by 475
Abstract
In order to investigate an influence of the B:Zn:H2O molar ratio on the fire protection efficiency of poly(vinyl acetate)-based thermoplastic intumescent coating materials (ICs), systems containing ammonium polyphosphate, melamine, pentaerythritol and different types of zinc borates (ZBs) were tested in a [...] Read more.
In order to investigate an influence of the B:Zn:H2O molar ratio on the fire protection efficiency of poly(vinyl acetate)-based thermoplastic intumescent coating materials (ICs), systems containing ammonium polyphosphate, melamine, pentaerythritol and different types of zinc borates (ZBs) were tested in a vertical position in quasi-real fire conditions. 3ZnO·2B2O3·6H2O (ZB6), 2ZnO·3B2O3·3.5H2O (ZB3.5) or 3ZnO·2B2O3 (ZB0) were added in amounts of 1–10 wt. parts/100 wt. parts of the other coating components mixture. Char formation processes and thermal insulation features were investigated using an open-flame furnace heated according to the cellulosic fire curve. Thermogravimetric features (DTG), chemical structures (FTIR) and mechanical strength of the ICs and the chars were analyzed as well. It was revealed that the type and dose of the ZBs significantly affect thermal insulation time (TIT) (up to 450 °C of a steel substrate) and sagging (SI) of the fire-heated coatings as well as the compressive strength of the created chars. The highest TIT value (+89%) was noted for the sample with 2.5 wt. parts of ZB3.5 while the lowest SI (−65%) was observed for the coatings containing 10 wt. parts of the hydrated borates (i.e., ZB3.5 or ZB6). The best mechanical strength was registered for the sample filled with the anhydrous modifier (3 wt. parts of ZB0). The presented results show that the ICs with the proper ZBs can be used for effective fire protection of vertically positioned steel elements. Full article
Show Figures

Graphical abstract

Open AccessArticle
Aging Effects of Aqueous Environment on Mechanical Properties of Calcium Carbonate-Modified Epoxy Resin
Polymers 2020, 12(11), 2541; https://doi.org/10.3390/polym12112541 - 30 Oct 2020
Cited by 4 | Viewed by 349
Abstract
The purpose of this study was to assess the effects of different aqueous environments (i.e., demineralised, distilled and spring water) on the mechanical properties of a cold-cured bisphenolic epoxy resin modified with the addition of calcium carbonate filler, typically employed as structural adhesive. [...] Read more.
The purpose of this study was to assess the effects of different aqueous environments (i.e., demineralised, distilled and spring water) on the mechanical properties of a cold-cured bisphenolic epoxy resin modified with the addition of calcium carbonate filler, typically employed as structural adhesive. The parameters selected for the analysis have been; the kind of curing agent employed to cure the epoxy resin at ambient temperature (i.e., Mannich base and triethylenetetramine); the load of calcium carbonate added to liquid epoxy (i.e., from 1 to 3 g per 100 g of resin) and; the duration of the exposure to the different aging conditions (i.e., from 1 to 10 months). Cylindrical specimens of calcium carbonate-modified epoxy systems were tested in compression mode, before and after each of the aging regimes. The effect of the selected curing agents is very small, and they are both suitable for a cure at ambient temperature, on the unfilled epoxy on compressive maximum strength and strain at break; the choice of the hardener affects instead the compressive modulus. The CaCO3 amount was demonstrated to have a significant effect on the mechanical characteristics of un-aged epoxy systems, leading to growth in compressive modulus and maximum strength with reductions in strain at break. Generally speaking, the aging time noticeably affects the compressive properties of calcium carbonate-modified epoxies while almost negligible is the kind of water employed in each exposure regime. Notwithstanding the adverse effects of an aqueous environment on compressive mechanical properties of CaCO3-filled epoxies, these systems keep compressive modulus and maximum strength greater than, and close to, respectively, the same characteristics measured on unaged unfilled control epoxies, demonstrating the positive effect of the addition of this kind of filler to epoxy-based structural adhesives, especially with the addition of 2 and 3 g of CaCO3 per 100 g resin. The results obtained in this study demonstrated that it is possible to contrast the detrimental effects observed in cold-cured epoxy-based structural adhesives due to their aging in water upon the addition of limited amounts (particularly at 2 and 3 g per 100 g resin) of a cheap CaCO3 filler. Full article
Show Figures

Figure 1

Open AccessArticle
Flax/PP and Flax/PLA Thermoplastic Composites: Influence of Fire Retardants on the Individual Components
Polymers 2020, 12(11), 2452; https://doi.org/10.3390/polym12112452 - 23 Oct 2020
Cited by 1 | Viewed by 418
Abstract
This study is based on previously reported reaction to fire properties of flax fibre-reinforced polymeric (polypropylene, PP and polylactic acid, PLA) composites, prepared by pre-treating the fabrics with different fire retardants (FRs) prior to composite preparation. It was observed that while all of [...] Read more.
This study is based on previously reported reaction to fire properties of flax fibre-reinforced polymeric (polypropylene, PP and polylactic acid, PLA) composites, prepared by pre-treating the fabrics with different fire retardants (FRs) prior to composite preparation. It was observed that while all of these treatments were very effective in flax/PLA in terms of achieving a V-0 rating in a UL-94 test, only an organophosphonate FR was capable of achieving a V-0 rating for flax/PP. However, all fire-retardant treatments impaired the mechanical properties of the composites; the reduction was more in flax/PLA compared to flax/PP composites. To understand these effects further, here thermal analysis and pyrolysis combustion flow calorimetry of the composites and each component separately treated with FRs have been conducted and the results analysed in terms of the effect on each component so as to observe any interaction between the different components. The results indicated that in flax/PLA composites, the water released during FR catalysed dehydration-decomposition of flax may hydrolyse PLA, changing decomposition pathway of PLA to produce less flammable volatile, hence resulting in reduced flammability. Full article
Show Figures

Figure 1

Open AccessArticle
Flame-Retardant Mechanism and Mechanical Properties of Wet-Spun Poly(acrylonitrile-co-vinylidene chloride) Fibers with Antimony Trioxide and Zinc Hydroxystannate
Polymers 2020, 12(11), 2442; https://doi.org/10.3390/polym12112442 - 22 Oct 2020
Viewed by 453
Abstract
To produce flame retardant poly(acrylonitrile-co-vinylidene chloride) (PANVDC) fibers with limiting oxygen index (LOI) values above 28%, flame retardants are added to fibers. Because antimony trioxide (ATO) used widely for PANVDC is suspected as a carcinogen, non-toxic zinc hydroxystannate (ZHS) could be the alternative [...] Read more.
To produce flame retardant poly(acrylonitrile-co-vinylidene chloride) (PANVDC) fibers with limiting oxygen index (LOI) values above 28%, flame retardants are added to fibers. Because antimony trioxide (ATO) used widely for PANVDC is suspected as a carcinogen, non-toxic zinc hydroxystannate (ZHS) could be the alternative for reduction of ATO usage. Moreover, a flame retardant efficiency of the combination of ATO with ZHS could be expected because it was reported that ATO resists flame in the gas phase, whereas ZHS reacts in the condensed phase. Therefore, this study discussed the flame retardant mechanisms of ATO and ZHS in PANVDC, and evaluated the efficiency of the combination. PANVDC fibers with ATO and ZHS in 15 phr were produced by wet spinning. When ZHS was added, a more cyclized structure was detected (e.g., 1-methylnaphthalene) through pyrolysis−gas chromatography-mass spectrometry (Py-GC/MS). As a result of SEM-EDX analysis, Sb and Cl hardly remained in char layers of PANVDC-ATO; meanwhile, Zn, Sn, and Cl remained in that of PANVDC-ZHS. This implied that SbCl3 from reaction of ATO and HCl reacts in the gas phase, whereas ZnCl2 and SnCl2 from ZHS and HCl promotes the cyclization reaction of PANVDC in the condensed phase. The LOI values of PANVDC, PANVDC-ATO, and PANVDC-ZHS were 26.4%, 29.0%, and 33.5%, respectively. This suggests that ZHS is a highly effective for PANVDC. Meanwhile, the LOI of PANVDC containing ATO-ZHS mixture is 31.0%. The combination of ATO and ZHS exhibited no efficiency. The addition of ATO and ZHS slightly reduced the tenacities of the fibers, respectively, 3.11 and 3.75 from 4.42 g/den. Full article
Show Figures

Figure 1

Open AccessArticle
Reliability-Based Evaluation of the Suitability of Polymers for Additive Manufacturing Intended for Extreme Operating Conditions
Polymers 2020, 12(10), 2327; https://doi.org/10.3390/polym12102327 - 12 Oct 2020
Cited by 1 | Viewed by 475
Abstract
A reliability engineering program must be implemented from the conceptual phase of the physical asset to define the performance requirements of the components and equipment. Thus, in this work, the aim is to find the most optimal solution to manufacture polymer-based parts for [...] Read more.
A reliability engineering program must be implemented from the conceptual phase of the physical asset to define the performance requirements of the components and equipment. Thus, in this work, the aim is to find the most optimal solution to manufacture polymer-based parts for the nuclear power industry using additive manufacturing routes. This case study application has been selected because polymers processed by additive manufacturing (AM) can be well suited for nuclear applications. The methodology includes—firstly—an analysis of the suitability of materials based on high-temperature resistance, thermal aging and irradiation tolerance, considering operation conditions. Secondly, an analysis of materials’ processability considering their associated AM routes is performed based on thermal analysis and evaluation of physical properties of materials. A final assessment integrating the in-service suitability and AM processability is performed using a reliability approach, solving different emerging objective conflicts through defined constraints and selection criteria. According to the integrated in-service performance evaluation: Polypropylene-ethylene polyallomer (PPP), Epoxy (EP), Phenolics (Ph), Polyurethane (PU) and Acrylonitrile butadiene rubber (NBR) are the best options for mild operation conditions and EP, Ph and PU, considering high temperature along with radiation exposure. Considering AM techniques: EP and Ph can be manufactured using VAT photopolymerization-stereolithography (VP-SLA) with a good expected processability being these materials valid for high temperature environments. Consequently, this research work analyzes the viability, processability and in-service behavior of parts. Full article
Show Figures

Figure 1

Open AccessArticle
The Toxicological Testing and Thermal Decomposition of Drive and Transport Belts Made of Thermoplastic Multilayer Polymer Materials
Polymers 2020, 12(10), 2232; https://doi.org/10.3390/polym12102232 - 28 Sep 2020
Cited by 6 | Viewed by 673
Abstract
The article presents the potential impact of flat drive and transport belts on people’s safety during a fire. The analysis distinguished belts made of classically used fabric–rubber composite materials reinforced with cord and currently used multilayer polymer composites. Moreover, the products’ multilayers during [...] Read more.
The article presents the potential impact of flat drive and transport belts on people’s safety during a fire. The analysis distinguished belts made of classically used fabric–rubber composite materials reinforced with cord and currently used multilayer polymer composites. Moreover, the products’ multilayers during the thermal decomposition and combustion can be a source of emissions for unpredictable and toxic substances with different concentrations and compositions. In the evaluation of the compared belts, a testing methodology was used to determine the toxicometric indicators (WLC50SM) on the basis of which it was possible to determine the toxicity of thermal decomposition and combustion products in agreement with the standards in force in several countries of the EU and Russia. The analysis was carried out on the basis of the registration of emissions of chemical compounds during the thermal decomposition and combustion of polymer materials at three different temperatures. Moreover, the degradation kinetics of the polymeric belts by using the thermogravimetric (TGA) technique was evaluated. Test results have shown that products of thermal decomposition resulting from the neoprene (NE22), leder leder (LL2), thermoplastic connection (TC), and extra high top cower (XH) belts can be characterized as moderately toxic or toxic. Their toxicity significantly increases with the increasing temperature of thermal decomposition or combustion, especially above 450 °C. The results showed that the belts made of several layers of polyamide can be considered the least toxic in fire conditions. The TGA results showed that NBR/PA/PA/NBR belt made with two layers of polyamide and the acrylonitrile–butadiene rubber has the highest thermal stability in comparison to other belts. Full article
Show Figures

Graphical abstract

Open AccessArticle
Characterization and Long-Term Stability of Historical PMMA: Impact of Additives and Acrylic Sheet Industrial Production Processes
Polymers 2020, 12(10), 2198; https://doi.org/10.3390/polym12102198 - 25 Sep 2020
Viewed by 916
Abstract
This work aims at understanding the influence of the production processes and materials in the properties and long term behavior of acrylic sheet, i.e., poly(methyl methacrylate) (PMMA), a material generally considered very stable in museum collections. A comparative study was conducted in samples [...] Read more.
This work aims at understanding the influence of the production processes and materials in the properties and long term behavior of acrylic sheet, i.e., poly(methyl methacrylate) (PMMA), a material generally considered very stable in museum collections. A comparative study was conducted in samples from cast acrylic sheets produced in the early 2000s, from which manufacturing details were known, and samples provided by the artist Lourdes Castro from acrylic sheets she had bought in the 1960s. Transparent and red opaque cast acrylic samples, containing cadmium red pigment, were used. All samples were artificially aged in a solarbox with irradiation λ > 300 nm for a total period of 8000 h, and alterations were followed by a multi-analytical approach which included Raman, infrared (FTIR-ATR) and UV-Vis spectroscopies; gravimetry; size exclusion chromatography (SEC); thermogravimetry (TGA); micro-indentation; colorimetry; and optical microscopy. Not all cast PMMA sheets presented similar stabilities. We have concluded that the production processes (which may include the polymerization conditions, the organic additives and the origin of the monomer) play a more important role in the properties and long-term behavior of these acrylic sheets than the presence of cadmium red and/or the age of the material. Full article
Show Figures

Figure 1

Open AccessArticle
Degradation of Mechanical Properties of Pine Wood Under Symmetric Axial Cyclic Loading Parallel to Grain
Polymers 2020, 12(10), 2176; https://doi.org/10.3390/polym12102176 - 23 Sep 2020
Viewed by 562
Abstract
The mechanical properties of wood, respectively the elastic, plastic, and strength properties, depend on a large number of factors, due both to its structural and physical characteristics, as well as to the size, direction, nature, and speed of application of forces. Wood, generally [...] Read more.
The mechanical properties of wood, respectively the elastic, plastic, and strength properties, depend on a large number of factors, due both to its structural and physical characteristics, as well as to the size, direction, nature, and speed of application of forces. Wood, generally considered to be a viscous-elastic material, has creep deformations over time under the effect of a constant load. In this study the behavior of pine wood samples was investigated due to its large utilization in different finished products, such as roof construction, furniture, outdoor applications, garden furniture, and toys. The paper aims to analyze the viscoelastic behavior of pine wood subjected to cyclically loading to traction-compression with different loads (1 kN; 1.5 kN; 2 kN), applied at different speeds (1 mm/min; 10 mm/min). It was observed that, at low speeds (1 mm/min) and low intensities of the applied force, it was possible to distinguish the three creep regions specific to wood: the primary area (primary flow), the secondary area, and finally the tertiary creep. As the force increases, the law of variation of the wood flow changes. The degradation of longitudinal elasticity modulus occurs with the increase of the number of cycles, so after 20 alternating symmetrical cycles of traction-compression of the pine wood samples, there is a decrease of its values by 35%. Full article
Show Figures

Graphical abstract

Open AccessReview
The Potential for Bio-Sustainable Organobromine-Containing Flame Retardant Formulations for Textile Applications—A Review
Polymers 2020, 12(9), 2160; https://doi.org/10.3390/polym12092160 - 22 Sep 2020
Cited by 2 | Viewed by 847
Abstract
This review considers the challenge of developing sustainable organobromine flame retardants (BrFRs) and alternative synergists to the predominantly used antimony III oxide. Current BrFR efficiencies are reviewed for textile coatings and back-coatings with a focus on furnishing and similar fabrics covering underlying flammable [...] Read more.
This review considers the challenge of developing sustainable organobromine flame retardants (BrFRs) and alternative synergists to the predominantly used antimony III oxide. Current BrFR efficiencies are reviewed for textile coatings and back-coatings with a focus on furnishing and similar fabrics covering underlying flammable fillings, such as flexible polyurethane foam. The difficulty of replacing them with non-halogen-containing systems is also reviewed with major disadvantages including their extreme specificity with regard to a given textile type and poor durability.The possibility of replacing currently used BrFRs for textiles structures that mimic naturally occurring organobromine-containing species is discussed, noting that of the nearly 2000 such species identified in both marine and terrestrial environments, a significant number are functionalised polybrominated diphenyl ethers, which form part of a series of little understood biosynthetic biodegradation cycles.The continued use of antimony III oxide as synergist and possible replacement by alternatives, such as the commercially available zinc stannates and the recently identified zinc tungstate, are discussed. Both are effective as synergists and smoke suppressants, but unlike Sb203, they have efficiencies dependent on BrFR chemistry and polymer matrix or textile structure. Furthermore, their effectiveness in textile coatings has yet to be more fully assessed.In conclusion, it is proposed that the future of sustainable BrFRs should be based on naturally occurring polybrominated structures developed in conjunction with non-toxic, smoke-suppressing synergists such as the zinc stannates or zinc tungstate, which have been carefully tailored for given polymeric and textile substrates. Full article
Show Figures

Graphical abstract

Open AccessArticle
Erroneous or Arrhenius: A Degradation Rate-Based Model for EPDM during Homogeneous Ageing
Polymers 2020, 12(9), 2152; https://doi.org/10.3390/polym12092152 - 21 Sep 2020
Cited by 1 | Viewed by 596
Abstract
To improve the predictive capability of long-term stress relaxation of elastomers during thermo-oxidative ageing, a method to separate reversible and irreversible processes was adopted. The separation is performed through the analysis of compression set after tempering. On the basis of this separation, a [...] Read more.
To improve the predictive capability of long-term stress relaxation of elastomers during thermo-oxidative ageing, a method to separate reversible and irreversible processes was adopted. The separation is performed through the analysis of compression set after tempering. On the basis of this separation, a numerical model for long-term stress relaxation during homogeneous ageing is proposed. The model consists of an additive contribution of physical and chemical relaxation. Computer simulations of compression stress relaxation were performed for long ageing times and the results were validated with the Arrhenius treatment, the kinetic study and the time-temperature superposition technique based on experimental data. For chemical relaxation, two decay functions are introduced each with an activation energy and a degradative process. The first process with the lower activation energy dominates at lower ageing times, while the second one with the higher activation energy at longer ageing times. A degradation-rate based model for the evolution of each process and its contribution to the total system during homogeneous ageing is proposed. The main advantage of the model is the possibility to quickly validate the interpolation at lower temperatures within the range of slower chemical processes without forcing a straight-line extrapolation. Full article
Show Figures

Graphical abstract

Open AccessArticle
Flammability Characteristics and Mechanical Properties of Casein Based Polymeric Composites
Polymers 2020, 12(9), 2078; https://doi.org/10.3390/polym12092078 - 12 Sep 2020
Viewed by 610
Abstract
Even though casein has an intrinsic potential ability to act as a flame retardant (FR) additive, the research regarding the FR performance of casein filled polymeric composites has not been thoroughly conducted. In the present work, two commercial casein products, such as lactic [...] Read more.
Even though casein has an intrinsic potential ability to act as a flame retardant (FR) additive, the research regarding the FR performance of casein filled polymeric composites has not been thoroughly conducted. In the present work, two commercial casein products, such as lactic casein 720 (LAC) and sodium casein 180 (SC), were chosen to investigate their effects on the performances of the polypropylene (PP) composites. The melt compounding and compression moulding processes were employed to fabricate these casein-based composites. Ammonium polyphosphate (APP) was also selected to explore its combined effects in conjunction with casein on the composite’s flammability. The cone calorimeter results showed that the addition of casein significantly reduced (66%) the peak heat release rate (PHRR) of the composite compared to that of neat PP. In particular, the combination of LAC and APP led to the formation of more compact and rigid char compared to that for SC based sample; hence, a further reduction (80%) in PHRR and self-extinguishment under a vertical burn test were accomplished. Moreover, the tensile modulus of the composite improved (23%) by the combined effects of LAC and APP. The overall research outcome has established the potential of casein as a natural protein FR reducing a polymer’s flammability. Full article
Show Figures

Figure 1

Open AccessArticle
Experimental Studies and Modeling of the Degradation Process of Poly(Lactic-co-Glycolic Acid) Microspheres for Sustained Protein Release
Polymers 2020, 12(9), 2042; https://doi.org/10.3390/polym12092042 - 08 Sep 2020
Viewed by 488
Abstract
In this study, poly(lactic-co-glycolic acid) microspheres (PLGA MS)for controlled protein release by double emulsion-solvent evaporation were produced and characterized for their morphological and technological features. MS autocatalytic degradation was described by a mathematical model based on a Michaelis and Menten-like chemical [...] Read more.
In this study, poly(lactic-co-glycolic acid) microspheres (PLGA MS)for controlled protein release by double emulsion-solvent evaporation were produced and characterized for their morphological and technological features. MS autocatalytic degradation was described by a mathematical model based on a Michaelis and Menten-like chemical balance. Here, for the first time MS degradation was correlated to the advancement of MS degradation front with respect to the degraded radius, derived from mass loss experiments. The model can satisfactorily describe the kinetics of advancement of the degradation front experimentally derived for all MS formulations, especially when produced at higher PLGA concentrations. Full article
Show Figures

Graphical abstract

Open AccessArticle
Accelerated Ageing Procedures to Assess the Stability of an Unconventional Acrylic-Wax Polymeric Emulsion for Contemporary Art
Polymers 2020, 12(9), 1925; https://doi.org/10.3390/polym12091925 - 26 Aug 2020
Viewed by 890
Abstract
This research evaluates the stability of an aqueous emulsion of acrylic copolymers and waxes. Edelwachs, generally applied on wood, has been recently used as an unconventional medium in contemporary painting. Through Pyrolysis–Gas Chromatography–Mass Spectrometry (Py-GC-MS) and Fourier Transformed Infrared Attenuated Total Reflectance (FT-IR-ATR) [...] Read more.
This research evaluates the stability of an aqueous emulsion of acrylic copolymers and waxes. Edelwachs, generally applied on wood, has been recently used as an unconventional medium in contemporary painting. Through Pyrolysis–Gas Chromatography–Mass Spectrometry (Py-GC-MS) and Fourier Transformed Infrared Attenuated Total Reflectance (FT-IR-ATR) analyses, the composition of Edelwachs was defined as a mixture of acrylic polymers (MA, MMA, nBA, nBMA), Carnauba and microcrystalline waxes and additives. Mock-ups-obtained mixing Edelwachs with titanium white, zinc white and ultramarine blue were subjected to UV, high temperatures, and high relative humidity accelerated ageing. The effect of the ageing procedures was evaluated through optical microscopy, colourimetric measurements, FT-IR-ATR, Thermogravimetry and Differential Scanning Calorimetry (TG-DSC) and wettability measures. FT-IR-ATR spectra do not show significant variations in terms of chemical stability, indicating a fair stability of Edelwachs as a painting binder. UV and high temperature treatments show the most relevant effects in terms of colorimetric changes (increasing of b*) and thermal stability. The TG-DSC highlights the influence of the pigments (specifically zinc white) mainly on the thermal behaviour of the acrylates. The unexpected decrease of wettability of the paint films, registered after ageing, may indicate a possible phase separation among acrylates and waxes. Full article
Show Figures

Graphical abstract

Open AccessArticle
The Influence of the Accelerated Aging Conditions on the Properties of Polyolefin Geogrids Used for Landfill Slope Reinforcement
Polymers 2020, 12(9), 1874; https://doi.org/10.3390/polym12091874 - 20 Aug 2020
Viewed by 541
Abstract
Polyolefin geosynthetics are susceptible to oxidative degradation, which in turn leads to diminished mechanical properties in geotechnical constructions. When using these materials, it is extremely important to determine their durability over time in particularly aggressive conditions. In order to prolong the life of [...] Read more.
Polyolefin geosynthetics are susceptible to oxidative degradation, which in turn leads to diminished mechanical properties in geotechnical constructions. When using these materials, it is extremely important to determine their durability over time in particularly aggressive conditions. In order to prolong the life of a geosynthetic material, antioxidants are added during the manufacturing process. The function of antioxidants is to prevent polymer oxidation reaction in time. As the antioxidant content is depleted, the polymer becomes less protected towards oxidative attacks. This article describes the aging process of uniaxial (high density polyethylene) HDPE geogrids under the influence of chemical and environmental factors. Evaluations of accelerated aging test of the uniaxial HDPE geogrids were incubated in simulated landfill conditions for a period of 12 months. Three temperatures (25 °C, 45 °C, and 75 °C) were selected for carrying out the aging experiments in aqueous solutions mimicking landfill conditions. The changes observed by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and melt flow index (MFI) correlate with the mechanical properties of the aged geogrid. No significant changes in the FTIR and MFI were observed over the 12 months of accelerated aging tests at none of the three different temperatures. The oxidation induction time (OIT) test showed no antioxidant remaining in the geogrid following eight months of aging test at 75 °C. No significant changes in the influence of accelerated aging tests on the average relative elongation at 25 °C and 45 °C of the tested material were observed. Accelerated aging tests at 75 °C showed that the mean elongation of 12.12% for the sample not subjected to accelerated aging tests (new sample) increased to 19.32% (after 12 months of incubation). Full article
Show Figures

Figure 1

Open AccessArticle
A Kinetic Analysis of the Thermal Degradation Behaviours of Some Bio-Based Substrates
Polymers 2020, 12(8), 1830; https://doi.org/10.3390/polym12081830 - 15 Aug 2020
Cited by 2 | Viewed by 682
Abstract
In the present paper, we report on a detailed study regarding the thermal degradation behaviours of some bio-sourced substrates. These were previously identified as the base materials in the formulations for fireproofing wood plaques through our investigations. The substrates included: β-cyclodextrin, dextran, potato [...] Read more.
In the present paper, we report on a detailed study regarding the thermal degradation behaviours of some bio-sourced substrates. These were previously identified as the base materials in the formulations for fireproofing wood plaques through our investigations. The substrates included: β-cyclodextrin, dextran, potato starch, agar-agar, tamarind kernel powder and chitosan. For deducing the Arrhenius parameters from thermograms obtained through routine thermogravimetric analyses (TGA), we used the standard Flynn–Wall–Ozawa (FWO) method and employed an in-house developed proprietary software. In the former case, five different heating rates were used, whereas in the latter case, the data from one dynamic heating regime were utilized. Given that the FWO method is essentially based on a model-free approach that also makes use of multiple heating rates, it can be considered in the present context as superior to the one that is dependent on a single heating rate. It is also relevant to note here that the values of energy of activation (Ea) obtained in each case should only be considered as apparent values at best. Furthermore, some useful, but limited, correlations were identified between the Ea values and the relevant parameters obtained earlier by us from pyrolysis combustion flow calorimetry (PCFC). Full article
Show Figures

Graphical abstract

Open AccessArticle
Mechanistic Aspects of Condensed- and Gaseous-Phase Activities of Some Phosphorus-Containing Fire Retardants
Polymers 2020, 12(8), 1801; https://doi.org/10.3390/polym12081801 - 11 Aug 2020
Cited by 1 | Viewed by 555
Abstract
As a part of our ongoing investigations on passively fire protecting polymeric materials, we have been employing both reactive and additive routes involving phosphorus-containing compounds. These included inorganic and organic substances, and in the latter case, the phosphorus-bearing groups differed in terms of [...] Read more.
As a part of our ongoing investigations on passively fire protecting polymeric materials, we have been employing both reactive and additive routes involving phosphorus-containing compounds. These included inorganic and organic substances, and in the latter case, the phosphorus-bearing groups differed in terms of the chemical environments (phosphite, phosphate, phosphine, phosphine oxide and phosphonate ester) and oxidation state of the P atom (i.e., III, or V). The overall flammability profiles of wood substrates coated with the phosphorus-containing compounds were obtained through cone calorimetric measurements. The elemental composition, morphology and chemical natures of the char residues, obtained from the cone tests, were analysed through a variety of spectroscopic, chromatographic and spectrometric means. From the complementary information, obtained through these analyses, some probable mechanistic pathways that underpin the condensed- and gaseous-phase activities of the different additives are suggested. It was found that the inorganic solid additive, i.e., (NH4)2HPO4, underwent a two-step degradation, yielding ammonia gas and phosphoric acid. Furthermore, the liquid additives, owing to their volatility as compared to the solid ones, showed a relatively higher presence in the vapour phase than volatile fragments emanating from the latter ones (i.e., from phosphine and the phosphine oxides). Full article
Show Figures

Graphical abstract

Open AccessArticle
A Case Study of Polyether Ether Ketone (I): Investigating the Thermal and Fire Behavior of a High-Performance Material
Polymers 2020, 12(8), 1789; https://doi.org/10.3390/polym12081789 - 10 Aug 2020
Cited by 1 | Viewed by 637
Abstract
The thermal and fire behaviors of a high-performance polymeric material—polyether ether ketone (PEEK) was investigated. The TG plots of PEEK under different oxygen concentrations revealed that the initial step of thermal decomposition does not greatly depend on the oxygen level. However, oxygen concentration [...] Read more.
The thermal and fire behaviors of a high-performance polymeric material—polyether ether ketone (PEEK) was investigated. The TG plots of PEEK under different oxygen concentrations revealed that the initial step of thermal decomposition does not greatly depend on the oxygen level. However, oxygen concentration plays a major role in the subsequent decomposition steps. In order to understand the thermal decomposition mechanism of PEEK several methods were employed, i.e., pyrolysis–gas chromatography–mass spectrometry (Py–GC–MS), thermogravimetric analysis (TGA) coupled with a Fourier-transform infrared spectrometer (FTIR). It was observed that the initial decomposition step of the material may lead to the release of noncombustible gases and the formation of a highly crosslinked graphite-like carbonaceous structure. Moreover, during the mass loss cone calorimetry test, PEEK has shown excellent charring and fire resistance when it is subjected to an incident heat flux of 50 kW/m². Based on the fire behavior and the identification of pyrolysis gases evolved during the decomposition of PEEK, the enhanced fire resistance of PEEK was assigned to the dilution of the flammable decomposition gases as well as the formation of a protective graphite-like charred structure during its decomposition. Moreover, at 60 kW/m², ignition occurred more quickly. This is because a higher rate of release of decomposition products is achieved at such a heat flux, causing a higher concentration of combustibles, thus an earlier ignition. However, the peak of heat release rate of the material did not exceed 125 kW/m². Full article
Show Figures

Figure 1

Open AccessArticle
The Effect of Recycling on Wood-Fiber Thermoplastic Composites
Polymers 2020, 12(8), 1750; https://doi.org/10.3390/polym12081750 - 05 Aug 2020
Viewed by 1094
Abstract
The aim of this study was to investigate the effect of recycling on polypropylene (PP) and wood-fiber thermoplastic composites (WPCs) using a co-rotating twin-screw extruder. After nine extrusion passes microscopy studies confirmed that the fiber length decreased with the increased number of recycling [...] Read more.
The aim of this study was to investigate the effect of recycling on polypropylene (PP) and wood-fiber thermoplastic composites (WPCs) using a co-rotating twin-screw extruder. After nine extrusion passes microscopy studies confirmed that the fiber length decreased with the increased number of recycling passes but the increased processing time also resulted in excellent dispersion and interfacial adhesion of the wood fibers in the PP matrix. Thermal, rheological, and mechanical properties were studied. The repeated extrusion passes had minimal effect on thermal behavior and the viscosity decreased with an increased number of passes, indicating slight degradation. The recycling processes had an effect on the tensile strength of WPCs while the effect was minor on the PP. However, even after the nine recycling passes the strength of WPC was considerably better (37 MPa) compared to PP (28 MPa). The good degree of property retention after recycling makes this recycling strategy a viable alternative to discarding the materials. Thus, it has been demonstrated that, by following the most commonly used extrusion process, WPCs can be recycled several times and this methodology can be industrially adapted for the manufacturing of recycled products. Full article
Show Figures

Graphical abstract

Open AccessArticle
Accelerated Weathering Effects on Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and PHBV/TiO2 Nanocomposites
Polymers 2020, 12(8), 1743; https://doi.org/10.3390/polym12081743 - 05 Aug 2020
Cited by 1 | Viewed by 787
Abstract
The effect of accelerated weathering on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and PHBV-based nanocomposites with rutile titanium (IV) dioxide (PHBV/TiO2) was investigated. The accelerated weathering test applied consecutive steps of UV irradiation (at 340 nm and 0.76 W m−2 irradiance) and moisture at [...] Read more.
The effect of accelerated weathering on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and PHBV-based nanocomposites with rutile titanium (IV) dioxide (PHBV/TiO2) was investigated. The accelerated weathering test applied consecutive steps of UV irradiation (at 340 nm and 0.76 W m−2 irradiance) and moisture at 50 °C following the ASTM D4329 standard for up to 2000 h of exposure time. The morphology, chemical structure, crystallization, as well as the mechanical and thermal properties were studied. Samples were characterized after 500, 1000, and 2000 h of exposure time. Different degradation mechanisms were proposed to occur during the weathering exposure and were confirmed based on the experimental data. The PHBV surface revealed cracks and increasing roughness with the increasing exposure time, whereas the PHBV/TiO2 nanocomposites showed surface changes only after 2000 h of accelerated weathering. The degradation of neat PHBV under moisture and UV exposure occurred preferentially in the amorphous phase. In contrast, the presence of TiO2 in the nanocomposites retarded this process, but the degradation would occur simultaneously in both the amorphous and crystalline segments of the polymer after long exposure times. The thermal stability, as well as the temperature and rate of crystallization, decreased in the absence of TiO2. TiO2 not only provided UV protection, but also restricted the physical mobility of the polymer chains, acting as a nucleating agent during the crystallization process. It also slowed down the decrease in mechanical properties. The mechanical properties were shown to gradually decrease for the PHBV/TiO2 nanocomposites, whereas a sharp drop was observed for the neat PHBV after an accelerated weathering exposure. Atomic force microscopy (AFM), using the amplitude modulation–frequency modulation (AM–FM) tool, also confirmed the mechanical changes in the surface area of the PHBV and PHBV/TiO2 samples after accelerated weathering exposure. The changes in the physical and chemical properties of PHBV/TiO2 confirm the barrier activity of TiO2 for weathering attack and its retardation of the degradation process. Full article
Show Figures

Graphical abstract

Open AccessArticle
Prediction of Moisture and Aging Conditions of Oil-Immersed Cellulose Insulation Based on Fingerprints Database of Dielectric Modulus
Polymers 2020, 12(8), 1722; https://doi.org/10.3390/polym12081722 - 31 Jul 2020
Viewed by 713
Abstract
Frequency-domain spectroscopy (FDS) is demonstrated to be affected by electrode polarization and conductance behavior in the low-frequency ranges, which causes the unreliable prediction results of transformer cellulose insulation. In order to solve this issue, a fingerprint database based on the dielectric modulus is [...] Read more.
Frequency-domain spectroscopy (FDS) is demonstrated to be affected by electrode polarization and conductance behavior in the low-frequency ranges, which causes the unreliable prediction results of transformer cellulose insulation. In order to solve this issue, a fingerprint database based on the dielectric modulus is reported to predict the degree of polymerization (DP) and moisture content of cellulose insulation. In the current work, the relevant fingerprints that characterize the insulation conditions are obtained by studying the dielectric modulus curves of cellulose insulation with various insulation conditions, as well as the DC conductivity of transformer oil. Then, the dielectric modulus fingerprint database is established in the lab, and the accuracy of the reported fingerprint database is later verified. As a potential tool, the dielectric modulus fingerprint database is tested by several samples, and the results demonstrate that the accuracy of this method is more than 80%. In that respect, an interesting discovery of this paper is that the dielectric modulus fingerprint database may be a helpful tool for conditions prediction of the transformer cellulose insulation system. Full article
Show Figures

Graphical abstract

Open AccessReview
Flame Retardant Polypropylenes: A Review
Polymers 2020, 12(8), 1701; https://doi.org/10.3390/polym12081701 - 29 Jul 2020
Cited by 3 | Viewed by 1244
Abstract
Polypropylene (PP) is a commodity plastic known for high rigidity and crystallinity, which is suitable for a wide range of applications. However, high flammability of PP has always been noticed by users as a constraint; therefore, a variety of additives has been examined [...] Read more.
Polypropylene (PP) is a commodity plastic known for high rigidity and crystallinity, which is suitable for a wide range of applications. However, high flammability of PP has always been noticed by users as a constraint; therefore, a variety of additives has been examined to make PP flame-retardant. In this work, research papers on the flame retardancy of PP have been comprehensively reviewed, classified in terms of flame retardancy, and evaluated based on the universal dimensionless criterion of Flame Retardancy Index (FRI). The classification of additives of well-known families, i.e., phosphorus-based, nitrogen-based, mineral, carbon-based, bio-based, and hybrid flame retardants composed of two or more additives, was reflected in FRI mirror calculated from cone calorimetry data, whatever heat flux and sample thickness in a given series of samples. PP composites were categorized in terms of flame retardancy performance as Poor, Good, or Excellent cases. It also attempted to correlate other criteria like UL-94 and limiting oxygen index (LOI) with FRI values, giving a broad view of flame retardancy performance of PP composites. The collected data and the conclusions presented in this survey should help researchers working in the field to select the best additives among possibilities for making the PP sufficiently flame-retardant for advanced applications. Full article
Show Figures

Figure 1

Open AccessArticle
Enhanced Biodegradation/Photodegradation of Organophosphorus Fire Retardant Using an Integrated Method of Modified Pharmacophore Model with Molecular Dynamics and Polarizable Continuum Model
Polymers 2020, 12(8), 1672; https://doi.org/10.3390/polym12081672 - 27 Jul 2020
Cited by 3 | Viewed by 676
Abstract
A comprehensive 3D-quantitative structure–activity relationship (QSAR) pharmacophore model was constructed using the values of comprehensive biodegradation/photodegradation effects of 17 organophosphorus flame retardants (OPFRs) evaluated by a normalization method to modify OPFRs with high biodegradation/photodegradation, taking tris(chloro-isopropyl) phosphate (TCPP), tris(2-chloroethyl) phosphate (TCEP) and tris(1-chloro-2-propyl) [...] Read more.
A comprehensive 3D-quantitative structure–activity relationship (QSAR) pharmacophore model was constructed using the values of comprehensive biodegradation/photodegradation effects of 17 organophosphorus flame retardants (OPFRs) evaluated by a normalization method to modify OPFRs with high biodegradation/photodegradation, taking tris(chloro-isopropyl) phosphate (TCPP), tris(2-chloroethyl) phosphate (TCEP) and tris(1-chloro-2-propyl) phosphate (TCIPP)—which occur frequently in the environment, and are the most difficult to degrade as target molecules. OPFR-derivative molecules TCPP–OH shows the highest improvement in biodegradation and photodegradation (55.48% and 46.37%, respectively). On simulating the biodegradation path and photodegradation path, it is found that the energy barrier of TCPP–OH for phosphate bond cleavage is reduced by 15.73% and 52.52% compared to TCPP after modification, respectively. Finally, in order to further significantly improve its biodegradability and photodegradation, the efficiency enhancement in the biodegradation and photodegradation of TCPP–OH are analyzed under the simulated environment by molecular dynamics and polarizable continuum model, respectively. The results of molecular dynamics show that the biodegradation efficiency of the TCPP–OH increased by 75.52% compared to TCPP. The UV spectral transition energy (4.07 eV) of TCPP–OH under the influence of hydrogen peroxide solvation effect is 44.23% lower than the actual transition energy (7.29 eV) of TCPP. Full article
Show Figures

Graphical abstract

Open AccessArticle
Durability of Accoya Wood in Ground Stake Testing after 10 Years of Exposure in Greece
Polymers 2020, 12(8), 1638; https://doi.org/10.3390/polym12081638 - 23 Jul 2020
Viewed by 666
Abstract
In this research, acetylated wood (Accoya) was tested in ground contact in central Greece. After ten years of exposure during a ground stake test, acetylated pine wood (Pinus radiata) stakes, with a 20% acetyl weight gain, were completely intact and showed [...] Read more.
In this research, acetylated wood (Accoya) was tested in ground contact in central Greece. After ten years of exposure during a ground stake test, acetylated pine wood (Pinus radiata) stakes, with a 20% acetyl weight gain, were completely intact and showed no visual decay (decay rating: 0). However, the key mechanical properties of Accoya wood, that is, modulus of elasticity (MOE) and modulus of rupture (MOR) after 10 years of ground contact, were significantly reduced by 32.8% and 29.6%, respectively, despite an excellent visual result since no evidence of fungal attack was identified. This contradiction could possibly indicate that the hallmarks of decay, i.e., brown-rot decay of acetylated wood can be the significant loss of mechanical properties before decay is actually visible. Full article
Show Figures

Figure 1

Open AccessArticle
A Case Study of Polyetheretherketone (II): Playing with Oxygen Concentration and Modeling Thermal Decomposition of a High-Performance Material
Polymers 2020, 12(7), 1577; https://doi.org/10.3390/polym12071577 - 16 Jul 2020
Viewed by 536
Abstract
Kinetic decomposition models for the thermal decomposition of a high-performance polymeric material (polyetheretherketone, PEEK) were determined from specific techniques. Experimental data from thermogravimetric analysis (TGA) and previously elucidated decomposition mechanisms were combined with a numerical simulating tool to establish a comprehensive kinetic model [...] Read more.
Kinetic decomposition models for the thermal decomposition of a high-performance polymeric material (polyetheretherketone, PEEK) were determined from specific techniques. Experimental data from thermogravimetric analysis (TGA) and previously elucidated decomposition mechanisms were combined with a numerical simulating tool to establish a comprehensive kinetic model for the decomposition of PEEK under three atmospheres: nitrogen, 2% oxygen, and synthetic air. Multistepped kinetic models with subsequent and competitive reactions were established by taking into consideration the different types of reactions that may occur during the thermal decomposition of the material (chain scission, thermo-oxidation, char formation). The decomposition products and decomposition mechanism of PEEK which were established in our previous report allowed for the elucidation of the kinetic decomposition models. A three-stepped kinetic thermal decomposition pathway was a good fit to model the thermal decomposition of PEEK under nitrogen. The kinetic model involved an autocatalytic type of reaction followed by competitive and successive nth order reactions. Such types of models were set up for the evaluation of the kinetics of the thermal decomposition of PEEK under 2% oxygen and in air, leading to models with satisfactory fidelity. Full article
Show Figures

Figure 1

Open AccessArticle
Application of Plasma Activation in Flame-Retardant Treatment for Cotton Fabric
Polymers 2020, 12(7), 1575; https://doi.org/10.3390/polym12071575 - 16 Jul 2020
Viewed by 774
Abstract
Cotton fabric treated by Pyrovatex CP New (PCN) and Knittex FFRC (K-FFRC) using the Pad-dry-cure method showed an excellent fire-retardant effect. However, it needed to be cured at high temperatures for a long time leading to a high loss of mechanical strength. In [...] Read more.
Cotton fabric treated by Pyrovatex CP New (PCN) and Knittex FFRC (K-FFRC) using the Pad-dry-cure method showed an excellent fire-retardant effect. However, it needed to be cured at high temperatures for a long time leading to a high loss of mechanical strength. In this study, atmospheric-pressure dielectric barrier discharge (APDBD) plasma was applied to the cotton fabric, which then was treated by flame retardants (FRs) using the pad–dry-cure method. The purpose was to have a flame-retardant cotton fabric (limiting oxygen index (LOI) ≥ 25) and a mechanical loss of the treated fabric due to the curing step as low as possible. To achieve this goal, 10 experiments were performed. The vertical flammability characteristics, LOI value and tensile strength of the treated fabrics were measured. A response model between the LOI values of the treated fabric and two studied variables (temperature and time of the curing step) was found. It was predicted that the optimal temperature and time-to-cure to achieve LOI of 25 was at 160 °C for 90 s, while the flame-retardant treatment process without plasma pretreatment, was at 180 °C and 114 s. Although the curing temperature and the time have decreased significantly, the loss of mechanical strength of the treated fabric is still high. The tensile strength and scanning electron microscopy (SEM) images of the fabric after plasma activation show that the plasma treatment itself also damages the mechanical strength of the fabric. X-ray photoelectron spectroscopy (XPS) spectra of the fabric after plasma activation and energy-dispersive spectroscopy (EDS) analysis of the flame retardant-treated (FRT) fabric clarified the role of plasma activation in this study. Full article
Show Figures

Figure 1

Open AccessArticle
Potential Synergism between Novel Metal Complexes and Polymeric Brominated Flame Retardants in Polyamide 6.6
Polymers 2020, 12(7), 1543; https://doi.org/10.3390/polym12071543 - 13 Jul 2020
Cited by 3 | Viewed by 652
Abstract
While environmental concerns have caused polymeric brominated primary flame retardants (PolyBrFRs) to be effective replacement monomeric species, few alternatives for antimony trioxide (ATO) have been developed beyond the zinc stannates (ZnSs). Previous research, which explored the interactions of aluminium (AlW), tin (II) (SnW) [...] Read more.
While environmental concerns have caused polymeric brominated primary flame retardants (PolyBrFRs) to be effective replacement monomeric species, few alternatives for antimony trioxide (ATO) have been developed beyond the zinc stannates (ZnSs). Previous research, which explored the interactions of aluminium (AlW), tin (II) (SnW) and zinc (ZnW) tungstates with several phosphorus-containing flame retardants in polyamide 6.6 (PA66), is extended to two PolyBrFRs: brominated polystyrene (BrPS), and poly(pentabromobenzyl acrylate) (BrPBz). On assessing the effect of each tungstate on the thermal degradation and flammability in combination with each PolyBrFR using TGA, UL94, LOI, cone calorimetry and TGA-FTIR, only ZnW and SnW showed significant increases in LOI (>26 vol.%). Both ZnW-BrPS- and ZnW-BrPBz-containing formulations yielded average UL94 ratings ≥ V-2 and TGA char residues (corrected for metals content at 500 °C) in air > 15 wt.%. BrPS-containing samples, especially those containing ZnW and SnW, generated peak heat release rates approximately 50% lower than the equivalent BrPBz samples. These reductions did not correlate with respective increases in LOI, suggesting that tungstate-PolyBrFR combinations influence pre-ignition differently to post-ignition behaviour. Calculated synergistic effectivities indicate that ZnW functions as a synergist in both pre- and post-ignition stages, especially with BrPS. TGA-FTIR and char analyses showed that, in addition to the vapour-phase activity normally associated with PolyBrFRs, condensed-phase processes occurred, especially for the ZnW-PolyBrFR combinations. Additionally, ZnW demonstrated significant smoke-suppressing properties comparable with zinc stannate (ZnS). Full article
Show Figures

Figure 1

Open AccessArticle
Preparation and Mechanism of Flame-Retardant Cotton Fabric with Phosphoramidate Siloxane Polymer through Multistep Coating
Polymers 2020, 12(7), 1538; https://doi.org/10.3390/polym12071538 - 12 Jul 2020
Cited by 3 | Viewed by 728
Abstract
To improve the water solubility of phosphoramidate siloxane and decrease the amount of flame-retardant additives used in the functional coating for cotton fabrics, a water-soluble phosphoramidate siloxane polymer (PDTSP) was synthesized by sol-gel technology and flame-retardant cotton fabrics were prepared with a multistep [...] Read more.
To improve the water solubility of phosphoramidate siloxane and decrease the amount of flame-retardant additives used in the functional coating for cotton fabrics, a water-soluble phosphoramidate siloxane polymer (PDTSP) was synthesized by sol-gel technology and flame-retardant cotton fabrics were prepared with a multistep coating process. A vertical flammability test, limited oxygen index (LOI), thermogravimetric analysis, and cone calorimetry were performed to investigate the thermal behavior and flame retardancy of PDTSP-coated fabrics. The coated cotton fabrics and their char residues after combustion were studied by attenuated total reflection infrared spectroscopy (FTIR-ATR), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). All results presented that PDTSP-coated cotton fabrics had good flame retardancy and char-forming properties. PDTSP coating was demonstrated to posess gas-phase flame-retardant mechanism as well as a condensed phase flame-retardant mechanism, which can be confirmed by thermogravimetric analysis-Fourier transform infrared spectroscopy (TG-IR) and cone calorimetry test. Also, the preparation process had little effect on the tensile strength of cotton fabrics, although the air permeability and whiteness had a slight decrease. After different washing cycles, the coated samples still maintained good char-forming properties. Full article
Show Figures

Graphical abstract

Open AccessArticle
Innovation in Wood Preservation
Polymers 2020, 12(7), 1511; https://doi.org/10.3390/polym12071511 - 07 Jul 2020
Viewed by 644
Abstract
The wood preservation industry has depended on toxicity as a mechanism of effectiveness against decay fungi to extend the life of wood used in adverse conditions. An alternative to toxicity, however, is to study and understand the mechanism of fungal attack and stop [...] Read more.
The wood preservation industry has depended on toxicity as a mechanism of effectiveness against decay fungi to extend the life of wood used in adverse conditions. An alternative to toxicity, however, is to study and understand the mechanism of fungal attack and stop it before it can start. Knowing that fungi need moisture for colonization, a new approach to wood preservation is to lower the cell wall moisture content below that needed for fungal attack. Acetylation chemistry is known to reduce the moisture content in the cell wall, and it was used to study moisture levels in the bulk cell wall and in the isolated cell wall polymers. Resistance to brown-rot was determined using a 12-week soil block test with Gloeophyllum trabeum. Weight loss was measured and an analysis of what was lost was determined. Full article
Show Figures

Figure 1

Open AccessArticle
Pretreatment Affects Activated Carbon from Piassava
Polymers 2020, 12(7), 1483; https://doi.org/10.3390/polym12071483 - 02 Jul 2020
Cited by 1 | Viewed by 649
Abstract
The specificity of activated carbon (AC) can be targeted by pretreatment of the precursors and/or activation conditions. Piassava (Leopoldinia piassaba and Attalea funifera Martius) are fibrous palms used to make brushes, and other products. Consolidated harvest and production residues provide economic feasibility [...] Read more.
The specificity of activated carbon (AC) can be targeted by pretreatment of the precursors and/or activation conditions. Piassava (Leopoldinia piassaba and Attalea funifera Martius) are fibrous palms used to make brushes, and other products. Consolidated harvest and production residues provide economic feasibility for producing AC, a value-added product from forest and industrial residues. Corona electrical discharge and extraction pretreatments prior to AC activation were investigated to determine benefits from residue pretreatment. The resulting AC samples were characterized using elemental analyses and FTIR and tested for efficacy using methylene blue and phenol. All resulting AC had good adsorbent properties. Extraction as a pretreatment improved functionality in AC properties over Corona electrical discharge pretreatment. Due to higher lignin content, AC from L. piassaba had better properties than that from A. funifera. Full article
Show Figures

Graphical abstract

Open AccessArticle
Effects of a Reactive Phosphorus–Sulfur Containing Flame-Retardant Monomer on the Flame Retardancy and Thermal and Mechanical Properties of Unsaturated Polyester Resin
Polymers 2020, 12(7), 1441; https://doi.org/10.3390/polym12071441 - 27 Jun 2020
Cited by 2 | Viewed by 743
Abstract
A novel reactive phosphorus and sulfur-containing monomer (bis(acryloxyethyldiphenylphosphate)sulfone, BADPS) was synthesized to enhance the comprehensive performance of unsaturated polyester resin (UPR), and corresponding flame-retardant unsaturated polyester resins (FR-UPRs) with various amounts of BADPS were prepared by radical bulk polymerization. The flame retardancy and [...] Read more.
A novel reactive phosphorus and sulfur-containing monomer (bis(acryloxyethyldiphenylphosphate)sulfone, BADPS) was synthesized to enhance the comprehensive performance of unsaturated polyester resin (UPR), and corresponding flame-retardant unsaturated polyester resins (FR-UPRs) with various amounts of BADPS were prepared by radical bulk polymerization. The flame retardancy and thermal and mechanical properties of the UPR samples were investigated by limiting oxygen index (LOI) measurements, cone calorimetry, differential scanning calorimetry (DSC), a thermogravimetric analysis (TGA), and a tension test. The results showed that the introduction of BADPS remarkably enhanced the flame resistance and high-temperature stability, as well as the tensile performance of UPR. Scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and Raman spectroscopy studies revealed that BADPS can efficaciously promote the formation of UPR char residue with an improved microstructure and increased graphitization degree, which enhancedthe high-temperature stability and char yield of UPR. Additionally, a thermogravimetry-Fourier transform infrared (TG-FTIR) analysis corroborated that the evolution of combustible volatiles from UPR decomposition was substantially restrained by the incorporation of BADPS, which is beneficial for the suppression of fire hazards in UPR. Full article
Show Figures

Graphical abstract

Open AccessReview
Flame Retardancy of Bio-Based Polyurethanes: Opportunities and Challenges
Polymers 2020, 12(6), 1234; https://doi.org/10.3390/polym12061234 - 29 May 2020
Cited by 9 | Viewed by 1092
Abstract
Sustainable polymers are emerging fast and have received much more attention in recent years compared to petro-sourced polymers. However, they inherently have low-quality properties, such as poor mechanical properties, and inadequate performance, such as high flammability. In general, two methods have been considered [...] Read more.
Sustainable polymers are emerging fast and have received much more attention in recent years compared to petro-sourced polymers. However, they inherently have low-quality properties, such as poor mechanical properties, and inadequate performance, such as high flammability. In general, two methods have been considered to tackle such drawbacks: (i) reinforcement of sustainable polymers with additives; and (ii) modification of chemical structure by architectural manipulation so as to modify polymers for advanced applications. Development and management of bio-based polyurethanes with flame-retardant properties have been at the core of attention in recent years. Bio-based polyurethanes are currently prepared from renewable, bio-based sources such as vegetable oils. They are used in a wide range of applications including coatings and foams. However, they are highly flammable, and their further development is dependent on their flame retardancy. The aim of the present review is to investigate recent advances in the development of flame-retardant bio-based polyurethanes. Chemical structures of bio-based flame-retardant polyurethanes have been studied and explained from the point of view of flame retardancy. Moreover, various strategies for improving the flame retardancy of bio-based polyurethanes as well as reactive and additive flame-retardant solutions are discussed. Full article
Show Figures

Graphical abstract

Open AccessArticle
A Flame-Retardant Phytic-Acid-Based LbL-Coating for Cotton Using Polyvinylamine
Polymers 2020, 12(5), 1202; https://doi.org/10.3390/polym12051202 - 25 May 2020
Cited by 3 | Viewed by 957
Abstract
Phytic acid (PA), as a natural source of phosphorus, was immobilized on cotton (CO) in a layer-by-layer (LbL) approach with polyvinylamine (PVAm) as the oppositely charged electrolyte to create a partly bio-based flame-retardant finish. PVAm was employed as a synthetic nitrogen source with [...] Read more.
Phytic acid (PA), as a natural source of phosphorus, was immobilized on cotton (CO) in a layer-by-layer (LbL) approach with polyvinylamine (PVAm) as the oppositely charged electrolyte to create a partly bio-based flame-retardant finish. PVAm was employed as a synthetic nitrogen source with the highest density of amine groups of all polymers. Vertical flame tests revealed a flame-retardant behavior with no afterflame and afterglow time for a coating of 15 bilayers (BL) containing 2% phosphorus and 1.4% nitrogen. The coating achieved a molar P:N ratio of 3:5. Microscale combustion calorimetry (MCC) analyses affirmed the flame test findings by a decrease in peak heat release rate (pkHRR) by more than 60% relative to unfinished CO. Thermogravimetric analyses (TGA) and MCC measurements exhibited a shifted CO peak to lower temperatures indicating proceeding reactions to form an isolating char on the surface. Fourier transform infrared spectroscopy (FTIR) coupled online with a TGA system, allowed the identification of a decreased amount of acrolein, methanol, carbon monoxide and formaldehyde during sample pyrolysis and a higher amount of released water. Thereby the toxicity of released volatiles was reduced. Our results prove that PA enables a different reaction by catalyzing cellulosic dehydration, which results in the formation of a protective char on the surface of the burned fabric. Full article
Show Figures

Figure 1

Open AccessArticle
A New Multiparameter Model for Multiaxial Fatigue Life Prediction of Rubber Materials
Polymers 2020, 12(5), 1194; https://doi.org/10.3390/polym12051194 - 23 May 2020
Viewed by 873
Abstract
Most of the mechanical components manufactured in rubber materials experience fluctuating loads, which cause material fatigue, significantly reducing their life. Different models have been used to approach this problem. However, most of them just provide life prediction only valid for each of the [...] Read more.
Most of the mechanical components manufactured in rubber materials experience fluctuating loads, which cause material fatigue, significantly reducing their life. Different models have been used to approach this problem. However, most of them just provide life prediction only valid for each of the specific studied material and type of specimen used for the experimental testing. This work focuses on the development of a new generalized model of multiaxial fatigue for rubber materials, introducing a multiparameter variable to improve fatigue life prediction by considering simultaneously relevant information concerning stresses, strains, and strain energies. The model is verified through its correlation with several published fatigue tests for different rubber materials. The proposed model has been compared with more than 20 different parameters used in the specialized literature, calculating the value of the R2 coefficient by comparing the predicted values of every model, with the experimental ones. The obtained results show a significant improvement in the fatigue life prediction. The proposed model does not aim to be a universal and definitive approach for elastomer fatigue, but it provides a reliable general tool that can be used for processing data obtained from experimental tests carried out under different conditions. Full article
Show Figures

Graphical abstract

Open AccessArticle
Effect of Different Phosphate Glass Compositions on the Process-Induced Macromolecular Dynamics of Polyamide 66
Polymers 2020, 12(5), 1179; https://doi.org/10.3390/polym12051179 - 21 May 2020
Cited by 1 | Viewed by 686
Abstract
The present study provides a fundamental understanding of the mechanism of action of special new phosphate glass (P-glass) systems, having different glass transition temperatures (Tg), in polyamide 66 (PA66). Dynamic mechanical analysis (DMA) revealed that the Tg of PA66/low [...] Read more.
The present study provides a fundamental understanding of the mechanism of action of special new phosphate glass (P-glass) systems, having different glass transition temperatures (Tg), in polyamide 66 (PA66). Dynamic mechanical analysis (DMA) revealed that the Tg of PA66/low Tg P-glass (ILT-1) was significantly shifted to a lower Tg (65 °C), and another transition appeared at high temperature (166 °C). This was supported by a drop in the melting point and the crystallinity of the PA66/ILT-1 hybrid material as detected by differential scanning calorimetry (DSC). The dielectric spectroscopic investigation on the networks’ molecular level structural variations (Tg and sub-Tg relaxations) agreed very well with the DMA and DSC findings. Contrary to intermediate Tg(IIT-3) and high Tg P-glass (IHT-1) based materials, the PA66/ILT-1 hybrid material showed an evidence of splitting the PA66 Tg relaxations into two peaks, thus confirming a strong interaction between PA66 and ILT-1 (low Tg P-glass). Nevertheless, the three different P-glass compositions did not show any effect on the PA66 sub-Tg relaxations (related to the –NH2 and –OH chain end groups’ motion). Full article
Show Figures

Graphical abstract

Open AccessArticle
Effects of Rutile–TiO2 Nanoparticles on Accelerated Weathering Degradation of Poly(Lactic Acid)
Polymers 2020, 12(5), 1096; https://doi.org/10.3390/polym12051096 - 11 May 2020
Cited by 4 | Viewed by 731
Abstract
The effect of accelerated weathering on poly(lactic acid) (PLA) and a PLA nanocomposite with rutile titanium (IV) dioxide (rutile–TiO2) was investigated. The accelerated weathering test applied consecutive steps of ultraviolet (UV) (at 340 nm and 0.76 W m−2 irradiance) and [...] Read more.
The effect of accelerated weathering on poly(lactic acid) (PLA) and a PLA nanocomposite with rutile titanium (IV) dioxide (rutile–TiO2) was investigated. The accelerated weathering test applied consecutive steps of ultraviolet (UV) (at 340 nm and 0.76 W m−2 irradiance) and moisture at 50 °C for 2000 h, following the ASTM D4329 standard. The morphology, chemical structure, molecular weight, crystallization, as well as mechanical and thermal properties were thoroughly studied. Samples were characterized after 500 h, 1000 h and 2000 h exposure. Different degradation mechanisms were proposed to happen during the weathering exposure and confirmed based on the experimental data. The PLA and PLA/TiO2 surfaces presented holes and increasing roughness over the exposure time. The molecular weight of the weathered samples decreased due to chain scission during the degradation processes. Thermal stability decreased in the presence of TiO2 and a double melting peak was observed for the PLA/TiO2 nanocomposite. A general improvement in the mechanical properties of the PLA/TiO2 nanocomposite was observed over time during the accelerated weathering analysis up to 1000 h of exposure time. After 2000 h of weathering exposure, the PLA and PLA/TiO2 became extremely brittle and lost their ductile properties. This was ascribed to a significant increase in the degree of crystallinity upon weathering, which was accelerated in the presence of TiO2. Atomic force microscopy (AFM) using amplitude modulation–frequency modulation (AM–FM) tool confirmed the mechanical changes in the surface area of the PLA samples after accelerated weathering exposure. The stiffness and Young’s modulus achieved higher values than the unweathered ones up to 1000 h of exposure time. The changes in the physical and chemical properties of PLA/TiO2 over the ageing time confirm the photocatalytic activity of rutile–TiO2. Full article
Show Figures

Graphical abstract

Open AccessArticle
Poly (vinyl alcohol)/β-Cyclodextrin Composite Fiber with Good Flame Retardant and Super-Smoke Suppression Properties
by