Next Article in Journal
Effect of Calcium Chloride as a Coagulant on the Properties of ESBR/Silica Wet Masterbatch Compound
Next Article in Special Issue
Development of a Semiglobal Reaction Mechanism for the Thermal Decomposition of a Polymer Containing Reactive Flame Retardants: Application to Glass-Fiber-Reinforced Polybutylene Terephthalate Blended with Aluminum Diethyl Phosphinate and Melamine Polyphosphate
Previous Article in Journal
Synthesis of High Molecular Weight Polyester Using in Situ Drying Method and Assessment of Water Vapor and Oxygen Barrier Properties
Previous Article in Special Issue
Flame Retardancy of Low-Viscosity Epoxy Resins and Their Carbon Fibre Reinforced Composites via a Combined Solid and Gas Phase Mechanism
Article Menu

Export Article

Open AccessArticle
Polymers 2018, 10(10), 1115; https://doi.org/10.3390/polym10101115

Some Key Factors Influencing the Flame Retardancy of EDA-DOPO Containing Flexible Polyurethane Foams

1
Additives and Chemistry, Advanced Fibers, Empa Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
2
Laboratory for Functional Polymers, Empa Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
3
Centre des Matériaux des Mines d’Alès (C2MA), IMT Mines Ales, Université de Montpellier, 6 Avenue de Clavières, F-30319 Alès Cedex, France
4
FoamPartner Fritz Nauer AG, 8633 Wolfhausen, Switzerland
*
Author to whom correspondence should be addressed.
Received: 4 September 2018 / Revised: 1 October 2018 / Accepted: 5 October 2018 / Published: 9 October 2018
(This article belongs to the Special Issue Flame Retardancy of Polymeric Materials)
Full-Text   |   PDF [3025 KB, uploaded 9 October 2018]   |  

Abstract

The role of various additives (emulsifier, anti-dripping agent) and formulation procedures (pre-dispersion of solid additives in polyol via milling) which influence the flame retardancy of 6,6′-[ethan-1,2-diylbis(azandiyl)]bis(6H-dibenzo[c,e][1,2]oxaphosphin-6-oxid) (EDA-DOPO) containing flexible polyurethane foams has been investigated in this work. For comparison, the flame retardancy of two additional structurally-analogous bridged 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO)-based compounds, i.e., ethanolamine-DOPO (ETA-DOPO) and ethylene glycol-DOPO (EG-DOPO) were also evaluated together with EDA-DOPO in flexible PU foams of various formulations. The flame retardancy of these three bridged-DOPO compounds depends on the type of PU formulation. For certain PU formulations containing EDA-DOPO, lower fire performance was observed. Addition of emulsifier and polytetrafluoroethylene (PTFE) to these PU formulations influenced positively the flame retardancy of EDA-DOPO/PU foams. In addition, dispersion of EDA-DOPO and PTFE via milling in polyol improved the flame retardancy of the PU foams. Mechanistic studies performed using a microscale combustion calorimeter (MCC) and its coupling to FTIR showed no difference in the combustion efficiency of the bridged-DOPO compounds in PU foams. From MCC experiments it can be concluded that these bridged-DOPO compounds and their decomposition products may work primarily in the gas phase as flame inhibitors. The physiochemical behavior of additives in PU formulation responsible for the improvement in the flame retardancy of PU foams was further investigated by studying the dripping behavior of the PU foams in the UL 94 HB test. A high-speed camera was used to study the dripping behavior in the UL 94 HB test and results indicate a considerable reduction of the total number of melt drips and flaming drips for the flame retardant formulations. This reduction in melt drips and flaming drips during the UL 94 HB tests help PU foams achieve higher fire classification. View Full-Text
Keywords: flexible polyurethane foam; flame retardant; bridged–DOPO compounds; microscale combustion analysis; thermal analysis flexible polyurethane foam; flame retardant; bridged–DOPO compounds; microscale combustion analysis; thermal analysis
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Supplementary material

SciFeed

Share & Cite This Article

MDPI and ACS Style

Przystas, A.; Jovic, M.; Salmeia, K.A.; Rentsch, D.; Ferry, L.; Mispreuve, H.; Perler, H.; Gaan, S. Some Key Factors Influencing the Flame Retardancy of EDA-DOPO Containing Flexible Polyurethane Foams. Polymers 2018, 10, 1115.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Polymers EISSN 2073-4360 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top