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Abstract: This study presents the improved stabilization effects of graphene on a polymer substrate,
namely a styrene-isoprene-styrene triblock copolymer (SIS) which creates opportunities for long-
term applications and radiation processing. The added graphene has a remarkable activity on the
protection of polymer against their oxidation due to the penetration of free macroradical fragments
into the free interlayer space. The chemiluminescence procedure used for the evaluation of the
progress of oxidation reveals the delaying effect of oxidative degradation by the doubling extension
of oxidation induction time, when the material formulation containing graphene is oxidized at 130 ◦C.
The pristine polymer that is thermally aged requires an activation energy of 142 kJ mol−1, while the
modified material needs 148, 158 and 169 kJ mol−1, for the oxidative degradation in the presence of 1,
2 and, respectively, 3 wt% of graphene. The contribution of graphene content (1 wt%) on the stability
improvement of SIS is demonstrated by the increase of onset oxidation temperature from 190 ◦C
for neat polymer to 196 ◦C in the presence of graphene and to 205 ◦C for the polymer stabilized
with graphene and rosemary extract. The addition of graphene into the polymer formulations is
a successful method for enlarging durability instead of the modification of receipt with synthesis
antioxidants. The presumable applications of these studied materials cover the areas of medical wear,
food packaging, commodities, sealing gaskets and others that may also be included through the
products for nuclear power plants.

Keywords: styrene-isoprene-styrene (SIS); graphene; rosemary; durability analysis; thermal degradation;
stabilization; chemiluminescence

1. Introduction

The duration of any material is directly related to its oxidation strength that is the
main characteristic feature taken into account for the material delivery [1]. The prevention
of oxidation is the most functional effect that certifies the stabilization activity offered by
the involved additive. The large variety of the compounds possessing the inhibition ability
upon polymer degradation, namely synthesis antioxidants such as hindered phenols [2,3],
natural extracts [4,5], inorganic structures as oxides [6], polyhedral oligomeric silsesquiox-
ane (POSS) [7,8], complexes [9] or multicomponent blends [10] radiation crosslinking [11,12]
have been investigated. The problem regarding the improvement of the polymer stability in
the presence of antioxidants appears as the background requirement for new applications
involving the long-life operation under severe conditions [13,14], the recycling [15] or food
handling [16,17].

The preparation of graphene structures [18–20] opens new ways for the improvement
of functional properties in materials which are related to the penetration or retention of
particles according with the application requirements: oil adsorption [21], humidity and
temperature sensors [22], material crosslinking [23], and so on. The majority of applications
concern the capacity of graphene structures for the scavenging molecules or their fragments
in the free interlayer space. Only few reported papers deal with the antioxidant ability of
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graphene [24], but the information on polymer stabilization has not been published until
now. This paper intends to fill the existing gap in this area of polymer stabilization.

The graphene/polymer composites may be a reliable solution for several materials
with an improved lifetime [25]. These materials may have a wide variety of applications,
because the inclusion of the ordinated carbon structure allows for the retention of scavenged
degradation intermediates and the chain breaking in the ageing of polymers [26]. The
concentration of classical antioxidants is usually around 0.5 wt% [27], but it may be adapted
depending on its efficiency. The extension of stabilization activity of the engineering
polymers would offer a suitable alternative application to any other efficient stabilizer,
especially for insulated electrical cables. Because the production price of graphene at the
lab scale is convenient, its stability becomes an important advantage [28]. Nowadays, the
competition between several classes of stabilization reveals the unknown structures that
are able to replace phenolic antioxidants, the classical protectors. An interesting structural
modification of SIS molecules as an epoxidized form presents antioxidant features, whose
stabilization activity was evaluated by DPPH testing [29].

This paper proposes an example through which the dangerous synthesis hindered
phenols may be replaced with an inorganic structure, more stable and with similar ef-
ficiency. The present study analyses the optional but relevant material with which the
extension of durability does not spoil the material compatibility with the human body.
The reported results complete the information communicated in a previous paper, where
graphene films incorporated in SIS minimize the oxidation of polymer phase in the solar
cell applications [30]. The ideas concerning the control activity of graphene in polymeriza-
tion [31] or the photoactuator function of SIS modified with oxidized graphene [32] may be
considered as relevant aspects connecting the scavenging availability of graphene for the
antioxidant activity.

The main desire involving polymer stabilization is related to the additive efficiency,
along with the conservation or improvement in other material properties such as mechani-
cal behavior [33]. The benefit of stabilization consists of the augmentation of service time,
which diminishes the material and energy consumption and guarantees the safe handling
and/or operation. Thus, the synthetic polymers whose lifetime is limited by their structures
and environmental conditions require the mandatory addition of an appropriate oxida-
tion protector, through which the delay of ageing is effectively provided. The graphene
array may be considered as a suitable structure that provides the achievement of sharp
stabilization at low concentrations [34].

Numerous application areas of polymer/graphene composites include this crystalline
carbon configuration that involves the layer structures through which molecules or molecu-
lar fragments penetrate: the scaffolds based on the honeycomb structure of graphene
are ideal providers of drugs in the reconstruction of bones, cartilages, and electroac-
tive tissues [35]. A small group of examples includes thermal conductive composites
including graphene nanoplates a good technological solution for the material applica-
tion in construction [36]. The polymer materials containing graphene sheets are consid-
ered as excellent materials for antibacterial applications [37], while the detection of pres-
sure changes by high sensitivity electronic measurements is possible by graphene-based
piezoresistive sensors [38].

The transport processes achieved in the degrading polymers are associated with the
diffusion of outer molecular oxygen and the conversion of oxygen-containing intermediates
into stable products after the former structures migrate onto the reaction spots. It was
previously demonstrated [39] that various forms of carbon may show the properties of
convenient oxidation protectors. The ability of carbon materials to play the role of stabilizers
is dependent on the free volume existing between the component particles and on the
structuration of carbon atoms distribution.

The inclusion of various atoms other than carbon is described in [40], where the
migration of oxygen is depicted as the mobile nanophase and the attachment is achieved
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by a multistage interaction process. The catching of foreign entities is obtained by the
overlapping of electronic orbitals, which are free to be occupied in graphene.

Depending on the diffusion of ammonia into the graphene structure [41], the scav-
enging activity of graphene is effectively achieved by the interlayer adsorption and the
electron availability of intermediate radicals. The covalent bonding of polymer/graphene
composites [42] may be considered as a real approach of stabilization applications, when the
scission of macromolecules is the source of reactive fragments. The competition between
the two fate trends of radicals: oxidation and protection are the background of stability
assays by which the graphene substrate shows its antioxidant features.

Unfortunately, there are no reports concerning the protection of graphene against the
oxidation of polymers. The stabilization mechanism is quite different from the classical
activity of phenolic antioxidants. Their protection action is based on the substitution of
labile protons [43]. Because graphene is the thinnest known two-dimensional (2D) material,
it is capable to act on both sides of the interlayer free volume [44], and the tightness becomes
satisfactory for the locking oxidizable moieties. The stability of interlayer penetrating parts
is assured by the Wan der Waals forces, and the sp2 hybridization maintains the integrity
of graphene nanocomposites [45]. Starting from this background, the protection activity of
graphene may be assessed as covalent functionalization.

The utilization of graphene polymer composites as drug delivery material [46], an-
tifoaming polymer-modified cement composites [47], preparation of conductive materi-
als [48,49], ecological treatment of water [50] and many others is based on the structural
distributions of holes and electrons [51], whose densities are crucial elements for the scav-
enging efficiency and the gap depths determines the bonding strength. The graphene oxides
as well as the reduced graphene oxides are preferentially used in the formulation of various
complex structures such as smart hydrogels [52], protective films [53], nanofibers [54],
nanobiosensors [55] or resistant scaffolds [56]. As the proof of stabilizing activity simultane-
ous with the effect of mechanical improvement, the processing effect on polypropylene was
reported [57]. The barrier effect for the penetration of outer oxygen for feeding oxidation is
also revealed for graphene nanocomposites [58].

This paper offers an efficient solution for the manufacture of several long-term prod-
ucts efficiently stabilized by an allotropic form of carbon, reduced graphene oxide (rGO),
whose contribution to the improving durability is the basic feature for special applications
such as electrical cable insulation and high performance capacitors, food packaging, com-
modities, sealing gaskets, sealants and gaskets destined for nuclear energetics, adhesive
items, bags for the storage of medical wear and protective sheets for equipment with
outdoor service. The reported results are possible due to the structural configuration of
graphene that allows the penetration of free radicals in the material hexagonal network,
where electronic cloud and oxygenated functions interact strongly with degradation in-
termediates, keeping them apart from the propagation stage of degradation. Thus, these
multipurpose applications are possible due to the capacity of graphene to break the degra-
dation chain by the scavenging of free molecular fragments that propagate oxidation during
thermal ageing. This enumeration is a short list of products, where SIS improved with
graphene powder may be used due to the functional properties available over an extended
period of operation. The great advantages that recommend graphene as an antioxidant
additive are: stability, efficiency, and comparable price with synthesis antioxidants.

2. Materials and Methods
2.1. Materials

The polymer material, styrene-isoprene-styrene triblock copolymer (SIS), was pur-
chased from KRATON (Houston, TX, USA) as D1165 PT sort. This material was purchased
as (1,7)-polyoxepan-2-one pellets with an average diameter of ~3 mm. The styrene content
is 30 wt%, density 1.145 g mL−1 @ 25 ◦C, average Mn 80,000 and the polydispersion index
(Mw/Mn) is less than 2.
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Graphene fraction was prepared in our laboratory as reduced graphite oxide (rGO).
Natural graphite powder (flakes < 30 mm) was provided from KOH-I-NOOR Grafit (České
Budějovice, Czech Republic). The p.a. reagents H2SO4 (96–98%), NaNO3 (99.5%), KMnO4
(99%), HCl (37%), H2O2 (30%) and ascorbic acid (99.6%) were purchased from Chemical
Company (Iasi, Romania).

2.2. Preparation of Reduced Graphene Oxide
2.2.1. Preparation of Graphene Oxide

The GO was synthesized from natural graphite powder by the modified Hummer’s
method [59,60]. The natural graphite powder (1 g) was mixed on a magnetic stirrer along
with 1 g NaNO3 and 100 mL H2SO4 keeping the temperature below 5 ◦C by immersion in
an ice bath for 4 h. After homogenization under stirring (500 rpm), 6 g KMNO4 is added,
keeping the temperature of the mixture below 10 ◦C for 1 h. The resulting solution was
warmed to 35 ◦C and stirred for 1 h. Afterwards, the solution is diluted with 100 mL
of distilled water, homogenized by stirring and heated to 95 ◦C and maintained at this
temperature for 2 h. The solution was allowed to cool to room temperature, then 200 mL of
distilled water was added and the mixture was stirred for 1 h. Forty milliliters of 30% H2O2
were added to complete the oxidation reaction, and the mixture was stirred 1 h at room
temperature. Graphene oxide was formed, and the resulting slurry was washed with 5%
HCl and distilled water to neutral pH. The water is completely removed from the resulting
graphene oxide by freeze drying.

2.2.2. Preparation of Reduced Graphene Oxide

The resulting GO (1 g) was diluted in 200 mL distilled water and sonicated at room
temperature for 2 h to homogenously disperse the GO phase in water. Fifteen grams
of ascorbic acid, used as reducing agent, was added to the resulting suspension and
continuous stirring for 2 h at a temperature of 90–95 ◦C was applied. In the next step,
the mixture was stirred for 20 h at room temperature during which time the reduced
graphene oxide is formed. The suspension was washed with 5% HCl and distilled water to
neutral pH. The water is completely removed from the resulting reduced graphene oxide by
freeze drying.

2.2.3. Structural Qualification of Reduced Graphene Oxide

The FTIR spectrum of prepared rGO is presented in Figure 1. The Fourier transform
infrared (FTIR) spectroscopy was carried out using Bruker Tensor 27 IR (Natick, MA, USA).
According with the spectral illustration, the content dominant concentration is alcoholic
hydroxyl (3400 cm−1) [61]. The other two main peaks may be ascribed to carboxyl acid
(1700 cm−1) [62] and 1100 cm−1 identified as C–O units [61]. The dissimilarity between the
spectra of graphene oxide and reduced graphene oxide was reported [36]; it is relevant in
the region around 3400 cm−1, where rGO presents a very prominent peak like our material.
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2.3. Sample Processing
2.3.1. Preparation

Small SIS balls were dissolved in chloroform by vigorous shaking until a clear liq-
uid was obtained. From this mother solution, aliquots of 10 mL were transferred into
small bottles, where appropriate rGO was added to obtain the concentrations of 1, 2 and
3 wt%. For the evaluation of coupling contribution of reduced graphene oxide (rGO) and
rosemary extract (RM—processed in our laboratory [63]), a fourth solution was prepared.
After their homogenization, some drops of each solution were poured in round aluminum
trays (diameter 6 mm) where the solvent is removed by evaporation at room temperature.
These films are obtained and further experimental activities go on like the procedure was
previously presented [64].

2.3.2. Thermal Treatment

The thermal treatment was carried out in a Lenton laboratory (Fairland, South Africa)
oven with forced air convection. The samples were thermally treated in air at a constant
temperature. The oven was stabilized at 80 ◦C, after which the samples were introduced
and maintained at this temperature for 5, 10, 15 and 20 h. At the end of the exposure time,
they were immediately removed from the oven and cooled to room temperature.

2.4. Measurements

Chemiluminescence (CL) determinations were achieved by means of a LUMIPOL 3
(Institute of Polymers, Slovak Academy, Bratislava, Slovak Republic) spectrometer, whose
reading error in temperature values is ±0.5 ◦C. The proper parameters for the optimal ex-
perimental conditions were established: the heating rate of 10 ◦C min−1 for nonisothermal
procedure was selected, while, for isothermal study, three temperatures (130 ◦C, 140 ◦C and
150 ◦C) allow the comparison of thermal stability and the calculation of activation energies
required for the thermal degradation of the studied probes.

3. Results

The improvement of polymer stability requires an appropriate structure through
which the free radicals are withdrawn from the degradation chain [65]. Graphene structures
may be considered as the main component of nanomaterials [66], whose presence in the
formulations brings about special features. However, the stability investigations were not
reported, even though the spatial distribution of carbon layers allows the penetration of
small particles [67]. The existence of some polar moieties, especially the hydroxyls [68],
creates favorable conditions for an efficient interaction with free radicals that migrate
through the graphene nanoplates by means of existing energetic gaps [69].

The thermal treatment of the polymer matrix reveals several basic aspects related to
the fate of free radicals that result from the scission of SIS molecules. The most relevant
feature that must be taken into account is the reduction of onset oxidation temperature
(OOT), the kinetic parameter which indicates the start temperature of oxidation. If it is
208 ◦C for neat material, the preheated probes show lower temperatures around 192 ◦C
(Figure 2). This behavior associated with the further fate of free radicals, which is deter-
mined by the competition between recombination and oxidation, influences the progress of
thermal processing.

As it may be expected, the modification of thermal resistance due to the presence of
radical scavengers, is suitably obtained. An important application of this benefit would be
the recycling of plastics [70], when the “new” material is strengthened by the appropriate
additive. The good oxidation resistances are confirmed by the CL nonisothermal investiga-
tions on a large temperature range extended to 200 ◦C (Figure 3). This feature is related to
the efficient immobilization of radicals, even though they are at low concentrations (short
thermal ageing period) or on longer heating ageing treatments. The differences between
the oxidation processes appear at higher temperatures, unusual degradation conditions,
when the local accumulation of free radicals determines the acceleration of material dam-
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aging. The presence of other components acting on the extension of thermal strength
such as rosemary creates favorable opportunities for the improvement of durability for
packaging materials.
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Figure 2. (a) Nonisothermal CL spectra recorded on pristine SIS samples subjected to a thermal ageing
treatment at 80 ◦C at various heating times. (1) 0 h; (2) 5 h; (3) 10 h; (4) 15 h; (5) 20 h. Measurement
heating rate: 10 ◦C·min−1; (b) histogram of CL intensity determined at two main temperatures (the
color code is identical for the both figures).
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Figure 3. (a) Nonisothermal CL spectra recorded on SIS/graphene (1 wt%) samples after their
thermal ageing treatment at 80 ◦C at various heating times. (1) 0 h; (2) 5 h; (3) 10 h; (4) 15 h; (5) 20 h;
(b) nonisothermal CL spectra recorded on SIS (6) and SIS/graphene (1 wt%)/rosemary (0.5 wt%) (7)
samples without pre-ageing. The heating rate of all measurement: 10 ◦C min−1.

The stabilization efficiency of the couple consisting of graphene (1 wt%) and rosemary
(0.5 wt%) is revealed in Figure 4. The noticed gathering of the four curves indicates the
prominent effect of the sustained heating for a minimum of 15 h. This time is sufficiently
long for any deterioration on this material that happens during long-term service or the
longer exposure to sun light. The cooperation between the two stabilizing structures is
concerned for long accident times, when the degrading product is intimately protected.

The thermal processing of the SIS matrix reveals an interesting peculiarity related
to the evolution of CL emission, which follows the classical mechanism based on the
radical reactions [71]. The formation of free radicals as the first effect of energetic transfer
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provides reactive fragments that may react with diffused oxygen (oxidative degradation)
or with each other (recombination). In the case of this polymer material, the oxidation
is the first option over the period of induction and the start of propagation (Figure 5).
While the number of scissions increases as the result of heating, the concentration of free
radicals is enhanced and the competition between oxidation and crosslinking becomes more
obvious. Because the oxidation is dependent on the diffusion rate of oxygen, it influences
the proportion between the two main ways of radical decay. SIS shows a predominant
oxidation for the first ten hours of heating (the samples processed at 5 h and 10 h) with the
shortening of OIT. The extension of the treatment time induces an increase in the amounts
of radicals. Due to the shortened distances between radicals, they may recombine with each
other, and the CL emission intensity is diminished. Though the values of OIT are similar,
about 150 min, the advance of degradation is obviously slowed down. This behavior
is a specific feature for the materials where the recombination rate of radicals exceeds
their oxidation.
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Figure 4. The nonisothermal CL curves recorded on the SIS samples improved by graphene
(1 wt%)/rosemary (0.5 wt%) couple after their thermal ageing at 80 ◦C at various heating times.
Heating rate: 10 ◦C min−1.

The delay of oxidation is illustrated by the values of oxidation induction times (OIT)
which increase as the amount of graphene is enhanced. For the SIS substrates that are not
subjected to any environmental aggression, these figures are strikingly different than the
value shown by the control specimen; they are minimum double and the protection activity
determines an extension of the period during which the material remains undamaged.
The radiation processing narrows the OIT values, but they are greater than the similar
characteristic of pristine polymer. Another positive effect of the participation of graphene
to the improvement of thermal stability is the significant extension of propagation stage
of degradation, when the graphene nanoplates keep radicals tightly, and their further
oxidation is blocked over a long time period. It can be significantly compared with the
previous time, when the free radicals (the active intermediates that promote the progress of
oxidation) are accumulated.

The failure of SIS products is directly dependent on several factors: the applied tech-
nology, the duration and intensity of energetic transfer, the material composition, especially
the presence of stabilizing structures, the history of the item. The destructive actions of all
these elements are minimized by the contribution of additives, whose efficiencies must be
checked before their addition into new products.
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The isothermal CL investigation highlights the effect of additive concentration on the
relative durability of stabilized materials in comparison to pristine polymer (Figure 6).
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The structural modifications during thermal degradation are revealed by the appro-
priate evaluation of stability, when the measured characteristics are correlated with the
evolution of the state of the material. Chemiluminescence, an accurate analytical procedure,
allows the counting of emitted photons by the conversion of carbonyl intermediates from
the exited state into their background energetic level [72]. The scission of C–C σ bonds
of tertiary carbon atoms where phenyl is placed, the breaking C=C bonds belonging to
isoprene moieties, the removing of labile protons are the main ways through which the
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degradation starts in polymers [73]. The monitoring of photon emission during chemilumi-
nescence measurements indicates the oxidation state of the probe and, simultaneously, the
route of degradation by means of the comparative analysis of spectra.

The stabilization activity of graphene is sustained by the intercalation of radicals
through the carbon layers. The electronic distribution over the planar carbon atoms allows
the formation of enough strong bridges with the penetrated fragments. Thus, the delay of
oxidation is achieved by the immobilization of degradation intermediates, which is proved
by the extension of experimental times.

The reduced graphene oxide is a graphene where polar units containing oxygen
are grafted on the constituent carbon atoms [74]. These units act additionally on the
hydrocarbon fragments offering a supplementary contribution for the retention of radicals
against their reaction with oxygen. It means that these materials are chain breaking
structures. Similar terms are usually used for hindered phenolic antioxidants, but the
action mechanisms are totally different.

The association of graphene with a natural antioxidant such as rosemary extract is an
excellent version of stabilization formulation. In Table 1, the OIT values obtained by the
protection of SIS against oxidative degradation by thermal processing are relevant for the
selection of this couple for the manufacturing of ecological products such as packaging
materials, whose thermal resistance must attain acceptable limits of durability.

Table 1. Onset oxidation temperatures for SIS samples modified with graphene (1 wt%) and rosemary
extract (0.5 wt%).

Heating Time
(h)

OOT (◦C)

Pristine SIS SIS + Graphene SIS + Graphene + Rosemary Extract

0 202 215 219
5 201 207 220

10 198 201 219
15 196 198 215
20 190 196 205

The prediction of material durability based on the values of activation energy is a
good method for the description of the competition between oxidation and temperature-
dependent deterioration. When an investigated material presents a certain oxidation
induction time (OIT), the effect of additives on the accumulation of oxygen-containing
product is depicted by the duration of stabilized structures. The longer the steady state
period on the start of oxidation, the more the participation of the protector delays the
degradation (Figure 7). If the material presents a certain low consumption of oxygen due
to the morphological characteristics, the action of antioxidant is confidently evaluated by
activation energies.

The values of OOT shown in the last column of Table 1 are significant for the col-
laboration between the two manners of radical scavenging, which complete each other
by the local blocking of oxidizing intermediate moieties. The increase in the temperature
values characterizing the oxidation start is essential for all pre-heating times. It proves the
stabilization on large areas of applications involving the thermal accidents or extended
exposure to sun light.

The availability of reduced graphene oxide is illustrated by the values of activation
energies that are involved in the delay of oxidative degradation, when the patterns contain
increasing loadings of graphene additive (Table 2).

The protection activity is enhanced by the stacking effect [75], through which the
graphene structure, coupled with the presence of polar oxygen containing functions,
achieve the minimization of oxidation rate and the advanced deterioration of material
quality. The antioxidant property of graphene oxide was demonstrated by its addition
in food [76] or in the compatibilization of blood [77]. In fact, the stabilization efficiency
of graphene oxide and, by extension, reduced graphene oxides, is promoted to a great
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measure by the functionalized materials with the oxygen containing units (hydroxyls and
carbonyls) [24,78]. A special range in which graphene filler may be successfully is the
polymer waste recycling [79]. This application is a proof of ability through which graphene
acts by retention of oxygenated fragments or low weight molecules that appear during
material ageing. A reverse situation, when graphene can be obtained from the processing
of polymer wastes [80], represents a favorable opportunity for the conversion of pollu-
tant material into useful additive that may be a helpful compound with special attractive
properties for polymers.
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Table 2. Activation energies required for the oxidation of SIS improved with various amounts of
reduced graphene oxide.

Reduced Graphene
Oxide Content (%)

OIT (min)
Correlation Factor

Activation Energy
(kJ mol−1)130 ◦C 140 ◦C 150 ◦C

0 130 43 18 0.99851 142
1 292 90 36 0.99833 148
2 185 98 31 0.99936 158
3 380 88 35 0.99325 169

In the action against oxidative degradation, the presence of several groups resulting
from the oxidation of graphene [81] is associated with bending and stretching of interatomic
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bonds of carbon rings placed in the layer plans. These factors tightly keep the polymer
fragments out from the degradation chains. The great challenge for the long-term stability
of graphene composites is the limited amount of inorganic content because the segregation
of nanoparticles diminishes the degree of freedom inside the polymer matrix [82,83]. The
ability of graphene structures, especially the reduced graphene oxides to operate in aggres-
sive conditions as the material formulation component of composing parts in electrical
batteries [84–86], demonstrates that they are also appropriate for improvement of material
stability and the contribution to the thermal stabilization may be suitably extended to any
other economical areas that require the additional contribution to their stability. Fortunately,
there are plenty of papers, where graphene structures form honeycomb configurations in
inorganic systems [87,88], which may inspire more studies for finding appropriate solu-
tions based on which the graphene based composite products can attain high performances
and durabilities. Based on the mechanistic considerations on the activities of graphene
structures, especially reduced graphene oxide, where oxygenated functions play the role of
trapping agents, their polymer composites would act as suitable materials for a series of spe-
cial applications such as membranes for fuel cells [89], cartilage tissue engineering [35,72],
mechanically improved materials [90] and automotive items [91].

The rGO powder interfering in the mechanism of polymer degradation is an ecological
component of products allowing long periods of operation because it is not damaged or
consumed. Its inclusion as a stabilization component provides structural integrity to the
material and the conservation of features.

4. Conclusions

The results presented in this paper prove protective action of reduced graphene oxide
against oxidation by the penetration of polymer fragment into the free interlayer space. The
presence of oxygen containing groups brings about supplementary stabilization strength.
The optimization of stabilization efficiency is obtained by the suitable activity of graphene as
the scavenger of degradation intermediates even during the operation on high temperature
range exceeding 200 ◦C. The presence of graphene in the formulation of SIS based materials
brings about a significant slowing down of the oxidation rate by the reduction of local
concentration of free radicals, as well as the breaking degradation chain by the integration
of degradation promoters into the lamellar configuration of additive. The increase in the
graphene loading leads to the higher material stability extending the oxidation induction
time from 130 min obtained for the ageing of pristine SIS at 130 ◦C to 380 min at the same
temperature, when the oxidation takes place in the polymer containing 3 wt% graphene.
The activation energies that increase as the rGO concentration become 1.2 times higher
in the presence of 3 wt% graphene represent the reliable proofs for the selection of this
additive as an efficient antioxidant for polymers. The polymer support, SIS copolymer, is
an example for its class of materials, which may be improved when convenient loading of
rGO is present. This study demonstrates that the classical antioxidants, hindered phenols
or amine, may be replaced by this rGO due to the proper action as the chain breaker in the
degradation mechanism. The availability for the material protection recommends it to be
used in several applications in material manufacturing for food handling, medical wear,
conductive sheets and bars, anticorrosive layers and commodities. Several applications
of packaging materials, including food handling, are possible by the manufacturing of
products based on the formulations that include a graphene/rosemary extract couple.
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