Editor's Choice Articles

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Open AccessEditor’s ChoiceArticle
Comparative Investigation on the Soil Burial Degradation Behaviour of Polymer Films for Agriculture before and after Photo-Oxidation
Polymers 2020, 12(4), 753; https://doi.org/10.3390/polym12040753 - 30 Mar 2020
Cited by 9
Abstract
Polymer films based on biodegradable polymers, polyethylene (PE) and modified PE with oxo-degradable additive were prepared by film blowing. Carbon black (1%) was added to all the films. Commercial biodegradable Ecovio® and Mater-Bi® samples were used. Mechanical properties, soil burial degradation [...] Read more.
Polymer films based on biodegradable polymers, polyethylene (PE) and modified PE with oxo-degradable additive were prepared by film blowing. Carbon black (1%) was added to all the films. Commercial biodegradable Ecovio® and Mater-Bi® samples were used. Mechanical properties, soil burial degradation and surface wettability were investigated, before and after UV irradiation. Chemical modifications induced by UV and soil degradation, or a synergic effect, were highlighted by Attenuated Total Reflection-Fourier Transform Infra-Red (ATR-FTIR). Photo-oxidized film samples with an elongation at break equal to 50% and 0.5 the initial value were selected for the soil burial degradation test at 30 °C. Weight loss measurements were used to follow biodegradation in soil. Predictably, the degradation in soil was higher for biodegradable polymer-based films than for the PE-based ones. UV irradiation increased surface wettability and encouraged the disintegration in soil of all the samples. In fact, photo-oxidation produced a molar mass reduction and hydrophilic end groups, thus increasing surface erosion and weight loss. This paper not only supplies new criteria to evaluate the performance of biodegradable films in agriculture, before and after lifetime, but also provides a comparative analysis on the soil burial degradation behaviour with traditional ones. Full article
(This article belongs to the Special Issue State-of-the-Art Polymer Science and Technology in Italy (2019,2020))
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Synthesis, Physical, Mechanical and Antibacterial Properties of Nanocomposites Based on Poly(vinyl alcohol)/Graphene Oxide–Silver Nanoparticles
Polymers 2020, 12(3), 723; https://doi.org/10.3390/polym12030723 - 24 Mar 2020
Cited by 14
Abstract
The design of new materials with antimicrobial properties has emerged in response to the need for preventing and controlling the growth of pathogenic microorganisms without the use of antibiotics. In this study, partially reduced graphene oxide decorated with silver nanoparticles (GO–AgNPs) was incorporated [...] Read more.
The design of new materials with antimicrobial properties has emerged in response to the need for preventing and controlling the growth of pathogenic microorganisms without the use of antibiotics. In this study, partially reduced graphene oxide decorated with silver nanoparticles (GO–AgNPs) was incorporated as a reinforcing filler with antibacterial properties to poly(vinyl alcohol) (PVA) for preparation of poly(vinyl alcohol)/graphene oxide-silver nanoparticles nanocomposites (PVA/GO–AgNPs). AgNPs, spherical in shape and with an average size of 3.1 nm, were uniformly anchored on the partially reduced GO surface. PVA/GO–AgNPs nanocomposites showed exfoliated structures with improved thermal stability, tensile properties and water resistance compared to neat PVA. The glass transition and crystallization temperatures of the polymer matrix increased with the incorporation of the hybrid. The nanocomposites displayed antibacterial activity against Staphylococcus aureus and Escherichia coli in a filler content- and time-dependent manner. S. aureus showed higher susceptibility to PVA/GO–AgNPs films than E. coli. Inhibitory activity was higher when bacterial cells were in contact with nanocomposite films than when in contact with leachates coming out of the films. GO–AgNPs based PVA nanocomposites could find application as wound dressings for wound healing and infection prevention. Full article
(This article belongs to the Special Issue Metal- and Metal Hybrid-Filled Polymer Nanocomposites)
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Material Properties Influencing the Charge Decay of Electret Filters and their Impact on Filtration Performance
Polymers 2020, 12(3), 721; https://doi.org/10.3390/polym12030721 - 24 Mar 2020
Cited by 16
Abstract
Electret filters as opposed to mechanical filters display the enhanced ability to capture airborne particles with the electrostatic attraction. However, the environmental aging during shelf-life or use may cancel its benefit by dissipating the charges. This work investigates the polymeric attributes influencing the [...] Read more.
Electret filters as opposed to mechanical filters display the enhanced ability to capture airborne particles with the electrostatic attraction. However, the environmental aging during shelf-life or use may cancel its benefit by dissipating the charges. This work investigates the polymeric attributes influencing the charge decay and the electrostatic filtration of electret filters, employing polymers with different dielectric constants (εr) and wettability. As accelerated aging, high temperature (120 °C) or high humidity (25 °C, 90% RH) was applied to the electret filters for 48 h. For the humidity aging, wetting property of material was a critical factor affecting the charge decay and the filtration performance, as the absorbed water increases the electrical conductivity. For the thermal aging, the material with the highest εr deteriorated the electric potential and the filtration performance by the largest extent, due to the lower band gap energy for charge transfer. The results of this study implicate that εr and wettability are important material parameters influencing the electric conductivity and chain mobility, and they can be used as convenient predictors for charge retention capacity affecting the robust electrostatic filtration performance. Full article
(This article belongs to the Special Issue Polymeric Materials for Filtration and Purification)
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
The Piezoresistive Highly Elastic Sensor Based on Carbon Nanotubes for the Detection of Breath
Polymers 2020, 12(3), 713; https://doi.org/10.3390/polym12030713 - 23 Mar 2020
Cited by 7
Abstract
Wearable electronic sensor was prepared on a light and flexible substrate. The breathing sensor has a broad assumption and great potential for portable devices in wearable technology. In the present work, the application of a flexible thermoplastic polyurethane/multiwalled carbon nanotubes (TPU/MWCNTs) strain sensor [...] Read more.
Wearable electronic sensor was prepared on a light and flexible substrate. The breathing sensor has a broad assumption and great potential for portable devices in wearable technology. In the present work, the application of a flexible thermoplastic polyurethane/multiwalled carbon nanotubes (TPU/MWCNTs) strain sensor was demonstrated. This composite was prepared by a novel technique using a thermoplastic filtering membrane based on electrospinning technology. Aqueous dispersion of MWCNTs was filtered through membrane, dried and then welded directly on a T-shirt and encapsulated by a thin silicone layer. The sensing layer was also equipped by electrodes. A polymer composite sensor is capable of detecting a deformation by changing its electrical resistance. A T-shirt was capable of analyzing a type, frequency and intensity of human breathing. The sensitivity to the applied strain of the sensor was improved by the oxidation of MWCNTs by potassium permanganate (KMnO4) and also by subsequent application of the prestrain. Full article
(This article belongs to the Special Issue Polymer Processing and Surfaces)
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
The Inhibition Property and Mechanism of a Novel Low Molecular Weight Zwitterionic Copolymer for Improving Wellbore Stability
Polymers 2020, 12(3), 708; https://doi.org/10.3390/polym12030708 - 23 Mar 2020
Cited by 28
Abstract
In this work, a novel low molecular weight zwitterionic copolymer for improving wellbore stability, which is expected to be an alternative to the current shale inhibitors, was obtained by copolymerization of tris hydroxyethyl allyl ammonium bromide (THAAB), 2-acrylamido-2- methyl propane sulfonic acid (AMPS) [...] Read more.
In this work, a novel low molecular weight zwitterionic copolymer for improving wellbore stability, which is expected to be an alternative to the current shale inhibitors, was obtained by copolymerization of tris hydroxyethyl allyl ammonium bromide (THAAB), 2-acrylamido-2- methyl propane sulfonic acid (AMPS) and acrylamide (AM), initiated by a redox initiation system in an aqueous solution. The copolymer, denoted as SX-1, was characterized by FT-IR, TGA-DSC, and GPC. Results demonstrated that the molecular weight of SX-1 was approximately 13,683 g/mol and it displayed temperature resistance up to 225 °C. Regarding the inhibition performance, evaluation experiments showed the hot rolling recovery of a Longmaxi shale sample in 2.0 wt % SX-1 solutions was up to 90.31% after hot rolling for 16 h at 120 °C. The Linear swelling height of Na-MMT artificial core in 2.0 wt % SX-1 solution was just 4.74 mm after 16 h. Methods including particle size analysis, FTIR, XRD, and SEM were utilized to study the inhibition mechanism of SX-1; results demonstrated that SX-1 had entered into the inner layer of sodium montmorillonite (Na-MMT) and adsorbed on the inner surface, and the micro-structure of Na-MMT was successfully changed by SX-1. The particle size of Na-MMT in distilled water was 8.05 μm, and it was observed that its size had increased to 603 μm after the addition of 2.0 wt % of SX-1. Its superior properties make this novel low molecular weight copolymer promising for ensuring wellbore stability, particularly for high temperature wells. Full article
(This article belongs to the Special Issue Colloid and Interface)
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Influence of Magnetic Nanoparticles on Modified Polypyrrole/m-Phenylediamine for Adsorption of Cr(VI) from Aqueous Solution
Polymers 2020, 12(3), 679; https://doi.org/10.3390/polym12030679 - 19 Mar 2020
Cited by 13
Abstract
A novel, modified polypyrrole/m-phenylediamine (PPy–mPD) composite, decorated with magnetite (Fe3O4) nanoparticles, and prepared via an in-situ oxidative polymerisation, was investigated. The PPy–mPD/Fe3O4 nanocomposite was employed for the removal of highly [...] Read more.
A novel, modified polypyrrole/m-phenylediamine (PPy–mPD) composite, decorated with magnetite (Fe3O4) nanoparticles, and prepared via an in-situ oxidative polymerisation, was investigated. The PPy–mPD/Fe3O4 nanocomposite was employed for the removal of highly toxic oxyanion hexavalent chromium Cr(VI) from an aqueous solution. The structure and successful formation of the PPy–mPD/Fe3O4 nanocomposite was confirmed and investigated using various techniques. The presence of Fe3O4 was confirmed by high resolution transmission electron microscopy, with an appearance of Fe lattice fringes. The estimation of the saturation magnetisation of the nanocomposite, using a vibrating sample magnetometer, was observed to be 6.6 emu/g. In batch adsorption experiments, PPy–mPD/Fe3O4 nanocomposite (25 mg) was able to remove 99.6% of 100 mg/L of Cr(VI) at pH 2 and 25 °C. Adsorption isotherms were investigated at different Cr(VI) concentration (100–600 mg/L) and temperature (15–45 °C). It was deduced that adsorption follows the Langmuir model, with a maximum adsorption capacity of 555.6 mg/g for Cr(VI) removal. Furthermore, isotherm data were used to calculate thermodynamic values for Gibbs free energy, enthalpy change and entropy change, which indicated that Cr(VI) adsorption was spontaneous and endothermic in nature. Adsorption–desorption experiments revealed that the nanocomposite was usable for two consecutive cycles with no significant loss of adsorption capacity. This research demonstrates the application potential for the fascinating properties of PPy–mPD/Fe3O4 nanocomposite as a highly efficient adsorbent for the removal of heavy metal ions from industrial wastewater. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
Nano- And Microfiber-Based Fully Fabric Triboelectric Nanogenerator For Wearable Devices
Polymers 2020, 12(3), 658; https://doi.org/10.3390/polym12030658 - 13 Mar 2020
Cited by 3
Abstract
The combination of the triboelectric effect and static electricity as a triboelectric nanogenerator (TENG) has been extensively studied. TENGs using nanofibers have advantages such as high surface roughness, porous structure, and ease of production by electrospinning; however, their shortcomings include high-cost, limited yield, [...] Read more.
The combination of the triboelectric effect and static electricity as a triboelectric nanogenerator (TENG) has been extensively studied. TENGs using nanofibers have advantages such as high surface roughness, porous structure, and ease of production by electrospinning; however, their shortcomings include high-cost, limited yield, and poor mechanical properties. Microfibers are produced on mass scale at low cost; they are solvent-free, their thickness can be easily controlled, and they have relatively better mechanical properties than nanofiber webs. Herein, a nano- and micro-fiber-based TENG (NMF-TENG) was fabricated using a nylon 6 nanofiber mat and melt blown nonwoven polypropylene (PP) as triboelectric layers. Hence, the advantages of nanofibers and microfibers are maintained and mutually complemented. The NMF-TENG was manufactured by electrospinning nylon 6 on the nonwoven PP, and then attaching Ni coated fabric electrodes on the top and bottom of the triboelectric layers. The morphology, porosity, pore size distribution, and fiber diameters of the triboelectric layers were investigated. The triboelectric output performances were confirmed by controlling the pressure area and basis weight of the nonwoven PP. This study proposes a low-cost fabrication process of NMF-TENGs with high air-permeability, durability, and productivity, which makes them applicable to a variety of wearable electronics. Full article
(This article belongs to the Special Issue Advances in Polymer Nanofibers)
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
Acoustic, Mechanical and Thermal Properties of Green Composites Reinforced with Natural Fibers Waste
Polymers 2020, 12(3), 654; https://doi.org/10.3390/polym12030654 - 13 Mar 2020
Cited by 10
Abstract
The use of acoustic panels is one of the most important methods for sound insulation in buildings. Moreover, it has become increasingly important to use green/natural origin materials in this area to reduce environmental impact. This study focuses on the investigation of acoustic, [...] Read more.
The use of acoustic panels is one of the most important methods for sound insulation in buildings. Moreover, it has become increasingly important to use green/natural origin materials in this area to reduce environmental impact. This study focuses on the investigation of acoustic, mechanical and thermal properties of natural fiber waste reinforced green epoxy composites. Three different types of fiber wastes were used, e.g., cotton, coconut and sugarcane with epoxy as the resin. Different fiber volume fractions, i.e., 10%, 15% and 20% for each fiber were used with a composite thickness of 3 mm. The sound absorption coefficient, impact strength, flexural strength, thermal conductivity, diffusivity, coefficient of thermal expansion and thermogravimetric properties of all samples were investigated. It has been found that by increasing the fiber content, the sound absorption coefficient also increases. The coconut fiber-based composites show a higher sound absorption coefficient than in the other fiber-reinforced composites. The impact and flexural strength of the cotton fiber-reinforced composite samples are higher than in other samples. The coefficient of thermal expansion of the cotton fiber-based composite is also higher than the other composites. Thermogravimetric analysis revealed that all the natural fiber-reinforced composites can sustain till 300 °C with a minor weight loss. The natural fiber-based composites can be used in building interiors, automotive body parts and household furniture. Such composite development is an ecofriendly approach to the acoustic world. Full article
(This article belongs to the Special Issue Polymer Materials in Environmental Chemistry)
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
Curing Kinetics and Thermal Stability of Epoxy Composites Containing Newly Obtained Nano-Scale Aluminum Hypophosphite (AlPO2)
Polymers 2020, 12(3), 644; https://doi.org/10.3390/polym12030644 - 12 Mar 2020
Cited by 18
Abstract
For the first time, nano-scale aluminum hypophosphite (AlPO2) was simply obtained in a two-step milling process and applied in preparation of epoxy nanocomposites varying concentration (0.1, 0.3, and 0.5 wt.% based on resin weight). Studying the cure kinetics and thermal stability [...] Read more.
For the first time, nano-scale aluminum hypophosphite (AlPO2) was simply obtained in a two-step milling process and applied in preparation of epoxy nanocomposites varying concentration (0.1, 0.3, and 0.5 wt.% based on resin weight). Studying the cure kinetics and thermal stability of these nanocomposites would pave the way toward the design of high-performance nanocomposites for special applications. Scanning electron microscopy (SEM) and transmittance electron microscopy (TEM) revealed AlPO2 particles having domains less than 60 nm with high potential for agglomeration. Excellent (at heating rate of 5 °C/min) and Good (at heating rates of 10, 15 and 20 °C/min) cure states were detected for nanocomposites under nonisothermal differential scanning calorimetry (DSC). While the dimensionless curing temperature interval (ΔT*) was almost equal for epoxy/AlPO2 nanocomposites, dimensionless heat release (ΔH*) changed by densification of polymeric network. Quantitative cure analysis based on isoconversional Friedman and Kissinger methods gave rise to the kinetic parameters such as activation energy and the order of reaction as well as frequency factor. Variation of glass transition temperature (Tg) was monitored to explain the molecular interaction in the system, where Tg increased from 73.2 °C for neat epoxy to just 79.5 °C for the system containing 0.1 wt.% AlPO2. Moreover, thermogravimetric analysis (TGA) showed that nanocomposites were thermally stable. Full article
(This article belongs to the Special Issue Epoxy Resins and Composites)
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Tensile Mechanical Behaviour of Multi-Polymer Sandwich Structures via Fused Deposition Modelling
Polymers 2020, 12(3), 651; https://doi.org/10.3390/polym12030651 - 12 Mar 2020
Cited by 11
Abstract
The application of single homogeneous materials produced through the fused deposition modelling (FDM) technology restricts the production of high-level multi-material components. The fabrication of a sandwich-structured specimen with different material combinations using conventional thermoplastics such as poly (lactic acid) (PLA), acrylonitrile butadiene styrene [...] Read more.
The application of single homogeneous materials produced through the fused deposition modelling (FDM) technology restricts the production of high-level multi-material components. The fabrication of a sandwich-structured specimen with different material combinations using conventional thermoplastics such as poly (lactic acid) (PLA), acrylonitrile butadiene styrene (ABS) and high impact polystyrene (HIPS) through the filament-based extrusion process can demonstrate an improvement on its properties. This paper aims to assess among these materials, the best material sandwich-structured arrangement design, to enhance the mechanical properties of a part and to compare the results with the homogeneous materials selected. The samples were subjected to tensile testing to identify the tensile strength, elongation at break and Young’s modulus of each material combination. The experimental results demonstrate that applying the PLA-ABS-PLA sandwich arrangement leads to the best mechanical properties between these materials. This study enables users to consider sandwich structure designs as an alternative to manufacturing multi-material components using conventional and low-cost materials. Future work will consider the flexural tests to identify the maximum stresses and bending forces under pressure. Full article
(This article belongs to the Special Issue Bio-Based Polymers: Synthesis and Properties)
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
Self-Consistent Mean Field Calculations of Polyelectrolyte-Surfactant Mixtures in Solution and upon Adsorption onto Negatively Charged Surfaces
Polymers 2020, 12(3), 624; https://doi.org/10.3390/polym12030624 - 09 Mar 2020
Cited by 10
Abstract
Self-Consistent Mean-Field Calculations (SCF) have provided a semi-quantitative description of the physico-chemical behavior of six different polyelectrolyte-surfactant mixtures. The SCF calculations performed showed that both the formation of polymer-surfactant in bulk and the adsorption of the formed complexes onto negatively-charged surfaces are strongly [...] Read more.
Self-Consistent Mean-Field Calculations (SCF) have provided a semi-quantitative description of the physico-chemical behavior of six different polyelectrolyte-surfactant mixtures. The SCF calculations performed showed that both the formation of polymer-surfactant in bulk and the adsorption of the formed complexes onto negatively-charged surfaces are strongly affected by the specific nature of the considered systems, with the polymer-surfactant interactions playing a central role in the self-assembly of the complexes that, in turn, affects their adsorption onto interfaces and surfaces. This work evidences that SCF calculations are a valuable tool for deepening on the understanding of the complex physico-chemical behavior of polyelectrolyte-surfactant mixtures. However, it is worth noting that the framework obtained on the basis of an SCF approach considered an equilibrium situation which may, in some cases, be far from the real situation appearing in polyelectrolyte-surfactant systems. Full article
(This article belongs to the Special Issue Polymers and Nanomaterials: Interactions and Applications)
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
Durability of an Epoxy Resin and Its Carbon Fiber- Reinforced Polymer Composite upon Immersion in Water, Acidic, and Alkaline Solutions
Polymers 2020, 12(3), 614; https://doi.org/10.3390/polym12030614 - 07 Mar 2020
Cited by 5
Abstract
The usage of polymer composites in various engineering fields has increased. However, the long-term service performance of such materials under aggressive conditions is still poorly understood, which limits the development of safe and economically effective designs. In this study, the aging of an [...] Read more.
The usage of polymer composites in various engineering fields has increased. However, the long-term service performance of such materials under aggressive conditions is still poorly understood, which limits the development of safe and economically effective designs. In this study, the aging of an epoxy resin and its carbon fiber-reinforced polymer (CFRP) composites upon immersion in water, acidic, and alkaline solutions was evaluated at different temperatures. The service life of the CFRP composites under various conditions could be predicted by the Arrhenius theory. The thermal and mechanical analysis results indicated that the CFRP composites were more vulnerable to HCl owing to the higher moisture absorption and diffusion of HCl into their cracks. The scanning electron microscopy results showed that the polymer matrix was damaged and degraded. Therefore, to allow long-term application, CFRP composites must be protected from acidic environments. Full article
(This article belongs to the Special Issue Epoxy Resins and Composites)
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Microscopic Structure of Swollen Hydrogels by Scanning Electron and Light Microscopies: Artifacts and Reality
Polymers 2020, 12(3), 578; https://doi.org/10.3390/polym12030578 - 05 Mar 2020
Cited by 11
Abstract
The exact knowledge of hydrogel microstructure, mainly its pore topology, is a key issue in hydrogel engineering. For visualization of the swollen hydrogels, the cryogenic or high vacuum scanning electron microscopies (cryo-SEM or HVSEM) are frequently used while the possibility of artifact-biased images [...] Read more.
The exact knowledge of hydrogel microstructure, mainly its pore topology, is a key issue in hydrogel engineering. For visualization of the swollen hydrogels, the cryogenic or high vacuum scanning electron microscopies (cryo-SEM or HVSEM) are frequently used while the possibility of artifact-biased images is frequently underestimated. The major cause of artifacts is the formation of ice crystals upon freezing of the hydrated gel. Some porous hydrogels can be visualized with SEM without the danger of artifacts because the growing crystals are accommodated within already existing primary pores of the gel. In some non-porous hydrogels the secondary pores will also not be formed due to rigid network structure of gels that counteracts the crystal nucleation and growth. We have tested the limits of true reproduction of the hydrogel morphology imposed by the swelling degree and mechanical strength of gels by investigating a series of methacrylate hydrogels made by crosslinking polymerization of glycerol monomethacrylate and 2-hydroxyethyl methacrylate including their interpenetrating networks. The hydrogel morphology was studied using cryo-SEM, HVSEM, environmental scanning electron microscopy (ESEM), laser scanning confocal microscopy (LSCM) and classical wide-field light microscopy (LM). The cryo-SEM and HVSEM yielded artifact-free micrographs for limited range of non-porous hydrogels and for macroporous gels. A true non-porous structure was observed free of artifacts only for hydrogels exhibiting relatively low swelling and high elastic modulus above 0.5 MPa, whereas for highly swollen and/or mechanically weak hydrogels the cryo-SEM/HVSEM experiments resulted in secondary porosity. In this contribution we present several cases of severe artifact formation in PHEMA and PGMA hydrogels during their visualization by cryo-SEM and HVSEM. We also put forward empirical correlation between hydrogel morphological and mechanical parameters and the occurrence and intensity of artifacts. Full article
(This article belongs to the Special Issue Hydrogels and Gels for Biomedical and Sustainable Applications)
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Investigating the Impact of Curing System on Structure-Property Relationship of Natural Rubber Modified with Brewery By-Product and Ground Tire Rubber
Polymers 2020, 12(3), 545; https://doi.org/10.3390/polym12030545 - 03 Mar 2020
Cited by 9
Abstract
The application of wastes as a filler/reinforcement phase in polymers is a new strategy to modify the performance properties and reduce the price of biocomposites. The use of these fillers, coming from agricultural waste (cellulose/lignocellulose-based fillers) and waste rubbers, constitutes a method for [...] Read more.
The application of wastes as a filler/reinforcement phase in polymers is a new strategy to modify the performance properties and reduce the price of biocomposites. The use of these fillers, coming from agricultural waste (cellulose/lignocellulose-based fillers) and waste rubbers, constitutes a method for the management of post-consumer waste. In this paper, highly-filled biocomposites based on natural rubber (NR) and ground tire rubber (GTR)/brewers’ spent grain (BSG) hybrid reinforcements, were prepared using two different curing systems: (i) sulfur-based and (ii) dicumyl peroxide (DCP). The influence of the amount of fillers (in 100/0, 50/50, and 0/100 ratios in parts per hundred of rubber) and type of curing system on the final properties of biocomposites was evaluated by the oscillating disc rheometer, Fourier-transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, swelling behavior, tensile testing, and impedance tube measurements. The results show, that the scorch time and the optimum curing time values of sulfur cured biocomposites are affected by the change of the hybrid filler ratio while using the DCP curing system, and the obtained values do not show significant variations. The results conclude that the biocomposites cured with sulfur have better physico-mechanical and acoustic absorption, and that the type of curing system does not influence their thermal stability. The overall analysis indicates that the difference in final properties of highly filled biocomposites cured with two different systems is mainly affected by the: (i) cross-linking efficiency, (ii) partial absorption and reactions between fillers and used additives, and (iii) affinity of additives to applied fillers. Full article
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Enhanced Biocompatibility of Multi-Layered, 3D Bio-Printed Artificial Vessels Composed of Autologous Mesenchymal Stem Cells
Polymers 2020, 12(3), 538; https://doi.org/10.3390/polym12030538 - 02 Mar 2020
Cited by 7
Abstract
Artificial vessels capable of long-term patency are essential clinical tools in vascular surgery that involves small vessels. On-going attempts to develop artificial vessels that complements restenosis have not been entirely successful. Here, we report on the fabrication of small-sized artificial vessels using a [...] Read more.
Artificial vessels capable of long-term patency are essential clinical tools in vascular surgery that involves small vessels. On-going attempts to develop artificial vessels that complements restenosis have not been entirely successful. Here, we report on the fabrication of small-sized artificial vessels using a three-dimensional bio-printer. The fabrication employed biodegradable polycaprolactone and autologous MSCs harvested from the bone-marrow of canines. The MSCs were cultured and differentiated into endothelial-like cells. After confirming differentiation, artificial vessels comprising three-layers were constructed and implanted into the arteries of canines. The autologous MSCs printed on artificial vessels (cell-derived group) maintained a 64.3% patency (9 of 14 grafts) compared with artificial vessels without cells (control group, 54.5% patency (6 of 11 grafts)). The cell-derived vessels (61.9 cells/mm2 ± 14.3) had more endothelial cells on their inner surfaces than the control vessels (21 cells/mm2 ± 11.3). Moreover, the control vessels showed acute inflammation on the porous structures of the implanted artificial vessels, whereas the cell-derived vessels exhibited fibrinous clots with little to no inflammation. We concluded that the minimal rejection of these artificial vessels by the immune system was due to the use of autologous MSCs. We anticipate that this study will be of value in the field of tissue-engineering in clinical practice. Full article
(This article belongs to the Special Issue Biomimetic Polymer-Based Matrices for Regenerative Medicine)
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Poly(vinyl alcohol)-Based Biofilms Plasticized with Polyols and Colored with Pigments Extracted from Tomato By-Products
Polymers 2020, 12(3), 532; https://doi.org/10.3390/polym12030532 - 02 Mar 2020
Cited by 8
Abstract
In the current work the physicochemical features of poly(vinyl alcohol) (PVOH) biofilms, enriched with eco-friendly polyols and with carotenoid-rich extracts, were investigated. The polyols, such as glycerol (Gly), 1,3-propanediol (PDO), and 2,3-butanediol (BDO) were used as plasticizers and the tomato-based pigments (TP) as [...] Read more.
In the current work the physicochemical features of poly(vinyl alcohol) (PVOH) biofilms, enriched with eco-friendly polyols and with carotenoid-rich extracts, were investigated. The polyols, such as glycerol (Gly), 1,3-propanediol (PDO), and 2,3-butanediol (BDO) were used as plasticizers and the tomato-based pigments (TP) as coloring agents. The outcomes showed that β-carotene was the major carotenoid in the TP (1.605 mg β-carotene/100 DW), which imprinted the orange color to the biofilms. The flow behavior indicated that with the increase of shear rate the viscosity of biofilm solutions also increased until 50 s−1, reaching values at 37 °C of approximately 9 ± 0.5 mPa·s for PVOH, and for PVOH+TP, 14 ± 0.5 mPa·s in combination with Gly, PDO, and BDO. The weight, thickness, and density of samples increased with the addition of polyols and TP. Biofilms with TP had lower transparency values compared with control biofilms (without vegetal pigments). The presence of BDO, especially, but also of PDO and glycerol in biofilms created strong bonds within the PVOH matrix by increasing their mechanical resistance. The novelty of the present approach relies on the replacement of synthetic colorants with natural pigments derived from agro-industrial by-products, and the use of a combination of biodegradable polymers and polyols, as an integrated solution for packaging application in the bioplastic industry. Full article
(This article belongs to the Special Issue Polymeric Materials for Food Engineering)
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Shape-Adaptive Metastructures with Variable Bandgap Regions by 4D Printing
Polymers 2020, 12(3), 519; https://doi.org/10.3390/polym12030519 - 01 Mar 2020
Cited by 21
Abstract
This article shows how four-dimensional (4D) printing technology can engineer adaptive metastructures that exploit resonating self-bending elements to filter vibrational and acoustic noises and change filtering ranges. Fused deposition modeling (FDM) is implemented to fabricate temperature-responsive shape-memory polymer (SMP) elements with self-bending features. [...] Read more.
This article shows how four-dimensional (4D) printing technology can engineer adaptive metastructures that exploit resonating self-bending elements to filter vibrational and acoustic noises and change filtering ranges. Fused deposition modeling (FDM) is implemented to fabricate temperature-responsive shape-memory polymer (SMP) elements with self-bending features. Experiments are conducted to reveal how the speed of the 4D printer head can affect functionally graded prestrain regime, shape recovery and self-bending characteristics of the active elements. A 3D constitutive model, along with an in-house finite element (FE) method, is developed to replicate the shape recovery and self-bending of SMP beams 4D-printed at different speeds. Furthermore, a simple approach of prestrain modeling is introduced into the commercial FE software package to simulate material tailoring and self-bending mechanism. The accuracy of the straightforward FE approach is validated against experimental observations and computational results from the in-house FE MATLAB-based code. Two periodic architected temperature-sensitive metastructures with adaptive dynamical characteristics are proposed to use bandgap engineering to forbid specific frequencies from propagating through the material. The developed computational tool is finally implemented to numerically examine how bandgap size and frequency range can be controlled and broadened. It is found out that the size and frequency range of the bandgaps are linked to changes in the geometry of self-bending elements printed at different speeds. This research is likely to advance the state-of-the-art 4D printing and unlock potentials in the design of functional metastructures for a broad range of applications in acoustic and structural engineering, including sound wave filters and waveguides. Full article
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
Structural Changes of Oak Wood Main Components Caused by Thermal Modification
Polymers 2020, 12(2), 485; https://doi.org/10.3390/polym12020485 - 21 Feb 2020
Cited by 26
Abstract
Thermal modification of wood causes chemical changes that significantly affect the physical, mechanical and biological properties of wood; thus, it is essential to investigate these changes for better utilization of products. Fourier transform infrared spectroscopy and size exclusion chromatography were used for evaluation [...] Read more.
Thermal modification of wood causes chemical changes that significantly affect the physical, mechanical and biological properties of wood; thus, it is essential to investigate these changes for better utilization of products. Fourier transform infrared spectroscopy and size exclusion chromatography were used for evaluation of chemical changes at thermal treatment of oak wood. Thermal modification was applied according to Thermowood process at the temperatures of 160, 180 and 210 °C, respectively. The results showed that hemicelluloses are less thermally stable than cellulose. Chains of polysaccharides split to shorter ones leading to a decrease of the degree of polymerization and an increase of polydispersity. At the highest temperature of the treatment (210 °C), also crosslinking reactions take place. At lower temperatures degradation reactions of lignin predominate, higher temperatures cause mainly condensation reactions and a molecular weight increase. Chemical changes in main components of thermally modified wood mainly affect its mechanical properties, which should be considered into account especially when designing various timber constructions. Full article
(This article belongs to the Special Issue Degradation of Wood-Based Materials)
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
High-Conductivity, Flexible and Transparent PEDOT:PSS Electrodes for High Performance Semi-Transparent Supercapacitors
Polymers 2020, 12(2), 450; https://doi.org/10.3390/polym12020450 - 14 Feb 2020
Cited by 12
Abstract
Herein, we report a flexible high-conductivity transparent electrode (denoted as S-PH1000), based on conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), and itsapplication to flexible semi-transparentsupercapacitors. A high conductivity of 2673 S/cm was achieved for the S-PH1000 electrode on flexible plastic substrates via a H2 [...] Read more.
Herein, we report a flexible high-conductivity transparent electrode (denoted as S-PH1000), based on conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), and itsapplication to flexible semi-transparentsupercapacitors. A high conductivity of 2673 S/cm was achieved for the S-PH1000 electrode on flexible plastic substrates via a H2SO4 treatment with an optimized concentration of 80 wt.%. This is among the top electrical conductivities of PEDOT:PSS films processed on flexible substrates. As for the electrochemical properties,a high specific capacitance of 161F/g was obtained from the S-PH1000 electrode at a current density of 1 A/g. Excitingly, a specific capacitance of 121 F/g was retained even when the current density increased to 100 A/g, which demonstrates the high-rate property of this electrode. Flexible semi-transparent supercapacitors based on these electrodes demonstrate high transparency, over 60%, at 550 nm. A high power density value, over 19,200 W/kg,and energy density, over 3.40 Wh/kg, was achieved. The semi-transparent flexible supercapacitor was successfully applied topower a light-emitting diode. Full article
(This article belongs to the Special Issue Polymers for Energy Storage and Conversion)
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Polyurethane-Based Composites: Effects of Antibacterial Fillers on the Physical-Mechanical Behavior of Thermoplastic Polyurethanes
Polymers 2020, 12(2), 362; https://doi.org/10.3390/polym12020362 - 06 Feb 2020
Cited by 8
Abstract
The challenge to manufacture medical devices with specific antibacterial functions, and the growing demand for systems able to limit bacterial resistance growth, necessitates the development of new technologies which can be easily produced at an industrial level. The object of this work was [...] Read more.
The challenge to manufacture medical devices with specific antibacterial functions, and the growing demand for systems able to limit bacterial resistance growth, necessitates the development of new technologies which can be easily produced at an industrial level. The object of this work was the study and the development of silver, titanium dioxide, and chitosan composites for the realization and/or implementation of biomedical devices. Thermoplastic elastomeric polyurethane was selected and used as matrix for the various antibacterial functions introduced during the processing phase (melt compounding). This strategy was employed to directly incorporate antimicrobial agents into the main constituent material of the devices themselves. With the exception of the composite filled with titanium dioxide, all of the other tested composites were shown to possess satisfactory mechanical properties. The best antibacterial effects were obtained with all the composites against Staphylococcus aureus: viability was efficiently inhibited by the prepared materials in four different bacterial culture concentrations. Full article
(This article belongs to the Special Issue Eurofillers Polymer Blends)
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Beeswax-Modified Textiles: Method of Preparation and Assessment of Antimicrobial Properties
Polymers 2020, 12(2), 344; https://doi.org/10.3390/polym12020344 - 05 Feb 2020
Cited by 2
Abstract
In this work, beeswax was used for the first time for finishing polyester/Cotton/Viscose blend fabric and polyester fabric. The aims of the study were: (1) to characterize the composition of beeswax (using Gas Chromatography Mass Spectrometry, GC-MS and 109AgNPET laser desorption/ionization mass [...] Read more.
In this work, beeswax was used for the first time for finishing polyester/Cotton/Viscose blend fabric and polyester fabric. The aims of the study were: (1) to characterize the composition of beeswax (using Gas Chromatography Mass Spectrometry, GC-MS and 109AgNPET laser desorption/ionization mass spectrometry (LDI MS); (2) to develop a laboratory method for applying beeswax; (3) to assess the antimicrobial activity of beeswax fabrics against bacteria and fungi (AATCC 100–2004 test); and (4) to assess the properties of textiles modified by beeswax. Beeswax was composed of fatty acids, monoacyl esters, glyceride esters and more complex lipids. The bioactivity of modified fabrics was from −0.09 to 1.55. The highest biocidal activity (>1) was obtained for both fabrics against A. niger mold. The beeswax modification process neither affected the morphological structure of the fibers (the wax evenly covered the surface of the fibers) nor their color. The only statistically significant changes observed were in the mechanical properties of the fabrics. The results obtained indicate that modification of fabrics with beeswax may endow them with biocidal properties against molds, which has practical applications, for example, for the prevention of skin mycoses in health and social care facilities. Full article
(This article belongs to the Special Issue Current Trends in Antimicrobial Polymeric Materials)
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
Poly(3,4-ethylenedioxythiophene) Based Solid-State Polymer Supercapacitor with Ionic Liquid Gel Polymer Electrolyte
Polymers 2020, 12(2), 297; https://doi.org/10.3390/polym12020297 - 02 Feb 2020
Cited by 2
Abstract
In this work, solid-state polymer supercapacitor (SSC) was assembled using poly(3,4-ethylenedioxythiophene/carbon paper (PEDOT/CP) as an electrode and ionic liquid (1-butyl-3-methylimidazole tetrafluoroborate)/polyvinyl alcohol/sulfuric acid (IL/PVA/H2SO4) as a gel polymer electrolyte (GPE). The GPE was treated through freezing–thawing (F/T) cycles to [...] Read more.
In this work, solid-state polymer supercapacitor (SSC) was assembled using poly(3,4-ethylenedioxythiophene/carbon paper (PEDOT/CP) as an electrode and ionic liquid (1-butyl-3-methylimidazole tetrafluoroborate)/polyvinyl alcohol/sulfuric acid (IL/PVA/H2SO4) as a gel polymer electrolyte (GPE). The GPE was treated through freezing–thawing (F/T) cycles to improve the electrochemical properties of PEDOT SSC. Cyclic voltammetry (CV), galvanostatic charge–discharge measurements (GCD) and electrochemical impedance spectroscopy (EIS) techniques and conductivity were carried out to study the electrochemical performance. The results showed that the SSC based on ionic liquid GPE (SSC-IL/PVA/H2SO4) has a higher specific capacitance (with the value of 86.81 F/g at 1 mA/cm2) than the SSC-PVA/H2SO4.The number of F/T cycles has a great effect on the electrochemical performance of the device. The energy density of the SSC treated with 3 F/T cycles was significantly improved, reaching 176.90 Wh/kg. Compared with the traditional electrolytes, IL GPE has the advantages of high ionic conductivity, less volatility, non-flammability and wider potential window. Moreover, the IL GPE has excellent elastic recovery and self-healing performance, leading to its great potential applications in flexible or smart energy storage equipment. Full article
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Degradable Controlled Release Fertilizer Composite Prepared via Extrusion: Fabrication, Characterization, and Release Mechanisms
Polymers 2020, 12(2), 301; https://doi.org/10.3390/polym12020301 - 02 Feb 2020
Cited by 8
Abstract
In this work, biodegradable polymers were melt compounded with urea phosphate to fabricate “smart fertilizers” for sustainable agriculture. Urea phosphate (UP) is typically applied as a water-soluble fertilizer to treat phosphorus deficiency in high pH soils. Due to the low diffusion rate of [...] Read more.
In this work, biodegradable polymers were melt compounded with urea phosphate to fabricate “smart fertilizers” for sustainable agriculture. Urea phosphate (UP) is typically applied as a water-soluble fertilizer to treat phosphorus deficiency in high pH soils. Due to the low diffusion rate of phosphate through slow-release fertilizer coatings, phosphate supply has been considered the “bottleneck” for nitrogen–phosphorous–potassium (NPK) nutrients supply. We study the influence of polymer matrix structure on release kinetics in deionized water using novel polyesters including poly (hexamethylene succinate) (PHS), poly (30% butylene succinate-co-70% hexamethylene succinate) (PBHS 30/70), and PBHS 70/30. Melt processed composites of UP and polyester were analyzed to determine UP loading efficiency and dispersion and distribution of the salt in the polymer matrix. A combined empirical model involving diffusion and erosion mechanisms was found have a good agreement with the experimental release curve. This work provides a solution for environmentally friendly controlled release phosphate fertilizer with good release performance using bio-based and biodegradable polymers. Full article
(This article belongs to the Special Issue Eco-Friendly Polymeric Materials: A New Chance for Our Future)
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Water Vapor Permeability through Porous Polymeric Membranes with Various Hydrophilicity as Synthetic and Natural Barriers
Polymers 2020, 12(2), 282; https://doi.org/10.3390/polym12020282 - 01 Feb 2020
Cited by 5
Abstract
The article is devoted to the analysis of sorption kinetics, permeability, and diffusion of water vapor in porous polymeric membranes of different hydrophilicities and through-porosities. The water transport measurement with a constant gradient of partial pressure allows the authors to obtain reliable characteristics [...] Read more.
The article is devoted to the analysis of sorption kinetics, permeability, and diffusion of water vapor in porous polymeric membranes of different hydrophilicities and through-porosities. The water transport measurement with a constant gradient of partial pressure allows the authors to obtain reliable characteristics for porous membranes, films, artificial leathers, and fabrics of various chemical natures (synthetic and bio-based) and phase structures. All the kinetic permeability curves were determined and effective diffusion coefficients, as well as their apparent activation energies, were calculated at the stationary and non-stationary stages of the mass transfer. The relationship between the sorption–diffusion characteristics of the polymer barriers and their vapor permeability is traced. Within the framework of a Zolotarev–Dubinin dual dispersive model, an analytical equation is obtained that relates permeability to diffusion coefficients of water vapor in the pore volume, polymer skeleton material using such characteristics as porosity and the solubility coefficient. It is proposed to use this equation to predict the sorption properties for barrier and porous materials of complex architecture specifically in food packaging. Full article
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
Thermomechanical and Morphological Properties of Poly(ethylene terephthalate)/Anhydrous Calcium Terephthalate Nanocomposites
Polymers 2020, 12(2), 276; https://doi.org/10.3390/polym12020276 - 30 Jan 2020
Cited by 2
Abstract
Calcium terephthalate anhydrous salts (CATAS), synthetized by reaction of terephthalic acid with metal (Ca) oxide were incorporated at different weight contents (0–30 wt. %) in recycled Poly(ethylene terephthalate) (rPET) by melt processing. Their structure, morphology, thermal and mechanical properties (tensile and flexural behavior) [...] Read more.
Calcium terephthalate anhydrous salts (CATAS), synthetized by reaction of terephthalic acid with metal (Ca) oxide were incorporated at different weight contents (0–30 wt. %) in recycled Poly(ethylene terephthalate) (rPET) by melt processing. Their structure, morphology, thermal and mechanical properties (tensile and flexural behavior) were investigated. Results of tensile strength of the different formulations showed that when the CATAS content increased from 0.1 to 0.4 wt. %, tangible changes were observed (variation of tensile strength from 65.5 to 69.4 MPa, increasing value for E from 2887 up to 3131 MPa, respectively for neat rPET and rPET_0.4CATAS). A threshold weight amount (0.4 wt. %) of CATAS was also found, by formation at low loading, of a rigid amorphous fraction at the rPET/CATAS interface, due to the aromatic interactions (π−π conjugation) between the matrix and the filler. Above the threshold, a restriction of rPET/CATAS molecular chains mobility was detected, due to the formation of hybrid mechanical percolation networks. Additionally, enhanced thermal stability of CATAS filled rPET was registered at high content (Tmax shift from 426 to 441 °C, respectively, for rPET and rPET_30CATAS), essentially due to chemical compatibility between terephthalate salts and polymer molecules, rich in stable aromatic rings. The singularity of a cold crystallization event, identified at the same loading level, confirmed the presence of an equilibrium state between nucleation and blocking effect of amorphous phase, basically related to the characteristic common terephthalate structure of synthetized Ca–Metal Organic Framework and the rPET matrix. Full article
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
New Monomer Based on Eugenol Methacrylate, Synthesis, Polymerization and Copolymerization with Methyl Methacrylate–Characterization and Thermal Properties
Polymers 2020, 12(1), 160; https://doi.org/10.3390/polym12010160 - 08 Jan 2020
Cited by 3
Abstract
Poly(eugenyl-2-hydroxypropyl methacrylate) (PEUGMA), poly(methyl methacrylate) (PMMA) and poly(eugenyl-2-hydroxypropyl methacrylate-co-methyl methacrylate) (PEUGMA-co-MMA) were synthesized by a free radical polymerization route in the presence of azobisisobutyronitrile. EUGMA was synthesized by etherification of the eugenol phenolic hydroxyl group with glycidyl methacrylate. Polymers and copolymers were characterized [...] Read more.
Poly(eugenyl-2-hydroxypropyl methacrylate) (PEUGMA), poly(methyl methacrylate) (PMMA) and poly(eugenyl-2-hydroxypropyl methacrylate-co-methyl methacrylate) (PEUGMA-co-MMA) were synthesized by a free radical polymerization route in the presence of azobisisobutyronitrile. EUGMA was synthesized by etherification of the eugenol phenolic hydroxyl group with glycidyl methacrylate. Polymers and copolymers were characterized using size exclusion chromatography, Fourier transform infrared, and nuclear magnetic resonance. The effects of the encumbering substituent on the thermal behavior of the polymers and copolymers were studied by differential scanning calorimetry, thermogravimetry (TG) and direct analysis, using real-time, time-of-flight mass spectroscopy (DART-ToF-MS) methods. The results obtained revealed that for PEUGMA, the average molecular weight was 1.08 × 105, and increased slowly with the decrease in the EUGMA content in the copolymer. The order of the distribution of dyads comonomer units in the copolymer chains estimated by the Igarashi method based on the reactivity ratio does reveal a random distribution with a tendency toward alternation. The glass transition temperature of PEUGMA (46 °C) increased with the MMA content in the copolymer, and those of the copolymer fit well with the Johnston’s linearized expression. The TG analysis of pure PEUGMA revealed a significantly high thermal stability compared to that of PMMA. During its degradation, the preliminary decomposition was at 340 °C, and decreased as the MMA units increased in the copolymer. The DART-ToF-MS analysis revealed that the isothermal decomposition of PEUGMA led to a regeneration of raw materials such as EUGMA, GMA and EUG, in which the maximum amount was achieved at 450 °C. Full article
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Study on the Moisture Absorption and Thermal Properties of Hygroscopic Exothermic Fibers and Related Interactions with Water Molecules
Polymers 2020, 12(1), 98; https://doi.org/10.3390/polym12010098 - 04 Jan 2020
Cited by 1
Abstract
The aim of this paper is to study the hygroscopic behavior of hygroscopic exothermic fiber-based materials and to obtain a better understanding of the thermal performance of these fibers during the moisture absorption process. The temperature distribution of different kinds of hygroscopic exothermic [...] Read more.
The aim of this paper is to study the hygroscopic behavior of hygroscopic exothermic fiber-based materials and to obtain a better understanding of the thermal performance of these fibers during the moisture absorption process. The temperature distribution of different kinds of hygroscopic exothermic fibers in the process of moisture absorption, observed by infrared camera, demonstrated two types of heating performance of these fibers, which might be related to its hygroscopic behavior. Based on the sorption isotherms, a Guggenheim-Anderson-de Boer (GAB) multi-layer adsorption model was selected as the optimal moisture absorption fitting model to describe the moisture absorption process of these fibers, which illustrated that water sorption capacity and the water–fiber/water–water interaction had a significant influence on its heating performance. The net isosteric heats of sorption decreased with an increase of moisture content, which further explained the main factor affecting the heat dissipation of fibers under different moisture contents. The state of adsorbed water and water vapor interaction on the fiber surface were studied by simultaneous thermal analysis (TGA-DSC) measurement. The percentage of bound and unbound water formation at low and high humidity had a profound effect on the thermal performance of fibers. It can therefore be concluded that the content of tightly bound water a strong water–fiber interaction was the main factor affecting the heating performance of fibers at low moisture content, and the content of loosely bound water reflected that water sorption capacity was the main factor affecting the heating performance of fibers at high moisture content. This was further proven by the heat of desorption. Full article
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Modification of Renewable Cardanol onto Carbon Fiber for the Improved Interfacial Properties of Advanced Polymer Composites
Polymers 2020, 12(1), 45; https://doi.org/10.3390/polym12010045 - 28 Dec 2019
Cited by 69
Abstract
A facile in situ polymerization was developed for grafting renewable cardanol onto the carbon fiber (CF) surfaces to strengthen the fiber–matrix interface. CFs were chemically modified with hydroxyl groups by using an aryl diazonium reaction, and then copolymerized in situ with hexachlorocyclotriphosphazene (HCCP) [...] Read more.
A facile in situ polymerization was developed for grafting renewable cardanol onto the carbon fiber (CF) surfaces to strengthen the fiber–matrix interface. CFs were chemically modified with hydroxyl groups by using an aryl diazonium reaction, and then copolymerized in situ with hexachlorocyclotriphosphazene (HCCP) and cardanol to build cardanol-modified fibers (CF-cardanol). The cardanol molecules were successfully introduced, as confirmed using Raman spectra and X-ray photoelectron spectroscopy (XPS); the cardanol molecules were found to increase the surface roughness, energy, interfacial wettability, and activity with the matrix resin. As a result, the interlaminar shear strength (ILSS) of CF-cardanol composites increased from 48.2 to 68.13 MPa. In addition, the anti-hydrothermal ageing properties of the modified composites were significantly increased. The reinforcing mechanisms of the fiber–matrix interface were also studied. Full article
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
Development of Coffee Biochar Filler for the Production of Electrical Conductive Reinforced Plastic
Polymers 2019, 11(12), 1916; https://doi.org/10.3390/polym11121916 - 21 Nov 2019
Cited by 20
Abstract
In this work we focused our attention on an innovative use of food residual biomasses. In particular, we produced biochar from coffee waste and used it as filler in epoxy resin composites with the aim to increase their electrical properties. Electrical conductivity was [...] Read more.
In this work we focused our attention on an innovative use of food residual biomasses. In particular, we produced biochar from coffee waste and used it as filler in epoxy resin composites with the aim to increase their electrical properties. Electrical conductivity was studied for the biochar and biochar-based composite in function of pressure applied. The results obtained were compared with carbon black and carbon black composites. We demonstrated that, even if the coffee biochar had less conductivity compared with carbon black in powder form, it created composites with better conductivity in comparison with carbon black composites. In addition, composite mechanical properties were tested and they generally improved with respect to neat epoxy resin. Full article
(This article belongs to the Special Issue Performance and Application of Novel Biocomposites)
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
Study of the Influence of the Reprocessing Cycles on the Final Properties of Polylactide Pieces Obtained by Injection Molding
Polymers 2019, 11(12), 1908; https://doi.org/10.3390/polym11121908 - 20 Nov 2019
Cited by 23
Abstract
This research work aims to study the influence of the reprocessing cycles on the mechanical, thermal, and thermomechanical properties of polylactide (PLA). To this end, PLA was subjected to as many as six extrusion cycles and the resultant pellets were shaped into pieces [...] Read more.
This research work aims to study the influence of the reprocessing cycles on the mechanical, thermal, and thermomechanical properties of polylactide (PLA). To this end, PLA was subjected to as many as six extrusion cycles and the resultant pellets were shaped into pieces by injection molding. Mechanical characterization revealed that the PLA pieces presented relatively similar properties up to the third reprocessing cycle, whereas further cycles induced an intense reduction in ductility and toughness. The effect of the reprocessing cycles was also studied by the changes in the melt fluidity, which showed a significant increase after four reprocessing cycles. An increase in the bio-polyester chain mobility was also attained with the number of the reprocessing cycles that subsequently favored an increase in crystallinity of PLA. A visual inspection indicated that PLA developed certain yellowing and the pieces also became less transparent with the increasing number of reprocessing cycles. Therefore, the obtained results showed that PLA suffers a slight degradation after one or two reprocessing cycles whereas performance impairment becomes more evident above the fourth reprocessing cycle. This finding suggests that the mechanical recycling of PLA for up to three cycles of extrusion and subsequent injection molding is technically feasible. Full article
(This article belongs to the Special Issue Biopolymer Modifications and Characterization)
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Synthesis and Characterization of Sucrose and Ammonium Dihydrogen Phosphate (SADP) Adhesive for Plywood
Polymers 2019, 11(12), 1909; https://doi.org/10.3390/polym11121909 - 20 Nov 2019
Cited by 15
Abstract
The development of eco-friendly adhesives for wood composite products has been a major topic in the field of wood science and product engineering. Although the research on tannin-based and soybean protein-based adhesives has already reached, or at least nears, industrial implementation, we also [...] Read more.
The development of eco-friendly adhesives for wood composite products has been a major topic in the field of wood science and product engineering. Although the research on tannin-based and soybean protein-based adhesives has already reached, or at least nears, industrial implementation, we also face a variety of remaining challenges with regards to the push for sustainable adhesives. First, petroleum-derived substances remain a pre-requisite for utilization of said adhesive systems, and also the viscosity of these novel adhesives continues to limit its ability to serve as a drop-in substitute. Within this study, we focus upon the development of an eco-friendly plywood adhesive that does not require any addition of petroleum derived reagents, and the resultant liquid adhesive has both high solid contents as well as a manageably low viscosity at processing temperatures. Specifically, a system based on sucrose and ammonium dihydrogen phosphate (ADP) was synthesized into an adhesive with ~80% solid content and with viscosities ranging from 480–1270 mPa·s. The bonding performance of all adhesive-bound veneer specimens satisfied GB/T 9846-2015 standard at 170 °C hot pressing temperature. To better explain the system’s efficiency, in-depth chemical analysis was performed in an effort to understand the chemical makeup of the cured adhesives as well as the components over the time course of curing. Several new structures involving the fixation of nitrogen speak to a novel adhesive molecular network. This research provides a possibility of synthesizing an eco-friendly wood adhesive with a high solid content and a low viscosity by renewable materials, and this novel adhesive system has the potential to be widely utilized in the wood industry. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Transferrin-Conjugated Docetaxel–PLGA Nanoparticles for Tumor Targeting: Influence on MCF-7 Cell Cycle
Polymers 2019, 11(11), 1905; https://doi.org/10.3390/polym11111905 - 19 Nov 2019
Cited by 17
Abstract
Targeted drug delivery systems are commonly used to improve the therapeutic index of anti-cancer drugs by increasing their selectivity and reducing systemic distribution and toxicity. Ligand-conjugated nanoparticles (NPs) can be effectively applied for active chemotherapeutic targeting to overexpressed receptors of tumor cells. In [...] Read more.
Targeted drug delivery systems are commonly used to improve the therapeutic index of anti-cancer drugs by increasing their selectivity and reducing systemic distribution and toxicity. Ligand-conjugated nanoparticles (NPs) can be effectively applied for active chemotherapeutic targeting to overexpressed receptors of tumor cells. In this study, transferrin (Tf) was successfully conjugated with poly-l-lactic-co-glycolic acid (PLGA) using ethylene diamine confirmed by NMR, for the loading of docetaxel trihydrate (DCT) into PLGA nanoparticles (NPs). The DCT-loaded Tf-conjugated PLGA NPs were produced by an emulsion-solvent evaporation technique, and a 32 full factorial design was used to optimize the nanoparticle formulations. The DCT-loaded Tf-conjugated PLGA NPs were characterized by FTIR spectroscopy, differential scanning calorimetry, powder X-ray diffraction (PXRD), TEM, particle size, and zeta potential analysis. In vitro release kinetics confirmed that release of DCT from the designed formulations followed a zero-order kinetics and a diffusion controlled non-Fickian release profile. The DCT-loaded Tf-conjugated PLGA NPs were evaluated in vitro in MCF-7 cells for bioactivity assessment. Cytotoxicity studies confirmed that the Tf-conjugated PLGA NPs were more active than the non-conjugated counterparts. Cell uptake studies re-confirmed the ligand-mediated active targeting of the formulated NPs. From the cell cycle analysis, the anti-cancer activity of DCT-loaded Tf-conjugated PLGA NPs was shown to occur by arresting the G2/M phase. Full article
(This article belongs to the Special Issue Biopolymers for Medical Applications)
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
Mechanical and Physical Properties of Oriented Strand Lumber (OSL): The Effect of Fortification Level of Nanowollastonite on UF Resin
Polymers 2019, 11(11), 1884; https://doi.org/10.3390/polym11111884 - 14 Nov 2019
Cited by 13
Abstract
The aim of this work is to investigate the effect of the fortification level of nanowollastonite on urea-formaldehyde resin (UF) and its effect on mechanical and physical properties of oriented strand lumbers (OSL). Two resin contents are applied, namely, 8% and 10%. Nanowollastonite [...] Read more.
The aim of this work is to investigate the effect of the fortification level of nanowollastonite on urea-formaldehyde resin (UF) and its effect on mechanical and physical properties of oriented strand lumbers (OSL). Two resin contents are applied, namely, 8% and 10%. Nanowollastonite is mixed with the resin at two levels (10% and 20%). It is found that the fortification of UF resin with 10% nanowollastonite can be considered as an optimum level. When nanowollastonite content is higher (that is, 20%), higher volume of UF resin is left over from the process of sticking the strips together, and therefore is absorbed by wollastonite nanofibers. The mechanism involved in the fortification of UF resin with nanowollastonite, which results in an improvement of thickness swelling values, can be attributed to the following two main factors: (i) nanowollastonite compounds making active bonds with the cellulose hydroxyl groups, putting them out of reach for bonding with the water molecules and (ii) high thermal conductivity coefficient of wollastonite improving the transfer of heat to different layers of the OSL mat, facilitating better and more complete resin curing. Since nanowollastonite contributes to making bonds between the wood strips, which consequently improves physical and mechanical properties, its use can be safely recommended in the OSL production process to improve the physical and mechanical properties of the panel. Full article
(This article belongs to the Special Issue Advances in Wood Composites)
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
Injection Molding of Highly Filled Polypropylene-based Biocomposites. Buckwheat Husk and Wood Flour Filler: A Comparison of Agricultural and Wood Industry Waste Utilization
Polymers 2019, 11(11), 1881; https://doi.org/10.3390/polym11111881 - 14 Nov 2019
Cited by 13
Abstract
The study presents a comparative analysis for two types of polymer fillers used during the processing of polypropylene by the injection molding technique. The aim of the study was to assess the usefulness of buckwheat husk waste as an alternative to the widely [...] Read more.
The study presents a comparative analysis for two types of polymer fillers used during the processing of polypropylene by the injection molding technique. The aim of the study was to assess the usefulness of buckwheat husk waste as an alternative to the widely used wood fiber fillers. For this purpose, we prepared composite samples containing 10, 30 and 50 wt % of the filler, which were subjected to mechanical tests, thermal analysis, and structural observations in order to evaluate and compare their properties. Additionally, we evaluated the effectiveness of the composite system’s compatibility by using maleic anhydride grafted polypropylene (PP-g-MA). The results of mechanical tests confirmed a more effective reinforcement mechanism for wood fibers; however, with the addition of PP-g-MA compatibilizer, these differences were significantly reduced: we observed a 14% drop for tensile modulus and 5% for strength. This suggests high susceptibility to this type of adhesion promoter, also confirmed by SEM observations. The paper also discusses rheological measurements conducted on a rotational rheometer, which allowed to confirm more favorable flow characteristics for composites based on buckwheat husks. Full article
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Further Exploration of Sucrose-Citric Acid Adhesive: Synthesis and Application on Plywood
Polymers 2019, 11(11), 1875; https://doi.org/10.3390/polym11111875 - 13 Nov 2019
Cited by 20
Abstract
The development of eco-friendly adhesives is a major research direction in the wood-based material industry. Previous research has already demonstrated the mixture of sucrose and citric acid could be utilized as an adhesive for the manufacture of particleboard. Herein, based on the chemical [...] Read more.
The development of eco-friendly adhesives is a major research direction in the wood-based material industry. Previous research has already demonstrated the mixture of sucrose and citric acid could be utilized as an adhesive for the manufacture of particleboard. Herein, based on the chemical characteristics of sucrose, a synthesized sucrose-citric acid (SC) adhesive was prepared, featuring suitable viscosity and high solid content. The investigation of synthesis conditions on the bond performance showed that the optimal mass proportion between sucrose and citric acid was 25/75, the synthesis temperature was 100 °C, and the synthesis time was 2 h. The wet shear strength of the plywood bonded with SC adhesive, which was synthesized at optimal conditions and satisfied the China National Standard GB/T 9846-2015. The synthesis mechanism was studied by both 13C NMR analysis and HPLC, and the chemical composition manifesting caramelization reaction occurred during the synthesis process. The results of ATR FT-IR indicated the formation of a furan ring, carbonyl, and ether groups in the cured insoluble matter of the SC adhesive, which indicated dehydration condensation as the reaction mechanism between sucrose and citric acid. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Flexure Behaviors of ABS-Based Composites Containing Carbon and Kevlar Fibers by Material Extrusion 3D Printing
Polymers 2019, 11(11), 1878; https://doi.org/10.3390/polym11111878 - 13 Nov 2019
Cited by 18
Abstract
Short-fiber-reinforced thermoplastics are popular for improving the mechanical properties exhibited by pristine thermoplastic materials. Due to the inherent conflict between strength and ductility, there are only a few successful cases of simultaneous enhancement of these two properties in polymer composite components. The objective [...] Read more.
Short-fiber-reinforced thermoplastics are popular for improving the mechanical properties exhibited by pristine thermoplastic materials. Due to the inherent conflict between strength and ductility, there are only a few successful cases of simultaneous enhancement of these two properties in polymer composite components. The objective of this work was to explore the feasibility of simultaneous enhancement of strength and ductility in ABS-based composites with short-carbon and Kevlar fiber reinforcement by material extrusion 3D printing (ME3DP). Microstructure characterization and measurement of thermal and mechanical properties were conducted to evaluate the fiber-reinforced ABS. The influence of printing raster orientation and build direction on the mechanical properties of material extrusion of 3D-printed composites was analyzed. Experimental results demonstrated that the reinforcement of the ABS-based composites by short-carbon and Kevlar fibers under optimized 3D-printing conditions led to balanced flexural strength and ductility. The ABS-based composites with a raster orientation of ±45° and side build direction presented the highest flexural behaviors among the samples in the current study. The main reason was attributed to the printed contour layers and the irregular zigzag paths, which could delay the initiation and propagation of microcracks. Full article
(This article belongs to the Special Issue Processing and Molding of Polymers)
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Flat Die Extruded Biocompatible Poly(Lactic Acid) (PLA)/Poly(Butylene Succinate) (PBS) Based Films
Polymers 2019, 11(11), 1857; https://doi.org/10.3390/polym11111857 - 11 Nov 2019
Cited by 17
Abstract
Biodegradable polymers are promising materials for films and sheets used in many widely diffused applications like packaging, personal care products and sanitary products, where the synergy of high biocompatibility and reduced environmental impact can be particularly significant. Plasticized poly(lactic acid) (PLA)/poly(butylene succinate) (PBS) [...] Read more.
Biodegradable polymers are promising materials for films and sheets used in many widely diffused applications like packaging, personal care products and sanitary products, where the synergy of high biocompatibility and reduced environmental impact can be particularly significant. Plasticized poly(lactic acid) (PLA)/poly(butylene succinate) (PBS) blend-based films, showing high cytocompatibility and improved flexibility than pure PLA, were prepared by laboratory extrusion and their processability was controlled by the use of a few percent of a commercial melt strength enhancer, based on acrylic copolymers and micro-calcium carbonate. The melt strength enhancer was also found effective in reducing the crystallinity of the films. The process was upscaled by producing flat die extruded films in which elongation at break and tear resistance were improved than pure PLA. The in vitro biocompatibility, investigated through the contact of flat die extruded films with cells, namely, keratinocytes and mesenchymal stromal cells, resulted improved with respect to low density polyethylene (LDPE). Moreover, the PLA-based materials were able to affect immunomodulatory behavior of cells and showed a slight indirect anti-microbial effect. These properties could be exploited in several applications, where the contact with skin and body is relevant. Full article
(This article belongs to the Special Issue Eurofillers Polymer Blends)
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
Dual-Layer Approach toward Self-Healing and Self-Cleaning Polyurethane Thermosets
Polymers 2019, 11(11), 1849; https://doi.org/10.3390/polym11111849 - 09 Nov 2019
Cited by 10
Abstract
There is an urgent need for coatings that exhibit both self-healing as well as self-cleaning properties as they can be used for a wide range of applications. Herein we report a novel approach toward fabricating polyurethane thermosets possessing both self-cleaning and self-healing properties. [...] Read more.
There is an urgent need for coatings that exhibit both self-healing as well as self-cleaning properties as they can be used for a wide range of applications. Herein we report a novel approach toward fabricating polyurethane thermosets possessing both self-cleaning and self-healing properties. The desired coating was achieved via casting a bottom layer of self-healable polyurethanes comprised of reversible phenolic urethane bonds followed by a subsequent dip-coating of the prepared layer in a solution of bis(3-aminopropyl)-terminated polydimethylsiloxane (PDMS-NH2). The PDMS was used to impart self-cleaning properties to the coating. While the self-healing behavior of the bottom polyurethane layer is achieved through phenolic urethane chemistry, via the exchange of phenolic urethane moieties. The prepared coatings were tested for their optical, mechanical, self-healing, and self-cleaning properties using a variety of characterization methods, which confirmed the successful fabrication of novel self-cleaning and self-healing clear urethane coatings. Full article
(This article belongs to the Special Issue Polymeric Self-Healing Materials)
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Dual-Wavelength (UV and Blue) Controlled Photopolymerization Confinement for 3D-Printing: Modeling and Analysis of Measurements
Polymers 2019, 11(11), 1819; https://doi.org/10.3390/polym11111819 - 06 Nov 2019
Cited by 12
Abstract
The kinetics and modeling of dual-wavelength (UV and blue) controlled photopolymerization confinement (PC) are presented and measured data are analyzed by analytic formulas and numerical data. The UV-light initiated inhibition effect is strongly monomer-dependent due to different C=C bond rate constants and conversion [...] Read more.
The kinetics and modeling of dual-wavelength (UV and blue) controlled photopolymerization confinement (PC) are presented and measured data are analyzed by analytic formulas and numerical data. The UV-light initiated inhibition effect is strongly monomer-dependent due to different C=C bond rate constants and conversion efficacies. Without the UV-light, for a given blue-light intensity, higher initiator concentration (C10) and rate constant (k’) lead to higher conversion, as also predicted by analytic formulas, in which the total conversion rate (RT) is an increasing function of C1 and k’R, which is proportional to k’[gB1C1]0.5. However, the coupling factor B1 plays a different role that higher B1 leads to higher conversion only in the transient regime; whereas higher B1 leads to lower steady-state conversion. For a fixed initiator concentration C10, higher inhibitor concentration (C20) leads to lower conversion due to a stronger inhibition effect. However, same conversion reduction was found for the same H-factor defined by H0 = [b1C10b2C20]. Conversion of blue-only are much higher than that of UV-only and UV-blue combined, in which high C20 results a strong reduction of blue-only-conversion, such that the UV-light serves as the turn-off (trigger) mechanism for the purpose of spatial confirmation within the overlap area of UV and blue light. For example, UV-light controlled methacrylate conversion of a glycidyl dimethacrylate resin is formulated with a tertiary amine co-initiator, and butyl nitrite. The system is subject to a continuous exposure of a blue light, but an on-off exposure of a UV-light. Finally, we developed a theoretical new finding for the criterion of a good material/candidate governed by a double ratio of light-intensity and concentration, [I20C20]/[I10C10]. Full article
(This article belongs to the Special Issue Functionally Responsive Polymeric Materials II)
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Biodegradable, Flame-Retardant, and Bio-Based Rigid Polyurethane/Polyisocyanurate Foams for Thermal Insulation Application
Polymers 2019, 11(11), 1816; https://doi.org/10.3390/polym11111816 - 05 Nov 2019
Cited by 23
Abstract
This article raised the issue of studies on the use of new bio-polyol based on white mustard seed oil and 2,2’-thiodiethanol (3-thiapentane-1,5-diol) for the synthesis of rigid polyurethane/polyisocyanurate (RPU/PIR) foams. For this purpose, new formulations of polyurethane materials were prepared. Formulations contained bio-polyol [...] Read more.
This article raised the issue of studies on the use of new bio-polyol based on white mustard seed oil and 2,2’-thiodiethanol (3-thiapentane-1,5-diol) for the synthesis of rigid polyurethane/polyisocyanurate (RPU/PIR) foams. For this purpose, new formulations of polyurethane materials were prepared. Formulations contained bio-polyol content from 0 to 0.4 chemical equivalents of hydroxyl groups. An industrial flame retardant, tri(2-chloro-1-methylethyl) phosphate (Antiblaze TCMP), was added to half of the formulations. Basic foaming process parameters and functional properties, such as apparent density, compressive strength, brittleness, absorbability and water absorption, aging resistance, thermal conductivity coefficient λ, structure of materials, and flammability were examined. The susceptibility of the foams to biodegradation in soil was also examined. The increase in the bio-polyol content caused a slight increase in processing times. Also, it was noted that the use of bio-polyol had a positive effect on the functional properties of obtained RPU/PIR foams. Foams modified by bio-polyol based on mustard seed oil showed lower apparent density, brittleness, compressive strength, and absorbability and water absorption, as well as thermal conductivity, compared to the reference (unmodified) foams. Furthermore, the obtained materials were more resistant to aging and more susceptible to biodegradation. Full article
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
AgBr/BiOBr Nano-Heterostructure-Decorated Polyacrylonitrile Nanofibers: A Recyclable High-Performance Photocatalyst for Dye Degradation under Visible-Light Irradiation
Polymers 2019, 11(10), 1718; https://doi.org/10.3390/polym11101718 - 19 Oct 2019
Cited by 23
Abstract
Macrostructural flexible photocatalysts have been proven to have desirable recyclable properties during the photocatalytic degradation of organic pollutants in water. However, the photocatalytic activities of these photocatalysts are often unsatisfactory due to the fast recombination of charge carriers and the limited surface active [...] Read more.
Macrostructural flexible photocatalysts have been proven to have desirable recyclable properties during the photocatalytic degradation of organic pollutants in water. However, the photocatalytic activities of these photocatalysts are often unsatisfactory due to the fast recombination of charge carriers and the limited surface active sites. Herein, we developed a novel flexible photocatalyst of AgBr/BiOBr/polyacrylonitrile (PAN) composite mats (CMs) through the controllable assembly of AgBr/BiOBr nano-heterostructures on electrospun polyacrylonitrile nanofibers (PAN NFs) via a three-step synthesis route. The component ratio of AgBr to BiOBr in the CMs could be easily adjusted by controlling the in situ ion exchange process. The charge–transfer process occurring at the interface of the AgBr/BiOBr nano-heterostructures strongly hindered the recombination of photoinduced electron–hole pairs, thereby effectively enhancing the photocatalytic activity of the AgBr/BiOBr/PAN CMs. Meanwhile, the unique hierarchical inorganic/organic heterostructure of the AgBr/BiOBr/PAN CMs not only led to good flexibility, but also provided an abundance of active sites for photocatalytic reactions. Upon visible-light irradiation, AgBr/BiOBr/PAN CMs with an optimal ratio of AgBr to BiOBr components exhibited both enhanced photocatalytic activity and excellent separability during the degradation of methyl orange in water compared to the BiOBr/PAN CMs. Full article
(This article belongs to the Special Issue Polymer Adsorption at Interfaces)
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Employing of Trukhan Model to Estimate Ion Transport Parameters in PVA Based Solid Polymer Electrolyte
Polymers 2019, 11(10), 1694; https://doi.org/10.3390/polym11101694 - 16 Oct 2019
Cited by 23
Abstract
In the current paper, ion transport parameters in poly (vinyl alcohol) (PVA) based solid polymer electrolyte were examined using Trukhan model successfully. The desired amount of lithium trifluoromethanesulfonate (LiCF3SO3) was dissolved in PVA host polymer to synthesis of solid [...] Read more.
In the current paper, ion transport parameters in poly (vinyl alcohol) (PVA) based solid polymer electrolyte were examined using Trukhan model successfully. The desired amount of lithium trifluoromethanesulfonate (LiCF3SO3) was dissolved in PVA host polymer to synthesis of solid polymer electrolytes (SPEs). Ion transport parameters such as mobility (μ), diffusion coefficient (D), and charge carrier number density (n) are investigated in detail using impedance spectroscopy. The data results from impedance plots illustrated a decrement of bulk resistance with an increase in temperature. Using electrical equivalent circuits (EEC), electrical impedance plots (ZivsZr) are fitted at various temperatures. The results of impedance study demonstrated that the resistivity of the sample decreases with increasing temperature. The decrease of resistance or impedance with increasing temperature distinguished from Bode plots. The dielectric constant and dielectric loss values increased with an increase in temperature. The loss tangent peaks shifted to higher frequency region and the intensity increased with an increase in temperature. In this contribution, ion transport as a complicated subject in polymer physics is studied. The conductivity versus reciprocal of temperature was found to obey Arrhenius behavior type. The ion transport mechanism is discussed from the tanδ spectra. The ion transport parameters at ambient temperature are found to be 9 × 10−8 cm2/s, 0.8 × 1017 cm−3, and 3 × 10−6 cm2/Vs for D, n, andμ respectively. All these parameters have shown increasing as temperature increased. The electric modulus parameters are studied in an attempt to understand the relaxation dynamics and to clarify the relaxation process and ion dynamics relationship. Full article
(This article belongs to the Special Issue Polyelectrolyte Complexes in Polymer Science and Technology)
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceCommunication
Stabilization of Electrospun Nanofiber Mats Used for Filters by 3D Printing
Polymers 2019, 11(10), 1618; https://doi.org/10.3390/polym11101618 - 06 Oct 2019
Cited by 18
Abstract
Electrospinning is a well-known technology used to create nanofiber mats from diverse polymers and other materials. Due to their large surface-to-volume ratio, such nanofiber mats are often applied as air or water filters. Especially the latter, however, have to be mechanically highly stable, [...] Read more.
Electrospinning is a well-known technology used to create nanofiber mats from diverse polymers and other materials. Due to their large surface-to-volume ratio, such nanofiber mats are often applied as air or water filters. Especially the latter, however, have to be mechanically highly stable, which is challenging for common nanofiber mats. One of the approaches to overcome this problem is gluing them on top of more rigid objects, integrating them in composites, or reinforcing them using other technologies to avoid damage due to the water pressure. Here, we suggest another solution. While direct 3D printing with the fused deposition modeling (FDM) technique on macroscopic textile fabrics has been under examination by several research groups for years, here we report on direct FDM printing on nanofiber mats for the first time. We show that by choosing the proper height of the printing nozzle above the nanofiber mat, printing is possible for raw polyacrylonitrile (PAN) nanofiber mats, as well as for stabilized and even more brittle carbonized material. Under these conditions, the adhesion between both parts of the composite is high enough to prevent the nanofiber mat from being peeled off the 3D printed polymer. Abrasion tests emphasize the significantly increased mechanical properties, while contact angle examinations reveal a hydrophilicity between the original values of the electrospun and the 3D printed materials. Full article
(This article belongs to the Special Issue 3D and 4D Printing of (Bio)Materials)
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Hybrid Nanocomposites of Cellulose/Carbon-Nanotubes/Polyurethane with Rapidly Water Sensitive Shape Memory Effect and Strain Sensing Performance
Polymers 2019, 11(10), 1586; https://doi.org/10.3390/polym11101586 - 27 Sep 2019
Cited by 16
Abstract
In this work, a fast water-responsive shape memory hybrid polymer based on thermoplastic polyurethane (TPU) was prepared by crosslinking with hydroxyethyl cotton cellulose nanofibers (CNF-C) and multi-walled carbon nanotubes (CNTs). The effect of CNTs content on the electrical conductivity of TPU/CNF-C/CNTs nanocomposite was [...] Read more.
In this work, a fast water-responsive shape memory hybrid polymer based on thermoplastic polyurethane (TPU) was prepared by crosslinking with hydroxyethyl cotton cellulose nanofibers (CNF-C) and multi-walled carbon nanotubes (CNTs). The effect of CNTs content on the electrical conductivity of TPU/CNF-C/CNTs nanocomposite was investigated for the feasibility of being a strain sensor. In order to know its durability, the mechanical and water-responsive shape memory effects were studied comprehensively. The results indicated good mechanical properties and sensing performance for the TPU matrix fully crosslinked with CNF-C and CNTs. The water-induced shape fixity ratio (Rf) and shape recovery ratio (Rr) were 49.65% and 76.64%, respectively, indicating that the deformed composite was able to recover its original shape under a stimulus. The TPU/CNF-C/CNTs samples under their fixed and recovered shapes were tested to investigate their sensing properties, such as periodicity, frequency, and repeatability of the sensor spline under different loadings. Results indicated that the hybrid composite can sense large strains accurately for more than 103 times and water-induced shape recovery can to some extent maintain the sensing accuracy after material fatigue. With such good properties, we envisage that this kind of composite may play a significant role in developing new generations of water-responsive sensors or actuators. Full article
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
Analysis of PLA Geometric Properties Processed by FFF Additive Manufacturing: Effects of Process Parameters and Plate-Extruder Precision Motion
Polymers 2019, 11(10), 1581; https://doi.org/10.3390/polym11101581 - 27 Sep 2019
Cited by 25
Abstract
The evolution of fused filament fabrication (FFF) technology, initially restricted to the manufacturing of prototypes, has led to its application in the manufacture of finished functional products with excellent mechanical properties. However, FFF technology entails drawbacks in aspects, such as dimensional and geometric [...] Read more.
The evolution of fused filament fabrication (FFF) technology, initially restricted to the manufacturing of prototypes, has led to its application in the manufacture of finished functional products with excellent mechanical properties. However, FFF technology entails drawbacks in aspects, such as dimensional and geometric precision, and surface finish. These aspects are crucial for the assembly and service life of functional parts, with geometric qualities lagging far behind the optimum levels obtained by conventional manufacturing processes. A further shortcoming is the proliferation of low cost FFF 3D printers with low quality mechanical components, and malfunctions that have a critical impact on the quality of finished products. FFF product quality is directly influenced by printer settings, material properties in terms of cured layers, and the functional mechanical efficiency of the 3D printer. This paper analyzes the effect of the build orientation (Bo), layer thickness (Lt), feed rate (Fr) parameters, and plate-extruder movements on the dimensional accuracy, flatness error, and surface texture of polylactic acid (PLA) using a low cost open-source FFF 3D printer. The mathematical modelling of geometric properties was performed using artificial neural networks (ANN). The results showed that thinner layer thickness generated lower dimensional deviations, and feed rate had a minor influence on dimensional accuracy. The flatness error and surface texture showed a quasi-linear behavior correlated to layer thickness and feed rate, with alterations produced by 3D printer malfunctions. The mathematical models provide a comprehensive analysis of the geometric behavior of PLA processing by FFF, in order to identify optimum print settings for the processing of functional components. Full article
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Physical and Mechanical Properties of Thermally-Modified Beech Wood Impregnated with Silver Nano-Suspension and Their Relationship with the Crystallinity of Cellulose
Polymers 2019, 11(10), 1538; https://doi.org/10.3390/polym11101538 - 20 Sep 2019
Cited by 15
Abstract
The aim of this study was to investigate the physical and mechanical properties of thermally modified beech wood impregnated with silver nano-suspension and to examine their relationship with the crystallinity of cellulose. Specimens were impregnated with a 400 ppm nanosilver suspension (NS); at [...] Read more.
The aim of this study was to investigate the physical and mechanical properties of thermally modified beech wood impregnated with silver nano-suspension and to examine their relationship with the crystallinity of cellulose. Specimens were impregnated with a 400 ppm nanosilver suspension (NS); at least, 90% of silver nano-particles ranged between 20 and 100 nano-meters. Heat treatment took place in a laboratory oven at three temperatures, namely 145, 165, and 185 °C. Physical properties and mechanical properties of treated wood demonstrated statistically insignificant fluctuations at low temperatures compared to control specimens. On the other hand, an increase of temperature to 185 °C had a significant effect on all properties. Physical properties (volumetric swelling and water absorption) and mechanical properties (MOR and MOE) of treated wood demonstrated statistically insignificant fluctuations at low temperatures compared to control specimens. This degradation ultimately resulted in significant decrease in MOR, impact strength, and physical properties. However, thermal modification at 185 °C did not seem to cause significant fluctuations in MOE and compression strength parallel to grain. As a consequence of the thermal modification, part of amorphous cellulose was changed to crystalline cellulose. At low temperatures an increased crystallinity caused some of the properties to be improved. Crystallinity also demonstrated a decrease in NS-HT185 in comparison to HT185 treatment. TCr indices in specimens thermally treated at 145 °C revealed a significant increase as a result of impregnation with nanosilver suspension. This improvement in TCr index resulted in a noticeable increase in MOR and MOE values. Other properties did not show significant fluctuations, suggesting that the effect of the increased crystallinity and cross-linking in lignin was more than the negative effect of the low cell-wall polymer degradation caused by thermal modification. Change of amorphous cellulose to crystalline cellulose, as well as cross-linking in lignin, partially ameliorated the negative effects of thermal degradation at higher temperatures and therefore, compression parallel to grain and modulus of elasticity did not decrease significantly. Overall, it can be concluded that increased crystallinity and cross-linking in lignin can compensate for some decreased properties caused by thermal modification, but it would be significantly dependent on the temperature under which modification is carried out. Impregnating specimens with silver nano-suspension prior to thermal modification enhanced the effects of thermal modification as a result of improved thermal conductivity. Full article
(This article belongs to the Special Issue Advances in Wood Composites)
Show Figures

Figure 1

Open AccessEditor’s ChoiceArticle
Fabrication and Evaluation of a Novel Non-Invasive Stretchable and Wearable Respiratory Rate Sensor Based on Silver Nanoparticles Using Inkjet Printing Technology
Polymers 2019, 11(9), 1518; https://doi.org/10.3390/polym11091518 - 18 Sep 2019
Cited by 15
Abstract
The respiration rate (RR) is a key vital sign that links to adverse clinical outcomes and has various important uses. However, RR signals have been neglected in many clinical practices for several reasons and it is still difficult to develop low-cost RR sensors [...] Read more.
The respiration rate (RR) is a key vital sign that links to adverse clinical outcomes and has various important uses. However, RR signals have been neglected in many clinical practices for several reasons and it is still difficult to develop low-cost RR sensors for accurate, automated, and continuous measurement. This study aims to fabricate, develop and evaluate a novel stretchable and wearable RR sensor that is low-cost and easy to use. The sensor is fabricated using the soft lithography technique of polydimethylsiloxane substrates (PDMS) for the stretchable sensor body and inkjet printing technology for creating the conductive circuit by depositing the silver nanoparticles on top of the PDMS substrates. The inkjet-printed (IJP) PDMS-based sensor was developed to detect the inductance fluctuations caused by respiratory volumetric changes. The output signal was processed in a Wheatstone bridge circuit to derive the RR. Six different patterns for a IJP PDMS-based sensor were carefully designed and tested. Their sustainability (maximum strain during measurement) and durability (the ability to go bear axial cyclic strains) were investigated and compared on an automated mechanical stretcher. Their repeatability (output of the sensor in repeated tests under identical condition) and reproducibility (output of different sensors with the same design under identical condition) were investigated using a respiratory simulator. The selected optimal design pattern from the simulator evaluation was used in the fabrication of the IJP PDMS-based sensor where the accuracy was inspected by attaching it to 37 healthy human subjects (aged between 19 and 34 years, seven females) and compared with the reference values from e-Health nasal sensor. Only one design survived the inspection procedures where design #6 (array consists of two horseshoe lines) indicated the best sustainability and durability, and went through the repeatability and reproducibility tests. Based on the best pattern, the developed sensor accurately measured the simulated RR with an error rate of 0.46 ± 0.66 beats per minute (BPM, mean ± SD). On human subjects, the IJP PDMS-based sensor and the reference e-Health sensor showed the same RR value, without any observable differences. The performance of the sensor was accurate with no apparent error compared with the reference sensor. Considering its low cost, good mechanical property, simplicity, and accuracy, the IJP PDMS-based sensor is a promising technique for continuous and wearable RR monitoring, especially under low-resource conditions. Full article
(This article belongs to the Special Issue Polymer-Based Flexible Printed Electronics and Sensors)
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Boron Removal from Aqueous Solutions by Using a Novel Alginate-Based Sorbent: Comparison with Al2O3 Particles
Polymers 2019, 11(9), 1509; https://doi.org/10.3390/polym11091509 - 16 Sep 2019
Cited by 14
Abstract
Boron removal was evaluated in the present work by using calcium alginate beads (CA) and a novel composite based on alginate–alumina (CAAl) as sorbents in a batch system. The effects of different parameters such as pH, temperature, contact time, and composition of alginate [...] Read more.
Boron removal was evaluated in the present work by using calcium alginate beads (CA) and a novel composite based on alginate–alumina (CAAl) as sorbents in a batch system. The effects of different parameters such as pH, temperature, contact time, and composition of alginate (at different concentrations of guluronic and mannuronic acids) on boron sorption were investigated. The results confirm that calcium alginate beads (CA) exhibited a better adsorption capacity in a slightly basic medium, and the composite alginate–alumina (CAAl) exhibited improved boron removal at neutral pH. Sorption isotherm studies were performed and the Langmuir isotherm model was found to fit the experimental data. The maximum sorption capacities were 4.5 mmol g−1 and 5.2 mmol g−1, using CA and CAAl, respectively. Thermodynamic parameters such as change in free energy (ΔG0), enthalpy (ΔH0), and entropy (ΔS0) were also determined. The pseudo-first-order and pseudo-second-order rate equations (PFORE and PSORE, respectively) were tested to fit the kinetic data; the experimental results can be better described with PSORE. The regeneration of the loaded sorbents was demonstrated by using dilute HCl solution (distilled water at pH 3) as eluent for metal recovery. Full article
(This article belongs to the Special Issue Algae-Based Polymers: Current Trends and Emerging Opportunities)
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
A Modular and Practical Synthesis of Zwitterionic Hydrogels through Sequential Amine-Epoxy “Click” Chemistry and N-Alkylation Reaction
Polymers 2019, 11(9), 1491; https://doi.org/10.3390/polym11091491 - 12 Sep 2019
Cited by 12
Abstract
In this work, the amine-epoxy “click” reaction is shown to be a valuable general tool in the synthesis of reactive hydrogels. The practicality of this reaction arises due to its catalyst-free nature, its operation in water, and commercial availability of a large variety [...] Read more.
In this work, the amine-epoxy “click” reaction is shown to be a valuable general tool in the synthesis of reactive hydrogels. The practicality of this reaction arises due to its catalyst-free nature, its operation in water, and commercial availability of a large variety of amine and epoxide molecules that can serve as hydrophilic network precursors. Therefore, hydrogels can be prepared in a modular fashion through a simple mixing of the precursors in water and used as produced (without requiring any post-synthesis purification step). The gelation behavior and final hydrogel properties depend upon the molecular weight of the precursors and can be changed as per the requirement. A post-synthesis modification through alkylation at the nitrogen atom of the newly formed β-hydroxyl amine linkages allows for functionalizing the hydrogels. For example, ring-opening reaction of cyclic sulfonic ester gives rise to surfaces with a zwitterionic character. Finally, the established gelation chemistry can be combined with soft lithography techniques such as micromolding in capillaries (MIMIC) to obtain hydrogel microstructures. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Accelerated Weathering of Polylactide-Based Composites Filled with Linseed Cake: The Influence of Time and Oil Content within the Filler
Polymers 2019, 11(9), 1495; https://doi.org/10.3390/polym11091495 - 12 Sep 2019
Cited by 17
Abstract
This paper presents the effects of accelerated weathering on the properties of polylactide (PLA) composites filled with linseed cake. The particle-shaped waste filler with different linseed oil content (0.9–39.8 wt %) was incorporated with constant amount of 10 wt % to a polymeric [...] Read more.
This paper presents the effects of accelerated weathering on the properties of polylactide (PLA) composites filled with linseed cake. The particle-shaped waste filler with different linseed oil content (0.9–39.8 wt %) was incorporated with constant amount of 10 wt % to a polymeric matrix and subjected to accelerated weathering tests with different exposition times. The structure of the composites, their mechanical, thermal, and thermo-mechanical properties were evaluated by means of scanning electron microscopy, tensile test, dynamic mechanical thermal analysis, and differential scanning calorimetry prior to and after weathering. The results of the measurements were analyzed in reference to the amount of crude oil contained in the filler. The behavior of the multiphase composite during weathering was described. It was found that the oil-rich samples during the first stage of the process showed increased resistance to hydrolytic degradation due to their relatively high crystallinity. The presence of water and elevated temperatures caused swelling of the filler and cracking of the polymeric matrix. Those discontinuities enabled the plasticizing oil to be rinsed out of the composite and thus water penetrated into the samples. As a result, the PLA-based composites containing oil-rich linseed cake were found to be more vulnerable to hydrolytic degradation in a longer time. Full article
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Effect of Porosity and Crystallinity on 3D Printed PLA Properties
Polymers 2019, 11(9), 1487; https://doi.org/10.3390/polym11091487 - 12 Sep 2019
Cited by 29
Abstract
Additive manufacturing (AM) is a promising technology for the rapid tooling and fabrication of complex geometry components. Among all AM techniques, fused filament fabrication (FFF) is the most widely used technique for polymers. However, the consistency and properties control of the FFF product [...] Read more.
Additive manufacturing (AM) is a promising technology for the rapid tooling and fabrication of complex geometry components. Among all AM techniques, fused filament fabrication (FFF) is the most widely used technique for polymers. However, the consistency and properties control of the FFF product remains a challenging issue. This study aims to investigate physical changes during the 3D printing of polylactic acid (PLA). The correlations between the porosity, crystallinity and mechanical properties of the printed parts were studied. Moreover, the effects of the build-platform temperature were investigated. The experimental results confirmed the anisotropy of printed objects due to the occurrence of orientation phenomena during the filament deposition and the formation both of ordered and disordered crystalline forms (α and δ, respectively). A heat treatment post-3D printing was proposed as an effective method to improve mechanical properties by optimizing the crystallinity (transforming the δ form into the α one) and overcoming the anisotropy of the 3D printed object. Full article
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
The Use of Waste from the Production of Rapeseed Oil for Obtaining of New Polyurethane Composites
Polymers 2019, 11(9), 1431; https://doi.org/10.3390/polym11091431 - 31 Aug 2019
Cited by 20
Abstract
This article presents the results of research on obtaining new polyurethane materials modified by a by-product from vegetable oils industry—rapeseed cake. The chemical composition of rapeseed cake was examined. Rigid polyurethane-polyisocyanurate (RPU/PIR) foams containing a milled rapeseed cake in their composition were obtained [...] Read more.
This article presents the results of research on obtaining new polyurethane materials modified by a by-product from vegetable oils industry—rapeseed cake. The chemical composition of rapeseed cake was examined. Rigid polyurethane-polyisocyanurate (RPU/PIR) foams containing a milled rapeseed cake in their composition were obtained as part of the conducted research. Biofiller was added in amount of 30 wt.% up to 60 wt.%. Effects of rapeseed cake on the foaming process, cell structure and selected properties of foams, such as apparent density, compressive strength, brittleness, flammability, absorbability, water absorption, thermal resistance and thermal conductivity are described. The foaming process of RPU/PIR foams modified by rapeseed cake was characterized by a lower reactivity, lower foaming temperature and decrease in dielectric polarization. This resulted in a slowed formation of the polyurethane matrix. Apparent density of RPU/PIR foams with biofiller was higher than in unmodified foam. Addition of rapeseed cake did not have a significant influence on the thermal conductivity of obtained materials. However, we observed a tendency for opening the cells of modified foams and obtaining a smaller cross-sectional area of cells. This led to an increase of absorbability and water absorption of obtained materials. However, an advantageous effect of using rapeseed cake in polyurethane formulations was noted. Modified RPU/PIR foams had higher compressive strength, lower brittleness and lower flammability than reference foam. Full article
(This article belongs to the Special Issue Environmentally Sustainable Polymers)
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
Poly(Lactic Acid)/ZnO Bionanocomposite Films with Positively Charged ZnO as Potential Antimicrobial Food Packaging Materials
Polymers 2019, 11(9), 1427; https://doi.org/10.3390/polym11091427 - 30 Aug 2019
Cited by 18
Abstract
A series of PLA/ZnO bionanocomposite films were prepared by introducing positively surface charged zinc oxide nanoparticles (ZnO NPs) into biodegradable poly(lactic acid) (PLA) by the solvent casting method, and their physical properties and antibacterial activities were evaluated. The physical properties and antibacterial efficiencies [...] Read more.
A series of PLA/ZnO bionanocomposite films were prepared by introducing positively surface charged zinc oxide nanoparticles (ZnO NPs) into biodegradable poly(lactic acid) (PLA) by the solvent casting method, and their physical properties and antibacterial activities were evaluated. The physical properties and antibacterial efficiencies of the bionanocomposite films were strongly dependent on the ZnO NPs content. The bionanocomposite films with over 3% ZnO NPs exhibited a rough surface, poor dispersion, hard agglomerates, and voids, leading to a reduction in the crystallinity and morphological defects. With the increasing ZnO NPs content, the thermal stability and barrier properties of the PLA/ZnO bionanocomposite films were decreased while their hydrophobicity increased. The bionanocomposite films showed appreciable antimicrobial activity against Staphylococcus aureus and Escherichia coli. Especially, the films with over 3% of ZnO NPs exhibited a complete growth inhibition of E. coli. The strong interactions between the positively charged surface ZnO NPs and negatively charged surface of the bacterial membrane led to the production of reactive oxygen species (ROS) and eventually bacterial cell death. Consequently, these PLA/ZnO bionanocomposite films can potentially be used as a food packaging material with excellent UV protective and antibacterial properties. Full article
Show Figures

Graphical abstract

Open AccessEditor’s ChoiceArticle
High-Temperature Performance of Polymer-Modified Asphalt Mixes: Preliminary Evaluation of the Usefulness of Standard Technical Index in Polymer-Modified Asphalt
Polymers 2019, 11(9), 1404; https://doi.org/10.3390/polym11091404 - 27 Aug 2019
Cited by 10
Abstract
The objectives of this study are to evaluate the high-temperature performance of polymer-modified asphalt and asphalt mixtures, and to investigate if the standard technical indexes are useful in the performance evaluation of the polymer-modified asphalt. There are four typically used polymer-modified asphalt types [...] Read more.
The objectives of this study are to evaluate the high-temperature performance of polymer-modified asphalt and asphalt mixtures, and to investigate if the standard technical indexes are useful in the performance evaluation of the polymer-modified asphalt. There are four typically used polymer-modified asphalt types employed in the study. The standard high-temperature rheological test, such as the temperature sweep test, was used to express the high-temperature performance of the polymer-modified asphalt. Also, considering the non-Newtonian fluid properties of the polymer-modified asphalt, the multiple stress creep recovery (MSCR) and zero-shear viscosity (ZSV) tests were employed for the characterizations. Besides, based on the mixture design of SMA-13, the high temperature of the polymer-modified asphalt mixture was evaluated via Marshall stability and rutting tests. The test results concluded that the ranking of the four kinds of polymer-modified asphalt was different in various laboratory tests. The TB-APAO has the best technical indexes in MSCR and ZSV tests, while the WTR-APAO performed best in the temperature sweep test. In addition, the correlation between the polymer-modified asphalt and the asphalt mixture was very poor. Thus, the present standard technical indexes for the profoundly polymer-modified asphalt mixtures are no longer suitable. Full article
(This article belongs to the Special Issue Polymer Matrix Composites for Advanced Applications)
Show Figures

Graphical abstract