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Abstract: Most of the composite materials that are used in aerospace structures have been
manufactured using a thermostable matrix, as epoxy resin. The region of stability of these polymers
is defined by the glass transition temperature (Tg). However, operating temperatures close and above
the Tg can cause a variation in the properties of the polymer and consequently, modify the mechanical
properties of the composite material. Therefore, it is necessary to understand the failure mechanisms
that occur in the material in order to ensure stability and durability. The effect of temperature and
time of exposure on the impact and flexural mechanical responses of carbon/epoxy composites are
studied in this work. For that purpose, ageing treatments at temperatures below and above the Tg

have been considered and then, impact and flexural tests have been performed. It was observed that
thermal ageing cause two different effects: at temperatures below the Tg, there is an increase of the
maximum strength because of a post-curing effect; however, the mechanical properties decrease at
higher temperatures of thermal ageing due to the thermo-oxidation of the epoxy resin and the loss of
adhesion in the matrix/fibre interface.

Keywords: thermal ageing; thermoset matrix; carbon fibre-reinforced composites; glass transition
temperature; Charpy impact response; flexural response

1. Introduction

Fibre-reinforced composite materials have become relevant in aerospace, automotive, wind energy,
marine and civil engineering applications due to their high specific strength, stiffness and fatigue
performance [1–6]. However, a major concern of carbon fibre-reinforced polymer (CFRP) structures is
how environmental conditions affect the material properties and consequently the in-service behaviour
and durability of the structure. Composite structures present an inherent sensitivity to environmental
factors compared to metallic structures, so they must be designed considering the influence of factors
such as moisture, temperature or UV radiation to ensure the reliability and safety of CFRP structures [7].

In many applications, such as aeronautical components, one of the greatest concerns is associated
with the long-term ageing effect, since oxidation strongly affects the properties of the polymer matrix,
particularity failure performance. Fibres are relatively stable but the matrix and the interface can
degrade with temperature. Thermal ageing of reinforced thermoset matrix composites is frequently
associated with a physicochemical degradation of the resin that involves several changes on the
thermomechanical properties of composites [8]. Glass transition temperature (Tg) of a thermoset
polymer defines the region where the material present high stability in mechanical and thermal
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properties. Although the short-term mechanism of ageing of CFRP are known, in the long term there
are many gaps regarding these mechanisms that represent an obstacle to the development of these
materials [9].

The ageing process of polymers have been classified into two categories: physical and chemical
ageing. Physical ageing is a reversible process that occurs during prolonged exposures of the
material at elevated temperatures below the glass transition temperatures (Tg) and implies changes
in the molecular conformation of the material without changing the structural integrity of the
molecules. On the contrary, chemical ageing of the resin is an irreversible degradation that leads
to a reduction in the molecular weight because of changes in the cross-link density, oxidation and
depolymerisation [7,10–13].

Many studies regarding thermal ageing of carbon-epoxy composites are available in the
literature [14–25]; however, the effect of ageing and how the mechanical properties of the aged materials
are modified are not completely understood [20]. According to the available literature, a slight increase
in the mechanical properties of CFRP is observed at the first stage of ageing that is called consolidation
phase. Such improvement is attributed to different post-curing reactions that are favoured by the
increase in temperature [7]. The high temperature exposure reactivates the molecular mobility in
the polymeric matrix what implies an increase of the cross-link density in the material structure and
consequently, the glass transition temperature increases during the consolidation phase [9]. After this
initial stage, a degradation phase starts and the mechanical properties of the composites significantly
decrease due to matrix deterioration and weakening of the fibre-matrix interface. Cracks appear and
propagate rapidly, causing a reduction of the Tg [7,9]. Oxidation occurs principally on de surface of
the composite along fibre direction and mismatches in the coefficients of thermal expansion between
the fibres and matrix during the composite cure process, cause the fibre/matrix debonding and create
new paths for oxygen to penetrate during thermal ageing [26]. Oxidation can cause the embrittlement
of epoxy resins, which produce the growth of microcracks at lower applied loads and strongly affect
the epoxy mechanical properties [27]. Failure properties are governed by the capacity to promote
plastic deformation. Although plastic deformation in glassy state have been studied for various decades,
the molecular origin for plastic deformation mechanisms in epoxy resin is not completely understood [8].
The effect of thermal ageing on the elastic modulus is not clear, some researches have not observe any
effect while others have noticed modest variations of the elastic modulus with ageing [28–30].

In addition, composite structures remain vulnerable to low-velocity impact damage, so several
studies have published in the literature focused on this topic [31–33]. However, it could be interesting
to study the influence of thermal ageing on the low-velocity impact response of CFRP structures.
These types of composite systems have service temperatures around 100–120 ◦C on continuous basis
and around 135 ◦C for short duration. For most structural applications in the current aircraft designs,
this has been adequate and has led to successful applications. However, there are several frame
structural components in an aircraft, such as aero-engine covers and leading edge flaps, which can
be exposed to higher temperatures than the usual service temperatures. Hence, it is of great concern
to evaluate the degradation of the mechanical performance (impact and flexural behaviour) of this
type of polymer-based composite systems when they exceed the usual operating temperature values.
Further, high-speed transport aircraft structures in future, particularly leading edges, may be required
to endure quite high temperatures (350 ◦C or above) as higher speeds and space re-entry features
will become a part of the aeroplane designs. As the polymer matrix material is the most affected
(rather than the reinforcing fibres such as glass or carbon) by high temperature, the matrix material
will be the focus of attention in the development of high-temperature polymer-matrix composites.
Despite de wide variety of works published on literature [34–37], the results are ambiguous and
inconclusive. This situation can be explained by the absence of standardized methods and the use of
different fibre/matrix combinations and different ageing treatments leading to inconsistent results [9].
Furthermore, flexural behaviour is normally used to evaluate the properties of composite laminates
because they are subjected to both compressive and tensile stress. Due to fibre misalignment and
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manufacturing defects, the compressive modulus of long fibre composites is reasonably not expected
to be equal to the tensile modulus. The effects of unequal compressive/tensile response of the failure
performance of composites have already been studied [38,39] but the effect of thermal ageing on the
flexural strength and stiffness has been studied in a very limited number of works.

In this paper, the effect of thermal ageing at different temperatures and time of exposure on the
impact and flexural properties of carbon/epoxy composites is studied. The glass transition temperature
of the epoxy resin considered in this study corresponds to 195 ◦C. Temperatures below and above
this value were considered. Instrumented Charpy tests were performed in order to determine the
impact behaviour of aged specimens and three-point bending tests were used to evaluate the flexural
properties. Optical micrographs of the cross-sections of the failed samples were examined to gain an
insight into the assessment of different failure mechanisms.

2. Materials and Methods

2.1. Materials and Specimen Preparation

The specimens were manufactured from commercially available carbon/epoxy pre-impregnated
tapes (Hexcel Composites Ltd., Stamford, CT, USA). The prepreg tapes were made of unidirectional
(UD) continuous high tensile strength carbon fibres IMA-12K, pre-impregnated with Hexply® M21E
thermosetting epoxy, a high performance, very tough epoxy resin used in the primary structure of
the Airbus A350 XWB, because of the excellent damage tolerance. It has a resin content of 34% by
weight and a fibre weight of 268 g/m2. The basic in-plane stiffness and strength of the M21E/IMA
unidirectional laminate under tensile and compressive loading are presented in Table 1 [31,38].
The final properties of the composites depend on the manufacturing process. In this study, the material
was laid up by hand with different stacking sequences: cross ply [0/90]4s and quasi-isotropic
[0/90/(±45)]2s laminates with a total of 16 plies and 4 mm of thickness.

Table 1. Stiffness and Strength properties of the M21E/IMA carbon fibre/epoxy system.

E11T (GPa) E22T (GPa) G12 (GPa) σ11T (MPa) σ22T (MPa) τ12 (MPa)

178 11.8 5.2 3050 56 95

E11C (GPa) E22C (GPa) ϑ12 σ11C (MPa) σ22C (MPa)

146 7.4 0.39 1500 200

The laminates were cured following the standard cure cycle recommended by Hexcel Composites
Ltd. [40] at 7 bar hot-pressing system and 180 ◦C of temperature. The glass transition temperature for
the epoxy resin provided by the materials manufacturer Hexcel Composite Ltd. is 195 ◦C and it has a
service temperature up to 150 ◦C. The composite plates were ultrasonically C-scanned to verify the
quality and structural integrity.

Two types of samples were cut from the composite plates: 80 × 10 × 4 mm samples for Charpy
samples and 155 × 12.5 × 4 mm samples for three-point bending samples (Figure 1a). The dimensions
of Charpy impact and three-point bending samples were defined following the dimensions of previous
works [38] and the recommendations of the standards ASTM D6110 [41] or ISO 179 [42] for Charpy
test and ASTM D7264 [43] for three-point bending test. Quasi-isotropic specimens have been subjected
to thermal ageing in a drying oven (Figure 1b) at different temperatures above and below the glass
transition temperature as it is described in Table 2. Different exposure time and temperature values
were considered in the thermal ageing treatments for Charpy samples in order to study the influence
of both effects. However, in the case of flexural samples, thermal ageing treatments with different
temperatures were considered but with a fixed exposure time of 10 days. Charpy impact and flexural
tests were performed according to the ASTM D6110 or ISO 179 and D7264 methods respectively.
For each sample, three specimens were tested and the average values were taken as the result.
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Figure 1. (a) Standard flexural and Charpy impact specimens according to ASTM D7264 and D6110 or
ISO 179 recommendations. (b) Programmable oven used for the thermal ageing treatments.

Table 2. Thermal ageing treatments for the carbon fibre-reinforced epoxy composites.

Thermal Ageing Impact Samples Thermal Ageing Flexural Samples

Temperature (◦C) Time (days) Temperature (◦C) Time (days)

150 28, 35, 42 150 10
190 3, 10, 20 190 10
210 3, 10, 20 230 10
230 3, 10, 20 250 10

2.2. Low Velocity Impact Testing

Instrumented Charpy impact test were performed in a drop weight column CEAST 9340 (Instron
Ltd., Norwood, MA, USA) using Charpy testing accessories following ASTM D6110, ISO 179 and
ASTM E23 standards. These Charpy fixtures (Charpy impactor and Charpy support device) are
depicted in Figures 2 and 3. It is clearly stated in the previous standards that the method should
not be used to obtain design data. The purpose of the Charpy test in this work was to provide a
comparative test to evaluate the local impact absorption due to different thermal aging treatments.
Impact conditions can be defined as a function of the mass, velocity or drop height. The maximum drop
mass available is 37.5 kg and the energy range is from 0.88 to 405 J. All the impact tests in this work
followed the impact conditions detailed in Table 3. The impactor was dropped from a selected height
and impacted at the centre of the specimen causing the total break. The values of load, energy, time and
displacement were recorded during every test with the CEAST DAS 64k acquisition system (Instron
Ltd, Norwood, MA, USA), thus the damage resistance can be evaluated using the recorded impact
histories of force-time, force-displacement and energy-time. Maximum force and maximum energy can
be obtained from the curves in order to compare the impact response of different ageing treatments.

Table 3. Impact characteristic of the drop-weight test.

Drop Height Impact Velocity Impact Mass Impact Energy (Eimpact)

736 mm 3.8 mm/s 4.5 kg 32.46 J
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2.3. Three-Point Bending Tests

Three-point bending tests were performed using a 50 kN universal electro-mechanical testing
machine with a 5 kN load cell at a fixed loading rate of 2 mm/min (Figure 4), according to the ASTM
D7264. The radius of the loading nose and the radii of the support noses of the 3-point bending
specimen test fixture were 3 mm. The 3-point bending specimen preparation and testing is relatively
simple but the results are sensitive to the geometry of the sample. Both the normal stress and shear
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stress in bending depend strongly on the D/t ratio, where D = 130 mm is the span and t = 4 mm is the
thickness. Either bending or shear failure modes can appear depending on the D/t ratio. The standard
ASTM D7264 recommends a D/t ratio greater than 32 in order to guarantee flexural failure. This limit
has been considered in the dimensions of the flexural specimens. The flexural stress σ, flexural strain ε

and flexural modulus E, were calculated using the following expressions, according to the standard
ASTM D7264. This standard is based on the Classical Beam Theory (CBT), supposing that shear effects
are negligible,

σ =
3PD
2bh2 (1)

ε =
6δh
D2 (2)

E =
D3m
4bh3 (3)

where P is the load at a given point on the load-deflection curve; D is the span, b is the width of the
sample tested; h is the thickness of the sample, δ is the maximum deflection of the centre of the sample
and m is the slope of the tangent to the initial straight-line portion of the load-deflection curve. In this
work, the purpose of the three-point bending tests was to determine the flexural performance of CFRP
samples after being aged at different temperatures.
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experimental setup according to ASTM D7264.

3. Results and Discussion

The main effects of thermal ageing on the impact damage resistance and flexural behaviour are
summarized in the following sections.

3.1. Effect of Thermal Ageing on the Impact Damage Performance

Charpy impact tests were performed in a drop weight column in order to study the influence of
thermal ageing on the impact damage response of CFRP laminates. The effect of temperature and time
of ageing are particularly studied in this section.

Firstly, some initial tests were performed in non-aged laminates with the aim of determining
the impact behaviour of CFRP specimens and using the corresponding absorbed energy values as
reference. For that purpose, the study of the impact response was performed in quasi-isotropic
[0/90/±45]2s and cross ply [0/90]4s laminates. Some representative force-time, energy-time histories
and force-displacement curves are depicted in Figure 5. Table 4 shows the maximum force and
maximum absorbed energy per unit cross-sectional area (or impact strength Ec) results of the laminates
subjected to an impact energy of 32.46 J.
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Figure 5. Average force and energy histories and force-displacement curves of non-thermal aged
[0/90/±45]2s laminates (Eimpact = 32.46 J).

Table 4. Maximum force and maximum impact strength results of non-aged laminates subjected to an
impact energy of 32.46 J.

Impact Samples
[0/90/±45]2s [0/90]4s

Fmax (N) Ec (J/cm2) Fmax (N) Ec (J/cm2)

P1 3726 18.51 5446 25.25
P2 3125 18.51 5469 24.74
P3 3809 21.43 5470 28.71
P4 3875 19.25 4688 11.98
P5 3568 19.01 5155 18.04
P6 3586 21.00 5500 28.00

The results highlighted that the averaged impact strength of cross-ply specimens (23 ± 6 J/cm2)
was slightly higher than the corresponding to quasi-isotropic specimens (20 ± 1 J/cm2) but with a
greater dispersion. However, there were not significant differences in the failure modes observed for
the two configurations. In both cases, fibre breakage as well as matrix cracking and delaminations
were observed around the impact area (Figure 6). The influence of the stacking sequence on the
absorbed energy and impact strength was analysed in previous works [44] and it was observed that
multidirectional specimens depicted higher values of absorbed energy and the failure modes were a
combination of those showed in unidirectional ones. The presence of 0◦ fibre layers provided enhanced
impact behaviour and highest values of absorbed energy. Although quasi-isotropic [0/90/±45]2s

laminates showed pseudo-ductile behaviour [38,44,45] due to the shearing effect of the 45◦, the number
of 0◦ layer was smaller compared to cross ply [0/90]4s. These results were in agreement with
previous studies in which cross-ply laminates depicted the highest energy absorption and exhibited the
maximum impact resistance compared to unidirectional and quasi-isotropic composite laminates [46].
Although cross-ply laminates depicted an improved impact performance, it was decided to study the
thermal ageing effect on quasi-isotropic laminates in order to reduce the dispersion and identify with
more precision the effect of thermal degradation.
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The results obtained from the impact tests of aged laminates at 150 ◦C for long periods of time
are shown in Figure 7. This temperature was below the glass transition temperature (195 ◦C) and
the carbon-epoxy composite laminate was supposed to maintain the mechanical properties, as the
manufacturer indicates. For that purpose, ageing treatments at 150 ◦C for 28, 35 and 42 days followed
by impact tests were performed on quasi-isotropic laminates. The average maximum force and impact
strength for the different time of ageing were summarized in Table 5. The failure modes observed were
a combination of fibre breakage and delamination (Figure 7). The average values of impact strength
were plotted in order to observe a possible trend in the impact performance. No degradation was
noticed in the impact performance of quasi-isotropic specimens regardless the time of exposure at
150 ◦C, as can be deduced from the close values of absorbed energy for the different periods of ageing.
On the contrary, a slight improvement in the impact strength with respect to the non-aged specimens
(19.62 J/cm2) occurred, particularly for the specimens aged at 150 ◦C for 35 days (22.06 J/cm2) in
which the increase in impact strength was about 12.5%. The same behaviour was observed in previous
studies, where they observed that before the degradation of the mechanical properties of carbon
fibre-reinforced composites, a consolidation phase occurred related to a post-curing process [20,47].
The exposure to temperatures below the glass transition temperature ensured better adhesion between
the matrix and the fibres and improved the impact response of this material.
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Table 5. Average maximum force and impact strength results of quasi-isotropic [0/90/±45]2s laminates
subjected to an impact energy of 32.46 J after an ageing treatment at 150 ◦C (T < Tg). Standard deviation
is included.

[0/90/±45]2s (T = 150 ◦C)

Time (days) Fmax (N/cm2) Ec (J/cm2)

28 3509 ± 71 21.2 ± 1.1
35 3667 ± 226 22.1 ± 1.6
42 3527 ± 144 20.5 ± 1.3

Finally, additional ageing treatments were performed at temperatures very close and above
the glass transition temperature (Tg = 195 ◦C) in order to accelerate the degradation and detect a
possible dependence of the mechanical properties of the CFRP laminates with the temperature and
the exposure time. For that purpose, ageing treatments at 190 ◦C, 210 ◦C and 230 ◦C were performed
on quasi-isotropic [0/90/±45]2s laminates. The time of ageing considered for this study were: 3, 10
and 20 days. The values of the average maximum force and impact strength for the different ageing
treatments are shown in Figure 8 and Table 6. The results revealed that both temperature and time of
ageing affected significantly the impact response of CFRP laminates. On one hand, it was observed
that the highest values of impact strength corresponded to the ageing treatment at 190 ◦C and as
the ageing temperature increased, the impact strength decreased. On the other hand, comparing the
energy that was absorbed at a particular temperature, it can be concluded that longer exposure time
to high temperatures resulted in further degradation. A slight improvement on the average impact
strength was observed after 10 days of ageing at 190 ◦C, however it did not seem to be associated with
a post-curing process because, in that case, the improvement should have appeared from the beginning
and overcame the value for the non-aged laminates. A possible explanation for this apparent increase
could be the dispersion of the results as a consequence of the manufacturing technique (hand lay-up),
that frequently causes the presence of discontinuities in the laminates. The same explanation would
explain the higher values of absorbed energy of the laminates aged at 230◦ than those at 210 ◦C after
20 days of ageing.
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Table 6. Average maximum force and impact strength results of quasi-isotropic [0/90/±45]2s laminates
subjected to an impact energy of 32.46 J after different ageing treatments (T ≈ Tg and T > Tg). Standard
deviation is included.

[0/90/±45]2s

Temperature (◦C) Time (days) Fmax (N/cm2) Ec (J/cm2)

190
3 3042 ± 140 17.2 ± 1.9
10 2896 ± 80 18.3 ± 1.3
20 2999 ± 166 13.8 ± 3.4

210
3 2693 ± 299 15.0 ± 0.7
10 2214 ± 254 12.7 ± 2.8
20 1862 ± 48 6.2 ± 0.6

230
3 2150 ± 135 10.3 ± 2.4
10 2224 ± 41 7.5 ± 0.4
20 2319 ± 129 6.6± 0.1

As shown in Figure 8, one of the most remarkable effects of ageing was the change in the failure
mode. In specimens aged at 190 ◦C (close to Tg) for short periods of time, the main failure mode were
fibre breakage and delamination, the same as non-aged specimens. However, as temperature and
time of ageing increased, the polymeric matrix experienced a significant degradation, decreasing the
adhesion between the matrix and the fibres. Thus, failure occurred mainly through the matrix resulting
in lower energetic failure mode.

It is important to note that ageing treatments at temperatures very close and above the glass
transition temperature caused remarkable degradation in the impact resistance of CFRP laminates,
even for short periods of time (3 days), as it is shown in Figure 9. This behaviour contrasts with the
observed at 150 ◦C as it was discussed previously.
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temperatures for 3 days (Eimpact = 32.46 J).

3.2. Effect of Ageing on the Flexural Performance

A series of three-point bending tests were performed in thermal aged quasi-isotropic [0/90/±45]2s

laminates in order to determine the effect of temperature on the flexural properties of CFRP laminates.
The effect of ageing on the flexural resistance was evaluated by means of average maximum

flexural stress, flexural modulus and flexural strain (Table 7). Additionally, optical micrographs of the
cross-sections of the samples were examined to gain an insight into the assessment of different failure
mechanisms. Three-point bending tests were conducted at room temperature.
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Table 7. Average values of maximum flexural stress, flexural modulus of elasticity and maximum
flexural strain of quasi-isotropic laminates aged at different temperatures for 10 days. Standard
deviation is included.

Temperatures σ (MPa) E (GPa) ε (%)

Non–Aged 724 ± 52 81.2 ± 4.9 1.46 ± 0.11
Aged at 150 ◦C 835 ± 58 54.8 ± 4.7 2.27 ± 0.21
Aged at 190 ◦C 608 ± 74 49.9 ± 7.1 2.41 ± 0.01
Aged at 230 ◦C 417 ± 24 48.1 ± 4.4 1.43 ± 0.13
Aged at 250 ◦C 193 ± 26 45.9 ± 10.1 0.91 ± 0.18

Figure 10 shows flexural stress-strain curves for the different [0/90/±45]2s quasi-isotropic
laminates aged at different temperatures for 10 days. Temperatures below and above the glass
transition temperature were considered. The curve corresponding to non-aged quasi-isotropic
laminate was also included for comparative purposes. The maximum flexural stress gradually
decreased as temperature of ageing increased, as it was expected, except for specimens aged at
150 ◦C, which depicted the highest value of flexural stress, 15% higher than non-aged specimens. Thus,
the post-curing effect was also observed on flexural samples, similarly to impact samples. The decrease
of the flexural properties of aged CFRP laminates could be mainly attributed to changes of the
molecular configuration accompanied by a hydrothermal deterioration. The maximum flexural stress
was reduced significantly, with a decrease of 73% compared to its original value, after 10 days at 250 ◦C.
The reason was the degradation of the polymer matrix as a consequence of the thermo-oxidative
environment. In addition, it should be noticed that in the case of the flexural stiffness, it did not
exhibit the post-curing effect as observed in the maximum flexural stress at 150 ◦C. On the contrary,
the flexural modulus of aged specimens was considerably lower than the non-aged ones but no
significant variations with the ageing temperature were observed. The maximum decrease of flexural
modulus was around 57% for specimens aged at 250 ◦C for 10 days. Furthermore, it was observed
an increase of flexural strain with temperature until reaching the maximum value at temperatures
very close to the Tg. The reason was the loss of flexural stiffness with the increase of the thermal
ageing temperatures. After the glass transition temperature, the flexural strain decreased, due to an
embrittlement of the epoxy resin. These results were in agreement with previously works [7,8,18,19].
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Figure 11 shows optical micrographs of the cross-sections of the flexural failed samples (non-aged,
aged at 190 ◦C and aged at 250 ◦C) in order to gain an insight into the assessment of different failure as a
consequence of the thermal ageing. Non-aged specimens showed damage initiation at the compressive
side of the specimen and delamination and fibre/matrix interfacial debonding were observed in
the upper layers, close to the applied load, according to typical flexural failure of quasi-isotropic
laminates [39]. The decrease in the flexural strength of aged specimens might be attributed to the
development of microcracks due to the oxidation and degradation of the matrix and the fibre/matrix
interface. Micrographs verified such behaviour, where crack density and delamination significantly
increased as ageing temperature increased. Further thermal degradation was observed in specimens
aged at 250 ◦C because of an increase of matrix cracking and delamination.
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Figure 11. Cross sectional optical micrographs of the failure areas of flexural quasi-isotropic
[0/90/±45]2s samples. (a) Non-Aged; (b) aged at 190 ◦C for 10 days, (c) aged at 250 ◦C for 10 days.

Finally, Dynamic Mechanical Analysis (DMA) technique according to ASTM D7028 [48] standard
with a cantilever beam configuration have been carried out in a Metller Toledo equipment (Figure 12)
in order to obtain the glass transition temperatures (Tg) of the flexural samples with different aging
treatments. ASTM D7028 recommends the use of either a cantilever beam or three-point bending
flexural loading for Tg determination of polymer matrix composites. DMA method applied an
oscillating force to the samples and measured the resulting displacement as the test temperature was
slowly increased. From the measured force and displacement, the specimen stiffness was determined
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and used to identify the glass transition temperature (Tg). The results of the different glass transition
temperatures for the flexural samples with different aging treatments are depicted in the Table 8. Three
samples of each type were analysed and the average value was used as the final result.Polymers 2019, 11, x FOR PEER REVIEW  13 of 16 
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Table 8. Average values of glass transition temperature (Tg) of quasi-isotropic laminates aged at
different temperatures for 10 days. Standard deviation is included.

Aging Treatment Tg (◦C)

Non–Aged 194.8 ± 0.3
Aged at 150 ◦C 192.6 ± 0.2
Aged at 190 ◦C 189.2 ± 0.4
Aged at 230 ◦C 175.3 ± 0.5
Aged at 250 ◦C 171.3 ± 0.2

The results showed a slight drop of Tg for aged samples below the initial Tg (150 ◦C and 190 ◦C).
However, the reduction of Tg was more significant for aged samples over the initial Tg (230 ◦C and
250 ◦C). These downward trends are in agreement with those depicted in the impact and flexural
performances of aged CFRP samples. The results are in accordance with previous works [7,8,18,20].

4. Conclusions

The purpose of this study was to investigate the effect of thermal ageing on carbon fibre-reinforced
epoxy composites exposed at different temperatures below and above the Tg and different periods
of time. Instrumented Charpy and three-point bending tests were performed in order to determine
the impact of thermal ageing on the mechanical performance. The main conclusions of this work are
shown below:

• Samples aged at 150 ◦C (T < Tg): a consolidation phase was observed that caused a post-curing
effect. High temperature enhanced the crosslink density in the material and consequently, there
was an increase in both impact and bending strength but a decrease in flexural stiffness.

• Samples aged at 190 ◦C (T ≈ Tg): the effect of temperature and time of ageing caused a progressive
decrease of mechanical properties with an increase in delaminations and microcracks but no sign
of consolidation stage were observed.
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• Samples aged at 230–250 ◦C (T > Tg): further thermal degradation of the matrix occurred for
temperatures that exceeded the glass transition temperature which implied the decomposition of
the fibre-matrix interface and the reduction of the impact resistance and mechanical performance.
The results depicted a significant change on the impact and flexural performance of aged CFRP
laminates compared to the rest of the samples.

It can be concluded that both temperature and time of ageing were critical parameters to be
consider on the design of structural polymer composite components in order to ensure the long-term
performance of these structures.
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