Flame Retardancy Index (FRI) for Polymer Materials Ranking
Abstract
1. Background
2. Conceptualization
3. Visualization
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vahabi, H.; Laoutid, F.; Mehrpouya, M.; Saeb, M.R.; Dubois, P. Flame retardant polymer materials: An update and the future for 3D printing developments. Mater. Sci. Eng. R Rep. 2021, 144, 100604. [Google Scholar] [CrossRef]
- Bourbigot, S. Evaluation of Condensed Phase: Char/Residue Analysis. In Analysis of Flame Retardancy in Polymer Science; Elsevier: Amsterdam, The Netherlands, 2022; pp. 191–231. [Google Scholar]
- Quan, Y.; Zhang, Z.; Tanchak, R.N.; Wang, Q. A review on cone calorimeter for assessment of flame-retarded polymer composites. J. Therm. Anal. Calorim. 2022, 147, 10209–10234. [Google Scholar] [CrossRef]
- Lyon, R.E.; Balaguru, P.; Foden, A.; Sorathia, U.; Davidovits, J.; Davidovics, M. Fire-resistant aluminosilicate composites. Fire Mater. 1997, 21, 67–73. [Google Scholar] [CrossRef]
- Vahabi, H.; Kandola, B.K.; Saeb, M.R. Flame retardancy index for thermoplastic composites. Polymers 2019, 11, 407. [Google Scholar] [CrossRef][Green Version]
- Seidi, F.; Movahedifar, E.; Naderi, G.; Akbari, V.; Ducos, F.; Shamsi, R.; Vahabi, H.; Saeb, M.R. Flame retardant polypropylenes: A review. Polymers 2020, 12, 1701. [Google Scholar] [CrossRef]
- Movahedifar, E.; Vahabi, H.; Saeb, M.R.; Thomas, S. Flame retardant epoxy composites on the road of innovation: An analysis with flame retardancy index for future development. Molecules 2019, 24, 3964. [Google Scholar] [CrossRef][Green Version]
- Ramadan, N.; Taha, M.; La Rosa, A.D.; Elsabbagh, A. Towards selection charts for epoxy resin, unsaturated polyester resin and their fibre-fabric composites with flame retardants. Materials 2021, 14, 1181. [Google Scholar] [CrossRef]
- Lou, G.; Ma, Z.; Dai, J.; Bai, Z.; Fu, S.; Huo, S.; Li, F.; Liu, Y.-Q. Fully biobased surface-functionalized microcrystalline cellulose via green self-assembly toward fire-retardant, strong, and tough epoxy biocomposites. ACS Sustain. Chem. Eng. 2021, 9, 13595–13605. [Google Scholar] [CrossRef]
- Rao, W.; Zhao, P.; Yu, C.; Zhao, H.-B.; Wang, Y.-Z. High strength, low flammability, and smoke suppression for epoxy thermoset enabled by a low-loading phosphorus-nitrogen-silicon compound. Compos. Part B Eng. 2021, 211, 108640. [Google Scholar] [CrossRef]
- Seraji, S.M.; Song, P.; Varley, R.J.; Bourbigot, S.; Voice, D.; Wang, H. Fire-retardant unsaturated polyester thermosets: The state-of-the-art, challenges and opportunities. Chem. Eng. J. 2022, 430, 132785. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiao, Z.; Shen, R.; Song, P.; Wang, Q. Accelerated Design of Flame Retardant Polymeric Nanocomposites via Machine Learning Prediction. ACS Appl. Eng. Mater. 2022, 1, 596–605. [Google Scholar] [CrossRef]
- Vahabi, H.; Naser, M.; Saeb, M. Fire protection and materials flammability control by artificial intelligence. Fire Technol. 2022, 58, 1071–1073. [Google Scholar] [CrossRef]
- Bifulco, A.; Parida, D.; Salmeia, K.A.; Lehner, S.; Stämpfli, R.; Markus, H.; Malucelli, G.; Branda, F.; Gaan, S. Improving flame retardancy of in-situ silica-epoxy nanocomposites cured with aliphatic hardener: Combined effect of DOPO-based flame-retardant and melamine. Compos. Part C Open Access 2020, 2, 100022. [Google Scholar] [CrossRef]
- Zhao, B.; Liang, W.-J.; Wang, J.-S.; Li, F.; Liu, Y.-Q. Synthesis of a novel bridged-cyclotriphosphazene flame retardant and its application in epoxy resin. Polym. Degrad. Stab. 2016, 133, 162–173. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, S.; Xing, W.; Yu, B.; Feng, X.; Song, L.; Hu, Y. Self-assembly of Ni–Fe layered double hydroxide/graphene hybrids for reducing fire hazard in epoxy composites. J. Mater. Chem. A 2013, 1, 4383–4390. [Google Scholar] [CrossRef]
- Prieur, B.; Meub, M.; Wittemann, M.; Klein, R.; Bellayer, S.; Fontaine, G.; Bourbigot, S. Phosphorylation of lignin to flame retard acrylonitrile butadiene styrene (ABS). Polym. Degrad. Stab. 2016, 127, 32–43. [Google Scholar] [CrossRef]
- Alongi, J.; Cuttica, F.; Bourbigot, S.; Malucelli, G. Thermal and flame retardant properties of ethylene vinyl acetate copolymers containing deoxyribose nucleic acid or ammonium polyphosphate. J. Therm. Anal. Calorim. 2015, 122, 705–715. [Google Scholar] [CrossRef]
- El Hage, R.; Viretto, A.; Sonnier, R.; Ferry, L.; Lopez-Cuesta, J.-M. Flame retardancy of ethylene vinyl acetate (EVA) using new aluminum-based fillers. Polym. Degrad. Stab. 2014, 108, 56–67. [Google Scholar] [CrossRef]
- Sahyoun, J.; Bounor-Legare, V.; Ferry, L.; Sonnier, R.; Da Cruz-Boisson, F.; Melis, F.; Sonnier, R. Synthesis of a new organophosphorous alkoxysilane precursor and its effect on the thermal and fire behavior of a PA66/PA6 copolymer. Eur. Polym. J. 2015, 66, 352–366. [Google Scholar] [CrossRef]
- Rabe, S.; Schartel, B. The rapid mass calorimeter: A route to high throughput fire testing. Fire Mater. 2017, 41, 834–847. [Google Scholar] [CrossRef]
- Dorez, G.; Taguet, A.; Ferry, L.; Lopez-Cuesta, J. Thermal and fire behavior of natural fibers/PBS biocomposites. Polym. Degrad. Stab. 2013, 98, 87–95. [Google Scholar] [CrossRef]
- Patel, P.; Hull, T.R.; Lyon, R.E.; Stoliarov, S.I.; Walters, R.N.; Crowley, S.; Safronava, N. Investigation of the thermal decomposition and flammability of PEEK and its carbon and glass-fibre composites. Polym. Degrad. Stab. 2011, 96, 12–22. [Google Scholar] [CrossRef]
- Lu, H.; Wilkie, C.A. Fire performance of flame retardant polypropylene and polystyrene composites screened with microscale combustion calorimetry. Polym. Adv. Technol. 2011, 22, 14–21. [Google Scholar] [CrossRef]
- Lu, H.; Wilkie, C.A. Study on intumescent flame retarded polystyrene composites with improved flame retardancy. Polym. Degrad. Stab. 2010, 95, 2388–2395. [Google Scholar] [CrossRef][Green Version]
- Sonnier, R.; Vahabi, H.; Ferry, L.; Lopez-Cuesta, J.-M. Pyrolysis-combustion flow calorimetry: A powerful tool to evaluate the flame retardancy of polymers. Fire Polym. VI New Adv. Flame Retard. Chem. Sci. 2012, 1118, 361–390. [Google Scholar]
- Shi, X.-H.; Li, X.-L.; Li, Y.-M.; Li, Z.; Wang, D.-Y. Flame-retardant strategy and mechanism of fiber reinforced polymeric composite: A review. Compos. Part B Eng. 2022, 233, 109663. [Google Scholar] [CrossRef]
- Tan, Y.; Shao, Z.-B.; Yu, L.-X.; Long, J.-W.; Qi, M.; Chen, L.; Wang, Y.-Z. Piperazine-modified ammonium polyphosphate as monocomponent flame-retardant hardener for epoxy resin: Flame retardance, curing behavior and mechanical property. Polym. Chem. 2016, 7, 3003–3012. [Google Scholar] [CrossRef]
- Tang, Q.; Wang, B.; Shi, Y.; Song, L.; Hu, Y. Microencapsulated ammonium polyphosphate with glycidyl methacrylate shell: Application to flame retardant epoxy resin. Ind. Eng. Chem. Res. 2013, 52, 5640–5647. [Google Scholar] [CrossRef]
- Unlu, S.M.; Dogan, S.D.; Dogan, M. Comparative study of boron compounds and aluminum trihydroxide as flame retardant additives in epoxy resin. Polym. Adv. Technol. 2014, 25, 769–776. [Google Scholar] [CrossRef]
- Rajaei, M.; Wang, D.-Y.; Bhattacharyya, D. Combined effects of ammonium polyphosphate and talc on the fire and mechanical properties of epoxy/glass fabric composites. Compos. Part B Eng. 2017, 113, 381–390. [Google Scholar] [CrossRef]
- Du, B.; Ma, H.; Fang, Z. How nano-fillers affect thermal stability and flame retardancy of intumescent flame retarded polypropylene. Polym. Adv. Technol. 2011, 22, 1139–1146. [Google Scholar] [CrossRef]
- Sonnier, R. Microscale forced combustion: Pyrolysis-combustion flow calorimetry (PCFC). In Analysis of Flame Retardancy in Polymer Science; Elsevier: Amsterdam, The Netherlands, 2022; pp. 91–116. [Google Scholar]
- Babrauskas, V. Forced combustion: Cone calorimetry. In Analysis of Flame Retardancy in Polymer Science; Elsevier: Amsterdam, The Netherlands, 2022; pp. 73–90. [Google Scholar]
Polymer and Incorporated FR | FR (wt.%) | Heat Flux (kW·m−2) | ti (s) | tp (s) | pHRR (kW·m−²) | THR (MJ·m−²) | FRI (ti) | FRI (tp) | FRI (ti&tp) | Tp (°C) | pHRR (W·g−1) | THR (kJ·g−1) | FI | Refs. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Epoxy (EP) | 0 | 35 | 38 | 77 | 2550 | 96 | — | — | — | 385 | 545 | 30 | — | [14] |
EP/6H-dibenz[c,e][1,2]oxaphosphorin,6-[(1-oxido-2,6,7-trioxa-1-phosphabicyclo[2.2.2]oct-4-yl)methoxy]-, 6-oxide (DP) | 20.3 | 35 | 31 | 80 | 744 | 61 | 4.40 | 5.60 | 4.57 | 331 | 371 | 24 | 1.57 | [14] |
EP/DP/Melamine (Mel) | 27.05 | 35 | 50 | 94 | 730 | 62 | 7.11 | 6.60 | 8.68 | 336 | 297 | 26 | 1.84 | [14] |
Silanized epoxy with 2 wt.% silica (Si-EP) | 0 | 35 | 40 | 77 | 1964 | 79 | — | — | — | 388 | 448 | 28 | — | [14] |
Si-EP/DP | 20.3 | 35 | 28 | 122 | 516 | 68 | 3.09 | 7.00 | 4.90 | 347 | 372 | 24 | 1.25 | [14] |
Si-EP/DP/Mel | 27.05 | 35 | 42 | 102 | 909 | 57 | 3.14 | 3.96 | 4.16 | 340 | 270 | 26 | 1.56 | [14] |
EP | 0 | 35 | 82 | 135 | 1148 | 88.4 | — | — | — | 395.9 | 709.6 | 32.8 | — | [15] |
EP/Bisphenol A bridged penta(anilino) cyclotriphosphazene (BPA-BPP) | 9 | 35 | 72 | 150 | 457 | 78.4 | 2.48 | 3.14 | 2.76 | 352.8 | 433.8 | 26 | 1.83 | [15] |
EP | 0 | 35 | 68 | 130 | 1730 | 113.1 | — | — | — | 401 | 449 | 24.4 | — | [16] |
EP/Graphene (GN) | 2 | 35 | 86 | 155.5 | 980 | 65.1 | 3.87 | 3.66 | 4.64 | 398 | 285 | 20.3 | 1.87 | [16] |
EP/Ni–Fe layered double hydroxide (Ni–Fe LDH) | 2 | 35 | 80 | 120.2 | 1070 | 58.9 | 3.65 | 2.87 | 3.37 | 427 | 240 | 17.9 | 2.71 | [16] |
EP/NiFe-LDH&GN | 2 | 35 | 89 | 141.2 | 678 | 44.2 | 8.54 | 7.09 | 9.28 | 440 | 189 | 16.4 | 3.87 | [16] |
Acrylonitrile-butadiene-styrene (ABS) | 0 | 35 | 80 | 157 | 482 | 72 | — | — | — | 340 | 602.6 | 37.7 | — | [17] |
ABS/Kraft lignin (LIG) | 30 | 35 | 49 | 153 | 275 | 63 | 1.22 | 1.95 | 1.19 | 320 | 411.7 | 29.2 | 1.77 | [17] |
ABS/Phosphorylation of lignin (P-LIG) | 30 | 35 | 49 | 167 | 202 | 58 | 1.81 | 3.15 | 1.93 | 340 | 411 | 27.2 | 2.03 | [17] |
Ethylene vinyl acetate copolymer (EVA) | 0 | 35 | 65 | 175 | 1588 | 108 | — | — | — | 473 | 919 | 37.8 | — | [18] |
EVA/Ammoniumpolyphosphate (APP) | 10 | 35 | 28 | 144 | 1030 | 93 | 0.77 | 1.47 | 0.63 | 466 | 758 | 31.6 | 1.42 | [18] |
EVA | 0 | 50 | 39 | 180 | 1366 | 135 | — | — | — | 490 | 800 | 34.8 | — | [19] |
EVA/Aluminum trihydroxyde (ATH) | 25 | 50 | 37 | 145 | 710 | 121 | 2.03 | 1.72 | 1.64 | 490 | 572 | 27 | 1.80 | [19] |
EVA/Precipitated boehmite (Boehm) | 25 | 50 | 54 | 180 | 612 | 122 | 3.41 | 2.46 | 3.42 | 489 | 538 | 25.5 | 2.02 | [19] |
Polyamide 66/Polyamide 6 (90:10 wt.%) copolymer (Cop-PA66&PA6) | 0 | 50 | 77 | 250 | 886 | 140.1 | — | — | — | 458 | 618 | 26.9 | — | [20] |
Cop-PA66&PA6/Organophosphorous alkoxysilane (SiDOPO) | 10 | 50 | 62 | 186 | 597 | 104.8 | 1.59 | 1.47 | 1.18 | 443 | 468 | 25.2 | 1.36 | [20] |
PA66 | 0 | 50 | 51 | 149 | 1509 | 100 | — | — | — | 465 | 633 | 30 | — | [21] |
PA66/Glass fiber (GF) | 35 | 50 | 43 | 92 | 582 | 80 | 2.73 | 2.00 | 1.68 | 455 | 354 | 18 | 2.91 | [21] |
PA66/GF/Red phosphorus (RP) | 35 | 50 | 43 | 57 | 299 | 66 | 6.44 | 2.92 | 2.46 | 390 | 201 | 18 | 4.40 | [21] |
Polyamide 12 (PA12) | 0 | 50 | 63 | 185 | 2205 | 164 | — | — | — | 475 | 937 | 35 | — | [21] |
PA12/GF | 30 | 50 | 36 | 155 | 1992 | 153 | 0.67 | 0.99 | 0.56 | 477 | 762 | 31 | 1.39 | [21] |
Polybutylene succinate (PBS) | 0 | 35 | 150 | 284 | 485 | 873 | — | — | — | 410 | 394 | 18.4 | — | [22] |
PBS/Cellulose | 30 | 35 | 96 | 298 | 385 | 984 | 0.71 | 1.17 | 0.75 | 420 | 275 | 14.9 | 1.81 | [22] |
PBS/Bamboo | 30 | 35 | 43 | 107 | 339 | 884 | 0.40 | 0.53 | 0.15 | 413 | 293 | 15.1 | 1.65 | [22] |
Poly(oxy-1,4-phenyleneoxy-1,4-phenylenecarbonyl-1,4-phenylene) (PEEK) | 0 | 50 | 110 | 182 | 415.2 | 36.2 | — | — | — | 619 | 303 | 10.7 | — | [23] |
PEEK/Carbon fibre (CF) | 30 | 50 | 156 | 279 | 146.7 | 26.9 | 5.40 | 5.83 | 8.28 | 621 | 195 | 7 | 2.38 | [23] |
PEEK/GF | 30 | 50 | 115 | 278 | 120.5 | 23.3 | 5.59 | 8.17 | 8.54 | 623 | 233 | 7.2 | 1.94 | [23] |
Polypropylene (PP) | 0 | 35 | 47 | 168 | 1573 | 140 | — | — | — | 486 | 1228 | 41 | — | [24] |
PP/Decabromodiphenyl oxide&Sb2O3 with 5:1 (BrFR&Sb2O3) | 20 | 35 | 57 | 135 | 1445 | 84 | 2.20 | 1.45 | 1.76 | 470 | 374 | 33 | 3.94 | [24] |
PP/BrFR&Sb2O3 | 25 | 35 | 52 | 131 | 1177 | 61 | 3.39 | 2.39 | 2.64 | 459 | 318 | 30 | 4.98 | [24] |
Polystyrene (PS) | 0 | 35 | 44 | 180 | 1166 | 101 | — | — | — | 441 | 1046 | 38 | — | [24] |
PS/BrFR&Sb2O3 | 12 | 35 | 55 | 128 | 591 | 46 | 5.41 | 3.08 | 3.85 | 410 | 598 | 33 | 1.87 | [24] |
PS/BrFR&Sb2O3/Cloisite15A (C15A) | 12 | 35 | 35 | 115 | 442 | 43 | 4.92 | 3.95 | 3.14 | 432 | 408 | 33 | 2.89 | [24] |
PS/BrFR&Sb2O3/Multiwall carbon nanotubes (MWCNT) | 12 | 35 | 34 | 141 | 340 | 43 | 6.22 | 6.30 | 4.87 | 429 | 341 | 31 | 3.65 | [24] |
Polystyrene (PS) | 0 | 35 | 44 | 180 | 1166 | 101 | — | — | — | 441 | 1046 | 38 | — | [25] |
PS/Ammonium polyphosphate (APP)/Tripentaerythritol (TPER) | 20 | 35 | 34 | 67 | 601 | 73 | 2.07 | 0.99 | 0.77 | 452 | 554 | 30 | 2.45 | [25] |
PS/APP/TPER/C15A | 20 | 35 | 34 | 201 | 333 | 72 | 3.79 | 5.48 | 4.23 | 455 | 528 | 31 | 2.50 | [25] |
PS/APP/TPER/C15A | 20 | 35 | 34 | 225 | 320 | 77 | 3.69 | 5.97 | 4.61 | 441 | 526 | 31 | 2.43 | [25] |
PS/APP/TPER/MWCNT | 20 | 35 | 26 | 50 | 519 | 71 | 1.88 | 0.88 | 0.52 | 451 | 581 | 30 | 2.33 | [25] |
PS/APP/TPER/MWCNT | 20 | 35 | 32 | 41 | 457 | 69 | 2.71 | 0.85 | 0.61 | 448 | 605 | 30 | 2.22 | [25] |
PS/APP/TPER/Nanoparticle Fe2O3 (Fe2O3) | 20 | 35 | 28 | 78 | 456 | 74 | 2.22 | 1.51 | 0.96 | 451 | 581 | 31 | 2.25 | [25] |
PS/APP/TPER/Fe2O3 | 20 | 35 | 32 | 37 | 467 | 75 | 2.44 | 0.69 | 0.50 | 449 | 536 | 31 | 2.43 | [25] |
Styrene Ethylene Butylene Styrene&PP (TPES) | 0 | 50 | 23 | 196 | 2346 | 215 | — | — | — | 447 | 565 | 43 | — | [21] |
TPES/AlPi | 30 | 50 | 23 | 245 | 1048 | 160 | 3.00 | 3.76 | 3.76 | 440 | 462 | 37 | 1.39 | [21] |
Polymer and Incorporated FR | FR (wt.%) | Heat Flux (kW·m−2) | ti (s) | tp (s) | pHRR (kW·m−²) | THR (MJ·m−²) | FRI (ti) | FRI (tp) | FRI (ti&tp) | Tp (°C) | pHRR (W·g−1) | THR (kJ·g−1) | FI | Refs. | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Epoxy (EP) | 0 | 35 | 52 | 90 | 1334.3 | 58.8 | ― | ― | ― | ― | ― | ― | ― | [28] | |
EP/Piperazine-modified ammonium polyphosphate (PAz-APP) | 15 | 35 | 33 | 55 | 246.1 | 11.3 | 17.90 | 17.24 | 10.94 | ― | ― | ― | ― | [28] | |
EP | 0 | 35 | 57 | 130 | 1730.27 | 114.16 | ― | ― | ― | ― | ― | ― | ― | [29] | |
EP/Ammonium polyphosphate (APP) | 15 | 35 | 63 | 95 | 397.89 | 35.49 | 15.46 | 10.22 | 11.29 | ― | ― | ― | ― | [29] | |
EP/Glycidyl methacrylate microencapsulated ammonium polyphosphate (GMA-APP) | 15 | 35 | 68 | 160 | 283.09 | 44 | 18.91 | 19.51 | 23.28 | ― | ― | ― | ― | [29] | |
Epoxy (EP) | 0 | 35 | 57 | 120 | 459 | 55.2 | ― | ― | ― | ― | ― | ― | ― | [30] | |
EP/Boric oxide (BO) | 40 | 35 | 68 | 243 | 82 | 20.6 | 17.89 | 30.37 | 36.23 | ― | ― | ― | ― | [30] | |
EP | 0 | 50 | 23 | 67 | 1910 | 61 | ― | ― | ― | ― | ― | ― | ― | [31] | |
EP/Melamine coated ammonium polyphosphate/Talc (Mel-APP/Talc) | 29.7 | 50 | 28 | 60 | 357 | 24 | 16.55 | 12.17 | 14/82 | ― | ― | ― | ― | [31] | |
Polypropylene (PP) | 0 | 35 | 37 | 189 | 363 | 56 | ― | ― | ― | ― | ― | ― | ― | [32] | |
PP/Nitrogen –phosphorus contained intumescent flame retardant/Octadecyl trimethyl ammonium bromide modified montmorillonite (IFR/OTAB-MMT) | 28 | 35 | 31 | 360 | 45 | 18 | 21.02 | 47.80 | 40.05 | ― | ― | ― | ― | [32] | |
PP | 0 | 35 | 37 | 189 | 363 | 56 | ― | ― | ― | ― | ― | ― | ― | [32] | |
PP/Nitrogen–phosphorus contained intumescent flame retardant/Aminopropylisobutyl polyhedral oligosilsesquioxane (IFR/A-POSS) | 28 | 35 | 32 | 375 | 55 | 16 | 19.97 | 45.83 | 39.63 | ― | ― | ― | ― | [32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vahabi, H.; Movahedifar, E.; Kandola, B.K.; Saeb, M.R. Flame Retardancy Index (FRI) for Polymer Materials Ranking. Polymers 2023, 15, 2422. https://doi.org/10.3390/polym15112422
Vahabi H, Movahedifar E, Kandola BK, Saeb MR. Flame Retardancy Index (FRI) for Polymer Materials Ranking. Polymers. 2023; 15(11):2422. https://doi.org/10.3390/polym15112422
Chicago/Turabian StyleVahabi, Henri, Elnaz Movahedifar, Baljinder K. Kandola, and Mohammad Reza Saeb. 2023. "Flame Retardancy Index (FRI) for Polymer Materials Ranking" Polymers 15, no. 11: 2422. https://doi.org/10.3390/polym15112422
APA StyleVahabi, H., Movahedifar, E., Kandola, B. K., & Saeb, M. R. (2023). Flame Retardancy Index (FRI) for Polymer Materials Ranking. Polymers, 15(11), 2422. https://doi.org/10.3390/polym15112422