E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Topical Collection "Neuroprotective Strategies"

Editor

Collection Editor
Prof. Dr. Katalin Prokai-Tatrai

Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
Website | E-Mail
Interests: medicinal chemistry: Drug design of CNS agents; neuropeptides and peptidomimetics; prodrugs for CNS delivery; estrogens as neuroprotective agents, bioanalytical method development

Topical Collection Information

Dear Colleagues,

We started the “Neuroprotective Strategies” collection jointly with Molecules in 2009. It was a great success; a large number of reviews and original research articles were published in the inaugural volume. Since then, the International Journal of Molecular Sciences has successfully continued this collection covering neuroprotection broadly including, but not limited to, preclinical/basic science assessments of various animal models relevant to diseases and agents with potential or perceived translation values. We open up the “Neuroprotective Strategies” Topical Collection to thought-provoking Comments, Opinions and Perspectives, in addition to our traditional Reviews and Research Articles in this field. We especially encourage submissions that address critical issues having prevented successful clinical translations of promising laboratory data. Limitations of in vitro studies and preclinical animal models to mirror multiple pathologies underlying human neurodegenerative diseases, lack of drug-likeness of experimental agents, the need to consider absorption, distribution, metabolism, elimination, toxicology (ADMET) and pharmacokinetics even in the early stage of drug discovery, as well as obstacles of drug delivery to the CNS are only some of the issues that come to mind regard this matter. Critical reviews on relevant patent literature are also welcome. I give thanks for past contributions and look forward to receiving future contributions on the promising and challenging aspects of the field. The following links: http://www.mdpi.com/journal/ijms/special_issues/Neuroprotective_strategies_collection and http://www.mdpi.com/journal/molecules/special_issues/neuroprotec-strateg point to already published papers within this collection.

Dr. Katalin Prokai-Tatrai
Collection Editor

Manuscript Submission Information

Manuscripts for the topical collection can be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on this website. The topical collection considers regular research articles, short communications and review articles. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page.

Please visit the Instructions for Authors page before submitting a manuscript. The article processing charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs).


Keywords

  • age-related neurodegeneration

  • blood-brain barrier

  • CNS injury

  • cognition and dementia

  • drug delivery and drug-likeness

  • inflammation

  • in silico drug design and disease models

  • ischemia and reperfusion

  • oxidative stress

  • peripheral nervous system

  • stem cell

  • structure-activity relationship

  • translational medicine

Related Special Issues

Published Papers (179 papers)

2018

Jump to: 2017, 2016, 2015, 2014, 2013, 2012, 2011, 2010, 2009

Open AccessArticle Diosgenin Glucoside Protects against Spinal Cord Injury by Regulating Autophagy and Alleviating Apoptosis
Int. J. Mol. Sci. 2018, 19(8), 2274; https://doi.org/10.3390/ijms19082274
Received: 23 June 2018 / Revised: 1 August 2018 / Accepted: 1 August 2018 / Published: 2 August 2018
PDF Full-text (3671 KB) | HTML Full-text | XML Full-text
Abstract
Spinal cord injury (SCI) is a severe traumatic lesion of central nervous system (CNS) with only a limited number of restorative therapeutic options. Diosgenin glucoside (DG), a major bioactive ingredient of Trillium tschonoskii Max., possesses neuroprotective effects through its antioxidant and anti-apoptotic functions.
[...] Read more.
Spinal cord injury (SCI) is a severe traumatic lesion of central nervous system (CNS) with only a limited number of restorative therapeutic options. Diosgenin glucoside (DG), a major bioactive ingredient of Trillium tschonoskii Max., possesses neuroprotective effects through its antioxidant and anti-apoptotic functions. In this study, we investigated the therapeutic benefit and underlying mechanisms of DG treatment in SCI. We found that in Sprague-Dawley rats with traumatic SCI, the expressions of autophagy marker Light Chain 3 (LC3) and Beclin1 were decreased with concomitant accumulation of autophagy substrate protein p62 and ubiquitinated proteins, indicating an impaired autophagic activity. DG treatment, however, significantly attenuated p62 expression and upregulated the Rheb/mTOR signaling pathway (evidenced as Ras homolog enriched in brain) due to the downregulation of miR-155-3p. We also observed significantly less tissue injury and edema in the DG-treated group, leading to appreciable functional recovery compared to that of the control group. Overall, the observed neuroprotection afforded by DG treatment warrants further investigation on its therapeutic potential in SCI. Full article
Figures

Graphical abstract

Open AccessArticle Administration of Oxygen Ultra-Fine Bubbles Improves Nerve Dysfunction in a Rat Sciatic Nerve Crush Injury Model
Int. J. Mol. Sci. 2018, 19(5), 1395; https://doi.org/10.3390/ijms19051395
Received: 8 April 2018 / Revised: 29 April 2018 / Accepted: 3 May 2018 / Published: 7 May 2018
PDF Full-text (10607 KB) | HTML Full-text | XML Full-text
Abstract
Ultra-fine bubbles (<200 nm in diameter) have several unique properties and have been tested in various medical fields. The purpose of this study was to investigate the effects of oxygen ultra-fine bubbles (OUBs) on a sciatic nerve crush injury (SNC) model rats. Rats
[...] Read more.
Ultra-fine bubbles (<200 nm in diameter) have several unique properties and have been tested in various medical fields. The purpose of this study was to investigate the effects of oxygen ultra-fine bubbles (OUBs) on a sciatic nerve crush injury (SNC) model rats. Rats were intraperitoneally injected with 1.5 mL saline, OUBs diluted in saline, or nitrogen ultra-fine bubbles (NUBs) diluted in saline three times per week for 4 weeks in four groups: (1) control, (sham operation + saline); (2) SNC, (crush + saline); (3) SNC+OUB, (crush + OUB-saline); (4) SNC+NUB, (crush + NUB-saline). The effects of the OUBs on dorsal root ganglion (DRG) neurons and Schwann cells (SCs) were examined by serial dilution of OUB medium in vitro. Sciatic functional index, paw withdrawal thresholds, nerve conduction velocity, and myelinated axons were significantly decreased in the SNC group compared to the control group; these parameters were significantly improved in the SNC+OUB group, although NUB treatment did not affect these parameters. In vitro, OUBs significantly promoted neurite outgrowth in DRG neurons by activating AKT signaling and SC proliferation by activating ERK1/2 and JNK/c-JUN signaling. OUBs may improve nerve dysfunction in SNC rats by promoting neurite outgrowth in DRG neurons and SC proliferation. Full article
Figures

Graphical abstract

Open AccessReview Temporospatial Analysis and New Players in the Immunology of Amyotrophic Lateral Sclerosis
Int. J. Mol. Sci. 2018, 19(2), 631; https://doi.org/10.3390/ijms19020631
Received: 1 February 2018 / Revised: 18 February 2018 / Accepted: 21 February 2018 / Published: 23 February 2018
Cited by 1 | PDF Full-text (2945 KB) | HTML Full-text | XML Full-text
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by progressive loss of lower and upper motor neurons (MN) leading to muscle weakness, paralysis and eventually death. Although a highly varied etiology results in ALS, it broadly manifests itself as sporadic and familial
[...] Read more.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by progressive loss of lower and upper motor neurons (MN) leading to muscle weakness, paralysis and eventually death. Although a highly varied etiology results in ALS, it broadly manifests itself as sporadic and familial forms that have evident similarities in clinical symptoms and disease progression. There is a tremendous amount of knowledge on molecular mechanisms leading to loss of MNs and neuromuscular junctions (NMJ) as major determinants of disease onset, severity and progression in ALS. Specifically, two main opposing hypotheses, the dying forward and dying back phenomena, exist to account for NMJ denervation. The former hypothesis proposes that the earliest degeneration occurs at the central MNs and proceeds to the NMJ, whereas in the latter, the peripheral NMJ is the site of precipitating degeneration progressing backwards to the MN cell body. A large body of literature strongly indicates a role for the immune system in disease onset and progression via regulatory involvement at the level of both the central and peripheral nervous systems (CNS and PNS). In this review, we discuss the earliest reported immune responses with an emphasis on newly identified immune players in mutant superoxide dismutase 1 (mSOD1) transgenic mice, the gold standard mouse model for ALS. Full article
Figures

Figure 1

Open AccessArticle The Differentiation of Rat Oligodendroglial Cells Is Highly Influenced by the Oxygen Tension: In Vitro Model Mimicking Physiologically Normoxic Conditions
Int. J. Mol. Sci. 2018, 19(2), 331; https://doi.org/10.3390/ijms19020331
Received: 19 December 2017 / Revised: 15 January 2018 / Accepted: 18 January 2018 / Published: 24 January 2018
PDF Full-text (4121 KB) | HTML Full-text | XML Full-text
Abstract
Oligodendrocyte progenitor cells (OPCs) constitute one of the main populations of dividing cells in the central nervous system (CNS). Physiologically, OPCs give rise to mature, myelinating oligodendrocytes and confer trophic support to their neighboring cells within the nervous tissue. OPCs are known to
[...] Read more.
Oligodendrocyte progenitor cells (OPCs) constitute one of the main populations of dividing cells in the central nervous system (CNS). Physiologically, OPCs give rise to mature, myelinating oligodendrocytes and confer trophic support to their neighboring cells within the nervous tissue. OPCs are known to be extremely sensitive to the influence of exogenous clues which might affect their crucial biological processes, like survival, proliferation, differentiation, and the ability to generate a myelin membrane. Alterations in their differentiation influencing their final potential for myelinogenesis are usually the leading cause of CNS dys- and demyelination, contributing to the development of leukodystrophic disorders. The evaluation of the mechanisms that cause oligodendrocytes to malfunction requires detailed studies based on designed in vitro models. Since OPCs readily respond to changes in local homeostasis, it is crucial to establish restricted culture conditions to eliminate the potential stimuli that might influence oligodendrocyte biology. Additionally, the in vitro settings should mimic the physiological conditions to enable the obtained results to be translated to future preclinical studies. Therefore, the aim of our study was to investigate OPC differentiation in physiological normoxia (5% O2) and a restricted in vitro microenvironment. To evaluate the impact of the combined microenvironmental clues derived from other components of the nervous tissue, which are also influenced by the local oxygen concentration, the process of generating OPCs was additionally analyzed in organotypic hippocampal slices. The obtained results show that OPC differentiation, although significantly slowed down, proceeded correctly through its typical stages in the physiologically relevant conditions created in vitro. The established settings were also conducive to efficient cell proliferation, exerting also a neuroprotective effect by promoting the proliferation of neurons. In conclusion, the performed studies show how oxygen tension influences OPC proliferation, differentiation, and their ability to express myelin components, and should be taken into consideration while planning preclinical studies, e.g., to examine neurotoxic compounds or to test neuroprotective strategies. Full article
Figures

Graphical abstract

Open AccessReview Heat Shock Proteins and Autophagy Pathways in Neuroprotection: From Molecular Bases to Pharmacological Interventions
Int. J. Mol. Sci. 2018, 19(1), 325; https://doi.org/10.3390/ijms19010325
Received: 22 December 2017 / Revised: 15 January 2018 / Accepted: 18 January 2018 / Published: 22 January 2018
Cited by 1 | PDF Full-text (2232 KB) | HTML Full-text | XML Full-text
Abstract
Neurodegenerative diseases (NDDs) such as Alzheimer’s disease, Parkinson’s disease and Huntington’s disease (HD), amyotrophic lateral sclerosis, and prion diseases are all characterized by the accumulation of protein aggregates (amyloids) into inclusions and/or plaques. The ubiquitous presence of amyloids in NDDs suggests the involvement
[...] Read more.
Neurodegenerative diseases (NDDs) such as Alzheimer’s disease, Parkinson’s disease and Huntington’s disease (HD), amyotrophic lateral sclerosis, and prion diseases are all characterized by the accumulation of protein aggregates (amyloids) into inclusions and/or plaques. The ubiquitous presence of amyloids in NDDs suggests the involvement of disturbed protein homeostasis (proteostasis) in the underlying pathomechanisms. This review summarizes specific mechanisms that maintain proteostasis, including molecular chaperons, the ubiquitin-proteasome system (UPS), endoplasmic reticulum associated degradation (ERAD), and different autophagic pathways (chaperon mediated-, micro-, and macro-autophagy). The role of heat shock proteins (Hsps) in cellular quality control and degradation of pathogenic proteins is reviewed. Finally, putative therapeutic strategies for efficient removal of cytotoxic proteins from neurons and design of new therapeutic targets against the progression of NDDs are discussed. Full article
Figures

Figure 1

2017

Jump to: 2018, 2016, 2015, 2014, 2013, 2012, 2011, 2010, 2009

Open AccessReview Sexually Dimorphic Outcomes after Neonatal Stroke and Hypoxia-Ischemia
Int. J. Mol. Sci. 2018, 19(1), 61; https://doi.org/10.3390/ijms19010061
Received: 22 November 2017 / Revised: 19 December 2017 / Accepted: 24 December 2017 / Published: 26 December 2017
Cited by 4 | PDF Full-text (605 KB) | HTML Full-text | XML Full-text
Abstract
Cohort studies have demonstrated a higher vulnerability in males towards ischemic and/or hypoxic-ischemic injury in infants born near- or full-term. Male sex was also associated with limited brain repair following neonatal stroke and hypoxia-ischemia, leading to increased incidence of long-term cognitive deficits compared
[...] Read more.
Cohort studies have demonstrated a higher vulnerability in males towards ischemic and/or hypoxic-ischemic injury in infants born near- or full-term. Male sex was also associated with limited brain repair following neonatal stroke and hypoxia-ischemia, leading to increased incidence of long-term cognitive deficits compared to females with similar brain injury. As a result, the design of pre-clinical experiments considering sex as an important variable was supported and investigated because neuroprotective strategies to reduce brain injury demonstrated sexual dimorphism. While the mechanisms underlining these differences between boys and girls remain unclear, several biological processes are recognized to play a key role in long-term neurodevelopmental outcomes: gonadal hormones across developmental stages, vulnerability to oxidative stress, modulation of cell death, and regulation of microglial activation. This review summarizes the current evidence for sex differences in neonatal hypoxic-ischemic and/or ischemic brain injury, considering the major pathways known to be involved in cognitive and behavioral deficits associated with damages of the developing brain. Full article
Figures

Graphical abstract

Open AccessArticle Sulfuretin Attenuates MPP+-Induced Neurotoxicity through Akt/GSK3β and ERK Signaling Pathways
Int. J. Mol. Sci. 2017, 18(12), 2753; https://doi.org/10.3390/ijms18122753
Received: 11 October 2017 / Revised: 9 December 2017 / Accepted: 11 December 2017 / Published: 19 December 2017
Cited by 1 | PDF Full-text (5647 KB) | HTML Full-text | XML Full-text
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease. It is caused by the death of dopaminergic neurons in the substantia nigra pars compacta. Oxidative stress and mitochondrial dysfunction contribute to the loss of dopaminergic neurons in PD. Sulfuretin is a potent
[...] Read more.
Parkinson’s disease (PD) is the second most common neurodegenerative disease. It is caused by the death of dopaminergic neurons in the substantia nigra pars compacta. Oxidative stress and mitochondrial dysfunction contribute to the loss of dopaminergic neurons in PD. Sulfuretin is a potent antioxidant that is reported to be beneficial in the treatment of neurodegenerative diseases. In this study, we examined the protective effect of sulfuretin against 1-methyl-4-phenyl pyridinium (MPP+)-induced cell model of PD in SH-SY5Y cells and the underlying molecular mechanisms. Sulfuretin significantly decreased MPP+-induced apoptotic cell death, accompanied by a reduction in caspase 3 activity and polyADP-ribose polymerase (PARP) cleavage. Furthermore, it attenuated MPP+-induced production of intracellular reactive oxygen species (ROS) and disruption of mitochondrial membrane potential (MMP). Consistently, sulfuretin decreased p53 expression and the Bax/Bcl-2 ratio. Moreover, sulfuretin significantly increased the phosphorylation of Akt, GSK3β, and ERK. Pharmacological inhibitors of PI3K/Akt and ERK abolished the cytoprotective effects of sulfuretin against MPP+. An inhibitor of GSK3β mimicked sulfuretin-induced protection against MPP+. Taken together, these results suggest that sulfuretin significantly attenuates MPP+-induced neurotoxicity through Akt/GSK3β and ERK signaling pathways in SH-SY5Y cells. Our findings suggest that sulfuretin might be one of the potential candidates for the treatment of PD. Full article
Figures

Graphical abstract

Open AccessArticle Duloxetine Protects against Oxaliplatin-Induced Neuropathic Pain and Spinal Neuron Hyperexcitability in Rodents
Int. J. Mol. Sci. 2017, 18(12), 2626; https://doi.org/10.3390/ijms18122626
Received: 16 October 2017 / Revised: 28 November 2017 / Accepted: 30 November 2017 / Published: 5 December 2017
Cited by 1 | PDF Full-text (1881 KB) | HTML Full-text | XML Full-text
Abstract
Oxaliplatin is a widely used chemotherapy agent, but induces serious peripheral neuropathy. Duloxetine is a dual reuptake inhibitor of serotonin and norepinephrine, and is shown to be effective against pain. However, whether and how duloxetine can attenuate oxaliplatin-induced allodynia in rodents is not
[...] Read more.
Oxaliplatin is a widely used chemotherapy agent, but induces serious peripheral neuropathy. Duloxetine is a dual reuptake inhibitor of serotonin and norepinephrine, and is shown to be effective against pain. However, whether and how duloxetine can attenuate oxaliplatin-induced allodynia in rodents is not clearly understood. A single injection of oxaliplatin (6 mg/kg, intraperitoneal; i.p.) induced a cold and mechanical allodynia, which was assessed by acetone and von Frey filament tests, respectively. When significant allodynic signs were observed, three different doses of duloxetine (10, 30, and 60 mg/kg, i.p.) were injected. Administration of 30 and 60 mg/kg of duloxetine significantly reduced the allodynia, whereas 10 mg/kg did not. By using an in vivo extracellular recording method, we further confirmed that 30 mg/kg of duloxetine could significantly inhibit the hyperexcitability of spinal wide dynamic range (WDR) cells. The anti-allodynic effect of duloxetine was completely blocked by an intrathecal injection of phentolamine (non-selective α-adrenergic receptor antagonist, 20 μg), or prazosin (α1-adrenergic receptor antagonists, 10 μg); however, idazoxan (α2-adrenergic receptor antagonist, 10 μg) did not block it. In conclusion, we suggest that duloxetine may have an effective protective action against oxaliplatin-induced neuropathic pain and spinal hyperexcitability, which is mediated by spinal α1-adrenergic receptors. Full article
Figures

Figure 1

Open AccessReview Diffuse Axonal Injury and Oxidative Stress: A Comprehensive Review
Int. J. Mol. Sci. 2017, 18(12), 2600; https://doi.org/10.3390/ijms18122600
Received: 16 September 2017 / Revised: 17 November 2017 / Accepted: 28 November 2017 / Published: 2 December 2017
Cited by 3 | PDF Full-text (2653 KB) | HTML Full-text | XML Full-text
Abstract
Traumatic brain injury (TBI) is one of the world’s leading causes of morbidity and mortality among young individuals. TBI applies powerful rotational and translational forces to the brain parenchyma, which results in a traumatic diffuse axonal injury (DAI) responsible for brain swelling and
[...] Read more.
Traumatic brain injury (TBI) is one of the world’s leading causes of morbidity and mortality among young individuals. TBI applies powerful rotational and translational forces to the brain parenchyma, which results in a traumatic diffuse axonal injury (DAI) responsible for brain swelling and neuronal death. Following TBI, axonal degeneration has been identified as a progressive process that starts with disrupted axonal transport causing axonal swelling, followed by secondary axonal disconnection and Wallerian degeneration. These modifications in the axonal cytoskeleton interrupt the axoplasmic transport mechanisms, causing the gradual gathering of transport products so as to generate axonal swellings and modifications in neuronal homeostasis. Oxidative stress with consequent impairment of endogenous antioxidant defense mechanisms plays a significant role in the secondary events leading to neuronal death. Studies support the role of an altered axonal calcium homeostasis as a mechanism in the secondary damage of axon, and suggest that calcium channel blocker can alleviate the secondary damage, as well as other mechanisms implied in the secondary injury, and could be targeted as a candidate for therapeutic approaches. Reactive oxygen species (ROS)-mediated axonal degeneration is mainly caused by extracellular Ca2+. Increases in the defense mechanisms through the use of exogenous antioxidants may be neuroprotective, particularly if they are given within the neuroprotective time window. A promising potential therapeutic target for DAI is to directly address mitochondria-related injury or to modulate energetic axonal energy failure. Full article
Figures

Graphical abstract

Open AccessArticle Administration of Protocatechuic Acid Reduces Traumatic Brain Injury-Induced Neuronal Death
Int. J. Mol. Sci. 2017, 18(12), 2510; https://doi.org/10.3390/ijms18122510
Received: 28 September 2017 / Revised: 17 November 2017 / Accepted: 21 November 2017 / Published: 23 November 2017
Cited by 2 | PDF Full-text (6280 KB) | HTML Full-text | XML Full-text
Abstract
Protocatechuic acid (PCA) was first purified from green tea and has shown numerous biological activities, including anti-apoptotic, anti-inflammatory, and anti-atherosclerotic effects. The effect of PCA on traumatic brain injury (TBI)-induced neuronal death has not previously been evaluated. TBI is defined as damage to
[...] Read more.
Protocatechuic acid (PCA) was first purified from green tea and has shown numerous biological activities, including anti-apoptotic, anti-inflammatory, and anti-atherosclerotic effects. The effect of PCA on traumatic brain injury (TBI)-induced neuronal death has not previously been evaluated. TBI is defined as damage to the brain resulting from external mechanical force, such as rapid acceleration or deceleration, impact, blast waves, or penetration by a projectile. TBI causes neuronal death in the hippocampus and cerebral cortex. The present study aimed to evaluate the therapeutic potential of PCA on TBI-induced neuronal death. Here, TBI was induced by a controlled cortical impact model using rats. PCA (30 mg/kg) was injected into the intraperitoneal (ip) space immediately after TBI. Neuronal death was evaluated with Fluoro Jade-B (FJB) staining at 24 h after TBI. Oxidative injury was detected by 4-hydroxy-2-nonenal (4HNE), glutathione (GSH) concentration was analyzed by glutathione adduct with N-ethylmaleimide (GS-NEM) staining at 24 h after TBI, and microglial activation in the hippocampus was detected by CD11b immunohistochemistry at one week after TBI. We found that the proportion of degenerating neurons, oxidative injury, GSH depletion, and microglia activation in the hippocampus and cortex were all reduced by PCA treatment following TBI. Therefore, our study suggests that PCA may have therapeutic potential in preventing TBI-induced neuronal death. Full article
Figures

Figure 1a

Open AccessArticle The Small Heat Shock Protein α-Crystallin B Shows Neuroprotective Properties in a Glaucoma Animal Model
Int. J. Mol. Sci. 2017, 18(11), 2418; https://doi.org/10.3390/ijms18112418
Received: 22 October 2017 / Revised: 10 November 2017 / Accepted: 12 November 2017 / Published: 14 November 2017
Cited by 2 | PDF Full-text (3773 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Glaucoma is a neurodegenerative disease that leads to irreversible retinal ganglion cell (RGC) loss and is one of the main causes of blindness worldwide. The pathogenesis of glaucoma remains unclear, and novel approaches for neuroprotective treatments are urgently needed. Previous studies have revealed
[...] Read more.
Glaucoma is a neurodegenerative disease that leads to irreversible retinal ganglion cell (RGC) loss and is one of the main causes of blindness worldwide. The pathogenesis of glaucoma remains unclear, and novel approaches for neuroprotective treatments are urgently needed. Previous studies have revealed significant down-regulation of α-crystallin B as an initial reaction to elevated intraocular pressure (IOP), followed by a clear but delayed up-regulation, suggesting that this small heat-shock protein plays a pathophysiological role in the disease. This study analyzed the neuroprotective effect of α-crystallin B in an experimental animal model of glaucoma. Significant IOP elevation induced by episcleral vein cauterization resulted in a considerable impairment of the RGCs and the retinal nerve fiber layer. An intravitreal injection of α-crystallin B at the time of the IOP increase was able to rescue the RGCs, as measured in a functional photopic electroretinogram, retinal nerve fiber layer thickness, and RGC counts. Mass-spectrometry-based proteomics and antibody-microarray measurements indicated that a α-crystallin injection distinctly up-regulated all of the subclasses (α, β, and γ) of the crystallin protein family. The creation of an interactive protein network revealed clear correlations between individual proteins, which showed a regulatory shift resulting from the crystallin injection. The neuroprotective properties of α-crystallin B further demonstrate the potential importance of crystallin proteins in developing therapeutic options for glaucoma. Full article
Figures

Graphical abstract

Open AccessArticle Effect of Intranasally Delivered rh-VEGF165 on Angiogenesis Following Cerebral Hypoxia-Ischemia in the Cerebral Cortex of Newborn Piglets
Int. J. Mol. Sci. 2017, 18(11), 2356; https://doi.org/10.3390/ijms18112356
Received: 12 September 2017 / Revised: 28 October 2017 / Accepted: 3 November 2017 / Published: 7 November 2017
Cited by 1 | PDF Full-text (5783 KB) | HTML Full-text | XML Full-text
Abstract
Background: Vascular endothelial growth factor (VEGF) stimulates vascular genesis and angiogenesis. Cerebral Hypoxia-Ischemia (HI) leads to the reduction of vasculature in the cerebral cortex of newborn piglets. Objective: The present study tests the hypothesis that post-hypoxia intranasal administration of recombinant human VEGF165
[...] Read more.
Background: Vascular endothelial growth factor (VEGF) stimulates vascular genesis and angiogenesis. Cerebral Hypoxia-Ischemia (HI) leads to the reduction of vasculature in the cerebral cortex of newborn piglets. Objective: The present study tests the hypothesis that post-hypoxia intranasal administration of recombinant human VEGF165 (rh-VEGF165) for 3 days increases the vascular density in the cerebral cortex of newborn piglets without promoting neovascularization. Design/Methods: Ventilated newborn piglets were divided into three groups (n = 5/group): normoxic (Nx), hypoxic-ischemic (HI), and HI treated with intranasal rh-VEGF165rh-VEGF165 (HI-VEGF). HI piglets were exposed to HI (0.05 FiO2) for 30 min. Recombinant h-VEGF165 (100 ng/kg) was administered 15 min after HI and then once daily for 3 days. The animals were perfused transcardially and coronal brains sections were processed for Isolectin, Hoechst, and ki-67 cell proliferation marker staining. To assess the vascular density, 30–35 fields per animal section were manually counted using image J software. Results: The vascular density (vessels/mm2) was 42.0 ± 8.0 in the Nx group, 26.4 ± 4.8 (p < 0.05 vs. Nx) in the HI group, and 46.0 ± 11.9 (p < 0.05 vs. HI) in the HI-VEGF group. When stained for newly formed vessels, via Ki-67 staining, the vascular density was 5.4 ± 3.6 in the Nx group (p < 0.05 vs. HI), 10.2 ± 2.1 in the HI group, and 10.9 ± 2.9 in the HI-VEGF group (p = 0.72 vs. HI). HI resulted in a decrease in vascular density. Intranasal rh-VEGF165rh-VEGF165 resulted in the attenuation of the HI-induced decrease in vascular density. However, rh-VEGF165 did not result in the formation of new vascularity, as evident by ki-67 staining. Conclusions: Intranasal rh-VEGF165 may prevent the HI-induced decrease in the vascular density of the brain and could serve as a promising adjuvant therapy for hypoxic-ischemic encephalopathy (HIE). Full article
Figures

Graphical abstract

Open AccessReview Actions of Brain-Derived Neurotrophic Factor and Glucocorticoid Stress in Neurogenesis
Int. J. Mol. Sci. 2017, 18(11), 2312; https://doi.org/10.3390/ijms18112312
Received: 6 October 2017 / Revised: 30 October 2017 / Accepted: 31 October 2017 / Published: 2 November 2017
Cited by 4 | PDF Full-text (1646 KB) | HTML Full-text | XML Full-text
Abstract
Altered neurogenesis is suggested to be involved in the onset of brain diseases, including mental disorders and neurodegenerative diseases. Neurotrophic factors are well known for their positive effects on the proliferation/differentiation of both embryonic and adult neural stem/progenitor cells (NSCs/NPCs). Especially, brain-derived neurotrophic
[...] Read more.
Altered neurogenesis is suggested to be involved in the onset of brain diseases, including mental disorders and neurodegenerative diseases. Neurotrophic factors are well known for their positive effects on the proliferation/differentiation of both embryonic and adult neural stem/progenitor cells (NSCs/NPCs). Especially, brain-derived neurotrophic factor (BDNF) has been extensively investigated because of its roles in the differentiation/maturation of NSCs/NPCs. On the other hand, recent evidence indicates a negative impact of the stress hormone glucocorticoids (GCs) on the cell fate of NSCs/NPCs, which is also related to the pathophysiology of brain diseases, such as depression and autism spectrum disorder. Furthermore, studies including ours have demonstrated functional interactions between neurotrophic factors and GCs in neural events, including neurogenesis. In this review, we show and discuss relationships among the behaviors of NSCs/NPCs, BDNF, and GCs. Full article
Figures

Figure 1

Open AccessArticle Diverse Effects of an Acetylcholinesterase Inhibitor, Donepezil, on Hippocampal Neuronal Death after Pilocarpine-Induced Seizure
Int. J. Mol. Sci. 2017, 18(11), 2311; https://doi.org/10.3390/ijms18112311
Received: 28 September 2017 / Revised: 26 October 2017 / Accepted: 31 October 2017 / Published: 2 November 2017
PDF Full-text (5790 KB) | HTML Full-text | XML Full-text
Abstract
Epileptic seizures are short episodes of abnormal brain electrical activity. Many survivors of severe epilepsy display delayed neuronal death and permanent cognitive impairment. Donepezil is an acetylcholinesterase inhibitor and is an effective treatment agent for Alzheimer’s disease. However, the role of donepezil in
[...] Read more.
Epileptic seizures are short episodes of abnormal brain electrical activity. Many survivors of severe epilepsy display delayed neuronal death and permanent cognitive impairment. Donepezil is an acetylcholinesterase inhibitor and is an effective treatment agent for Alzheimer’s disease. However, the role of donepezil in seizure-induced hippocampal injury remains untested. Temporal lobe epilepsy (TLE) was induced by intraperitoneal injection of pilocarpine (25 mg/kg). Donepezil (2.5 mg/kg/day) was administered by gavage in three different settings: (1) pretreatment for three days before the seizure; (2) for one week immediately after the seizure; and (3) for three weeks from three weeks after the seizure. We found that donepezil showed mixed effects on seizure-induced brain injury, which were dependent on the treatment schedule. Pretreatment with donepezil aggravated neuronal death, oxidative injury, and microglia activation. Early treatment with donepezil for one week showed neither adverse nor beneficial effects; however, a treatment duration of three weeks starting three weeks after the seizure showed a significant reduction in neuronal death, oxidative injury, and microglia activation. In conclusion, donepezil has therapeutic effects when injected for three weeks after seizure activity subsides. Therefore, the present study suggests that the therapeutic use of donepezil for epilepsy patients requires a well-conceived strategy for administration. Full article
Figures

Graphical abstract

Open AccessReview A Systematic Review of Neuroprotective Strategies during Hypovolemia and Hemorrhagic Shock
Int. J. Mol. Sci. 2017, 18(11), 2247; https://doi.org/10.3390/ijms18112247
Received: 29 September 2017 / Revised: 23 October 2017 / Accepted: 24 October 2017 / Published: 26 October 2017
Cited by 3 | PDF Full-text (657 KB) | HTML Full-text | XML Full-text
Abstract
Severe trauma constitutes a major cause of death and disability, especially in younger patients. The cerebral autoregulatory capacity only protects the brain to a certain extent in states of hypovolemia; thereafter, neurological deficits and apoptosis occurs. We therefore set out to investigate neuroprotective
[...] Read more.
Severe trauma constitutes a major cause of death and disability, especially in younger patients. The cerebral autoregulatory capacity only protects the brain to a certain extent in states of hypovolemia; thereafter, neurological deficits and apoptosis occurs. We therefore set out to investigate neuroprotective strategies during haemorrhagic shock. This review was performed in accordance to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Before the start of the search, a review protocol was entered into the PROSPERO database. A systematic literature search of Pubmed, Web of Science and CENTRAL was performed in August 2017. Results were screened and evaluated by two researchers based on a previously prepared inclusion protocol. Risk of bias was determined by use of SYRCLE’s risk of bias tool. The retrieved results were qualitatively analysed. Of 9093 results, 119 were assessed in full-text form, 16 of them ultimately adhered to the inclusion criteria and were qualitatively analyzed. We identified three subsets of results: (1) hypothermia; (2) fluid therapy and/or vasopressors; and (3) other neuroprotective strategies (piracetam, NHE1-inhibition, aprotinin, human mesenchymal stem cells, remote ischemic preconditioning and sevoflurane). Overall, risk of bias according to SYRCLE’s tool was medium; generally, animal experimental models require more rigorous adherence to the reporting of bias-free study design (randomization, etc.). While the individual study results are promising, the retrieved neuroprotective strategies have to be evaluated within the current scientific context—by doing so, it becomes clear that specific promising neuroprotective strategies during states of haemorrhagic shock remain sparse. This important topic therefore requires more in-depth research. Full article
Figures

Figure 1

Open AccessReview Bioactivity of Olive Oil Phenols in Neuroprotection
Int. J. Mol. Sci. 2017, 18(11), 2230; https://doi.org/10.3390/ijms18112230
Received: 28 September 2017 / Revised: 19 October 2017 / Accepted: 22 October 2017 / Published: 25 October 2017
Cited by 3 | PDF Full-text (1152 KB) | HTML Full-text | XML Full-text
Abstract
Neurological disorders such as stroke, Alzheimer’s and Parkinson’s diseases are associated with high morbidity and mortality, and few or no effective options are available for their treatment. These disorders share common pathological characteristics like the induction of oxidative stress, abnormal protein aggregation, perturbed
[...] Read more.
Neurological disorders such as stroke, Alzheimer’s and Parkinson’s diseases are associated with high morbidity and mortality, and few or no effective options are available for their treatment. These disorders share common pathological characteristics like the induction of oxidative stress, abnormal protein aggregation, perturbed Ca2+ homeostasis, excitotoxicity, inflammation and apoptosis. A large body of evidence supports the beneficial effects of the Mediterranean diet in preventing neurodegeneration. As the Mediterranean diet is characterized by a high consumption of extra-virgin olive oil it has been hypothesized that olive oil, and in particular its phenols, could be responsible for the beneficial effect of the Mediterranean diet. This review provides an updated vision of the beneficial properties of olive oil and olive oil phenols in preventing/counteracting both acute and chronic neurodegenerative diseases. Full article
Figures

Graphical abstract

Open AccessReview Neuroprotective Surgical Strategies in Parkinson’s Disease: Role of Preclinical Data
Int. J. Mol. Sci. 2017, 18(10), 2190; https://doi.org/10.3390/ijms18102190
Received: 19 September 2017 / Revised: 10 October 2017 / Accepted: 13 October 2017 / Published: 20 October 2017
Cited by 2 | PDF Full-text (628 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Although there have been many pharmacological agents considered to be neuroprotective therapy in Parkinson’s disease (PD) patients, neurosurgical approaches aimed to neuroprotect or restore the degenerative nigrostriatal system have rarely been the focus of in depth reviews. Here, we explore the neuroprotective strategies
[...] Read more.
Although there have been many pharmacological agents considered to be neuroprotective therapy in Parkinson’s disease (PD) patients, neurosurgical approaches aimed to neuroprotect or restore the degenerative nigrostriatal system have rarely been the focus of in depth reviews. Here, we explore the neuroprotective strategies involving invasive surgical approaches (NSI) using neurotoxic models 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA), which have led to clinical trials. We focus on several NSI approaches, namely deep brain stimulation of the subthalamic nucleus, glial neurotrophic derived factor (GDNF) administration and cell grafting methods. Although most of these interventions have produced positive results in preclinical animal models, either from behavioral or histological studies, they have generally failed to pass randomized clinical trials to validate each approach. We argue that NSI are promising approaches for neurorestoration in PD, but preclinical studies should be planned carefully in order not only to detect benefits but also to detect potential adverse effects. Further, clinical trials should be designed to be able to detect and disentangle neuroprotection from symptomatic effects. In summary, our review study evaluates the pertinence of preclinical models to study NSI for PD and how this affects their efficacy when translated into clinical trials. Full article
Figures

Figure 1

Open AccessArticle Altered Gene Expression of RNF34 and PACAP Possibly Involved in Mechanism of Exercise-Induced Analgesia for Neuropathic Pain in Rats
Int. J. Mol. Sci. 2017, 18(9), 1962; https://doi.org/10.3390/ijms18091962
Received: 26 July 2017 / Revised: 29 August 2017 / Accepted: 4 September 2017 / Published: 13 September 2017
Cited by 1 | PDF Full-text (5149 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Despite the availability of several modalities of treatment, including surgery, pharmacological agents, and nerve blocks, neuropathic pain is often unresponsive and sometimes progresses to intractable chronic pain. Although exercise therapy is a candidate for treatment of neuropathic pain, the mechanism underlying its efficacy
[...] Read more.
Despite the availability of several modalities of treatment, including surgery, pharmacological agents, and nerve blocks, neuropathic pain is often unresponsive and sometimes progresses to intractable chronic pain. Although exercise therapy is a candidate for treatment of neuropathic pain, the mechanism underlying its efficacy has not been elucidated. To clarify the molecular mechanism for pain relief induced by exercise, we measured Rnf34 and Pacap mRNA levels in the spinal cord dorsal horn of SNL rats, a model of neuropathic pain. SNL model rats exhibited stable mechanical hyperalgesia for at least 6 weeks. When the rats were forced to exercise on a treadmill, mechanical and thermal hyperalgesia were significantly ameliorated compared with the non-exercise group. Accordingly, gene expression level of Rnf34 and Pacap were also significantly altered in the time course analysis after surgery. These results suggest that exercise therapy possibly involves pain relief in SNL rats by suppressing Rnf34 and Pacap expression in the spinal cord. Full article
Figures

Graphical abstract

Open AccessArticle Electroacupuncture Promotes Recovery of Motor Function and Reduces Dopaminergic Neuron Degeneration in Rodent Models of Parkinson’s Disease
Int. J. Mol. Sci. 2017, 18(9), 1846; https://doi.org/10.3390/ijms18091846
Received: 25 July 2017 / Revised: 17 August 2017 / Accepted: 18 August 2017 / Published: 24 August 2017
Cited by 1 | PDF Full-text (3350 KB) | HTML Full-text | XML Full-text
Abstract
Parkinson’s disease (PD) is a common neurodegenerative disease. The pathological hallmark of PD is a progressive loss of dopaminergic neurons in the substantia nigra (SN) pars compacta in the brain, ultimately resulting in severe striatal dopamine deficiency and the development of primary motor
[...] Read more.
Parkinson’s disease (PD) is a common neurodegenerative disease. The pathological hallmark of PD is a progressive loss of dopaminergic neurons in the substantia nigra (SN) pars compacta in the brain, ultimately resulting in severe striatal dopamine deficiency and the development of primary motor symptoms (e.g., resting tremor, bradykinesia) in PD. Acupuncture has long been used in traditional Chinese medicine to treat PD for the control of tremor and pain. Accumulating evidence has shown that using electroacupuncture (EA) as a complementary therapy ameliorates motor symptoms of PD. However, the most appropriate timing for EA intervention and its effect on dopamine neuronal protection remain unclear. Thus, this study used the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned mouse model (systemic-lesioned by intraperitoneal injection) and the 1-methyl-4-phenylpyridinium (MPP+)-lesioned rat model (unilateral-lesioned by intra-SN infusion) of PD, to explore the therapeutic effects and mechanisms of EA at the GB34 (Yanglingquan) and LR3 (Taichong) acupoints. We found that EA increased the latency to fall from the accelerating rotarod and improved striatal dopamine levels in the MPTP studies. In the MPP+ studies, EA inhibited apomorphine induced rotational behavior and locomotor activity, and demonstrated neuroprotective effects via the activation of survival pathways of Akt and brain-derived neurotrophic factor (BDNF) in the SN region. In conclusion, we observed that EA treatment reduces motor symptoms of PD and dopaminergic neurodegeneration in rodent models, whether EA is given as a pretreatment or after the initiation of disease symptoms. The results indicate that EA treatment may be an effective therapy for patients with PD. Full article
Figures

Graphical abstract

Open AccessArticle Dexmedetomidine Prevents Lipopolysaccharide-Induced MicroRNA Expression in the Adult Rat Brain
Int. J. Mol. Sci. 2017, 18(9), 1830; https://doi.org/10.3390/ijms18091830
Received: 25 July 2017 / Revised: 14 August 2017 / Accepted: 18 August 2017 / Published: 23 August 2017
Cited by 1 | PDF Full-text (2068 KB) | HTML Full-text | XML Full-text
Abstract
During surgery or infection, peripheral inflammation can lead to neuroinflammation, which is associated with cognitive impairment, neurodegeneration, and several neurodegenerative diseases. Dexmedetomidine, an α-2-adrenoceptor agonist, is known to exert anti-inflammatory and neuroprotective properties and reduces the incidence of postoperative cognitive impairments. However, on
[...] Read more.
During surgery or infection, peripheral inflammation can lead to neuroinflammation, which is associated with cognitive impairment, neurodegeneration, and several neurodegenerative diseases. Dexmedetomidine, an α-2-adrenoceptor agonist, is known to exert anti-inflammatory and neuroprotective properties and reduces the incidence of postoperative cognitive impairments. However, on the whole the molecular mechanisms are poorly understood. This study aims to explore whether dexmedetomidine influences microRNAs (miRNAs) in a rat model of lipopolysaccharide (LPS)-induced neuroinflammation. Adult Wistar rats were injected with 1 mg/kg LPS intraperitoneal (i.p.) in the presence or absence of 5 µg/kg dexmedetomidine. After 6 h, 24 h, and 7 days, gene expressions of interleukin 1-β (IL1-β), tumor necrosis factor-α (TNF-α), and microRNA expressions of miR 124, 132, 134, and 155 were measured in the hippocampus, cortex, and plasma. Dexmedetomidine decreased the LPS-induced neuroinflammation in the hippocampus and cortex via significant reduction of the IL1-β and TNF-α gene expressions after 24 h. Moreover, the LPS-mediated increased expressions of miR 124, 132, 134, and 155 were significantly decreased after dexmedetomidine treatment in both brain regions. In plasma, dexmedetomidine significantly reduced LPS-induced miR 155 after 6 h. Furthermore, there is evidence that miR 132 and 134 may be suitable as potential biomarkers for the detection of neuroinflammation. Full article
Figures

Graphical abstract

Open AccessArticle Toll-Like Receptor-4 Inhibitor TAK-242 Attenuates Motor Dysfunction and Spinal Cord Pathology in an Amyotrophic Lateral Sclerosis Mouse Model
Int. J. Mol. Sci. 2017, 18(8), 1666; https://doi.org/10.3390/ijms18081666
Received: 13 June 2017 / Revised: 21 July 2017 / Accepted: 23 July 2017 / Published: 1 August 2017
Cited by 3 | PDF Full-text (3258 KB) | HTML Full-text | XML Full-text
Abstract
Neuroinflammation contributes to amyotrophic lateral sclerosis (ALS) progression. TLR4, a transmembrane protein that plays a central role in activation of the innate immune system, has been shown to induce microglial activation in ALS models. TLR4 is up-regulated in the spinal cords of hSOD1
[...] Read more.
Neuroinflammation contributes to amyotrophic lateral sclerosis (ALS) progression. TLR4, a transmembrane protein that plays a central role in activation of the innate immune system, has been shown to induce microglial activation in ALS models. TLR4 is up-regulated in the spinal cords of hSOD1G93A mice. We aimed to examine the effects of specific TLR4 inhibition on disease progression and survival in the hSOD1G93A mouse model of ALS. Immunologic effect of TLR4 inhibition in vitro was measured by the effect of TAK-242 treatment on LPS-induced splenocytes proliferation. hSOD1G93A transgenic mice were treated with TAK-242, a selective TLR4 inhibitor, or vehicle. Survival, body weight, and motor behavior were monitored. To evaluate in vivo immunologic modifications associated with TAK-242 treatment, we measured serum IL-1β in the plasma, as well as IL-1β and TNF-α mRNAs in the spinal cord in wild-type mice and in TAK-242-treated and vehicle-treated early symptomatic hSOD1G93A mice. Immunohistochemical analysis of motor neurons, astrocytes, and microglial reactivity in the spinal cords were performed on symptomatic (100 days old) TAK-242-treated and vehicle-treated hSOD1G93A mice. In vitro, splenocytes taken from 100 days old hSOD1G93A mice showed significantly increased proliferation when exposed to LPS (p = 0.0002), a phenomenon that was reduced by TAK-242 (p = 0.0179). TAK-242 treatment did not attenuate body weight loss or significantly affect survival. However, TAK-242-treated hSOD1G93A mice showed temporary clinical delay in disease progression evident in the ladder test and hindlimb reflex measurements. Plasma IL-1β levels were significantly reduced in TAK-242-treated compared to vehicle-treated hSOD1G93A mice (p = 0.0023). TAK-242 treatment reduced spinal cord astrogliosis and microglial activation and significantly attenuated spinal cord motor neuron loss at early disease stage (p = 0.0259). Compared to wild-type animals, both IL-1β and TNF-α mRNAs were significantly upregulated in the spinal cords of hSOD1G93A mice. Spinal cord analysis in TAK-242-treated hSOD1G93A mice revealed significant attenuation of TNF-α mRNA (p = 0.0431), but no change in IL-1β mRNA. TLR4 inhibition delayed disease progression, attenuated spinal cord astroglial and microglial reaction, and reduced spinal motor neuron loss in the ALS hSOD1G93A mouse model. However, this effect did not result in increased survival. To our knowledge, this is the first report on TAK-242 treatment in a neurodegenerative disease model. Further studies are warranted to assess TLR4 as a therapeutic target in ALS. Full article
Figures

Graphical abstract

Open AccessReview Multi-Targeting Andrographolide, a Novel NF-κB Inhibitor, as a Potential Therapeutic Agent for Stroke
Int. J. Mol. Sci. 2017, 18(8), 1638; https://doi.org/10.3390/ijms18081638
Received: 4 July 2017 / Revised: 24 July 2017 / Accepted: 26 July 2017 / Published: 27 July 2017
Cited by 7 | PDF Full-text (1315 KB) | HTML Full-text | XML Full-text
Abstract
A key focus in the field of drug discovery has been motivated by the neuroprotection of natural compounds. Cerebral ischemia is a multifaceted pathological process with a series of mechanisms, and a perspective for the development of neuroprotectants from traditional herbal medicine or
[...] Read more.
A key focus in the field of drug discovery has been motivated by the neuroprotection of natural compounds. Cerebral ischemia is a multifaceted pathological process with a series of mechanisms, and a perspective for the development of neuroprotectants from traditional herbal medicine or natural products is a promising treatment for this disease. Natural compounds with the effects of anti-oxidation, anti-inflammation, anti-apoptosis, and neurofunctional regulation exhibit therapeutic effects on experimental ischemic brain injury. Conferring to the pharmacological mechanisms underlying neuroprotection, a study found that androgapholide, a diterpene lactone compound, exhibits varying degrees of neuroprotective activities in both in vitro and in vivo experimental models of stroke. The neuroprotective mechanisms of andrographolide are suggested as: (I) increasing nuclear factor E2-related factor 2-heme oxygenase (Nrf2-HO-1) expression through p38-mitogen activated protein kinase (MAPK) regulation, (II) inducing cerebral endothelial cells (CEC) apoptosis and caspase-3 activation, (III) down regulating Bax, inducible nitric oxide synthase (iNOS), and (IV) inhibiting hydroxyl radical (OH) formation, and activating transcription factor NF-κB signaling pathways. Recently, several researchers have also been trying to unveil the principal mechanisms involved in the neuroprotective effects of andrographolide. Therefore, this review aims to summarize an overview on the neuroprotective effects of andrographolide and exemplifies the essential mechanisms involved. This paper can provide information that andrographolide drug discovery may be a promising strategy for the development of a novel class of neuroprotective drug. Full article
Figures

Graphical abstract

Open AccessArticle Anti-Oxidative Stress Activity Is Essential for Amanita caesarea Mediated Neuroprotection on Glutamate-Induced Apoptotic HT22 Cells and an Alzheimer’s Disease Mouse Model
Int. J. Mol. Sci. 2017, 18(8), 1623; https://doi.org/10.3390/ijms18081623
Received: 14 June 2017 / Revised: 22 July 2017 / Accepted: 24 July 2017 / Published: 27 July 2017
Cited by 3 | PDF Full-text (3676 KB) | HTML Full-text | XML Full-text
Abstract
Amanita caesarea, an edible mushroom found mainly in Asia and southern Europe, has been reported to show good antioxidative activities. In the present study, the neuroprotective effects of A. caesarea aqueous extract (AC) were determined in an l-glutamic acid (l
[...] Read more.
Amanita caesarea, an edible mushroom found mainly in Asia and southern Europe, has been reported to show good antioxidative activities. In the present study, the neuroprotective effects of A. caesarea aqueous extract (AC) were determined in an l-glutamic acid (l-Glu) induced HT22 cell apoptosis model, and in a d-galactose (d-gal) and AlCl3-developed experimental Alzheimer’s disease (AD) mouse model. In 25 mM of l-Glu-damaged HT22 cells, a 3-h pretreatment with AC strongly improved cell viability, reduced the proportion of apoptotic cells, restored mitochondrial function, inhibited the over-production of intracellular reactive oxygen species (ROS) and Ca2+, and suppressed the high expression levels of cleaved-caspase-3, calpain 1, apoptosis-inducing factor (AIF) and Bax. Compared with HT22 exposed only to l-Glu cells, AC enhanced the phosphorylation activities of protein kinase B (Akt) and the mammalian target of rapamycin (mTOR), and suppressed the phosphorylation activities of phosphatase and tensin homolog deleted on chromosome ten (PTEN). In the experimental AD mouse, 28-day AC administration at doses of 250, 500, and 1000 mg/kg/day strongly enhanced vertical movements and locomotor activities, increased the endurance time in the rotarod test, and decreased the escape latency time in the Morris water maze test. AC also alleviated the deposition of amyloid beta (Aβ) in the brain and improved the central cholinergic system function, as indicated by an increase acetylcholine (Ach) and choline acetyltransferase (ChAT) concentrations and a reduction in acetylcholine esterase (AchE) levels. Moreover, AC reduced ROS levels and enhanced superoxide dismutase (SOD) levels in the brain of experimental AD mice. Taken together, our data provide experimental evidence that A. caesarea may serve as potential food for treating or preventing neurodegenerative diseases. Full article
Figures

Graphical abstract

Open AccessArticle Distinct Mechanisms Underlying Resveratrol-Mediated Protection from Types of Cellular Stress in C6 Glioma Cells
Int. J. Mol. Sci. 2017, 18(7), 1521; https://doi.org/10.3390/ijms18071521
Received: 28 May 2017 / Revised: 30 June 2017 / Accepted: 30 June 2017 / Published: 14 July 2017
Cited by 2 | PDF Full-text (1638 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The polyphenolic phytostilbene, trans-resveratrol, is found in high amounts in several types and tissues of plants, including grapes, and has been proposed to have beneficial effects in the central nervous system due to its activity as an antioxidant. The objective of the
[...] Read more.
The polyphenolic phytostilbene, trans-resveratrol, is found in high amounts in several types and tissues of plants, including grapes, and has been proposed to have beneficial effects in the central nervous system due to its activity as an antioxidant. The objective of the present study was to identify the mechanisms underlying the protective effects of resveratrol under conditions of oxidative stress or DNA damage, induced by the extracellularly applied oxidant, tert-butyl hydrogen peroxide, or UV-irradiation, respectively. In C6 glioma cells, a model system for glial cell biology and pharmacology, resveratrol was protective against both types of insult. Prevention of tau protein cleavage and of the formation of neurofibrillary tangles were identified as mechanisms of action of resveratrol-mediated protection in both paradigms of cellular damage. However, depending on the type of insult, resveratrol exerted its protective activity differentially: under conditions of chemically induced oxidative stress, inhibition of caspase activity, while with DNA damage, resveratrol regulated tau phosphorylation at Ser422. Results advance our understanding of resveratrol’s complex impact on cellular signaling pathway and contribute to the notion of resveratrol’s role as a pleiotropic therapeutic agent. Full article
Figures

Graphical abstract

Open AccessArticle Capsaicin-Sensitive Sensory Nerves Are Necessary for the Protective Effect of Ghrelin in Cerulein-Induced Acute Pancreatitis in Rats
Int. J. Mol. Sci. 2017, 18(7), 1402; https://doi.org/10.3390/ijms18071402
Received: 20 May 2017 / Revised: 25 June 2017 / Accepted: 27 June 2017 / Published: 30 June 2017
Cited by 4 | PDF Full-text (3544 KB) | HTML Full-text | XML Full-text
Abstract
Ghrelin was shown to exhibit protective and therapeutic effect in the gut. Aim of the study was to investigate the role of sensory nerves (SN) in the protective effect of ghrelin in acute pancreatitis (AP). Studies were performed on male Wistar rats or
[...] Read more.
Ghrelin was shown to exhibit protective and therapeutic effect in the gut. Aim of the study was to investigate the role of sensory nerves (SN) in the protective effect of ghrelin in acute pancreatitis (AP). Studies were performed on male Wistar rats or isolated pancreatic acinar cells. After capsaicin deactivation of sensory nerves (CDSN) or treatment with saline, rats were pretreated intraperitoneally with ghrelin or saline. In those rats, AP was induced by cerulein or pancreases were used for isolation of pancreatic acinar cells. Pancreatic acinar cells were incubated in cerulein-free or cerulein containing solution. In rats with intact SN, pretreatment with ghrelin led to a reversal of the cerulein-induced increase in pancreatic weight, plasma activity of lipase and plasma concentration of tumor necrosis factor-α (TNF-α). These effects were associated with an increase in plasma interleukin-4 concentration and reduction in histological signs of pancreatic damage. CDSN tended to increase the severity of AP and abolished the protective effect of ghrelin. Exposure of pancreatic acinar cells to cerulein led to increase in cellular expression of mRNA for TNF-α and cellular synthesis of this cytokine. Pretreatment with ghrelin reduced this alteration, but this effect was only observed in acinar cells obtained from rats with intact SN. Moreover, CDSN inhibited the cerulein- and ghrelin-induced increase in gene expression and synthesis of heat shock protein 70 (HSP70) in those cells. Ghrelin exhibits the protective effect in cerulein-induced AP on the organ and pancreatic acinar cell level. Sensory nerves ablation abolishes this effect. Full article
Figures

Figure 1

Open AccessReview Can Co-Activation of Nrf2 and Neurotrophic Signaling Pathway Slow Alzheimer’s Disease?
Int. J. Mol. Sci. 2017, 18(6), 1168; https://doi.org/10.3390/ijms18061168
Received: 25 April 2017 / Revised: 22 May 2017 / Accepted: 27 May 2017 / Published: 31 May 2017
Cited by 6 | PDF Full-text (1616 KB) | HTML Full-text | XML Full-text
Abstract
Alzheimer’s disease (AD) is a multifaceted disease that is hard to treat by single-modal treatment. AD starts with amyloid peptides, mitochondrial dysfunction, and oxidative stress and later is accompanied with chronic endoplasmic reticulum (ER) stress and autophagy dysfunction, resulting in more complicated pathogenesis.
[...] Read more.
Alzheimer’s disease (AD) is a multifaceted disease that is hard to treat by single-modal treatment. AD starts with amyloid peptides, mitochondrial dysfunction, and oxidative stress and later is accompanied with chronic endoplasmic reticulum (ER) stress and autophagy dysfunction, resulting in more complicated pathogenesis. Currently, few treatments can modify the complicated pathogenic progress of AD. Compared to the treatment with exogenous antioxidants, the activation of global antioxidant defense system via Nrf2 looks more promising in attenuating oxidative stress in AD brains. Accompanying the activation of the Nrf2-mediated antioxidant defense system that reduce the AD-causative factor, oxidative stress, it is also necessary to activate the neurotrophic signaling pathway that replaces damaged organelles and molecules with new ones. Thus, the dual actions to activate both the Nrf2 antioxidant system and neurotrophic signaling pathway are expected to provide a better strategy to modify AD pathogenesis. Here, we review the current understanding of AD pathogenesis and neuronal defense systems and discuss a possible way to co-activate the Nrf2 antioxidant system and neurotrophic signaling pathway with the hope of helping to find a better strategy to slow AD. Full article
Figures

Figure 1

Open AccessArticle The 1-Tosylpentan-3-one Protects against 6-Hydroxydopamine-Induced Neurotoxicity
Int. J. Mol. Sci. 2017, 18(5), 1096; https://doi.org/10.3390/ijms18051096
Received: 5 April 2017 / Revised: 12 May 2017 / Accepted: 13 May 2017 / Published: 19 May 2017
Cited by 1 | PDF Full-text (4808 KB) | HTML Full-text | XML Full-text
Abstract
Previous studies have demonstrated that the marine compound austrasulfone, isolated from the soft coral Cladiella australis, exerts a neuroprotective effect. The intermediate product in the synthesis of austrasulfone, dihydroaustrasulfone alcohol, attenuates several inflammatory responses. The present study uses in vitro and in
[...] Read more.
Previous studies have demonstrated that the marine compound austrasulfone, isolated from the soft coral Cladiella australis, exerts a neuroprotective effect. The intermediate product in the synthesis of austrasulfone, dihydroaustrasulfone alcohol, attenuates several inflammatory responses. The present study uses in vitro and in vivo methods to investigate the neuroprotective effect of dihydroaustrasulfone alcohol-modified 1-tosylpentan-3-one (1T3O). Results from in vitro experiments show that 1T3O effectively inhibits 6-hydroxydopamine-induced (6-OHDA-induced) activation of both p38 mitogen-activated protein kinase (MAPK) and caspase-3 in SH-SY5Y cells; and enhances nuclear factor erythroid 2–related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expression via phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling. Hoechst staining and Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining results reveal that 1T3O significantly inhibits 6-OHDA-induced apoptosis. In addition, the addition of an Akt or HO-1 inhibitor decreases the protective effect of 1T3O. Thus, we hypothesize that the anti-apoptotic activity of 1T3O in neuronal cells is mediated through the regulation of the Akt and HO-1 signaling pathways. In vivo experiments show that 1T3O can reverse 6-OHDA-induced reduction in locomotor behavior ability in zebrafish larvae, and inhibit 6-OHDA-induced tumor necrosis factor-alpha (TNF-α) increase at the same time. According to our in vitro and in vivo results, we consider that 1T3O exerts its anti-apoptotic activities at SH-SY5Y cells after 6-OHDA challenges, probably via the regulation of anti-oxidative signaling pathways. Therefore, this compound may be a promising therapeutic agent for neurodegenerations. Full article
Figures

Graphical abstract

Open AccessReview New Functions of APC/C Ubiquitin Ligase in the Nervous System and Its Role in Alzheimer’s Disease
Int. J. Mol. Sci. 2017, 18(5), 1057; https://doi.org/10.3390/ijms18051057
Received: 29 March 2017 / Revised: 5 May 2017 / Accepted: 9 May 2017 / Published: 14 May 2017
Cited by 3 | PDF Full-text (1731 KB) | HTML Full-text | XML Full-text
Abstract
The E3 ubiquitin ligase Anaphase Promoting Complex/Cyclosome (APC/C) regulates important processes in cells, such as the cell cycle, by targeting a set of substrates for degradation. In the last decade, APC/C has been related to several major functions in the nervous system, including
[...] Read more.
The E3 ubiquitin ligase Anaphase Promoting Complex/Cyclosome (APC/C) regulates important processes in cells, such as the cell cycle, by targeting a set of substrates for degradation. In the last decade, APC/C has been related to several major functions in the nervous system, including axon guidance, synaptic plasticity, neurogenesis, and neuronal survival. Interestingly, some of the identified APC/C substrates have been related to neurodegenerative diseases. There is an accumulation of some degradation targets of APC/C in Alzheimer’s disease (AD) brains, which suggests a dysregulation of the protein complex in the disorder. Moreover, recently evidence has been provided for an inactivation of APC/C in AD. It has been shown that oligomers of the AD-related peptide, Aβ, induce degradation of the APC/C activator subunit cdh1, in vitro in neurons in culture and in vivo in the mouse hippocampus. Furthermore, in the AD mouse model APP/PS1, lower cdh1 levels were observed in pyramidal neurons in CA1 when compared to age-matched wildtype mice. In this review, we provide a complete list of APC/C substrates that are involved in the nervous system and we discuss their functions. We also summarize recent studies that show neurobiological effects in cdh1 knockout mouse models. Finally, we discuss the role of APC/C in the pathophysiology of AD. Full article
Figures

Graphical abstract

Open AccessArticle Nimodipine but Not Nifedipine Promotes Expression of Fatty Acid 2-Hydroxylase in a Surgical Stress Model Based on Neuro2a Cells
Int. J. Mol. Sci. 2017, 18(5), 964; https://doi.org/10.3390/ijms18050964
Received: 28 March 2017 / Revised: 20 April 2017 / Accepted: 26 April 2017 / Published: 3 May 2017
PDF Full-text (2305 KB) | HTML Full-text | XML Full-text
Abstract
Nimodipine is well characterized for the management of aneurysmal subarachnoid hemorrhage and has been shown to promote a better outcome and less delayed ischemic neurological deficits. Animal and clinical trials show neuroprotective efficacy following nerve injuries. We showed a neuroprotective effect on Neuro2a
[...] Read more.
Nimodipine is well characterized for the management of aneurysmal subarachnoid hemorrhage and has been shown to promote a better outcome and less delayed ischemic neurological deficits. Animal and clinical trials show neuroprotective efficacy following nerve injuries. We showed a neuroprotective effect on Neuro2a cells. Subsequent microarray analysis revealed—among others—fatty acid 2-hydroxylase (FA2H) upregulated by nimodipine in vitro, which is a component of myelin synthesis. Differentiated Neuro2a cells were analyzed for nimodipine-mediated survival considering stress treatment in comparison to nifedipine-treatment. Cell survival was determined by measurement of LDH activity in the culture medium. Nimodipine decreased surgery-like stress-induced cell death of differentiated Neuro2a cells. Neuro2a cell culture was analyzed for changes in FA2H expression induced by nimodipine or nifedipine in surgery-like stress conditions. We analyzed expression levels of FA2H mRNA and protein by qPCR using fa2h specific primers or a FA2H-specific antibody in nimodipine or nifedipine non- and pre-treated Neuro2a cell culture, respectively. Nimodipine but not nifedipine increases FA2H protein levels and also significantly increases mRNA levels of FA2H in both undifferentiated and differentiated Neuro2a cells. Our findings indicate that higher expression of FA2H induced by nimodipine may cause higher survival of Neuro2a cells stressed with surgery-like stressors. Full article
Figures

Figure 1

Open AccessArticle Down-Regulated Drebrin Aggravates Cognitive Impairments in a Mouse Model of Alzheimer’s Disease
Int. J. Mol. Sci. 2017, 18(4), 800; https://doi.org/10.3390/ijms18040800
Received: 1 March 2017 / Revised: 30 March 2017 / Accepted: 1 April 2017 / Published: 11 April 2017
Cited by 2 | PDF Full-text (12694 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The developmentally regulated brain protein drebrin (Dbn) is a functional protein involved with long-term memory formation and is widely distributed in brain neurons, especially in the dendritic spines. A noticeable decline of this protein has been found in the hippocampus and cortex of
[...] Read more.
The developmentally regulated brain protein drebrin (Dbn) is a functional protein involved with long-term memory formation and is widely distributed in brain neurons, especially in the dendritic spines. A noticeable decline of this protein has been found in the hippocampus and cortex of patients with Alzheimer’s disease (AD), yet the relationship between Dbn and AD has not been fully understood. In the present study, we examined how down-regulation of Dbn impacts the progression of AD in experimental animals. Accordingly, we injected Dbn interference vector (rAAV-mDbn1 ShRNA) into the hippocampus of three-month old APP(swe)/PS1(ΔE9) mice (APP/PS1 mice) and then successfully down-regulated Dbn expression in this brain region. Behavioral tests, including the Morris water maze test, the open field test, and the novel object test were conducted when the animals were nine months old. Subsequently, MicroPET/CT imaging to monitor glucose metabolism was done. We then investigated Aβ, GFAP, PSD-95, MAP2, vimentin, Cox43, and Syn1 expressions in the brain of the experimental animals via immunohistochemical or immunofluorescence methods. We found that AD mice with a low expression of Dbn performed poorly in the behavioral tests and showed decreased glucose utilization. In the brains of these animals, we detected a slight increase of Aβ, GFAP and vimentin and a significant decline of PSD-95. Altogether our data warrant further studies to elucidate the effect of Dbn on the development and progression of AD. Full article
Figures

Graphical abstract

Open AccessReview Phosphodiesterase Inhibitors as a Therapeutic Approach to Neuroprotection and Repair
Int. J. Mol. Sci. 2017, 18(4), 696; https://doi.org/10.3390/ijms18040696
Received: 17 February 2017 / Revised: 10 March 2017 / Accepted: 15 March 2017 / Published: 24 March 2017
Cited by 8 | PDF Full-text (803 KB) | HTML Full-text | XML Full-text
Abstract
A wide diversity of perturbations of the central nervous system (CNS) result in structural damage to the neuroarchitecture and cellular defects, which in turn are accompanied by neurological dysfunction and abortive endogenous neurorepair. Altering intracellular signaling pathways involved in inflammation and immune regulation,
[...] Read more.
A wide diversity of perturbations of the central nervous system (CNS) result in structural damage to the neuroarchitecture and cellular defects, which in turn are accompanied by neurological dysfunction and abortive endogenous neurorepair. Altering intracellular signaling pathways involved in inflammation and immune regulation, neural cell death, axon plasticity and remyelination has shown therapeutic benefit in experimental models of neurological disease and trauma. The second messengers, cyclic adenosine monophosphate (cyclic AMP) and cyclic guanosine monophosphate (cyclic GMP), are two such intracellular signaling targets, the elevation of which has produced beneficial cellular effects within a range of CNS pathologies. The only known negative regulators of cyclic nucleotides are a family of enzymes called phosphodiesterases (PDEs) that hydrolyze cyclic nucleotides into adenosine monophosphate (AMP) or guanylate monophosphate (GMP). Herein, we discuss the structure and physiological function as well as the roles PDEs play in pathological processes of the diseased or injured CNS. Further we review the approaches that have been employed therapeutically in experimental paradigms to block PDE expression or activity and in turn elevate cyclic nucleotide levels to mediate neuroprotection or neurorepair as well as discuss both the translational pathway and current limitations in moving new PDE-targeted therapies to the clinic. Full article
Figures

Graphical abstract

Open AccessArticle Passage through the Ocular Barriers and Beneficial Effects in Retinal Ischemia of Topical Application of PACAP1-38 in Rodents
Int. J. Mol. Sci. 2017, 18(3), 675; https://doi.org/10.3390/ijms18030675
Received: 13 January 2017 / Revised: 8 March 2017 / Accepted: 12 March 2017 / Published: 21 March 2017
Cited by 1 | PDF Full-text (1609 KB) | HTML Full-text | XML Full-text
Abstract
The neuropeptide pituitary adenylate cyclase activating polypeptide (PACAP) has two active forms, PACAP1-27 and PACAP1-38. Among the well-established actions are PACAP’s neurotrophic and neuroprotective effects, which have also been proven in models of different retinopathies. The route of delivery is usually intravitreal in
[...] Read more.
The neuropeptide pituitary adenylate cyclase activating polypeptide (PACAP) has two active forms, PACAP1-27 and PACAP1-38. Among the well-established actions are PACAP’s neurotrophic and neuroprotective effects, which have also been proven in models of different retinopathies. The route of delivery is usually intravitreal in studies proving PACAP’s retinoprotective effects. Recently, we have shown that PACAP1-27 delivered as eye drops in benzalkonium-chloride was able to cross the ocular barriers and exert retinoprotection in ischemia. Since PACAP1-38 is the dominant form of the naturally occurring PACAP, our aim was to investigate whether the longer form is also able to cross the barriers and exert protective effects in permanent bilateral common carotid artery occlusion (BCCAO), a model of retinal hypoperfusion. Our results show that radioactive PACAP1-38 eye drops could effectively pass through the ocular barriers to reach the retina. Routine histological analysis and immunohistochemical evaluation of the Müller glial cells revealed that PACAP1-38 exerted retinoprotective effects. PACAP1-38 attenuated the damage caused by hypoperfusion, apparent in almost all retinal layers, and it decreased the glial cell overactivation. Overall, our results confirm that PACAP1-38 given in the form of eye drops is a novel protective therapeutic approach to treat retinal diseases. Full article
Figures

Graphical abstract

Open AccessArticle ROS Production and ERK Activity Are Involved in the Effects of d-β-Hydroxybutyrate and Metformin in a Glucose Deficient Condition
Int. J. Mol. Sci. 2017, 18(3), 674; https://doi.org/10.3390/ijms18030674
Received: 26 December 2016 / Revised: 11 March 2017 / Accepted: 16 March 2017 / Published: 21 March 2017
Cited by 2 | PDF Full-text (3308 KB) | HTML Full-text | XML Full-text
Abstract
Hypoglycemia, a complication of insulin or sulfonylurea therapy in diabetic patients, leads to brain damage. Furthermore, glucose replenishment following hypoglycemic coma induces neuronal cell death. In this study, we investigated the molecular mechanism underlying glucose deficiency-induced cytotoxicity and the protective effect of d
[...] Read more.
Hypoglycemia, a complication of insulin or sulfonylurea therapy in diabetic patients, leads to brain damage. Furthermore, glucose replenishment following hypoglycemic coma induces neuronal cell death. In this study, we investigated the molecular mechanism underlying glucose deficiency-induced cytotoxicity and the protective effect of d-β-hydroxybutyrate (D-BHB) using SH-SY5Y cells. The cytotoxic mechanism of metformin under glucose deficiency was also examined. Cell viability under 1 mM glucose (glucose deficiency) was significantly decreased which was accompanied by increased production of reactive oxygen species (ROS) and decreased phosphorylation of extracellular signal-regulated kinase (ERK) and glycogen synthase 3 (GSK3β). ROS inhibitor reversed the glucose deficiency-induced cytotoxicity and restored the reduced phosphorylation of ERK and GSK3β. While metformin did not alter cell viability in normal glucose media, it further increased cell death and ROS production under glucose deficiency. However, D-BHB reversed cytotoxicity, ROS production, and the decrease in phosphorylation of ERK and GSK3β induced by the glucose deficiency. ERK inhibitor reversed the D-BHB-induced increase in cell viability under glucose deficiency, whereas GSK3β inhibitor did not restore glucose deficiency-induced cytotoxicity. Finally, the protective effect of D-BHB against glucose deficiency was confirmed in primary neuronal cells. We demonstrate that glucose deficiency-induced cytotoxicity is mediated by ERK inhibition through ROS production, which is attenuated by D-BHB and intensified by metformin. Full article
Figures

Graphical abstract

Open AccessReview Potential Neuroprotective Effects of Adiponectin in Alzheimer’s Disease
Int. J. Mol. Sci. 2017, 18(3), 592; https://doi.org/10.3390/ijms18030592
Received: 23 December 2016 / Revised: 20 February 2017 / Accepted: 28 February 2017 / Published: 9 March 2017
Cited by 5 | PDF Full-text (633 KB) | HTML Full-text | XML Full-text
Abstract
The adipocyte-secreted protein adiponectin (APN) has several protective functions in the peripheral tissues including insulin sensitizing, anti-inflammatory and anti-oxidative effects that may benefit neurodegenerative diseases such as Alzheimer’s disease (AD). In addition, dysregulation of cerebral insulin sensitivities and signaling activities have been implicated
[...] Read more.
The adipocyte-secreted protein adiponectin (APN) has several protective functions in the peripheral tissues including insulin sensitizing, anti-inflammatory and anti-oxidative effects that may benefit neurodegenerative diseases such as Alzheimer’s disease (AD). In addition, dysregulation of cerebral insulin sensitivities and signaling activities have been implicated in AD. Emerging insights into the mechanistic roles of adiponectin and AD highlight the potential therapeutic effects for AD through insulin signaling. Full article
Figures

Graphical abstract

Open AccessReview Progranulin and Its Related MicroRNAs after Status Epilepticus: Possible Mechanisms of Neuroprotection
Int. J. Mol. Sci. 2017, 18(3), 490; https://doi.org/10.3390/ijms18030490
Received: 24 December 2016 / Revised: 9 February 2017 / Accepted: 15 February 2017 / Published: 24 February 2017
Cited by 1 | PDF Full-text (233 KB) | HTML Full-text | XML Full-text
Abstract
The current knowledge about neuroprotective mechanisms in humans after status epilepticus is scarce. One reason is the difficulty to measure possible mediators of these neuroprotective mechanisms. The dawn of microRNA detection in the cerebrospinal fluid (CSF) and the recent advancements in measuring proteins
[...] Read more.
The current knowledge about neuroprotective mechanisms in humans after status epilepticus is scarce. One reason is the difficulty to measure possible mediators of these neuroprotective mechanisms. The dawn of microRNA detection in the cerebrospinal fluid (CSF) and the recent advancements in measuring proteins in the CSF such as progranulin, which is, e.g., responsible for neurite outgrowth and limiting exceeding neuroinflammatory responses, have given us new insights into putative neuroprotective mechanisms following status epilepticus. This should complement the animal data. In this review, we cover what is known about the role of progranulin as well as the links between microRNA changes and the progranulin pathway following status epilepticus in humans and animals hypothesizing neuroprotective and neurorehabilitative effects. Progranulin has also been found to feature prominently in the neuroprotective processes under hypoxic conditions and initiating neurorehabilitative processes. These properties may be used therapeutically, e.g., through drugs that raise the progranulin levels and therefore the cerebral progranulin levels as well with the goal of improving the outcome after status epilepticus. Full article
Open AccessArticle Effects of Postnatal Enriched Environment in a Model of Parkinson’s Disease in Adult Rats
Int. J. Mol. Sci. 2017, 18(2), 406; https://doi.org/10.3390/ijms18020406
Received: 22 December 2016 / Revised: 1 February 2017 / Accepted: 6 February 2017 / Published: 14 February 2017
Cited by 7 | PDF Full-text (8572 KB) | HTML Full-text | XML Full-text
Abstract
Environmental enrichment is a widespread neuroprotective strategy during development and also in the mature nervous system. Several research groups have described that enriched environment in adult rats has an impact on the progression of Parkinson’s disease (PD). The aim of our present study
[...] Read more.
Environmental enrichment is a widespread neuroprotective strategy during development and also in the mature nervous system. Several research groups have described that enriched environment in adult rats has an impact on the progression of Parkinson’s disease (PD). The aim of our present study was to examine the effects of early, postnatal environmental enrichment after 6-hydroxydopamine-induced (6-OHDA) lesion of the substantia nigra in adulthood. Newborn Wistar rats were divided into control and enriched groups according to their environmental conditions. For environmental enrichment, during the first five postnatal weeks animals were placed in larger cages and exposed to intensive complex stimuli. Dopaminergic cell loss, and hypokinetic and asymmetrical signs were evaluated after inducing PD with unilateral injections of 6-OHDA in three-month-old animals. Treatment with 6-OHDA led to a significant cell loss in the substantia nigra of control animals, however, postnatal enriched circumstances could rescue the dopaminergic cells. Although there was no significant difference in the percentage of surviving cells between 6-OHDA-treated control and enriched groups, the slightly less dopaminergic cell loss in the enriched group compared to control animals resulted in less severe hypokinesia. Our investigation is the first to provide evidence for the neuroprotective effect of postnatal enriched environment in PD later in life. Full article
Figures

Graphical abstract

Open AccessArticle Identifying the Long-Term Role of Inducible Nitric Oxide Synthase after Contusive Spinal Cord Injury Using a Transgenic Mouse Model
Int. J. Mol. Sci. 2017, 18(2), 245; https://doi.org/10.3390/ijms18020245
Received: 5 December 2016 / Revised: 5 January 2017 / Accepted: 15 January 2017 / Published: 25 January 2017
Cited by 2 | PDF Full-text (2648 KB) | HTML Full-text | XML Full-text
Abstract
Inducible nitric oxide synthase (iNOS) is a potent mediator of oxidative stress during neuroinflammation triggered by neurotrauma or neurodegeneration. We previously demonstrated that acute iNOS inhibition attenuated iNOS levels and promoted neuroprotection and functional recovery after spinal cord injury (SCI). The present study
[...] Read more.
Inducible nitric oxide synthase (iNOS) is a potent mediator of oxidative stress during neuroinflammation triggered by neurotrauma or neurodegeneration. We previously demonstrated that acute iNOS inhibition attenuated iNOS levels and promoted neuroprotection and functional recovery after spinal cord injury (SCI). The present study investigated the effects of chronic iNOS ablation after SCI using inos-null mice. iNOS−/− knockout and wild-type (WT) control mice underwent a moderate thoracic (T8) contusive SCI. Locomotor function was assessed weekly, using the Basso Mouse Scale (BMS), and at the endpoint (six weeks), by footprint analysis. At the endpoint, the volume of preserved white and gray matter, as well as the number of dorsal column axons and perilesional blood vessels rostral to the injury, were quantified. At weeks two and three after SCI, iNOS−/− mice exhibited a significant locomotor improvement compared to WT controls, although a sustained improvement was not observed during later weeks. At the endpoint, iNOS−/− mice showed significantly less preserved white and gray matter, as well as fewer dorsal column axons and perilesional blood vessels, compared to WT controls. While short-term antagonism of iNOS provides histological and functional benefits, its long-term ablation after SCI may be deleterious, blocking protective or reparative processes important for angiogenesis and tissue preservation. Full article
Figures

Figure 1

Open AccessArticle α-Tocopherol at Nanomolar Concentration Protects Cortical Neurons against Oxidative Stress
Int. J. Mol. Sci. 2017, 18(1), 216; https://doi.org/10.3390/ijms18010216
Received: 28 September 2016 / Revised: 8 January 2017 / Accepted: 14 January 2017 / Published: 21 January 2017
Cited by 4 | PDF Full-text (6537 KB) | HTML Full-text | XML Full-text
Abstract
The aim of the present work is to study the mechanism of the α-tocopherol (α-T) protective action at nanomolar and micromolar concentrations against H2O2-induced brain cortical neuron death. The mechanism of α-T action on neurons at its nanomolar concentrations
[...] Read more.
The aim of the present work is to study the mechanism of the α-tocopherol (α-T) protective action at nanomolar and micromolar concentrations against H2O2-induced brain cortical neuron death. The mechanism of α-T action on neurons at its nanomolar concentrations characteristic for brain extracellular space has not been practically studied yet. Preincubation with nanomolar and micromolar α-T for 18 h was found to increase the viability of cortical neurons exposed to H2O2; α-T effect was concentration-dependent in the nanomolar range. However, preincubation with nanomolar α-T for 30 min was not effective. Nanomolar and micromolar α-T decreased the reactive oxygen species accumulation induced in cortical neurons by the prooxidant. Using immunoblotting it was shown that preincubation with α-T at nanomolar and micromolar concentrations for 18 h prevented Akt inactivation and decreased PKCδ activation induced in cortical neurons by H2O2. α-T prevented the ERK1/2 sustained activation during 24 h caused by H2O2. α-T at nanomolar and micromolar concentrations prevented a great increase of the proapoptotic to antiapoptotic proteins (Bax/Bcl-2) ratio, elicited by neuron exposure to H2O2. The similar neuron protection mechanism by nanomolar and micromolar α-T suggests that a “more is better” approach to patients’ supplementation with vitamin E or α-T is not reasonable. Full article
Figures

Graphical abstract

Open AccessArticle Neuroprotective and Anti-Apoptotic Effects of CSP-1103 in Primary Cortical Neurons Exposed to Oxygen and Glucose Deprivation
Int. J. Mol. Sci. 2017, 18(1), 184; https://doi.org/10.3390/ijms18010184
Received: 11 October 2016 / Revised: 3 January 2017 / Accepted: 12 January 2017 / Published: 18 January 2017
PDF Full-text (1857 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
CSP-1103 (formerly CHF5074) has been shown to reverse memory impairment and reduce amyloid plaque as well as inflammatory microglia activation in preclinical models of Alzheimer’s disease. Moreover, it was found to improve cognition and reduce brain inflammation in patients with mild cognitive impairment.
[...] Read more.
CSP-1103 (formerly CHF5074) has been shown to reverse memory impairment and reduce amyloid plaque as well as inflammatory microglia activation in preclinical models of Alzheimer’s disease. Moreover, it was found to improve cognition and reduce brain inflammation in patients with mild cognitive impairment. Recent evidence suggests that CSP-1103 acts through a single molecular target, the amyloid precursor protein intracellular domain (AICD), a transcriptional regulator implicated in inflammation and apoptosis. We here tested the possible anti-apoptotic and neuroprotective activity of CSP-1103 in a cell-based model of post-ischemic injury, wherein the primary mouse cortical neurons were exposed to oxygen-glucose deprivation (OGD). When added after OGD, CSP-1103 prevented the apoptosis cascade by reducing cytochrome c release and caspase-3 activation and the secondary necrosis. Additionally, CSP-1103 limited earlier activation of p38 and nuclear factor κB (NF-κB) pathways. These results demonstrate that CSP-1103 is neuroprotective in a model of post-ischemic brain injury and provide further mechanistic insights as regards its ability to reduce apoptosis and potential production of pro-inflammatory cytokines. In conclusion, these findings suggest a potential use of CSP-1103 for the treatment of brain ischemia. Full article
Figures

Figure 1

Open AccessArticle Hypoxia Inducible Factor 1α Promotes Endogenous Adaptive Response in Rat Model of Chronic Cerebral Hypoperfusion
Int. J. Mol. Sci. 2017, 18(1), 3; https://doi.org/10.3390/ijms18010003
Received: 4 October 2016 / Revised: 16 November 2016 / Accepted: 6 December 2016 / Published: 17 January 2017
Cited by 5 | PDF Full-text (13561 KB) | HTML Full-text | XML Full-text
Abstract
Hypoxia inducible factor 1α (HIF-1α), a pivotal regulator of gene expression in response to hypoxia and ischemia, is now considered to regulate both pro-survival and pro-death responses depending on the duration and severity of the stress. We previously showed that chronic
[...] Read more.
Hypoxia inducible factor 1α (HIF-1α), a pivotal regulator of gene expression in response to hypoxia and ischemia, is now considered to regulate both pro-survival and pro-death responses depending on the duration and severity of the stress. We previously showed that chronic global cerebral hypoperfusion (CCH) triggered long-lasting accumulation of HIF-1α protein in the hippocampus of rats. However, the role of the stabilized HIF-1α in CCH is obscure. Here, we knock down endogenous HIF-1α to determine whether and how HIF-1α affects the disease processes and phenotypes of CCH. Lentivirus expressing HIF-1α small hairpin RNA was injected into the bilateral hippocampus and bilateral ventricles to knock down HIF-1α gene expression in the hippocampus and other brain areas. Permanent bilateral common carotid artery occlusions, known as 2-vessel occlusions (2VOs), were used to induce CCH in rats. Angiogenesis, oxidative stress, histopathological changes of the brain, and cognitive function were tested. Knockdown of HIF-1α prior to 2VO significantly exacerbates the impairment of learning and memory after four weeks of CCH. Mechanically, reduced cerebral angiogenesis, increased oxidative damage, and increased density of astrocytes and microglia in the cortex and some subregions of hippocampus are also shown after four weeks of CCH. Furthermore, HIF-1α knockdown also disrupts upregulation of regulated downstream genes. Our findings suggest that HIF-1α-protects the brain from oxidative stress and inflammation response in the disease process of CCH. Accumulated HIF-1α during CCH mediates endogenous adaptive processes to defend against more severe hypoperfusion injury of the brain, which may provide a therapeutic benefit. Full article
Figures

Graphical abstract

2016

Jump to: 2018, 2017, 2015, 2014, 2013, 2012, 2011, 2010, 2009

Open AccessReview Neuroprotection via Reduction in Stress: Altered Menstrual Patterns as a Marker for Stress and Implications for Long-Term Neurologic Health in Women
Int. J. Mol. Sci. 2016, 17(12), 2147; https://doi.org/10.3390/ijms17122147
Received: 18 October 2016 / Revised: 7 December 2016 / Accepted: 13 December 2016 / Published: 20 December 2016
Cited by 1 | PDF Full-text (199 KB) | HTML Full-text | XML Full-text
Abstract
Individuals under chronic psychological stress can be difficult to identify clinically. There is often no outwardly visible phenotype. Chronic stress of sufficient magnitude not only impacts reproductive function, but also concomitantly elicits a constellation of neuroendocrine changes that may accelerate aging in general
[...] Read more.
Individuals under chronic psychological stress can be difficult to identify clinically. There is often no outwardly visible phenotype. Chronic stress of sufficient magnitude not only impacts reproductive function, but also concomitantly elicits a constellation of neuroendocrine changes that may accelerate aging in general and brain aging in particular. Functional hypothalamic amenorrhea, a phenotypically recognizable form of stress, is due to stress-induced suppression of endogenous gonadotropin-releasing hormone secretion. Reversal of functional hypothalamic amenorrhea includes restoration of ovulatory ovarian function and fertility and amelioration of hypercortisolism and hypothyroidism. Taken together, recovery from functional hypothalamic amenorrhea putatively offers neuroprotection and ameliorates stress-induced premature brain aging and possibly syndromic Alzheimer’s disease. Amenorrhea may be viewed as a sentinel indicator of stress. Hypothalamic hypogonadism is less clinically evident in men and the diagnosis is difficult to establish. Whether there are other sex differences in the impact of stress on brain aging remains to be better investigated, but it is likely that both low estradiol from stress-induced anovulation and low testosterone from stress-induced hypogonadism compromise brain health. Full article
Figures

Graphical abstract

Open AccessArticle Downregulation of Homer1b/c in SOD1 G93A Models of ALS: A Novel Mechanism of Neuroprotective Effect of Lithium and Valproic Acid
Int. J. Mol. Sci. 2016, 17(12), 2129; https://doi.org/10.3390/ijms17122129
Received: 25 July 2016 / Revised: 5 December 2016 / Accepted: 9 December 2016 / Published: 17 December 2016
Cited by 2 | PDF Full-text (2035 KB) | HTML Full-text | XML Full-text
Abstract
Background: Mutations in the Cu/Zn superoxide dismutase (SOD1) gene have been linked to amyotrophic lateral sclerosis (ALS). However, the molecular mechanisms have not been elucidated yet. Homer family protein Homer1b/c is expressed widely in the central nervous system and plays important
[...] Read more.
Background: Mutations in the Cu/Zn superoxide dismutase (SOD1) gene have been linked to amyotrophic lateral sclerosis (ALS). However, the molecular mechanisms have not been elucidated yet. Homer family protein Homer1b/c is expressed widely in the central nervous system and plays important roles in neurological diseases. In this study, we explored whether Homer1b/c was involved in SOD1 mutation-linked ALS. Results: In vitro studies showed that the SOD1 G93A mutation induced an increase of Homer1b/c expression at both the mRNA and protein levels in NSC34 cells. Knockdown of Homer1b/c expression using its short interfering RNA (siRNA) (si-Homer1) protected SOD1 G93A NSC34 cells from apoptosis. The expressions of Homer1b/c and apoptosis-related protein Bax were also suppressed, while Bcl-2 was increased by lithium and valproic acid (VPA) in SOD1 G93A NSC34 cells. In vivo, both the mRNA and protein levels of Homer1b/c were increased significantly in the lumbar spinal cord in SOD1 G93A transgenic mice compared with wild type (WT) mice. Moreover, lithium and VPA treatment suppressed the expression of Homer1b/c in SOD1 G93A mice. Conclusion: The suppression of SOD1 G93A mutation-induced Homer1b/c upregulation protected ALS against neuronal apoptosis, which is a novel mechanism of the neuroprotective effect of lithium and VPA. This study provides new insights into pathogenesis and treatment of ALS. Full article
Figures

Figure 1

Open AccessReview Oxidative Stress in Hypoxic-Ischemic Encephalopathy: Molecular Mechanisms and Therapeutic Strategies
Int. J. Mol. Sci. 2016, 17(12), 2078; https://doi.org/10.3390/ijms17122078
Received: 13 October 2016 / Revised: 2 December 2016 / Accepted: 6 December 2016 / Published: 10 December 2016
Cited by 18 | PDF Full-text (613 KB) | HTML Full-text | XML Full-text
Abstract
Hypoxic-ischemic encephalopathy (HIE) is one of the leading causes of morbidity and mortality in neonates. Because of high concentrations of sensitive immature cells, metal-catalyzed free radicals, non-saturated fatty acids, and low concentrations of antioxidant enzymes, the brain requires high levels of oxygen supply
[...] Read more.
Hypoxic-ischemic encephalopathy (HIE) is one of the leading causes of morbidity and mortality in neonates. Because of high concentrations of sensitive immature cells, metal-catalyzed free radicals, non-saturated fatty acids, and low concentrations of antioxidant enzymes, the brain requires high levels of oxygen supply and is, thus, extremely sensitive to hypoxia. Strong evidence indicates that oxidative stress plays an important role in pathogenesis and progression. Following hypoxia and ischemia, reactive oxygen species (ROS) production rapidly increases and overwhelms antioxidant defenses. A large excess of ROS will directly modify or degenerate cellular macromolecules, such as membranes, proteins, lipids, and DNA, and lead to a cascading inflammatory response, and protease secretion. These derivatives are involved in a complex interplay of multiple pathways (e.g., inflammation, apoptosis, autophagy, and necrosis) which finally lead to brain injury. In this review, we highlight the molecular mechanism for oxidative stress in HIE, summarize current research on therapeutic strategies utilized in combating oxidative stress, and try to explore novel potential clinical approaches. Full article
Figures

Figure 1

Open AccessArticle Liver Growth Factor (LGF) Upregulates Frataxin Protein Expression and Reduces Oxidative Stress in Friedreich’s Ataxia Transgenic Mice
Int. J. Mol. Sci. 2016, 17(12), 2066; https://doi.org/10.3390/ijms17122066
Received: 31 August 2016 / Revised: 28 November 2016 / Accepted: 6 December 2016 / Published: 9 December 2016
Cited by 2 | PDF Full-text (4932 KB) | HTML Full-text | XML Full-text
Abstract
Friedreich’s ataxia (FA) is a severe disorder with autosomal recessive inheritance that is caused by the abnormal expansion of GAA repeat in intron 1 of FRDA gen. This alteration leads to a partial silencing of frataxin transcription, causing a multisystem disorder disease that
[...] Read more.
Friedreich’s ataxia (FA) is a severe disorder with autosomal recessive inheritance that is caused by the abnormal expansion of GAA repeat in intron 1 of FRDA gen. This alteration leads to a partial silencing of frataxin transcription, causing a multisystem disorder disease that includes neurological and non-neurological damage. Recent studies have proven the effectiveness of neurotrophic factors in a number of neurodegenerative diseases. Therefore, we intend to determine if liver growth factor (LGF), which has a demonstrated antioxidant and neuroprotective capability, could be a useful therapy for FA. To investigate the potential therapeutic activity of LGF we used transgenic mice of the FXNtm1MknTg (FXN)YG8Pook strain. In these mice, intraperitoneal administration of LGF (1.6 μg/mouse) exerted a neuroprotective effect on neurons of the lumbar spinal cord and improved cardiac hypertrophy. Both events could be the consequence of the increment in frataxin expression induced by LGF in spinal cord (1.34-fold) and heart (1.2-fold). LGF also upregulated by 2.6-fold mitochondrial chain complex IV expression in spinal cord, while in skeletal muscle it reduced the relation oxidized glutathione/reduced glutathione. Since LGF partially restores motor coordination, we propose LGF as a novel factor that may be useful in the treatment of FA. Full article
Figures

Figure 1

Open AccessArticle The Impact of CXCR4 Blockade on the Survival of Rat Brain Cortical Neurons
Int. J. Mol. Sci. 2016, 17(12), 2005; https://doi.org/10.3390/ijms17122005
Received: 2 September 2016 / Revised: 16 November 2016 / Accepted: 17 November 2016 / Published: 30 November 2016
Cited by 1 | PDF Full-text (1673 KB) | HTML Full-text | XML Full-text
Abstract
Background: Chemokine receptor type 4 (CXCR4) plays a role in neuronal survival/cell repair and also contributes to the progression of cancer and neurodegenerative diseases. Chemokine ligand 12 (CXCL12) binds to CXCR4. In this study, we have investigated whether CXCR4 blockade by AMD3100 (a
[...] Read more.
Background: Chemokine receptor type 4 (CXCR4) plays a role in neuronal survival/cell repair and also contributes to the progression of cancer and neurodegenerative diseases. Chemokine ligand 12 (CXCL12) binds to CXCR4. In this study, we have investigated whether CXCR4 blockade by AMD3100 (a CXCR4 antagonist, member of bicyclam family) may affect neuronal survival in the absence of insult. Thus, we have measured the mitochondrial membrane potential (MMP), Bax and Bcl-2 protein translocation, and cytochrome c release in AMD3100-treated brain cortical neurons at 7 DIV (days in vitro). Methods: For this aim, AMD3100 (200 nM) was added to cortical neurons for 24 h, and several biomarkers like cell viability, reactive oxygen species (ROS) generation, lactate dehydrogenase (LDH) release, caspase-3/9 activity, proteins Bax and Bcl-2 translocation, and cytochrome c release were analyzed by immunoblot. Results: CXCR4 blockade by AMD3100 (200 nM, 24 h) induces mitochondrial hyperpolarization and increases caspase-3/9 hyperpolarization without affecting LDH release as compared to untreated controls. AMD3100 also increases cytochrome c release and promotes Bax translocation to the mitochondria, whereas it raises cytosolic Bcl-2 levels in brain cortical neurons. Conclusion: CXCR4 blockade induces cellular death via intrinsic apoptosis in rat brain cortical neurons in absence of insult. Full article
Figures

Graphical abstract

Open AccessReview Towards Clinical Application of Neurotrophic Factors to the Auditory Nerve; Assessment of Safety and Efficacy by a Systematic Review of Neurotrophic Treatments in Humans
Int. J. Mol. Sci. 2016, 17(12), 1981; https://doi.org/10.3390/ijms17121981
Received: 1 September 2016 / Revised: 11 November 2016 / Accepted: 21 November 2016 / Published: 26 November 2016
Cited by 1 | PDF Full-text (450 KB) | HTML Full-text | XML Full-text
Abstract
Animal studies have evidenced protection of the auditory nerve by exogenous neurotrophic factors. In order to assess clinical applicability of neurotrophic treatment of the auditory nerve, the safety and efficacy of neurotrophic therapies in various human disorders were systematically reviewed. Outcomes of our
[...] Read more.
Animal studies have evidenced protection of the auditory nerve by exogenous neurotrophic factors. In order to assess clinical applicability of neurotrophic treatment of the auditory nerve, the safety and efficacy of neurotrophic therapies in various human disorders were systematically reviewed. Outcomes of our literature search included disorder, neurotrophic factor, administration route, therapeutic outcome, and adverse event. From 2103 articles retrieved, 20 randomized controlled trials including 3974 patients were selected. Amyotrophic lateral sclerosis (53%) was the most frequently reported indication for neurotrophic therapy followed by diabetic polyneuropathy (28%). Ciliary neurotrophic factor (50%), nerve growth factor (24%) and insulin-like growth factor (21%) were most often used. Injection site reaction was a frequently occurring adverse event (61%) followed by asthenia (24%) and gastrointestinal disturbances (20%). Eighteen out of 20 trials deemed neurotrophic therapy to be safe, and six out of 17 studies concluded the neurotrophic therapy to be effective. Positive outcomes were generally small or contradicted by other studies. Most non-neurodegenerative diseases treated by targeted deliveries of neurotrophic factors were considered safe and effective. Hence, since local delivery to the cochlea is feasible, translation from animal studies to human trials in treating auditory nerve degeneration seems promising. Full article
Figures

Figure 1

Open AccessReview Neuroprotective Strategies during Cardiac Surgery with Cardiopulmonary Bypass
Int. J. Mol. Sci. 2016, 17(11), 1945; https://doi.org/10.3390/ijms17111945
Received: 21 July 2016 / Revised: 2 November 2016 / Accepted: 15 November 2016 / Published: 21 November 2016
Cited by 4 | PDF Full-text (374 KB) | HTML Full-text | XML Full-text
Abstract
Aortocoronary bypass or valve surgery usually require cardiac arrest using cardioplegic solutions. Although, in principle, in a number of cases beating heart surgery (so-called off-pump technique) is possible, aortic or valve surgery or correction of congenital heart diseases mostly require cardiopulmonary arrest. During
[...] Read more.
Aortocoronary bypass or valve surgery usually require cardiac arrest using cardioplegic solutions. Although, in principle, in a number of cases beating heart surgery (so-called off-pump technique) is possible, aortic or valve surgery or correction of congenital heart diseases mostly require cardiopulmonary arrest. During this condition, the heart-lung machine also named cardiopulmonary bypass (CPB) has to take over the circulation. It is noteworthy that the invention of a machine bypassing the heart and lungs enabled complex cardiac operations, but possible negative effects of the CPB on other organs, especially the brain, cannot be neglected. Thus, neuroprotection during CPB is still a matter of great interest. In this review, we will describe the impact of CPB on the brain and focus on pharmacological and non-pharmacological strategies to protect the brain. Full article
Figures

Graphical abstract

Open AccessArticle Protective Effect of Tempol against Cisplatin-Induced Ototoxicity
Int. J. Mol. Sci. 2016, 17(11), 1931; https://doi.org/10.3390/ijms17111931
Received: 9 August 2016 / Revised: 1 November 2016 / Accepted: 15 November 2016 / Published: 18 November 2016
Cited by 2 | PDF Full-text (1751 KB) | HTML Full-text | XML Full-text
Abstract
One of the major adverse effects of cisplatin chemotherapy is hearing loss. Cisplatin-induced ototoxicity hampers treatment because it often necessitates dose reduction, which decreases cisplatin efficacy. This study was performed to investigate the effect of Tempol on cisplatin-induced ototoxicity in an auditory cell
[...] Read more.
One of the major adverse effects of cisplatin chemotherapy is hearing loss. Cisplatin-induced ototoxicity hampers treatment because it often necessitates dose reduction, which decreases cisplatin efficacy. This study was performed to investigate the effect of Tempol on cisplatin-induced ototoxicity in an auditory cell line, House Ear Institute-Organ of Corti 1 (HEI-OC1). Cultured HEI-OC1 cells were exposed to 30 μM cisplatin for 24 h with or without a 2 h pre-treatment with Tempol. Cell viability was determined using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay and apoptotic cells were identified using terminal deoxynucleotidyl transferase dUTP nick end labeling of nuclei (TUNEL) assay and flow cytometry. The effects of Tempol on cisplatin-induced cleaved poly(ADP-ribose) polymerase, cleaved caspase, and mitochondrial inducible nitric oxide synthase expression were evaluated using western blot analysis. Levels of intracellular reactive oxygen species (ROS) were measured to assess the effects of Tempol on cisplatin-induced ROS accumulation. Mitochondria were evaluated by confocal microscopy, and the mitochondrial membrane potential was measured to investigate whether Tempol protected against cisplatin-induced mitochondrial dysfunction. Cisplatin treatment decreased cell viability, and increased apoptotic features and markers, ROS accumulation, and mitochondrial dysfunction. Tempol pre-treatment before cisplatin exposure significantly inhibited all these cisplatin-induced effects. These results demonstrate that Tempol inhibits cisplatin-induced cytotoxicity in HEI-OC1, and could play a preventive role against cisplatin-induced ototoxicity. Full article
Figures

Graphical abstract

Open AccessArticle Salvianolic Acid B (Sal B) Protects Retinal Pigment Epithelial Cells from Oxidative Stress-Induced Cell Death by Activating Glutaredoxin 1 (Grx1)
Int. J. Mol. Sci. 2016, 17(11), 1835; https://doi.org/10.3390/ijms17111835
Received: 14 July 2016 / Revised: 8 October 2016 / Accepted: 31 October 2016 / Published: 3 November 2016
Cited by 6 | PDF Full-text (4071 KB) | HTML Full-text | XML Full-text
Abstract
Protein glutathionylation, defined as the formation of protein mixed disulfides (PSSG) between cysteine residues and glutathione (GSH), can lead to cell death. Glutaredoxin 1 (Grx1) is a thiol repair enzyme which catalyzes the reduction of PSSG. Therefore, Grx1 exerts strong anti-apoptotic effects by
[...] Read more.
Protein glutathionylation, defined as the formation of protein mixed disulfides (PSSG) between cysteine residues and glutathione (GSH), can lead to cell death. Glutaredoxin 1 (Grx1) is a thiol repair enzyme which catalyzes the reduction of PSSG. Therefore, Grx1 exerts strong anti-apoptotic effects by improving the redox state, especially in times of oxidative stress. However, there is currently no compound that is identified as a Grx1 activator. In this study, we identified and characterized Salvianolic acid B (Sal B), a natural compound, as a Grx1 inducer, which potently protected retinal pigment epithelial (RPE) cells from oxidative injury. Our results showed that treatment with Sal B protected primary human RPE cells from H2O2-induced cell damage. Interestingly, we found Sal B pretreatment upregulated Grx1 expression in RPE cells in a time- and dose-dependent manner. Furthermore, NF-E2-related factor 2 (Nrf2), the key transcription factor that regulates the expression of Grx1, was activated in Sal B treated RPE cells. Further investigation showed that knockdown of Grx1 by small interfering RNA (siRNA) significantly reduced the protective effects of Sal B. We conclude that Sal B protects RPE cells against H2O2-induced cell injury through Grx1 induction by activating Nrf2 pathway, thus preventing lethal accumulation of PSSG and reversing oxidative damage. Full article
Figures

Graphical abstract

Open AccessArticle The Neuroprotective Properties of Hericium erinaceus in Glutamate-Damaged Differentiated PC12 Cells and an Alzheimer’s Disease Mouse Model
Int. J. Mol. Sci. 2016, 17(11), 1810; https://doi.org/10.3390/ijms17111810
Received: 20 August 2016 / Revised: 14 October 2016 / Accepted: 20 October 2016 / Published: 1 November 2016
Cited by 14 | PDF Full-text (4113 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Hericium erinaceus, an edible and medicinal mushroom, displays various pharmacological activities in the prevention of dementia in conditions such as Parkinson’s and Alzheimer’s disease. The present study explored the neuroprotective effects of H. erinaceus mycelium polysaccharide-enriched aqueous extract (HE) on an l
[...] Read more.
Hericium erinaceus, an edible and medicinal mushroom, displays various pharmacological activities in the prevention of dementia in conditions such as Parkinson’s and Alzheimer’s disease. The present study explored the neuroprotective effects of H. erinaceus mycelium polysaccharide-enriched aqueous extract (HE) on an l-glutamic acid (l-Glu)-induced differentiated PC12 (DPC12) cellular apoptosis model and an AlCl3 combined with d-galactose-induced Alzheimer’s disease mouse model. The data revealed that HE successfully induced PC12 cell differentiation. A 3 h HE incubation at doses of 50 and 100 µg/mL before 25 mM of l-Glu effectively reversed the reduction of cell viability and the enhancement of the nuclear apoptosis rate in DPC12 cells. Compared with l-Glu-damaged cells, in PC12 cells, HE suppressed intracellular reactive oxygen species accumulation, blocked Ca2+ overload and prevented mitochondrial membrane potential (MMP) depolarization. In the Alzheimer’s disease mouse model, HE administration enhanced the horizontal and vertical movements in the autonomic activity test, improved the endurance time in the rotarod test, and decreased the escape latency time in the water maze test. It also improved the central cholinergic system function in the Alzheimer’s mice, demonstrated by the fact that it dose-dependently enhanced the acetylcholine (Ach) and choline acetyltransferase (ChAT) concentrations in both the serum and the hypothalamus. Our findings provide experimental evidence that HE may provide neuroprotective candidates for treating or preventing neurodegenerative diseases. Full article
Figures

Figure 1

Open AccessReview The Molecular Pathway of Argon-Mediated Neuroprotection
Int. J. Mol. Sci. 2016, 17(11), 1816; https://doi.org/10.3390/ijms17111816
Received: 13 August 2016 / Revised: 17 October 2016 / Accepted: 25 October 2016 / Published: 31 October 2016
Cited by 3 | PDF Full-text (1487 KB) | HTML Full-text | XML Full-text
Abstract
The noble gas argon has attracted increasing attention in recent years, especially because of its neuroprotective properties. In a variety of models, ranging from oxygen-glucose deprivation in cell culture to complex models of mid-cerebral artery occlusion, subarachnoid hemorrhage or retinal ischemia-reperfusion injury in
[...] Read more.
The noble gas argon has attracted increasing attention in recent years, especially because of its neuroprotective properties. In a variety of models, ranging from oxygen-glucose deprivation in cell culture to complex models of mid-cerebral artery occlusion, subarachnoid hemorrhage or retinal ischemia-reperfusion injury in animals, argon administration after individual injury demonstrated favorable effects, particularly increased cell survival and even improved neuronal function. As an inert molecule, argon did not show signs of adverse effects in the in vitro and in vivo model used, while being comparably cheap and easy to apply. However, the molecular mechanism by which argon is able to exert its protective and beneficial characteristics remains unclear. Although there are many pieces missing to complete the signaling pathway throughout the cell, it is the aim of this review to summarize the known parts of the molecular pathways and to combine them to provide a clear insight into the cellular pathway, starting with the receptors that may be involved in mediating argons effects and ending with the translational response. Full article
Figures

Graphical abstract

Open AccessArticle Morphine Protects Spinal Cord Astrocytes from Glutamate-Induced Apoptosis via Reducing Endoplasmic Reticulum Stress
Int. J. Mol. Sci. 2016, 17(10), 1523; https://doi.org/10.3390/ijms17101523
Received: 25 July 2016 / Revised: 30 August 2016 / Accepted: 4 September 2016 / Published: 24 October 2016
Cited by 5 | PDF Full-text (2909 KB) | HTML Full-text | XML Full-text
Abstract
Glutamate is not only a neurotransmitter but also an important neurotoxin in central nervous system (CNS). Chronic elevation of glutamate induces both neuronal and glial cell apoptosis. However, its effect on astrocytes is complex and still remains unclear. In this study, we investigated
[...] Read more.
Glutamate is not only a neurotransmitter but also an important neurotoxin in central nervous system (CNS). Chronic elevation of glutamate induces both neuronal and glial cell apoptosis. However, its effect on astrocytes is complex and still remains unclear. In this study, we investigated whether morphine, a common opioid ligand, could affect glutamate-induced apoptosis in astrocytes. Primary cultured astrocytes were incubated with glutamate in the presence/absence of morphine. It was found that morphine could reduce glutamate-induced apoptosis of astrocytes. Furthermore, glutamate activated Ca2+ release, thereby inducing endoplasmic reticulum (ER) stress in astrocytes, while morphine attenuated this deleterious effect. Using siRNA to reduce the expression of κ-opioid receptor, morphine could not effectively inhibit glutamate-stimulated Ca2+ release in astrocytes, the protective effect of morphine on glutamate-injured astrocytes was also suppressed. These results suggested that morphine could protect astrocytes from glutamate-induced apoptosis via reducing Ca2+ overload and ER stress pathways. In conclusion, this study indicated that excitotoxicity participated in the glutamate mediated apoptosis in astrocytes, while morphine attenuated this deleterious effect via regulating Ca2+ release and ER stress. Full article
Figures

Graphical abstract

Open AccessArticle Auraptene and Other Prenyloxyphenylpropanoids Suppress Microglial Activation and Dopaminergic Neuronal Cell Death in a Lipopolysaccharide-Induced Model of Parkinson’s Disease
Int. J. Mol. Sci. 2016, 17(10), 1716; https://doi.org/10.3390/ijms17101716
Received: 31 August 2016 / Revised: 28 September 2016 / Accepted: 8 October 2016 / Published: 17 October 2016
Cited by 9 | PDF Full-text (4500 KB) | HTML Full-text | XML Full-text
Abstract
In patients with Parkinson’s disease (PD), hyperactivated inflammation in the brain, particularly microglial hyperactivation in the substantia nigra (SN), is reported to be one of the triggers for the delayed loss of dopaminergic neurons and sequential motor functional impairments. We previously reported that
[...] Read more.
In patients with Parkinson’s disease (PD), hyperactivated inflammation in the brain, particularly microglial hyperactivation in the substantia nigra (SN), is reported to be one of the triggers for the delayed loss of dopaminergic neurons and sequential motor functional impairments. We previously reported that (1) auraptene (AUR), a natural prenyloxycoumain, suppressed inflammatory responses including the hyperactivation of microglia in the ischemic brain and inflamed brain, thereby inhibiting neuronal cell death; (2) 7-isopentenyloxycoumarin (7-IP), another natural prenyloxycoumain, exerted anti-inflammatory and neuroprotective effects against excitotoxicity; and (3) 4′-geranyloxyferulic acid (GOFA), a natural prenyloxycinnamic acid, also exerted anti-inflammatory effects. In the present study, using an intranigral lipopolysaccharide (LPS)-induced PD-like mouse model, we investigated whether AUR, 7-IP, and GOFA suppress microglial activation and protect against dopaminergic neuronal cell death in the SN. We successfully showed that these prenyloxyphenylpropanoids exhibited these prospective abilities, suggesting the potential of these compounds as neuroprotective agents for patients with PD. Full article
Figures

Figure 1

Open AccessReview Essential Roles of Natural Products and Gaseous Mediators on Neuronal Cell Death or Survival
Int. J. Mol. Sci. 2016, 17(10), 1652; https://doi.org/10.3390/ijms17101652
Received: 31 August 2016 / Revised: 21 September 2016 / Accepted: 22 September 2016 / Published: 29 September 2016
Cited by 1 | PDF Full-text (2287 KB) | HTML Full-text | XML Full-text
Abstract
Although precise cellular and molecular mechanisms underlying neurodegeneration still remain enigmatic, key factors associated with degenerative disorders, such as glutamate toxicity and oxidative stress, have been recently identified. Accordingly, there has been growing interest in examining the effects of exogenous and endogenous molecules
[...] Read more.
Although precise cellular and molecular mechanisms underlying neurodegeneration still remain enigmatic, key factors associated with degenerative disorders, such as glutamate toxicity and oxidative stress, have been recently identified. Accordingly, there has been growing interest in examining the effects of exogenous and endogenous molecules on neuroprotection and neurodegeneration. In this paper, we review recent studies on neuroprotective and/or neurodegenerative effects of natural products, such as caffeic acid and chlorogenic acid, and gaseous mediators, including hydrogen sulfide and nitric oxide. Furthermore, possible molecular mechanisms of these molecules in relation to glutamate signals are discussed. Insight into the pathophysiological role of these molecules will make progress in our understanding of molecular mechanisms underlying neurodegenerative diseases, and is expected to lead to potential therapeutic approaches. Full article
Figures

Figure 1

Open AccessReview Protein Kinases and Parkinson’s Disease
Int. J. Mol. Sci. 2016, 17(9), 1585; https://doi.org/10.3390/ijms17091585
Received: 30 May 2016 / Revised: 9 August 2016 / Accepted: 1 September 2016 / Published: 20 September 2016
Cited by 5 | PDF Full-text (597 KB) | HTML Full-text | XML Full-text
Abstract
Currently, the lack of new drug candidates for the treatment of major neurological disorders such as Parkinson’s disease has intensified the search for drugs that can be repurposed or repositioned for such treatment. Typically, the search focuses on drugs that have been approved
[...] Read more.
Currently, the lack of new drug candidates for the treatment of major neurological disorders such as Parkinson’s disease has intensified the search for drugs that can be repurposed or repositioned for such treatment. Typically, the search focuses on drugs that have been approved and are used clinically for other indications. Kinase inhibitors represent a family of popular molecules for the treatment and prevention of various cancers, and have emerged as strong candidates for such repurposing because numerous serine/threonine and tyrosine kinases have been implicated in the pathobiology of Parkinson’s disease. This review focuses on various kinase-dependent pathways associated with the expression of Parkinson’s disease pathology, and evaluates how inhibitors of these pathways might play a major role as effective therapeutic molecules. Full article
Figures

Figure 1

Open AccessReview The Role of Cyclo(His-Pro) in Neurodegeneration
Int. J. Mol. Sci. 2016, 17(8), 1332; https://doi.org/10.3390/ijms17081332
Received: 4 July 2016 / Revised: 4 August 2016 / Accepted: 8 August 2016 / Published: 12 August 2016
Cited by 3 | PDF Full-text (1139 KB) | HTML Full-text | XML Full-text
Abstract
Neurodegenerative diseases may have distinct genetic etiologies and pathological manifestations, yet share common cellular mechanisms underpinning neuronal damage and dysfunction. These cellular mechanisms include excitotoxicity, calcium dysregulation, oxidative damage, ER stress and neuroinflammation. Recent data have identified a dual role in these events
[...] Read more.
Neurodegenerative diseases may have distinct genetic etiologies and pathological manifestations, yet share common cellular mechanisms underpinning neuronal damage and dysfunction. These cellular mechanisms include excitotoxicity, calcium dysregulation, oxidative damage, ER stress and neuroinflammation. Recent data have identified a dual role in these events for glial cells, such as microglia and astrocytes, which are able both to induce and to protect against damage induced by diverse stresses. Cyclo(His-Pro), a cyclic dipeptide derived from the hydrolytic removal of the amino-terminal pyroglutamic acid residue of the hypothalamic thyrotropin-releasing hormone, may be important in regulating the nature of the glial cell contribution. Cyclo(His-Pro) is ubiquitous in the central nervous system and is a key substrate of organic cation transporters, which are strongly linked to neuroprotection. The cyclic dipeptide can also cross the brain-blood-barrier and, once in the brain, can affect diverse inflammatory and stress responses by modifying the Nrf2-NF-κB signaling axis. For these reasons, cyclo(His-Pro) has striking potential for therapeutic application by both parenteral and oral administration routes and may represent an important new tool in counteracting neuroinflammation-based degenerative pathologies. In this review, we discuss the chemistry and biology of cyclo(His-Pro), how it may interact with the biological mechanisms driving neurodegenerative disease, such as amyotrophic lateral sclerosis, and thereby act to preserve or restore neuronal function. Full article
Figures

Graphical abstract

Open AccessArticle Cytoprotection against Hypoxic and/or MPP+ Injury: Effect of δ–Opioid Receptor Activation on Caspase 3
Int. J. Mol. Sci. 2016, 17(8), 1179; https://doi.org/10.3390/ijms17081179
Received: 5 June 2016 / Revised: 13 July 2016 / Accepted: 13 July 2016 / Published: 9 August 2016
Cited by 5 | PDF Full-text (2772 KB) | HTML Full-text | XML Full-text
Abstract
The pathological changes of Parkinson’s disease (PD) are, at least partially, associated with the dysregulation of PTEN-induced putative kinase 1 (PINK1) and caspase 3. Since hypoxic and neurotoxic insults are underlying causes of PD, and since δ-opioid receptor (DOR) is neuroprotective against hypoxic/ischemic
[...] Read more.
The pathological changes of Parkinson’s disease (PD) are, at least partially, associated with the dysregulation of PTEN-induced putative kinase 1 (PINK1) and caspase 3. Since hypoxic and neurotoxic insults are underlying causes of PD, and since δ-opioid receptor (DOR) is neuroprotective against hypoxic/ischemic insults, we sought to determine whether DOR activation could protect the cells from damage induced by hypoxia and/or MPP+ by regulating PINK1 and caspase 3 expressions. We exposed PC12 cells to either severe hypoxia (0.5%–1% O2) for 24–48 h or to MPP+ at different concentrations (0.5, 1, 2 mM) and then detected the levels of PINK1 and cleaved caspase 3. Both hypoxia and MPP+ reduced cell viability, progressively suppressed the expression of PINK1 and increased the cleaved caspase 3. DOR activation using UFP-512, effectively protected the cells from hypoxia and/or MPP+ induced injury, reversed the reduction in PINK1 protein and significantly attenuated the increase in the cleaved caspase 3. On the other hand, the application of DOR antagonist, naltrindole, greatly decreased cell viability and increased cleaved caspase 3. These findings suggest that DOR is cytoprotective against both hypoxia and MPP+ through the regulation of PINK1 and caspase 3 pathways. Full article
Figures

Figure 1

Open AccessArticle Neuroprotective Effect of Salvianolic Acids against Cerebral Ischemia/Reperfusion Injury
Int. J. Mol. Sci. 2016, 17(7), 1190; https://doi.org/10.3390/ijms17071190
Received: 9 May 2016 / Revised: 18 July 2016 / Accepted: 18 July 2016 / Published: 22 July 2016
Cited by 11 | PDF Full-text (1738 KB) | HTML Full-text | XML Full-text
Abstract
This study investigated the neuroprotective effect of salvianolic acids (SA) against ischemia/reperfusion (I/R) injury, and explored whether the neuroprotection was dependent on mitochondrial connexin43 (mtCx43) via the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway. In vitro, we measured astrocyte apoptosis, mitochondrial membrane potential, and
[...] Read more.
This study investigated the neuroprotective effect of salvianolic acids (SA) against ischemia/reperfusion (I/R) injury, and explored whether the neuroprotection was dependent on mitochondrial connexin43 (mtCx43) via the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway. In vitro, we measured astrocyte apoptosis, mitochondrial membrane potential, and also evaluated the morphology of astrocyte mitochondria with transmission electron microscopy. In vivo, we determined the cerebral infarction volume and measured superoxide dismutase (SOD) activity and malondialdehyde (MDA) content. Additionally, mtCx43, p-mtCx43, AKT, and p-AKT levels were determined. In vitro, we found that I/R injury induced apoptosis, decreased cell mitochondrial membrane potential (MMP), and damaged mitochondrial morphology in astrocytes. In vivo, we found that I/R injury resulted in a large cerebral infarction, decreased SOD activity, and increased MDA expression. Additionally, I/R injury reduced both the p-mtCx43/mtCx43 and p-AKT/AKT ratios. We reported that both in vivo and in vitro, SA ameliorated the detrimental outcomes of the I/R. Interestingly, co-administering an inhibitor of the PI3K/AKT pathway blunted the effects of SA. SA represents a potential treatment option for cerebral infarction by up-regulating mtCx43 through the PI3K/AKT pathway. Full article
Figures

Figure 1

Open AccessArticle Neuroprotective Effects of Inhibiting Fyn S-Nitrosylation on Cerebral Ischemia/Reperfusion-Induced Damage to CA1 Hippocampal Neurons
Int. J. Mol. Sci. 2016, 17(7), 1100; https://doi.org/10.3390/ijms17071100
Received: 1 May 2016 / Revised: 10 June 2016 / Accepted: 4 July 2016 / Published: 12 July 2016
Cited by 2 | PDF Full-text (3253 KB) | HTML Full-text | XML Full-text
Abstract
Nitric oxide (NO) can regulate signaling pathways via S-nitrosylation. Fyn can be post-translationally modified in many biological processes. In the present study, using a rat four-vessel-occlusion ischemic model, we aimed to assess whether Fyn could be S-nitrosylated and to evaluate the
[...] Read more.
Nitric oxide (NO) can regulate signaling pathways via S-nitrosylation. Fyn can be post-translationally modified in many biological processes. In the present study, using a rat four-vessel-occlusion ischemic model, we aimed to assess whether Fyn could be S-nitrosylated and to evaluate the effects of Fyn S-nitrosylation on brain damage. In vitro, Fyn could be S-nitrosylated by S-nitrosoglutathione (GSNO, an exogenous NO donor), and in vivo, endogenous NO synthesized by NO synthases (NOS) could enhance Fyn S-nitrosylation. Application of GSNO, 7-nitroindazole (7-NI, an inhibitor of neuronal NOS) and hydrogen maleate (MK-801, the N-methyl-d-aspartate receptor (NMDAR) antagonist) could decrease the S-nitrosylation and phosphorylation of Fyn induced by cerebral ischemia/reperfusion (I/R). Cresyl violet staining validated that these compounds exerted neuroprotective effects against the cerebral I/R-induced damage to hippocampal CA1 neurons. Taken together, in this study, we demonstrated that Fyn can be S-nitrosylated both in vitro and in vivo and that inhibiting S-nitrosylation can exert neuroprotective effects against cerebral I/R injury, potentially via NMDAR-mediated mechanisms. These findings may lead to a new field of inquiry to investigate the underlying pathogenesis of stroke and the development of novel treatment strategies. Full article
Figures

Figure 1

Open AccessArticle Neuroprotective Effect of Puerarin on Glutamate-Induced Cytotoxicity in Differentiated Y-79 Cells via Inhibition of ROS Generation and Ca2+ Influx
Int. J. Mol. Sci. 2016, 17(7), 1109; https://doi.org/10.3390/ijms17071109
Received: 11 May 2016 / Revised: 29 June 2016 / Accepted: 7 July 2016 / Published: 11 July 2016
Cited by 6 | PDF Full-text (3070 KB) | HTML Full-text | XML Full-text
Abstract
Glutamate toxicity is estimated to be the key cause of photoreceptor degeneration in the pathogenesis of retinal degenerative diseases. Oxidative stress and Ca2+ influx induced by glutamate are responsible for the apoptosis process of photoreceptor degeneration. Puerarin, a primary component of Kudzu
[...] Read more.
Glutamate toxicity is estimated to be the key cause of photoreceptor degeneration in the pathogenesis of retinal degenerative diseases. Oxidative stress and Ca2+ influx induced by glutamate are responsible for the apoptosis process of photoreceptor degeneration. Puerarin, a primary component of Kudzu root, has been widely used in the clinical treatment of retinal degenerative diseases in China for decades; however, the detailed molecular mechanism underlying this effect remains unclear. In this study, the neuroprotective effect of puerarin against glutamate-induced cytotoxicity in the differentiated Y-79 cells was first investigated through cytotoxicity assay. Then the molecular mechanism of this effect regarding anti-oxidative stress and Ca2+ hemostasis was further explored with indirect immunofluorescence, flow cytometric analysis and western blot analysis. Our study showed that glutamate induced cell viability loss, excessive reactive oxygen species (ROS) generation, calcium overload and up-regulated cell apoptosis in differentiated Y-79 cells, which effect was significantly attenuated with the pre-treatment of puerarin in a dose-dependent manner. Furthermore, our data indicated that the neuroprotective effect of puerarin was potentially mediated through the inhibition of glutamate-induced activation of mitochondrial-dependent signaling pathway and calmodulin-dependent protein kinase II (CaMKII)-dependent apoptosis signal-regulating kinase 1(ASK-1)/c-Jun N-terminal kinase (JNK)/p38 signaling pathway. The present study supports the notion that puerarin may be a promising neuroprotective agent in the prevention of retinal degenerative diseases. Full article
Figures

Figure 1

Open AccessArticle Novel NSAID-Derived Drugs for the Potential Treatment of Alzheimer’s Disease
Int. J. Mol. Sci. 2016, 17(7), 1035; https://doi.org/10.3390/ijms17071035
Received: 12 April 2016 / Revised: 13 June 2016 / Accepted: 20 June 2016 / Published: 30 June 2016
Cited by 7 | PDF Full-text (1374 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) have been suggested for the potential treatment of neurodegenerative diseases, such as Alzheimer’s disease (AD). Prolonged use of NSAIDs, however, produces gastrointestinal (GI) toxicity. To overcome this serious limitation, the aim of this study was to develop novel NSAID-derived
[...] Read more.
Nonsteroidal anti-inflammatory drugs (NSAIDs) have been suggested for the potential treatment of neurodegenerative diseases, such as Alzheimer’s disease (AD). Prolonged use of NSAIDs, however, produces gastrointestinal (GI) toxicity. To overcome this serious limitation, the aim of this study was to develop novel NSAID-derived drug conjugates (Anti-inflammatory-Lipoyl derivatives, AL49) that preserve the beneficial effects of NSAIDS without causing GI problems. As such, we conjugated selected well-known NSAIDs, such as (S)-naproxen and (R)-flurbiprofen, with (R)-α-lipoic acid (LA) through alkylene diamine linkers. The selection of the antioxidant LA was based on the proposed role of oxidative stress in the development and/or progression of AD. Our exploratory studies revealed that AL7 containing the diaminoethylene linker between (R)-flurbiprofen and LA had the most favorable chemical and in vitro enzymatic stability profiles among the synthesized compounds. Upon pretreatment, this compound exhibited excellent antioxidant activity in phorbol 12-miristate 13-acetate (PMA)-stimulated U937 cells (lymphoblast lung from human) and Aβ(25–35)-treated THP-1 cells (leukemic monocytes). Furthermore, AL7 also modulated the expression of COX-2, IL-1β and TNF-α in these cell lines, suggesting anti-inflammatory activity. Taken together, AL7 has emerged as a potential lead worthy of further characterization and testing in suitable in vivo models of AD. Full article
Figures

Figure 1

Open AccessArticle Echinacoside Inhibits Glutamate Release by Suppressing Voltage-Dependent Ca2+ Entry and Protein Kinase C in Rat Cerebrocortical Nerve Terminals
Int. J. Mol. Sci. 2016, 17(7), 1006; https://doi.org/10.3390/ijms17071006
Received: 10 May 2016 / Revised: 16 June 2016 / Accepted: 20 June 2016 / Published: 24 June 2016
Cited by 7 | PDF Full-text (1465 KB) | HTML Full-text | XML Full-text
Abstract
The glutamatergic system may be involved in the effects of neuroprotectant therapies. Echinacoside, a phenylethanoid glycoside extracted from the medicinal Chinese herb Herba Cistanche, has neuroprotective effects. This study investigated the effects of echinacoside on 4-aminopyridine-evoked glutamate release in rat cerebrocortical nerve
[...] Read more.
The glutamatergic system may be involved in the effects of neuroprotectant therapies. Echinacoside, a phenylethanoid glycoside extracted from the medicinal Chinese herb Herba Cistanche, has neuroprotective effects. This study investigated the effects of echinacoside on 4-aminopyridine-evoked glutamate release in rat cerebrocortical nerve terminals (synaptosomes). Echinacoside inhibited Ca2+-dependent, but not Ca2+-independent, 4-aminopyridine-evoked glutamate release in a concentration-dependent manner. Echinacoside also reduced the 4-aminopyridine-evoked increase in cytoplasmic free Ca2+ concentration but did not alter the synaptosomal membrane potential. The inhibitory effect of echinacoside on 4-aminopyridine-evoked glutamate release was prevented by ω-conotoxin MVIIC, a wide-spectrum blocker of Cav2.2 (N-type) and Cav2.1 (P/Q-type) channels, but was insensitive to the intracellular Ca2+ release-inhibitors dantrolene and 7-chloro-5-(2-chloropheny)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one (CGP37157). Furthermore, echinacoside decreased the 4-aminopyridine-induced phosphorylation of protein kinase C, and protein kinase C inhibitors abolished the effect of echinacoside on glutamate release. According to these results, we suggest that the inhibitory effect of echinacoside on evoked glutamate release is associated with reduced voltage-dependent Ca2+ entry and subsequent suppression of protein kinase C activity. Full article
Figures

Figure 1

Open AccessReview Neuroprotective and Therapeutic Strategies against Parkinson’s Disease: Recent Perspectives
Int. J. Mol. Sci. 2016, 17(6), 904; https://doi.org/10.3390/ijms17060904
Received: 25 April 2016 / Revised: 27 May 2016 / Accepted: 30 May 2016 / Published: 8 June 2016
Cited by 23 | PDF Full-text (334 KB) | HTML Full-text | XML Full-text
Abstract
Parkinsonism is a progressive motor disease that affects 1.5 million Americans and is the second most common neurodegenerative disease after Alzheimer’s. Typical neuropathological features of Parkinson’s disease (PD) include degeneration of dopaminergic neurons located in the pars compacta of the substantia nigra that
[...] Read more.
Parkinsonism is a progressive motor disease that affects 1.5 million Americans and is the second most common neurodegenerative disease after Alzheimer’s. Typical neuropathological features of Parkinson’s disease (PD) include degeneration of dopaminergic neurons located in the pars compacta of the substantia nigra that project to the striatum (nigro-striatal pathway) and depositions of cytoplasmic fibrillary inclusions (Lewy bodies) which contain ubiquitin and α-synuclein. The cardinal motor signs of PD are tremors, rigidity, slow movement (bradykinesia), poor balance, and difficulty in walking (Parkinsonian gait). In addition to motor symptoms, non-motor symptoms that include autonomic and psychiatric as well as cognitive impairments are pressing issues that need to be addressed. Several different mechanisms play an important role in generation of Lewy bodies; endoplasmic reticulum (ER) stress induced unfolded proteins, neuroinflammation and eventual loss of dopaminergic neurons in the substantia nigra of mid brain in PD. Moreover, these diverse processes that result in PD make modeling of the disease and evaluation of therapeutics against this devastating disease difficult. Here, we will discuss diverse mechanisms that are involved in PD, neuroprotective and therapeutic strategies currently in clinical trial or in preclinical stages, and impart views about strategies that are promising to mitigate PD pathology. Full article
Figures

Graphical abstract

Open AccessArticle Mechanism of Mitochondrial Connexin43′s Protection of the Neurovascular Unit under Acute Cerebral Ischemia-Reperfusion Injury
Int. J. Mol. Sci. 2016, 17(5), 679; https://doi.org/10.3390/ijms17050679
Received: 4 April 2016 / Revised: 27 April 2016 / Accepted: 29 April 2016 / Published: 5 May 2016
Cited by 7 | PDF Full-text (3457 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
We observed mitochondrial connexin43 (mtCx43) expression under cerebral ischemia-reperfusion (I/R) injury, analyzed its regulation, and explored its protective mechanisms. Wistar rats were divided into groups based on injections received before middle cerebral artery occlusion (MCAO). Cerebral infarction volume was detected by 2,3,5-triphenyltetrazolim chloride
[...] Read more.
We observed mitochondrial connexin43 (mtCx43) expression under cerebral ischemia-reperfusion (I/R) injury, analyzed its regulation, and explored its protective mechanisms. Wistar rats were divided into groups based on injections received before middle cerebral artery occlusion (MCAO). Cerebral infarction volume was detected by 2,3,5-triphenyltetrazolim chloride staining, and cell apoptosis was observed by transferase dUTP nick end labeling. We used transmission electron microscopy to observe mitochondrial morphology and determined superoxide dismutase (SOD) activity and malondialdehyde (MDA) content. MtCx43, p-mtCx43, protein kinase C (PKC), and p-PKC expression were detected by Western blot. Compared with those in the IR group, cerebral infarction volumes in the carbenoxolone (CBX) and diazoxide (DZX) groups were obviously smaller, and the apoptosis indices were down-regulated. Mitochondrial morphology was damaged after I/R, especially in the IR and 5-hydroxydecanoic acid (5-HD) groups. Similarly, decreased SOD activity and increased MDA were observed after MCAO; CBX, DZX, and phorbol-12-myristate-13-acetate (PMA) reduced mitochondrial functional injury. Expression of mtCx43 and p-mtCx43 and the p-Cx43/Cx43 ratio were significantly lower in the IR group than in the sham group. These abnormalities were ameliorated by CBX, DZX, and PMA. MtCx43 may protect the neurovascular unit from acute cerebral IR injury via PKC activation induced by mitoKATP channel agonists. Full article
Figures

Figure 1