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Abstract: It is well established that the brain can be prepared to resist or tolerate ischemic stroke
injury, and mitochondrion is a major target for this tolerance. The preparation of ischemic stroke
tolerance can be achieved by three major approaches: ischemic conditioning, hypoxic conditioning
and chemical conditioning. In each conditioning approach, there are often two strategies that can
be used to achieve the conditioning effects, namely preconditioning (Pre-C) and postconditioning
(Post-C). In this review, we focus on chemical conditioning of mitochondrial proteins as targets for
neuroprotection against ischemic stroke injury. Mitochondrial targets covered include complexes
I, II, IV, the ATP-sensitive potassium channel (mitoKATP), adenine dinucleotide translocase (ANT)
and the mitochondrial permeability transition pore (mPTP). While numerous mitochondrial proteins
have not been evaluated in the context of chemical conditioning and ischemic stroke tolerance, the
paradigms and approaches reviewed in this article should provide general guidelines on testing those
mitochondrial components that have not been investigated. A deep understanding of mitochondria
as the target of chemical conditioning for ischemic stroke tolerance should provide valuable insights
into strategies for fighting ischemic stroke, a leading cause of death in the world.

Keywords: chemical conditioning; ischemic conditioning; hypoxic conditioning; mitochondria;
neuroprotection; stroke injury

1. Introduction

The brain is a vulnerable target of ischemic stroke injury, but can also be made to resist or tolerate
such an injury [1–5]. Brain ischemic tolerance can be achieved by a variety of approaches [6–8], of
which the most extensively-studied ones are conditioning that encompasses preconditioning (Pre-C)
and postconditioning (Post-C) [9–12]. Under the concept of conditioning, further categories can be
classified depending on the design of conditioning induction. When conditioning is achieved by
short cycles of ischemic reperfusion, the strategy is known as ischemic conditioning [13,14]. When
conditioning is achieved by one cycle or many short cycles of hypoxic exposure, the strategy is
known as hypoxic conditioning [15]. If the conditioning is achieved by chemicals or pharmacological
drugs that usually target proteins, such an approach is often called chemical hypoxia or chemical
conditioning [16]. It should be noted that both hypoxic conditioning and chemical conditioning
are cross-tolerance approaches [17], as the induction of ischemic tolerance is not achieved via
ischemia. Importantly, regardless of which category of conditioning, both Pre-C and Post-C
strategies under a given conditioning approach involve triggering the endogenous neuroprotective
responses during the conditioning phases that can be in full-fledged action upon subsequent severe
ischemic injury [11,18–20]. Mitochondria are known to be involved in ischemic stroke injury and
chemical-induced ischemic tolerance [21–24]. Therefore, in this review, we first discuss the role of
mitochondria in ischemic injury, ischemic conditioning and hypoxic conditioning and then focus on
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mitochondrial protein targets that have been widely studied in the context of chemical conditioning
and neuroprotection in ischemic stroke injury.

2. Mitochondria and Ischemic-Reperfusion Injury

Mitochondria are known to play a major role in ischemic/reperfusion injury [25–27]. During
ischemia, ATP production by mitochondria is dramatically deceased due to the lack of nutrients
and oxygen [28]. This decrease in ATP levels leads to impairment in ATP-dependent Ca2+ channels,
resulting in accumulation or overload of cellular and mitochondrial Ca2+ [28]. In the meantime,
lack of blood flow also causes accumulation of lactate, as cells are forced to undergo anaerobic
respiration [28]. Consequently, cellular pH decreases, which induces the closure of the mitochondrial
membrane permeability transition pore [28]. Upon reperfusion, a sudden resupply of oxygen and
nutrients re-energizes mitochondrial aerobic respiration, resulting in a further load of mitochondrial
Ca2+, mitochondrial permeability transition pore (mPTP) opening and a burst in reactive oxygen
species (ROS) production [29–31]. Cytochrome c release due to mPTP opening would set off the
cellular apoptotic process [32,33], and ROS generation would cause widespread oxidative damage to
macromolecules, such as DNA, lipids and proteins [34–39]. The occurrence of these events converging
on mitochondria would eventually lead to cell death and tissue infarction [40]. Therefore, mitochondria
have been investigated as a major target for neuroprotection in ischemic brain injury [20,41–43].

3. Ischemic Conditioning: Ischemic Pre-C and Post-C

In ischemic Pre-C, the brain is subjected to short episodes of ischemic reperfusion followed by a
severe ischemic stroke attack [44–46] (Figure 1A). In ischemic Post-C, the reperfusion process following
a period of ischemia is interrupted by several short cycles of ischemia [11,12,47] (Figure 1B). This
approach, though developed much later than that of ischemic Pre-C, has gained great attention and
momentum in the field of stroke research. The reason is that stroke is really an unpredictable mishap,
so Post-C is more clinically relevant than Pre-C. Nonetheless, Pre-C still remains an intensively-studied
area because it can be manipulated to understand the endogenous neuroprotective mechanisms [48–50].
It should be noted that the cycle number for the short episodes of ischemic reperfusion conducted
before or after lethal ischemic stroke injury can vary considerably depending on the purpose of a study.
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Figure 1. General scheme of ischemic preconditioning and ischemic postconditioning. The short cycles
of ischemia reperfusion can be used either preconditioning induction (A) or postconditioning induction
(B). As there are no standard procedures for ischemic conditioning, the number of cycles varies widely
from investigator to investigator.
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4. Hypoxic Conditioning: Hypoxic Pre-C and Post-C

Similar to ischemic Pre-C and Post-C, hypoxic Pre-C and Post-C have also been widely used as
neuroprotective approaches [51,52]. Shown in Figure 2 are the general approaches of hypoxic exposure
conducted either before or after lethal ischemic stroke. As there are no standard procedures for hypoxic
exposure, the schemes in Figure 2 only show representative procedures that can vary from investigator
to investigator. Under many conditions, repetitive hypoxic exposure, whether Pre-C or Post-C, is
performed [53].
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Figure 2. Representative scheme of hypoxic preconditioning and postconditioning. Similar to that of
ischemic conditioning, the short cycles of hypoxia exposure can be applied either before (A) or after
(B) lethal stroke. There are also no standard procedures for hypoxic conditioning, so the protocol could
change significantly from laboratory to laboratory.

5. Chemical Conditioning: Chemical Pre-C and Post-C

It has long been known that chemicals or pharmacological agents can be used to make the brain
resistant to ischemic stroke injury [54–56]. The process of chemically-induced ischemic stroke tolerance
is a cross tolerance [57], as the induction of conditioning is not achieved by ischemia, but by chemicals
or pharmacological agents. Chemically-induced ischemic tolerance is also often called chemical
hypoxia [58,59]. This is because the use of chemicals at a sublethal dosage always impacts cellular
mitochondrial respiration, whereby cells work under hypoxic conditions. The conditioning process can
stress cells, but does not impair cellular function or lead to cell death, thereby preparing cells to prevent
from further lethal ischemic stroke injury. General approaches of chemical conditioning, including both
Pre-C and Post-C, are shown in Figure 3. In Pre-C settings, a chemical is administered before ischemic
stroke so that a preventive purpose could be served. In Post-C settings, a chemical is administered
at the onset of reperfusion, whereby the reperfusion process is disrupted or interfered with, so that
less tissue damage could be achieved. If the induction agent is administered after reperfusion has
started, say a few hours after the onset of reperfusion, such an approach would be known as delayed
chemical conditioning [60]. We think chemical conditioning is more feasible than ischemic or hypoxic
conditioning because a given chemical can be readily administered via injection or inhalation without
needing any other equipment or instruments.
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effects would be induced.

6. Components of Mitochondrial Metabolic Pathways as Targets of Chemical Conditioning

In ischemic conditioning and hypoxic conditioning, there is often no specific target that could be
defined. In contrast, when chemical conditioning is conducted, the target is often known because the
chemical or compound is used to either inhibit or activate the function of a protein. When it comes
to mitochondria as the target for chemical conditioning, literally, any proteins in mitochondria can
serve as chemical conditioning targets as long as an inhibitor or activator of such a target exists or can
be artificially synthesized. Obviously, the components of the mitochondrial metabolic pathways are
ideal targets due to their involvement in oxygen consumption and nutrient electron extraction, as well
as electron storage in nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide
(FADH2) [61,62]. As shown in Figure 4, the mitochondrial metabolic pathways mainly involve the
breakdown of pyruvate to form acetyl-CoA by pyruvate dehydrogenase, beta oxidation of fatty acids
to also yield acetyl-CoA, amino acid residues’ catabolism to generate acetyl-CoA or the intermediates
in the Krebs cycle and complete combustion of acetyl-CoA to carbon dioxide in the Krebs cycle. This is
followed by electron transport from either NADH at complex I or FADH2 at complex II to oxygen via
coenzyme Q and cytochrome c and, finally, ATP production at complex V [61,63]. All of the enzymes
involved in these metabolic pathways could be potential targets of chemical hypoxia or chemical
Pre-C or Post-C. Surprisingly, many of the enzymes involved in these metabolic pathways have not
been investigated in the context of chemical conditioning and neuroprotection against ischemic stroke
injury. However, the importance of these enzymes as possible chemical conditioning targets should
not be discounted just because they have not been studied. The major mitochondrial components that
have been studied as chemical conditioning targets and that are covered in this review are shown
in Figure 5. These include complexes I, II, IV, the ATP-sensitive K+ channel (mitoKATP), adenine
dinucleotide translocase (ANT) and the mitochondrial permeability transition pore (mPTP). In the
following sections, we will summarize reported studies involving chemical conditioning of these
mitochondrial components as stroke tolerance targets. As our purpose is by no means to exhaust the
literature, we focus on the major mitochondrial targets that have been widely studied. Hence, we
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apologize to those whose work is not cited in this review. It should be noted that we have not found
ample reports in the literature (mainly via PubMed searches) about chemical conditioning targeting
complexes III and V for stroke tolerance.
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6.1. Complex I Inhibition by Isoflurane

Isoflurane has been found to elicit both Pre-C and Post-C effects in many organs [64]. It is
known to inhibit mitochondrial complex I [65–69], a major site for ROS generation [70–73]. In
a Post-C study, Sosunov et al. [69] have found that isoflurane given upon reperfusion attenuated
mitochondrial ROS production by inhibiting complex I function and the recovery of mitochondrial
oxidative phosphorylation. The underlying mechanism involves a decreased hydrogen peroxide
production, hence an attenuated oxidative stress in the brain and a decreased infarction volume. In
contrast to the complex II and ANT preconditioning studies discussed below, this study indicates no
positive roles of ROS, as ROS release from complex I was shown to be the main culprit of oxidative
damage in the brain. As the study used neonatal mice as its animal model, whether the age of the
mice could contribute to the deleterious role of ROS in neonatal mice remains unknown. Using adult
rabbits, however, Ludwig et al. [74] have reported that isoflurane-mediated preconditioning in the
brain involves ROS production at the site of complex III. It should be noted that isoflurane may also
indirectly target other mitochondrial proteins or pathways [75]. For example, isoflurane Post-C may
involve its inhibition of the mitochondrial permeability transition pore in neonatal rat brain [76]. It
should also be noted that rotenone [77,78], a widely-used complex I inhibitor, has not been tested in the
context of chemical conditioning and brain stroke tolerance, which is probably due to its toxicity [79,80].
The same is also true for antimycin A, a well-known complex III inhibitor [81,82].

6.2. Inhibition of Succinate Dehydrogenase (Complex II) by 3-Nitropropionate

3-Nitropropionate (3-NPA) is a well-known inhibitor of complex II that is the only complex
sitting in both the Krebs cycle and the electron transport chain [83]. 3-NPA is an irreversible
complex II inhibitor [84] and has been well studied in Pre-C-induced neuroprotection, as well
as cardioprotection [85,86]. A series of studies conducted by Dirnagl and his colleagues have
demonstrated that 3-NPA inhibition of complex II inhibits mitochondrial oxidative phosphorylation
and increases hypoxic tolerance, both in animal studies and in cell culture studies [54,56]. Importantly,
the 3-NPA regimen used in their studies did not induce any detectable cell death or behavioral changes.
The mechanisms of 3-NPA-induced ischemic tolerance are believed to involve ROS production, as
the antioxidant dimethylthiourea, when administered before 3-NPA treatment, abolished 3-NPA’s
neuroprotective effect [87], indicating that ROS are required for 3-NPA-induced preconditioning
and neuroprotection.

6.3. Preconditioning of Cytochrome c Oxidase (Complex IV) by Cyanide

Cyanide is a well-known inhibitor of cytochrome c oxidase [88], so-called complex IV, that is the
last component of the electron transport chain [89]. It has been reported that inhibition of complex
IV by a sublethal dosage of sodium cyanide can prevent neurotoxicity by a lethal dosage of sodium
cyanide [90]. This cyanide-induced preconditioning against cyanide-induced neurotoxicity is not cross
tolerant and was manifested by the maintenance of mitochondrial membrane potential and increased
levels of Bcl-2 and Bcl-XL, indicating preservation of mitochondrial function [90]. It should be noted
that the authors did not explore whether cyanide-induced preconditioning has any protective effect
against ischemic stroke injury that would be a cross tolerance study.

6.4. Inhibition of Adenine Nucleotide Translocase by Carbon Monoxide

Queiroga et al. [91] found that CO can elicit a protective response against astrocyte cell death
induced by diamide, a thiol crosslinking agent that usually causes oxidative stress [92]. The
authors found that CO works by directly enhancing ANT function via a mechanism of protein
s-glutathionylation. As ANT is part of the mitochondrial permeability transition pore (mPTP) [93,94],
the functional enhancement of ANT actually prevents ANT’s pore forming function, leading to no
mitochondrial membrane swelling and no cytochrome c release. Additionally, CO preconditioning
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also involves ROS formation, as the use of β-carotene can abolish CO’s protective action. This study
further confirms that ROS formation during preconditioning is essential for a preconditioning effect.

6.5. Inhibition of Mitochondrial Permeability Transition Pore by Carbon Dioxide

In an elegant study, Fan et al. [95] have found that carbon dioxide (CO2) also can elicit a
Post-C neuroprotective effect. The authors found that stroked mice receiving varying dosages of
CO2 at 5, 50 or 100 min after onset of reperfusion showed a pronounced neuroprotective effect after
ischemic stroke injury. The protective effect of CO2 was found to be due to its induction of mild
acidosis, as NaHCO3, an agent that can elevate pH, greatly compromised the neuroprotective effect of
CO2. The authors found that CO2-induced acidosis inhibits mPTP and cytochrome c release, which
can be abolished by the mPTP opener atractyloside, further demonstrating that CO2-induced Post-C is
due to its acidic inhibition of mPTP.

6.6. Activation of the Mitochondrial ATP-Sensitive K+ Channel by Diazoxide

The mitochondrial ATP-sensitive K+ channel (mitoKATP) is a well-studied target for ischemic
stroke tolerance and neuroprotection [96–99]. The neuroprotective effects of mitoATP in both Pre-C
and Post-C have been evaluated. In Pre-C studies, diazoxide as the channel’s opener has been
widely used [100]. Wu et al. [101] have reported that activation of mitoKATP by diazoxide 20 min
before ischemia significantly improved neurological scores with a concurrent decrease in infarction
volume. This protective effect could also be induced by cyclosporine A, which is an inhibitor of mPTP,
demonstrating that mPTP closure following mitoKATP opening is involved in this protective response.
Accordingly, the use of mPTP opener atractyloside diminished the neuroprotective effects of diazoxide
and cyclosporine A.

In a Post-C study, Robin et al. [99] have reported that mitoKATP opening by diazoxide right
before the start of reperfusion conferred significant neuroprotection. In this study, diazoxide was
used in conjunction with ischemic Post-C comprising three episodes of 30 s of occlusion and
reperfusion. The authors found that diazoxide resulted in a 60% decrease in infarction volume,
and this effect was abolished by mitoKATP blocker 5-hydroxydecanoate (5-HD). Additionally, no
delayed postconditioning effect was observed, as Post-C applied 5 min after the onset of reperfusion
did not yield neuroprotection. However, in tissue culture studies, diazoxide was shown to trigger
delayed Pre-C effects [98].

It should be noted that administration of diazoxide alone in the absence of post ischemic
interruption of the reperfusion process has also been shown to confer neuroprotection [102].
Additionally, in addition to mPTP, ROS and calcium have been established as the mediators in
diazoxide-induced neuroprotection [43].

6.7. Mitochondrial Biogenesis and Ischemic Tolerance

While numerous studies have focused on one protein target or one signaling pathway,
mitochondrial biogenesis as a whole has also been investigated in the process of ischemic tolerance
induced by chemical conditioning. For example, Stetler et al. [103] have reported that upon
lipopolysaccharide (LPS)-induced preconditioning, mitochondrial biogenesis was observed, and
this biogenesis is linked to ischemic tolerance. Many makers of mitochondrial biogenesis were
found to be elevated by LPS, whose stroke tolerance effects have been well studied [104–107]. These
markers include mitochondrial DNA copy number and mitochondrial transcription factor A (TFAM).
The observation of mitochondrial biogenesis was further supported by TFAM knockdown, which
attenuated mitochondrial biogenesis and ischemic tolerance induced by LPS preconditioning. This
study demonstrates that mitochondrion, as an organelle, contributes to chemical-induced ischemic
tolerance in the brain.
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7. Summary and Future Perspectives

In this review, we have summarized evidence that chemical-induced ischemic stroke tolerance
can be achieved by targeting mitochondrial proteins. We discussed a variety of targets, including
complexes I, II, IV, ANT, mPTP and mitoKATP. Chemical agents that are covered in this review include
CO, 3-NPA, CO2, isoflurane, diazoxide and cyanide. As some of these agents or their targets have not
been tested in both Pre-C and Post-C settings, it would be interesting to evaluate their comprehensive
effects on ischemic stroke tolerance in the future. Moreover, many mitochondrial proteins have not
been explored as chemical conditioning targets for stroke tolerance, which should also be explored
in the future. We believe that studies on elucidating the mechanisms of chemical-induced tolerance
against stroke injury involving mitochondria as the target could eventually help fighting ischemic
stroke, which is a leading cause of death globally.
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